JP2017518435A5 - - Google Patents

Download PDF

Info

Publication number
JP2017518435A5
JP2017518435A5 JP2017518609A JP2017518609A JP2017518435A5 JP 2017518435 A5 JP2017518435 A5 JP 2017518435A5 JP 2017518609 A JP2017518609 A JP 2017518609A JP 2017518609 A JP2017518609 A JP 2017518609A JP 2017518435 A5 JP2017518435 A5 JP 2017518435A5
Authority
JP
Japan
Prior art keywords
group
compound
particles
less
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017518609A
Other languages
English (en)
Other versions
JP6765368B2 (ja
JP2017518435A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/FI2015/050457 external-priority patent/WO2015193558A1/en
Publication of JP2017518435A publication Critical patent/JP2017518435A/ja
Publication of JP2017518435A5 publication Critical patent/JP2017518435A5/ja
Application granted granted Critical
Publication of JP6765368B2 publication Critical patent/JP6765368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

シロキサンポリマー組成物の製造方法
本発明は、シロキサンポリマー組成物に関する。特に、本発明は、接着剤(例えば、半導体(例えばLED)におけるダイアタッチ接着剤)、パッケージング用途、封入剤、光学コーティング、保護コーティング、及び他の用途等の様々な分野で有用であり得るシロキサンポリマー組成物の製造方法に関する
ナノ粒子を含むシロキサンポリマーを製造する方法は、JIN, J らの Organic Electronic, 2012, 13巻, 53-57ページに開示されている。
背景技術は、米国特許出願公開201410030、中国第103059573、国際公開第2006112591国際公開第2007001039国際公開第2008046142米国特許出願公開2010178478、及び米国特許出願公開2005244658にも開示されている。
既知の組成物を1つの成分の接着剤として使用する場合、早期の架橋を避けるために、低温で出荷及び貯蔵する必要がある。実質的な重合又は他の望ましくない反応が起こることなく、室温で出荷及び貯蔵することができる組成物を有することが望ましいであろう。
米国特許出願公開201410030 中国第103059573 国際公開第2006112591号 国際公開第2007001039号 国際公開第2008046142号 米国特許出願公開2010178478 米国特許出願公開2005244658
JIN, J et al., Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Organic Electronic, 2012, Vol . 13, pp. 53-57.
本発明の目的は、当該技術分野の問題の少なくとも一部を除去することである。
本発明の目的は、シロキサンポリマー材料を製造するための新規な製造方法を提供することである。
一実施形態では、化学式SiR 4−a (式中、aは1〜3であり、R は反応性基であり、R はアルキル基又はアリール基である)を有する第1の化合物が提供される。化学式SiR 4−(b+c) (式中、R は架橋性官能基であり、R は反応性基であり、R はアルキル又はアリール基であり、b=1〜2であり、c=1〜(4−b)である)を有する第2の化合物も提供される。第1及び第2の化合物は一緒に重合してシロキサンポリマー材料を形成する。シロキサン材料は、100ミクロン未満の平均粒子サイズを有する金属、半金属又はセラミック粒子、ならびに他の任意のカップリング剤と混合することができる。
より具体的には、本発明は、独立請求項の特徴部分に記載されていることを特徴とする。
かなりの利点が得られる。したがって、シロキサン粒子組成物は、様々な分野で使用することができる。それは、いくつか挙げると、半導体パッケージングにおけるはんだバンプなどはんだ付け、OLEDの低仕事関数陰極インク、ITO置換インク、金属メッシュ及び他の電極、高解像度光起電ペースト、LMO陰極ペースト、光電池、パワーエレクトロニクス及びEMI、タッチセンサ及び他のディスプレイ、熱又はUV硬化性封入剤又は誘電体の代わりに、エレクトロニクス又はオプトエレクトロニクスパッケージング、LED及びOLEDのフロントエンド及びバックエンド処理、3D、光起電性及びディスプレイメタライゼーションにおける接着剤又は封剤として使用することができる
例示的な実施形態は、添付の図面と併せて以下の詳細な説明からより明確に理解されるであろう。
図1は、シロキサンポリマー組成物を製造する例示的な方法を示す図である。 図2は、熱誘導重合中のシロキサンポリマーの質量変化を示す図である 図3は、堆積及び重合後のシロキサン材料の熱安定性を示す。
様々な例示的な実施形態は、いくつかの例示的な実施形態が示されている添付の図面を参照して、以下により完全に記載される。しかしながら、本発明の概念は、多くの異なる形態で具体化されてもよく、本明細書に記載された例示的な実施形態に限定されると解釈されるべきではない。むしろ、これらの例示的な実施形態は、この説明が完全かつ完全であり、本発明の概念の範囲を当業者に完全に伝えるように提供される。図面において、層及び領域のサイズ及び相対的なサイズは、明確にするために誇張されている場合がある。
ある要素又は層が別の要素又は層の「上に」ある、「接続されている」又は「結合している」と言及されている場合、その他の要素又は層に直接的に上にあるか、接続されているか、結合していてもよく、または要素又は層が間に存在してもよい。対照的に、要素が他の要素又は層に「直接的に」、「直接接続されて」又は「直接結合されている」と言及される場合、介在する要素又は層は存在しない。全体を通して同じ参照番号は同様の要素を指す。本明細書で使用される場合、用語「及び/又は」は、1つ又は複数の関連する列挙された項目いずれか及びすべての組み合わせを含む。
また、第1、第2、第3等の用語は、様々な要素、構成要素、領域、層及び/又はセクションを記述するために本明細書で使用されるが、これらの要素、構成要素、領域、層及び/またはセクションは、これらの用語によって制限されるものではない。これらの用語は、ある要素、構成要素、領域、層、又はセクションを他の要素、構成要素、領域、層又はセクションと区別するためにのみ使用される。したがって、以下に説明する第1の要素、構成要素、領域、層又はセクションは、本発明の概念から逸脱することなく、第2の要素、構成要素、領域、層又はセクションと呼ぶことができる。
さらに、図に示すように、「下部」又は「下部」及び「上部」又は「上部」等の相対用語を、1つの要素と別の要素の関係を説明するために使用することができる。相対的な用語は、図面に描かれている向きに加えて、装置の異なる向きを包含することが意図されていることが理解されるであろう。例えば、図の1つの装置がひっくり返された場合、他の要素の「にあると記載された要素は、その他の要素の「」側に向けられる。したがって、例示的な用語「より低い」は、図の特定の向きに応じて、「下」及び「上」の向きの両方を包含することができる。同様に、図の1つの装置がひっくり返された場合、他の要素の「下」又は「下」に記載された要素は、その他の要素の「上」に向けられる。したがって、「下」又は「下」の例示的な用語は、上及び下の両方の方向を含むことができる。
本明細書で使用するように、単数形の「a」、「an」及び「the」は、文脈上他に明確に指示しない限り、複数の指示対象を含むことに留意されたい。本明細書で使用される場合、用語「含む」及び/又は「含む」は、記載された特徴、ステップ、操作、要素及び/又は構成要素の存在を特定するが、1つ以上の他の特徴、ステップ、操作、要素、構成要素、及び/又はそれらのグループの追加を排除しない。他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語などの用語は、関連する技術及び本開示の文脈における意味と整合する意味を有すると解釈されるべきであり、本明細書で明示的にそのように定義されない限り、理想化された又は過度に形式的な意味で解釈されるべきではない
下の数式で使用される小文字は、特に整数を表す
に示すように、(16)において、化学式SiR 4−a
を有する第1の化合物が与えられ、式中、aは1〜3であり、R は反応性基であり、R はアルキル基又はアリール基である。
の(18)において、1である場合には、化学式SiR 4−(b+c) を有する第2の化合物が与えられ、式中、R は架橋性官能基であり、R は反応性基であり、R はアルキル基又はアリール基であり、b=1〜2及びc=1〜4−bである。
(20)において、任意の第3の化合物が、第1及び第2の化合物と一緒に重合されるように提供される。第3の化合物は、化学式SiR 10 を有してよく、式中、 は反応性基であり、f=1〜4であり、R 10 はアルキル又はアリール基であり、g=4−fである。
第1、第2及び第3の化合物は、任意の順序で提供することができ、これらモノマーの代わりにこれらの化合物のオリゴマー部分重合形態を提供することができる。
の(22)に示すように、触媒が提供される。触媒は、後述するように、塩基触媒又は他の触媒であってもよい。提供される触媒は、第1及び第2の化合物を一緒に重合させることができるべきである。上記のように、化合物及び触媒の添加の順序は、任意の所望の順序であり得る。(24)に見られるように、一緒に提供される種々の成分を重合させて、所望の分子量及び粘度を有するシロキサンポリマー材料を作製する。(24)において、カップリング剤、触媒、安定剤、接着促進剤等の他の任意成分と一緒に、微粒子、ナノ粒子又は他の所望の粒子等の粒子が添加される。プロセス(22)及び(24)の部分は、任意の所望の順序で実施することができる。
したがって、一例では、シロキサンポリマーは、第1及び第2の化合物を重合することによって製造され、第1の化合物は、化学式SiR 4−a を有し、
式中、aは1〜3であり、
は反応性基であり、
はアルキル基又はアリール基であり、
第2の化合物は、化学式SiR 4−(b+c) を有し、
式中、
は架橋官能基であり、
は反応性基であり、
はアルキル又はアリール基であり
b=1〜2、c=1〜(4−b)である。
第1、第2及び第3の化合物、および以下に記載する任意の化合物は、このような化合物が複数のアリール基又はアルキル基など複数の単一のタイプの「R」基又は複数の反応性基又は複数架橋性官能基を有する場合、複数のR基は、それぞれの存在で同じであるか又は異なっているように独立して選択される。例えば、第1の化合物がSiR である場合、複数のR 基は、互いに同一又は異なるように独立して選択される。同様に、複数のR 基は、互いに同じ又は異なるように独立して選択される。他に明記されていない限り、本明細書に記載の他の化合物についても同様である。
第1の化合物は、化合物中のケイ素に結合した1〜3個のアルキル基又はアリール基(R2)を有することができる。異なるアルキル基の組み合わせ、異なるアリール基の組み合わせ、又はアルキル基とアリール基の両方の組み合わせが可能である。アルキル基の場合、アルキルは好ましくは1〜18個、より好ましくは1〜14個、特に好ましくは1〜12個の炭素原子を有する。1〜6個の炭素(例えば、2〜6個の炭素原子)などのより短いアルキル基が想定される。アルキル基は、1つ以上、好ましくは2つのC1〜C6アルキル基でα位又はβ位で分岐していてもよい。特に、アルキル基は、メチル及びハロゲンから選択される1〜3個の置換基を有していてもよい、1〜6個の炭素原子を含む低級アルキルである。メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル及びt−ブチルが特に好ましい。シクロヘキシル、アダマンチル、ノルボルネン又はノルボルニルのような環状アルキル基も可能である。
がアリール基である場合、アリール基は、環上のハロゲン、アルキル又はアルケニルから選択される1〜5個の置換基を任意に有するフェニルであってもよく、又は環構造上にハロゲンアルキル又はアルケニルから選択される1〜11個の置換基を任意にするナフチルであってもよく、置換基は任意にフッ素化されている(過フッ素化又は部分フッ素化を含む)。アリール基が芳香族基である場合、芳香族基は、例えば、1〜8個の置換基を有していてもよい、アントラセン、ナフタレン、フェナントレン、テトラセンでもよく、又は1〜12個の炭素を有するアルキル、アルケニル、アルキニルによってケイ素原子から任意に「離れて」いてもよい。フェニル等の単一環構造もこのようにしてケイ素原子から離ていてもよい。
シロキサンポリマーは、重合反応、好ましくは第1と第2の化合物の間の塩基触媒重合反応を実施することによって製造される。以下に示すように、任意の追加の化合物を重合反応の一部として含めることができる。
第1の化合物は、ヒドロキシル、ハロゲン、アルコキシ、カルボキシル、アミン又はアシルオキシ基等の任意の適切な反応性基R1を有することができる。例えば、第1の化合物の反応性基が−OH基である場合、第1の化合物のより具体的な例は、ジフェニルシランジオール、ジメチルシランジオール、ジイソプロピルシランジオール、ジ−n−プロピルシランジオール、ジ−n−ブチルシランジオール、ジ−t−ブチルシランジオール、ジ−イソブチルシランジオール、フェニルメチルシランジオール及びジシクロヘキシルシランジオールが挙げられる。
第2の化合物は、ヒドロキシル、ハロゲン、アルコキシ、カルボキシル、アミン又はアシルオキシ基等の任意の適切な反応性基R を有することができ、第1の化合物の反応性基と同じでも異なっていてもよい。一例では、反応性基は、第1又は第2の化合物(又はシロキサンポリマーを形成するために重合反応に関与する任意の化合物、例えば第3の化合物等)のいずれにおいても−Hではなく、結果として生じるシロキサンポリマーシロキサンポリマー中のSiに直接結合したH基が存在しないか、又は実質的に存在しない。
基R は、全て第2化合物中に存在する場合、独立して、第1化合物中の基R のようなアルキル基又はアリール基である。アルキル又はアリール基R は、第1の化合物の基R と同じであっても異なっていてもよい。
第2の化合物の架橋反応性基R は、酸、塩基、ラジカル又は熱触媒反応によって架橋することができる任意の官能基であり得る。これらの官能基は、例えば、任意のエポキシド、アミン、アリル、無水物、オキセタン、アクリレート、アルケニル、アルキニル又はチオール基であり得る。
エポキシド基の場合、それは、酸、塩基及び熱触媒反応を用いて架橋することができる3つの環原子を有する環状エーテルであり得る。これらのエポキシド含有架橋基の例は、グリシドキシプロピル基及び(3,4−エポキシシクロヘキシル)エチル基である。
オキセタン基の場合、それは、酸、塩基及び熱触媒反応を用いて架橋することができる4つの環原子を有する環状エーテルであり得る。このようなオキセタン含有シランの例は、3−(3−エチル−3−オキセタニルメトキシ)プロピルトリエトキシシラン、3−(3−メチル−3−オキセタニルメトキシ)プロピルトリエトキシシラン、3−(3−エチル−3−オキセタニルメトキシ)プロピルトリメトキシシラン又は3−(3−メチル−3−オキセタニルメトキシ)プロピルトリメトキシシランを挙げることができる。
アルケニル基の場合、そのような基は、好ましくは2〜18個、より好ましくは2〜14個、特に好ましくは2〜12個の炭素原子を有することができる。エチレン性、すなわち二重結合で結合した2個の炭素原子は、好ましくは分子中のSi原子に対して2位以上に位置する。分岐アルケニルは、好ましくは、1つ以上、好ましくは2つの、C1〜C6アルキル、アルケニル又はアルキニル基、任意にフッ素化または過フッ素化アルキル、アルケニルまたはアルキニル基を有しα位又はβ位で分岐している。
アルキニル基の場合、好ましくは2〜18個、より好ましくは2〜14個、特に好ましくは2〜12個の炭素原子を有することができる。エチリン基、すなわち三重結合で結合した2個の炭素原子は、好ましくは分子中のSi又はM原子に対して2位以上に位置する。分岐アルキニルは、好ましくは1つ以上、好ましくは2つのC1〜C6アルキル、アルケニル又はアルキニル基、任意に過フッ素化アルキル、アルケニル又はアルキニル基を有しアルファ又はベータ位で分岐している。
チオール基の場合、炭素結合スルフヒドリル基を含む任意の有機硫黄化合物であればよい。チオール含有シランの例は、3−メルカプトプロピルトリメトキシシラン及び3−メルカプトプロピルトリエトキシシランである。
第2の化合物の反応性基は、アルコキシ基であってもよい。アルコキシ基のアルキル残基は、直鎖であっても分岐鎖であってもよい。好ましくは、アルコキシ基は、メトキシ、エトキシ、プロポキシ及びt−ブトキシ基等の炭素原子数1〜6の低級アルコキシ基を含む。第2の化合物の特定の例は、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(トリメトキシシリル)プロピルメタクリレート、3−(トリメトキシシリル)プロピルアクリレート、3−グリシドキシプロピルトリメトキシシラン、又は3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等のシランである
第3の化合物は、重合される第1及び第2の化合物と一緒に提供されてもよい。第3の化合物は、化学式SiR 10 を有してもよい。
式中、
は反応性基であり、
f=1〜4であり、
10 はアルキル又はアリール基であり、
g=4−fである。
このような例の1つはテトラメトキシシランである。他の例としては、フェニルメチルジメトキシシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、プロピルエチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。
第1及び第2の化合物の重合は、酸触媒を用いて行うことができるが、塩基触媒が好ましい。第1の化合物と第2の化合物との間の塩基触媒重合において使用される塩基触媒は、任意の適切な塩基性化合物であり得る。これらの塩基性化合物の例は、トリエチルアミンのような任意のアミン及び水酸化バリウム、水酸化バリウム一水和物、水酸化バリウム八水和物等の任意のバリウム水酸化物である。他の塩基性触媒としては、酸化マグネシウム、酸化カルシウム、酸化バリウム、アンモニア、過塩素酸アンモニウム、水酸化ナトリウム、水酸化カリウム、イミダゾール又はn−ブチルアミンが挙げられる。1つの特定の例において、塩基触媒はBa(OH) である。塩基触媒は、第1及び第2の化合物一緒に対して、0.5重量%未満で、又は0.1%重量満等のより低い量で提供することができる。
重合は、溶融相又は液体媒体中で行うことができる。温度は約20〜200℃、典型的には約25〜160℃、特に約40〜120℃の範囲である。一般に、重合は周囲圧力で行われ、最高温度は使用される溶媒の沸点によって設定される。重合は還流条件で行うことができる。他の圧力及び温度も可能である。第1の化合物第2の化合物のモル比は、95:5〜5:95、特に90:10〜10:90、好ましくは80:20〜20:80であることができる。好ましい例では、第1の化合物と第2の化合物(又は第2の化合物に加えて重合反応に関与する(以下参照)他の化合物)のモル比は、少なくとも40:60、さらには45:55又はそれ以上である。
一例では、第1の化合物は反応性基として−OH基を有し、第2の化合物は反応性基としてアルコキシ基を有する。好ましくは、添加される第1の化合物の量に対する−OH基の総数は、反応性基(例えば、第2の化合物のアルコキシ基)の総数以下であり、好ましくは、第2の化合物(又は第2の化合物に加えてアルコキシ基を有する任意の他の化合物、例えば重合反応に関与する添加されたテトラメトキシシラン又は他の第3の化合物)の反応性基の総数よりも少ない。アルコキシ基がヒドロキシル基の数を上回ると、−OH基の全て又は実質的に全てが反応し、アルコキシシランがメトキシシランであればメタノール、アルコキシシランがエトキシシランであればエタノールが、シロキサンから除去される。第1の化合物の−OH基の数と第2の化合物の反応性基(好ましくは−OH基以外)の数とは実質的に同じであることができるが、第2の化合物の反応性基の総数は、第1の化合物の−OH基を10%以上、好ましくは25%以上上回ることが好ましい。いくつかの実施形態では、第2の化合物反応性基の数は、第1の化合物−OH基の数40%以上、又は60%以上、75%以上、又は100%以上上回る。選択された化合物に依存する重合反応のメタノール、エタノール又は他の副生成物は、重合後に除去され、好ましくは乾燥室で蒸発される。
得られたシロキサンポリマーは、所望の(重量平均)分子量、例えば500〜100,000g/molを有する。分子量は、この範囲の下限側(500〜10,000g/mol、又はより好ましくは500〜8,000g/molなど)でもよいし、又はオルガノシロキサン材料は、この範囲の上限側(10,000〜100,000g/mol、より好ましくは15,000〜50,000g/mol等)に分子量を有してもよい。低分子量のポリマーオルガノシロキサン材料を、より高分子量のオルガノシロキサン材料と混合することが望ましい場合がある。
得られたポリマーの組成は、最終硬化後に良好な接着を達成するようにさらに調節することができる。この接着は、ポリマーと混合されるフィラー又はポリマーが適用される材のいずれかにあり得る。良好な接着を達成するために、良好な接着特性を有するシランがポリマー製造中に使用される。ヒドロキシル基、エポキシ基、カルボン酸基、無水物基又はアミン基のような極性基を有する化合物は、種々の基材に対して良好な接着特性を有するシランの例である。
られたシロキサンポリマー、ポリマーの所望の最終用途に応じて追加の構成要素と組み合わせることができる。好ましくは、シロキサンポリマーは、100ミクロン未満、好ましくは50ミクロン未満20ミクロン未満の平均粒径を有する粒子を有する粒子状フィラー等のフィラーと組み合わせて組成物を形成する。追加の成分は、触硬化剤、1つ以上のカップリング剤、分散剤、酸化防止剤、安定剤、接着促進剤及び/又はシロキサン材料の所望の最終用途に応じた他の所望の成分等組成物の一部であってもよい。
一例では、酸化表面をその金属形態還元することができる還元剤が含まれる。還元剤は、それらが表面酸化を有する金属粒子である場合、粒子から酸化を除去、及び/又は金属結合パッド又は酸化された他の金属もしくは導電性領域などから酸化を除去して、シロキサン粒子材料とそれが堆積又は付着される表面との間の電気的接続を向上させることができる。還元剤又は安定としては、エチレングリコール、β−D−グルコース、ポリエチレンオキシド、グリセロール、1,2−プロピレングリコール、Nジメチルホルムアミド、ポリアクリル酸ナトリウム(PSA)、ポリアクリル酸を有するβシクロデキストリン、ジヒドロキシベンゼン、ポリビニルアルコール、1,2−プロピレングリコール、ヒドラジン、硫酸ヒドラジン、水素化ホウ素ナトリウム、アスコルビン酸、ヒドロキノン、没食子酸、ピロガロール、グリオキサール、アセトアルデヒド、グルタルアルデヒド、脂肪族ジアルデヒド、パラホルムアルデヒド、スズ粉末、亜鉛粉末、ギ酸などを挙げられる。例えば、Irganox(以下に述べるような)などの抗酸化剤またはジアジン誘導体などの安定化剤を添加することできる。
橋シコン又は非シリコン系樹脂及びオリゴマー、シロキサンポリマー間の架橋を高めるために使用することができる。追加された架橋オリゴマー又は樹脂の機能は、シロキサンポリマーの機能によって選択される。例えば、エポキシ系アルコキシシランが、シロキサンポリマーの重合の間に使用された場合、エポキシ官能性オリゴマー又は樹脂を使用することができる。エポキシオリゴマー又は樹脂は、任意のジ、トリ、テトラ又はより高い官能性エポキシオリゴマー又は樹脂であり得る。これらのエポキシオリゴマー又は樹脂の例としては、1,1,3,3−テトラメチルジシロキサン−1,3−ビス−2−(3,4−エポキシシクロヘキシル)エチル、1,1,3,3−テトラメチル−1,3−ビスグリシドキシプロピル、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、1,4−シクロヘキサンジメタノール ジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ジグリシジル 1,2−シクロヘキサンカルボキシレート等が挙げられる。
最終配合物に添加される硬化剤は、シロキサンポリマー中の官能基の硬化プロセスを開始及び/又は促進することができる任意の化合物である。これらの硬化剤は、熱及び/又はUV活性化されることができる(例えば、重合反応が熱活性化される場合は熱酸、又はUV活性化される場合には光開始剤)。上述のシロキサンポリマーの架橋基は、好ましくは、エポキシド、オキセタン、アクリレート、アルケニル、アルキニル、ビニル及びSi−H基から選択される。硬化剤は、シロキサンポリマーの架橋基に基づいて選択される。
一実施形態では、エポキシ及びオキセタン基のための硬化剤は、ブロックまたは減少した活性を示す第1級および/または第2級アミンなどの窒素含有硬化剤から選択することができる。定義「ブロックまたは減少した活性を示す第1級および/または第2級アミン」は、化学的又は物理的ブロッキングのため樹脂成分と反応することができないまたは非常に低い反応性のみを有するが、高温でのそれの溶解により、鞘またはコーティングの除去により、圧力または超音波または他のエネルギータイプの存在の作用により、アミンの解放後それらの反応性を再生して、樹脂成分の硬化反応を開始することができるアミンを意味する
熱活性化可能な硬化剤の例としては、少なくとも1つの有機ボラン又はボランと少なくとも1つのアミンとの錯体が挙げられる。アミンは、有機ボラン及び/又はボランを錯化し、必要に応じて分解して有機ボラン又はボランを遊離させることができる任意のタイプのアミンであり得る。アミンは、様々な構造、例えば任意の第1級アミン又は第2級アミン又は第1級アミン及び/又は第2級アミンを含有するポリアミンを含むことができる。有機ボランは、アルキルボランから選択することができる。これらの熱活性化可能な特に好ましいボラン硬化剤の例は、三フッ化ホウ素である。適切なアミン/(有機)ボラン錯体は、King Industries、Air Products、及びATO−Tech等の商業的供給元から入手可能である。
エポキシ基のための他の熱活性化硬化剤は、高温で強酸を放出してエポキシの架橋反応を触媒することができる熱酸発生剤である。これらの熱酸発生剤は、例えば、BF 、PF 、SbF 、CF SO 及び(C のタイプの錯アニオンを有するスルホニウム及びヨードニウム塩のような任意のオニウム塩であり得る。これらの熱酸発生剤の市販品としては、King Industries製のK−PURE CXC−1612及びK−PURE CXC−1614が挙げられる。
さらに、エポキシ及び/又はオキセタン含有ポリマーに関して、例えば、無水物、アミン、イミダゾール、チオールカルボン酸、フェノール、ジシアンジアミド、ウレア、ヒドラジン、アミノ−ホルムアルデヒド樹脂、メラミン−ホルムアルデヒド樹脂、第4級アンモニウム塩、第4級ホスホニウム塩、トリ−アリールスルホニウム塩、ジアリールヨードニウム塩、ジアゾニウム塩等の、接着剤配合物の硬化に関与するか又は硬化を促進するように設計された硬化剤、共硬化剤、触媒、開始剤または他の添加剤を使用することができる
アクリレート、アルケニル及びアルキニル架橋について、硬化剤は、熱活性化又はUV活性化のいずれでもよい。熱活性化の例は、過酸化物及びアゾ化合物である。過酸化物は、不安定な酸素−酸素単結合を有する化合物であり、これは均等開裂によって反応性ラジカルに容易に分割される。アゾ化合物は、窒素ガスと2つの有機ラジカルに分解することができるR−N=N−R官能基を有する。これらの場合の両方において、ラジカルはアクリレート、アルケニル及びアルキニル結合の重合を触媒することができる。過酸化物及びアゾ化合物の例は、ジ−tert−ブチルペルオキシド2,2−ビス(tert−ブチルペルオキシ)ブタン、t−ブチルペルアセテート2,5−ジ(tert−ブチルペルオキシ)−2,5−ジメチル−3−ヘキシン、ジクミルペルオキシド、ベンゾイルペルオキシド、ジ−tert−アミルペルオキシド、tert−ブチルペルオキシベンゾエート、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビス(2−アミジノプロパン)ジヒドロクロリド、ジフェニルジアゼイン、ジエチルアゾジカルボキシレート、及び1,1’−アゾビス(シクロヘキサンカルボニトリル)を挙げることができる
光開始剤は、光に暴露されるとフリーラジカルに分解し、したがって、アクリレート、アルケニル及びアルキニル化合物の重合を促進することができる化合物である。これらの光開始剤の市販品はBASF製のイルガキュア149、イルガキュア184、イルガキュア369、イルガキュア500、イルガキュア651、イルガキュア784、イルガキュア819、イルガキュア907、イルガキュア1700、イルガキュア1800、イルガキュア1850、イルガキュア2959、イルガキュア1173、イルガキュア4265である
硬化剤を系に組み込む1つの方法は、硬化剤又は硬化剤として作用することができる官能基をシランモノマーに結合させることである。従って、硬化剤は、シロキサンポリマーの硬化を促進する。シランモノマーに結合したこれらの種類の硬化剤の例は、γ−イミダゾリルプロピルトリエトキシシラン、γ−イミダゾリルプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−(トリエトキシシリル)プロピルコハク酸無水物、3−(トリメトキシシリル)プロピルコハク酸無水物、3−アミノプロピルトリメトキシシランおよび3−アミノプロピルトリトキシシランが挙げられる。
接着促進剤は、組成物の一部であってもよく、硬化生成物と、生成物が塗布され表面との間の接着性を高めることができる任意の適切な化合物であり得る。最も一般的に使用される接着促進剤は、アルコキシシラン及び1〜3個の官能基を有する官能性シランである。ダイ取付製品に使用される接着促進剤の例は、オクチルトリエトキシシラン、メルカプトプロピルトリエトキシシラン、シアノプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(トリメトキシシリル)プロピルメタクリレート、3−(トリメトキシシリル)プロピルアクリレート、(3−グリシジルオキシプロピル)トリメトキシシラン、又は3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン及び3−アクリロキシプロピルトリメトキシシランである
形成され重合シロキサンは、[Si−O−Si−O]n繰返し骨格を有し、ケイ素含有出発物質に応じた有機官能基を有する。しかしながら、[Si−O−Si−C]n又は[Si−O−Me−O]n(Meは金属である)骨格を達成することも可能である。
[Si−O−Si−C]骨格を得るために、式R 3−a SiR 11 SiR 3−b を有する化学物質は、上述のように、第1、第2及び第3の化合物又はこれらの任意の組み合わせと共に重合することができ、式中、上述のように、aは1〜3であり、bは1〜3であり、 は反応性基であり、R はアルキル、アルケニル、アルキニル、アルコール、カルボン酸、ジカルボン酸、アリール、ポリアリール、多環式アルキル、ヘテロ環式脂肪族、ヘテロ環式芳香族基であり、 11 は、独立して、アルキル基又はアリール基であるか、又は1000g/mol未満の分子量を有するそのオリゴマーである。
これらの化合物の例は、1,2−ビス(ジメチルヒドロキシルシリル)エタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(メトキシジメチルシリル)エタン、1,2−ビス(トリトキシシリル)エタン、1,3−ビス(ジメチルヒドロキシルシリル)プロパン、1,3−ビス(トリメトキシシリル)プロパン、1,3−ビス(メトキシメチルシリル)プロパン、1,3−ビス(メトキシジメチルシリル)プロパン、1,3−ビス(トリエトキシシリル)プロパン、1,4−ビス(ジメチルヒドロキシルシリル)ブタン、1,4−ビス(トリメトキシシリル)ブタン、1,4−ビス(ジメトキシメチルシリル)ブタン、1,4−ビス(メトキシジメチルシリル)ブタン、1,4−ビス(トリエトキシシリル)ブタン、1,5−ビス(ジメチルヒドロキシルシリル)ペンタン、1,5−ビス(トリメトキシシリル)ペンタン、1,5−ビス(ジメトキシメチルシリル)ペンタン、1,5−ビス(メトキシジメチルシリル)ペンタン、1,5−ビス(トリエトキシシリル)ペンタン、1,6−ビス(ジメチルヒドロキシルシリル)ヘキサン、1,6−ビス(トリメトキシシリル)ヘキサン、1,6−ビス(ジメトキシメチルシリル)ヘキサン、1,6−ビス(メトキシジメチルシリル)ヘキサン、1,6−ビス(トリエトキシシリル)ヘキサン、1,4−ビス(トリメトキシシリル)ベンゼン、ビス(トリメトキシシリル)ナフタレン、ビス(トリメトキシシリル)アントラセン、ビス(トリメトキシシリル)フェナントレン、ビス(トリメトキシシリル)ノルボルネン、1,4−ビス(ジメチルヒドロキシシリル)ベンゼン、1,4−ビス(メトキシジメチルシリル)ベンゼン、及び1,4−ビス(トリエトキシシリル)ベンゼンが挙げられる。
[Si−O−Si−C]骨格を得るための一実施形態では、式
3−(c+d) SiR 11 SiR 3−(e+f)
を有する化合物または1000g/mol未満の分子量を有するそれらのオリゴマーを上述したように、第1、第2及び第3の化合物又はこれらの任意の組み合わせと一緒に重合させ、
式中、
は架橋官能基であり、
は反応性基であり、
はアルキル、アルケニル、アルキニル、アルコール、カルボン酸、ジカルボン酸、アリール、ポリアリール基、多環式アルキル、ヘテロ環式脂肪族、ヘテロ環式芳香族基であり
12 は独立してアルキル基又はアリール基であり、
c=1〜2、d=1〜(3−c)、e=1〜2、f=1〜(3−e)である。
これらの化合物の例は、1,2−ビス(エテニルジメトキシシリル)エタン、1,2−ビス(エチニルジメトキシシリル)エタン、1,2−ビス(エチニルジメトキシ)エタン、1,2−ビス(3−グリシドキシプロピルジメトキシシリル)エタン、1,2−ビス[2−(3,4−エポキシシクロヘキシル)エチルジメトキシシリル]エタン、1,2−ビス(プロピルメタクリル化メトキシシリル)エタン、1,4−ビス(エテニルジメトキシシリル)ベンゼン、1,4−ビス(エチニルジメトキシシリル)ベンゼン、1,4−ビス(エチニルジメトキシシリル)ベンゼン、1,4−ビス(3−グリシドキシプロピルジメトキシシリル)ベンゼン、1,4−ビス[2−(3,4−エポキシシクロヘキシル)エチルジメトキシシリル]ベンゼン、1,4−ビス(プロピルメタクリル化メトキシシリル)ベンゼンである
一実施形態では、分子式
3−(a+b) Si−O−SiR −O−SiR 3−(a+b)
を有するシロキサンモノマーを先に言及したシランと重合させるか、又は最終配合物に添加剤として添加し、
式中
は上で説明したような反応基であり、
は、上で説明したようなアルキル又はアリールであり、
は上で説明したような架橋性官能基であり、
a=0〜3、b=0〜3である
これらの化合物の例は、1,1,5,5−テトラメトキシ−1,5−ジメチル−3,3−ジフェニルトリシロキサン、1,1,5,5−テトラメトキシ−1,3,3,5−テトラフェニルトリシロキサン、1,15,5−テトラエトキシ−3,3−ジフェニルトリシロキサン、1,1,5,5−テトラメトキシ−1,5−ジビニル−3,3−ジフェニルトリシロキサン、1,1,5,5−テトラメトキシ−1,5−ジメチル−3,3−ジイソプロピルトリシロキサン、1,1,1,5,5,5−ヘキサメトキシ−3,3−ジフェニルトリシロキサン、1,5−ジメチル−1,5−ジエトキシ−3,3−ジフェニルトリシロキサン、1,5−ビス(メルカプトプロピル)−1,1,5,5−テトラメトキシ−3,3−ジフェニルトリシロキサン、1,5−ジビニル−1,1,5,5−テトラメトキシ−3−フェニル−3−メチルトリシロキサン、1,5−ジビニル−1,1,5,5−テトラメトキシ−3−シクロヘキシル−3−メチルトリシロキサン、1,1,7,7−テトラメトキシ−1,7−ジビニル−3,3,5,5−テトラメチルテトラシロキサン、1,1,5,5−テトラトキシ−3,3−ジメチルトリシロキサン、1,1,7,7−テトラエトキシ−3,3,5,5−テトラメチルテトラシロキサン、1,1,5,5−テトラエトキシ−3,3−ジメチルトリシロキサン、1,1,5,5−テトラメトキシ−1,5−[2−(3,4−エポキシシクロヘキシル)エチル]−3,3−ジフェニルトリシロキサン、1,1,5,5−テトラメトキシ−1,5−(3−グリシドキシプロピル)−3、3−ジフェニルトリシロキサン、1,5−ジメチル−1,5−ジメトキシ−1,5−[2−(3,4−エポキシシクロヘキシル)エチル]−3,3−ジフェニルトリシロキサン、1,5−ジメチル−1,5−ジメトキシ−1,5−(3−グリシドキシプロピル)−3,3−ジフェニルトリシロキサンを挙げることができる。
(上記のようなシロキサン材料の重合後に)組成物に添加される添加剤は、式
SiR 4−(a+b)
を有するシラン化合物であってもよく、
式中、
はヒドロキシル、アルコキシ又はアセチルオキシのような反応性基であり、
はアルキル又はアリール基であり、
は、エポキシ、オキセタン、アルケニル、アクリレート又はアルキニル基のような架橋化合物であり、
=0〜1、b=0〜1である。
このような添加剤の例は、トリ−(3−グリシドキシプロピル)フェニルシラン、トリ−[2−(3,4−エポキシシクロヘキシル)エチル]フェニルシラン、トリ−(3−メタクリロキシプロピル)フェニルシラン、トリ−(3−アクリロキシプロピル)フェニルシラン、テトラ−(3−グリシドキシプロピル)シラン、テトラ−[2−(3,4−エポキシシクロヘキシル)エチル]シラン、テトラ−(3−メタクリロキシプロピル)シラン、テトラ−(3−アクリロキシプロピル)シラン、トリ−(3−グリシドキシプロピル)p−トリルシラン、トリ−[2−(3,4−エポキシシクロヘキシル)エチル]p−トリルシラン、トリ−(3−メタクリキシプロピル)p−トリルシラン、トリ−(3−アクリロキシプロピル)p−トリルシラン、トリ−(3−グリシドキシプロピル)ヒドロキシルシラン、トリ−[2−(3,4−エポキシシクロヘキシル)エチル]ヒドロキシルシラン、トリ−(3−メタクリロキシプロピル)ヒドロキシルシラン、トリ−(3−アクリロキシプロピル)ヒドロキシルシランである
添加剤は、主ポリマーマトリックスと反応してもよいし反応しなくてもよい。したがって、可塑剤、軟化剤、又はシリコーンのようなマトリックス改質剤として作用する任意の有機又はシリコーンポリマーとすることができる。添加剤は、SiOx、TiOx、AlOx、TaOx、HfOx、ZrOx、SnOx、ポリシラザン等の無機重縮合物であってもよい。
粒状フィラーは、これらに限定されないが、カーボンブラック、グラファイト、グラフェン、金、銀、銅、白金、パラジウム、ニッケル、アルミニウム、銀メッキ銅、銀メッキアルミニウム、ビスマス、スズ、ビスマススズ合金、銀メッキ繊維、ニッケルメッキ銅、銀およびニッケルメッキ銅、金メッキ銅、金及びニッケルメッキ銅などの導電性材料であってもよいし、又はポリアクリレート、ポリスチレン又はシリコーンなどの金、銀−金、銀、ニッケル、スズ、白金、チタンメッキポリマーなどでもよい。フィラーは、シリコン、n型又はp型ドープシリコン、GaN、InGaN、GaAs、InP、SiC等の半導体材料であってもよいが、これらに限定されない。さらに、フィラーは、量子ドット又は表面プラズモン粒子又は燐光体粒子であってもよい。Ge、GaP、InAs、CdSe、ZnO、ZnSe、TiO2、ZnS、CdS、CdTe等の他の半導体粒子又は量子ドットも可能である。
フィラーは、金、銀、銅、白金、パラジウム、インジウム、鉄、ニッケル、アルミニウム、炭素、コバルト、ストロンチウム、亜鉛、モリブデン、チタン、タングステン、銀メッキ銅、銀メッキアルミニウム、ビスマス、スズ、ビスマス−スズ合金、銀メッキ繊維、又はこれらの合金又はれらの組み合わせからなる群から選択される任意の適当な金属または半金属粒子である粒子であってもよい。遷移金属粒子である金属粒子(初期の遷移金属または遅い遷移金属)、半金属およびメタロイドが想定される。ヒ素、アンチモン、テルル、ゲルマニウム、シリコン、及びビスマス等の半金属又はメタロイド粒子が想定される。
あるいは、シリカ、石英、アルミナ、窒化アルミニウム、シリカで被覆された窒化アルミニウム、硫酸バリウム、アルミナ三水和物、窒化ホウ素等などの電気的に非導電性の材料であってもよい。フィラーは粒子又はフレークの形態であってもよく、マイクロサイズでもナノサイズでもよい。フィラーは、金属又は半金属の窒化物、酸窒化物、炭化物及びオキシ炭化物であるセラミック化合物粒子を含むことができる。特に、フィラーは、ケイ素、亜鉛、アルミニウム、イットリウム、イッテルビウム、タングステン、チタンシリコン、チタン、アンチモン、サマリウム、ニッケル、ニッケルコバルト、モリブデン、マグネシウム、マンガン、ランタニド、鉄、インジウムスズ、銅、コバルトアルミニウム、クロム、セシウム又はカルシウムの酸化物であるセラミック粒子でもよい
炭素を含み、カーボンブラック、グラファイト、グラフェン、ダイヤモンド、炭窒化ケイ素、炭窒化チタン、カーボンナノ粒子及びカーボンナノチューブから選択される粒子も可能である。フィラーの粒子は、炭化鉄、炭化ケイ素、炭化コバルト、炭化タングステン、炭化ホウ素、炭化ジルコニウム、炭化クロム、炭化チタン又は炭化モリブデンなどの炭化物粒子であってもよい。粒子は、窒化アルミニウム、窒化タンタル、窒化ホウ素、窒化チタン、窒化銅、窒化モリブデン、窒化タングステン、窒化鉄、窒化ケイ素、窒化インジウム、窒化ガリウム又は窒化炭素などの窒化物粒子であってもよい。
最終用途に応じて、任意の適切なサイズの粒子を使用することができる。多くの場合、100ミクロン未満、好ましくは50未満又は20ミクロン未満の平均粒径を有する小粒子が使用される。サブミクロン粒子、1ミクロン未満のものなど、又は例えば1〜500nm、200nm未満など、1〜100nmなど、又はさらに10nm未満も想定される。他の例では、5〜50nm、又は15〜75nm、100nm未満、又は50〜500nmの平均粒径を有する粒子が提供される。細長くない粒子、例えば、実質的に球形または四角い、または平らな円盤状の外観(滑らかなエッジまたは粗いエッジを有する)を有するフレークが可能であり、アスペクト比が5:1以上、又は10:1以上であるものなど、細長いウィスカー、シリンダー、ワイヤ及び他の細長い粒子も可能である(。
ナノワイヤ及びナノチューブなどの非常に高いアスペクト比を有する非常に細長い粒子も可能である。ナノワイヤ又はナノチューブの高アスペクト比は、25:1以上、50:1以上、又は100:1以上であってもよい。ナノワイヤ又はナノチューブの平均粒子、センチメートルまでの長さなど長さが非常に長いため、最小寸法(幅又は直径)を基準とする。本明細書で使用される「平均粒径」という用語は、粒子の50体積%がその値よりも小さい直径を有する累積体積分布曲線のD50値を指す。
粒子は、本明細書の他の箇所で述べたような粒子の混合物であってもよく、200nmより大きい平均粒子サイズを有する第1の粒子群は、200nmより小さい平均粒子サイズを有する第2の粒子群と一緒に提供され、例えば第1のは500nmより大きい平均粒子サイズを有し、第2のは100nmより小さい平均粒子サイズを有する(例えば、第1のの平均粒子サイズは1ミクロンより大きく、第2のの粒子サイズは50nmより小さく、又はさらには25nm未満である)。より小さい粒子は、より大きな粒子よりも低い融点を有し、プラスミクロンサイズを有する同じ物質の粒子又は塊よりも低い温度で溶融又は焼結する。一例では、より小さい粒子は1ミクロン未満の平均粒子サイズを有し、同じ材料のバルク温度より低い温度で溶融又は焼結する。
選択された粒子材料及び平均粒子サイズに応じて、溶融及び焼結温度は異なる。
一例として、非常に小さい銀ナノ粒子は、120℃未満で溶融し、より低い温度で焼結することができ。このように、所望であれば、より小さい粒子は、シロキサンポリマー材料の完全架橋及び硬化の前に大きな粒子を一緒に結合する溶融又は焼結粒子のウェブを形成するように、ポリマー硬化温度以下の溶融又は焼結温度を有することができる。一例では、より小さい粒子は、130℃未満の温度、例えば120℃未満、又はさらには110℃未満でより大きい粒子溶融又は焼結され、一方、シロキサン材料はより高い温度、例えば110℃未満の実質的な焼結又は溶融などより高い温度で実質的な架橋を経るが、110℃より高い温度で実質的な重合を経る(又は120℃(又は130℃)未満の実質的な焼結又は溶融、120℃(又は130℃)より高い実質的な重合。シロキサン材料の実質的な重合に先立ち、より小さい粒子の焼結又は溶融は、硬化した層の最終的な導電性を高める形成された金属「格子」のより大きな相互接続性を可能にする。より小さい粒子の実質的な焼結または溶融の前の実質的な重合は形成された金属「格子」の量を減少させ、最終的な硬化層の導電性を低下させる。
もちろん、より小さい平均粒子サイズの粒子のみ、例えば、サブミクロンサイズを提供することも可能であり、これは、同一のバルク材料(又は、例えば、平均粒径が1ミクロンを超える同じ粒子)と比較して、より低い焼結及び融点の利点を依然として達成することができる。
フィラー及びシロキサンポリマーとの結合を高めるために、カップリング剤を使用することができる。このカップリング剤は、フィラーとポリマーとの間の接着力を増させ、したがって最終製品の熱伝導率及び/又は電気伝導率を高めることができる。カップリング剤は、式
13 14 SiR 15
を有する任意のシランモノマーとすることができ、
式中、
13 は、ハロゲン、ヒドロキシル、アルコキシ、アセチル又はアセチルオキシのような反応性基であり、
14 はアルキル基又はアリール基であり、
15 は、エポキシ、無水物、シアノ、オキセタン、アミン、チオール、アリル、アルケニル又はアルキニルを含む官能基であり、
h=0〜4、=0〜4、j=0〜4、h+i+j=4である。
カップリング剤は、最終生成物が調製されるときにフィラー、シロキサンポリマー、硬化剤及び添加剤と直接混合されてもよいし、又はそれらが粒子と混合される前にフィラー粒子はカップリング剤処理してもよい
最終配合で粒子を使用する前に粒子をカップリング剤で処理する場合、アルコール溶液からの堆積、水溶液からの沈着、フィラーへのバルク沈着及び無水液相沈着のような異なる方法を用いることができる。アルコール溶液からの沈着では、アルコール/水溶液が調製され、溶液のpHはわずかに酸性(pH4.55.5)に調整される。この溶液にシランを加え、数分間混合して部分的に加水分解させる。次に、フィラー粒子を添加し、その溶液を室温から還流温度まで種々の時間混合する。混合後、粒子をろ過し、エタノールでリンスし、オーブン中で乾燥させてカップリング剤表面処理された粒子を得る。水溶液からの沈着は、アルコール溶液からの沈着と同様であるが、アルコールの代わりに、純水が溶媒として使用される。官能化されたアミンを使用しない場合は、酸によりpHを再び調節する。粒子を水/シラン混合物と混合した後、粒子を過し、すすぎ、乾燥させる。
バルクデポジション法とは、シランカップリング剤を水やpH調を用いずに、溶媒と混合する方法であるフィラー粒子は、スプレーコーティングのような異なる方法を用いてシランアルコール溶液でコーティングされ、次いでオーブン中で乾燥される。
無水液相沈着では、シランをトルエン、テトラヒドロフラン又は炭化水素のような有機溶媒と混合し、フィラー粒子をこの溶液中で還流させ、余分な溶媒を真空又は過によって除去する。その後、オーブン中で粒子を乾燥させることもできるが、時には、還流条件下で粒子とフィラーとの間の直接反応のために必要でない。
このようなシランカップリング剤の例は、ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、アリルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、(N−トリメトキシシリルプロピル)ポリエチレンイミン、トリメトキシシリルプロピルジエチレントリアミン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、1−トリメトキシシリル−2(pm−クロロメチル)フェニルエタン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン、ビス[3−(トリエトキシシリル)プロピル]テトラスルフィド、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、2−(ジフェニルホスフィノ)エチルトリエトキシシラン、1,3−ジビニルテトラメチルジシラザン、ヘキサメチルジシラザン、3−(N−スチリルメチル−2−アミノエチルアミノ)プロピルトリメトキシシラン、N−(トリエトキシシリルプロピル)ウレア、1,3−ジビニルテトラメチルジシラザン、ビニルトリエトキシシラン及びビニルトリメトキシシランである
添加される粒子のタイプに応じて、シロキサン粒子硬化最終生成物は、最終的な熱又はUV硬化後の熱伝導率が0.5ワット/メートルケルビン(W/(m・K))より大きい熱伝導率を有するなど、熱伝導性である層または膜となり得る。選択された粒子のタイプに応じて、より高い熱伝導率の材料が可能である。シロキサン組成物中の金属粒子は、2.0W/(m・K)より大きい、例えば4.0W/(m・K)より大きい、又はさらに10.0W/(m・K)より大きい熱伝導率を有する硬化最終膜となり得る。最終的な用途に応じて、50.0W/(m・K)より大きい、又はさらに100.0W/(m・K)より大きい等、はるかに高い熱伝導率が望ましい場合がある。しかし、他の用途では、所望であれば、熱伝導率の低い材料になるように粒子を選択することができる。
また、所望により、最終硬化生成物は、1×10 −3 Ω・m未満、好ましくは1×10 −4 Ω・m未満、より好ましくは1×10 −5 Ω・m等の低い電気抵抗率を有することができる。また、堆積された薄膜のシート抵抗は、好ましくは100,000未満、より好ましくは10,000未満である。しかしながら、材料の所望の最終用途の多くは、高い電気抵抗率を有することができる。
いくつかの場合、特に組成物が光学特性を必要とする装置に適用される場合、場合によっては最終硬化シロキサンが光学的吸収特性を有することが望ましいかもしれないが、材料は望ましくは可視スペクトル(又は最終装置が動作するスペクトル)の光に対して高透過性であるか、又は可視スペクトル(又は装置を動作させるスペクトル)の光に対して高反射性であることが望ましい。透明材料の例として、厚さ1〜50ミクロンの最終硬化層は、それに垂直に入射する可視光の少なくとも85%を透過するか、好ましくは少なくとも90%、より好ましくは少なくとも92.5%最も好ましくは少なくとも95%透過する。反射層の一例として、最終硬化層は、その上に入射する光の少なくとも85%を反射することができ、好ましくはその上に90°の角度で入射する光の少なくとも95%を反射する。
本発明の材料はまた、安定剤及び/又は酸化防止剤を含有してもよい。これらの化合物は、熱、光、又は原料からの残留触媒等によって誘発された酸素との反応によって引き起こされる分解から材料を保護するために添加される。
本明細書に含まれる適用可能な安定剤又は酸化防止剤の中には、高分子量ヒンダードフェノール及び硫黄リン含有フェノールなどの多官能性フェノールがある。ヒンダードフェノールは当業者に周知であり、そのフェノール性ヒドロキシル基のすぐ近くに立体的に嵩高い基を有するフェノール化合物として特徴付けることができる。特に、tert−ブチル基は、一般に、フェノール性ヒドロキシル基に対してオルト位の少なくとも1つベンゼン環に置換されている。これらの立体的に嵩高い置換基がヒドロキシル基の近くに存在すると、その伸長頻度が遅くなり、それに応じてその反応性が低下する。この障害はフェノール化合物にその安定化特性を提供する。代表的なヒンダードフェノールには、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−ベンゼン;ペンタエリスリチルテトラキス−3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート;n−オクタデシル−3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート;4,4’−メチレンビス(2,6−tert−ブチル−フェノール)4,4’−チオビス(6−tert−ブチル−o−クレゾール);2,6−ジ−tert−ブチルフェノール;6−(4−ヒドロキシフェノキシ)−2,4−ビス(n−オクチル−チオ)−1,3,5トリアジン;ジ−n−オクチルチオ)エチル 3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンゾエート;ソルビトールヘキサ[3−(3,5−ジ−tert−ブチル−4−ヒドロキシ−フェニル)−プロピオネートが挙げられる。酸化防止剤の市販の例は、例えばBASF社製のIrganox 1035、Irganox 1010、Irganox 1076、Irganox 1098、Irganox 3114、Irganox PS800、Irganox PS802、Irgafos 168である。
シロキサンポリマーとフィラーとの間の重量比は、生成物の最終用途に応じて100:0〜5:95の間である。シロキサンポリマーと架橋シリコン又は非シリコン系樹脂又はオリゴマーとの間の比は、100:0〜75:25の間である。シロキサンポリマー量から計算した硬化剤の量は0.1〜20%である。配合物の総量に基づく接着促進剤の量は、0〜10%である。配合物重量に基づく抗酸化剤の量は、0〜5%である。
上記のように、シロキサン粒子組成物は、様々な分野で使用することができる。それは、半導体パッケージングにおけるはんだバンプなどはんだ付け、印刷エレクトロニクス、OLEDの低仕事関数陰極インク、ITO置換インク、金属メッシュ及び他の電極、高解像度光起電ペースト、LMO陰極ペースト、光電池、パワーエレクトロニクス及びEMI、タッチセンサ及び他のディスプレイ、熱又はUV硬化性封入剤又は誘電体の代わりに、エレクトロニクス又はオプトエレクトロニクスパッケージング、LED及びOLEDのフロントエンド及びバックエンド処理、3D、光起電性及びディスプレイメタライゼーションにおける接着剤又は封剤として使用することができる
硬化機構及び触媒の活性化のタイプに応じて、最終配合物は、通常、材料をより高い温度に加熱することによって硬化される。例えば、熱酸発生剤が使用される場合、材料は特定の時間オーブン中に置かれる。UV光などの電磁放射線による硬化も可能である。
第1及び第2の化合物の重合から形成されるシロキサンポリマーの分子量は、約300〜10,000g/mol、好ましくは約400〜5000g/mol、より好ましくは約500〜2000g/molである。ポリマーは、好ましくは100ミクロン未満、より好ましくは50ミクロン未満、又はさらには20ミクロン未満の平均粒子を有する、任意の所望のサイズの粒子と組み合わされる。シロキサンポリマーは10〜90重量%で添加され、粒子は1〜90重量%で添加される。シロキサン材料の最終用途が光学的透明性を必要とする場合、粒子は、より低い重量パーセント、例えば1〜20重量%で添加されたセラミック粒子であってもよい。シロキサン材料が、半導体パッケージ等の導電性が所望される場合に使用される場合、粒子は、60〜95重量%で添加された金属粒子であってもよい。
第1及び第2の化合物の重合を行い、粒子を混合して50〜100,000mPa・sec、好ましくは1000〜75,000mPa・sec、より好ましくは5000〜50,000mPa・sの粘度を有する粘性流体を形成する。粘度は、ブルックフィールド又はコール・パーマー(Cole−Parmer)粘度計などの粘度計で測定することができ、これは流体試料中の円盤又は円柱を回転させ、誘起された運動に対する粘性抵抗に打ち勝つために必要なトルクを測定する。回転は、1〜30rpm、好ましくは5rpm等の任意の所望の速度であり得、好ましくは測定される材料は25℃である。
重合後、任意の追加の所望の成分、例えば粒子、カップリング剤、硬化剤等を組成物に添加することができる。組成物は、容器内の粘性材料として顧客に出荷され、冷蔵または冷却の必要がなく、常温で出荷されてもよい。最終製品として、材料は、典型的には熱硬化又はUV硬化されて、固体硬化ポリマーシロキサン層を形成する、上記の様々な用途で適用することができる。
本明細書に開示される組成物は、好ましくは、実質的な溶媒を含まない。硬化剤又は他の添加剤を重合した粘性材料と混合するために、溶媒を一時的に添加することができる。このような場合には、例えば、硬化剤を溶剤と混合して流体材料を形成し、次いで、それが粘性シロキサンポリマーと混合される
しかしながら、実質的に溶媒を含まない組成物が顧客に出荷され、後で顧客の装置に塗布されることが望ましいので、一時的に添加された溶媒は乾燥チャンバ内で除去される。
しかし、組成物は実質的に溶媒を含まないが、乾燥プロセス中に除去することができなかった微量の溶媒が残っていることがある。この溶媒除去は、最終硬化プロセスの間の収縮を減少させるとともに、デバイスの寿命中の経時的な収縮を最小限に抑えることによって、本明細書に開示された組成物の堆積を助け、ならびにデバイスの寿命の間の材料の熱安定性を助ける
組成物の最終用途、組成物の所望の粘度、及び含まれる粒子を知ることにより、シロキサンポリマー(出発化合物、分子量、粘度等)を微調整して、粒子及び他の成分を有する組成物の場合には、その後の顧客への送達のために所望の最終特性が達成される。組成物の安定性のために、製造から顧客が最終使用までの1週間、又は1ヶ月の期間後でさえも、分子量又は粘度の実質的な変化なしに周囲温度で組成物を輸送することが可能である。
以下のシロキサンポリマーの例は、説明のためのものであり、限定することを意図したものではない。
シロキサンポリマーの粘度をブルックフィールド粘度計(スピンドル14)によって測定した。ポリマーの分子量は、Agilent GPCにより測定した。
シロキサンポリマーi:
拌棒及び還流冷却器を備えた500mL丸底フラスコに、ジフェニルシランジオール(60g、45mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(55.67g、36.7mol%)及びテトラメトキシシラン(17.20g、18.3mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、メタノール1mLに溶解した水酸化バリウム一水和物0.08gをシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは1000mPasの粘度及び1100のMwを有していた。
シロキサンポリマーii:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジフェニルシランジオール(30g、45mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(28.1g、37mol%)及びジメチルジメトキシシラン(6.67g、18mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、メタノール1mLに溶解した水酸化バリウム一水和物0.035gをシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは、2750mPasの粘度及び896のMwを有していた。
シロキサンポリマーiii:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジフェニルシランジオール(24.5g、50mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(18.64g、33.4mol%)及びテトラメトキシシラン(5.75g、16.7mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、メタノール1mLに溶解した水酸化バリウム一水和物0.026gをシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。このシロキサンポリマーは7313mPasの粘度及び1328のMwを有していた。
シロキサンポリマーiv:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジフェニルシランジオール(15g、50mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(13.29g、38.9mol%)及びビス(トリメトキシシリル)エタン(4.17g、11.1mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、メタノール1mLに溶解した水酸化バリウム一水和物0.0175gをシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは、1788mPasの粘度及び1590のMwを有していた。
シロキサンポリマーv:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジフェニルシランジオール(15g、45mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(13.29g、35mol%)及びビニルトリメトキシシラン(4.57g、20mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、メタノール1mLに溶解した水酸化バリウム一水和物0.018gをシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは、1087mPas及び1004のMwの粘度を有していた。
シロキサンポリマーvi:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジイソプロピルシランジオール(20.05g、55.55mol%)、2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(20.0g、33.33mol%)及びビス(トリメトキシシリル)エタン(7.3g、11.11mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、1mLのメタノールに溶解した0.025gの水酸化バリウム一水和物をシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは150mPasの粘度及び781のMwを有していた。
シロキサンポリマーvii:
拌棒及び還流冷却器を備えた250mL丸底フラスコに、ジイソブチルシランジオール(18.6g、60mol%)及び2−(3,4−エポキシシクロヘキシル)エチル]トリメトキシシラン(17.32g、40mol%)を充填した。フラスコを窒素雰囲気下で80℃に加熱し、1mLのメタノールに溶解した0.019gの水酸化バリウム一水和物をシラン混合物に滴下した。ジフェニルシランジオールがアルコキシシランと反応した間、シラン混合物を80℃で30分間撹拌した。30分後、形成されたメタノールを真空下で蒸発させた。シロキサンポリマーは75mPasの粘度及び710のMwを有していた。
開示された方法及び材料を考慮して、安定な組成物が形成される。組成物は、その上にアルキル基又はアリール基及びその上に官能性架橋基を有する[−Si−O−Si−O]n繰り返し骨格シロキサンポリマーである一部分と、シロキサン材料と混合された粒子である別の部分を有してもよく、粒子は、金属、半金属、半導体又はセラミック粒子などの任意の好適な粒子である顧客に出荷される組成物は、300〜10,000g/molの分子量及び5rpm粘度計で1000〜75000mPa・secの粘度を有することができる。
粘性(又は液体)シロキサンポリマーは、−OH基を実質的に含まず、したがって貯蔵寿命を延長し、必要に応じて周囲温度で保存又は出荷することを可能にする。好ましくは、シロキサン材料は、FTIR分析から検出可能な−OHピークを有さない。形成されたシロキサン材料の増大した安定性によって使用前の貯蔵を可能にし、貯蔵中の粘度(架橋)の最小限の増加、例えば2週間の期間にわたって25%未満、好ましくは15%未満より好ましくは室温で保存された2週間にわたって10%未満である。そして、保管、出荷及びその後の顧客による適用は、溶媒の不在下で(溶媒を除去するため乾燥後に残っている可能性のある微量残渣を除く)すべて実行することができ、最終生成物中で後に形成される層における溶媒捕捉の問題、重合中の収縮、装置使用中の時間の経過による質量損失等を回避する。好ましくは、100℃よりも大きな熱又はUV光を加えることなく、輸送及び貯蔵中に実質的な架橋は起こらない。
シロキサンポリマー、粒子、及びカップリング剤、接着促進剤等の他の可能な添加剤を有する、本明細書に開示される組成物は、室温で一成分接着剤として出荷することができる。通常、一成分接着剤は−40℃で出荷されるか、又はその成分は別々に(二成分接着剤)出荷され購入者は異なる成分を一緒に混合しなければならず、通常は24時間又は48時間以内に接着を行う。典型的には、一成分接着剤は、複数の成分を混合することを伴わなくてもよいが、−40℃〜室温では、接着は24時間又は48時間以内に行うことが好ましい。対照的に、本明細書に開示された組成物は、一成分接着剤として出荷され、室温で出荷及び貯蔵することができ、例えば、実質的な重合又は他の望ましくない反応が起こることなく、室温で2週間貯蔵及び輸送することができる。
組成物が堆積および重合されると、例えば、熱又は紫外線の照射、非常に小さい収縮又は質量の減少が観察される。図2において、x軸は時間(分)であり、左側のy軸は出発質量の%での層の質量であり、右側のy軸は摂氏温度である。図2に見られるように、本明細書に開示されるシロキサン粒子混合物は、150℃まで急速に加熱され、その後約30分間150℃に保持される。この例では、シロキサン粒子は、フェニル基及びエポキシ基を有するSi−O骨格を有し、粒子は銀粒子である。この時間の間、熱硬化後の質量損失は1%未満である。望ましくは、質量損失は典型的には4%未満であり、一般に2%未満であるが、多くの場合、硬化前と硬化後のシロキサン粒子組成物の質量の差は1%未満である。硬化温度は一般に175℃未満であるが、より高い硬化温度が可能である。典型的には、硬化温度は160℃以下、より典型的には150℃以下である。しかし、125℃以下などのより低い硬化温度が可能である。
3に示すように、上述した組成物が、接着剤、熱伝導層、封剤、パターン化された導電層、パターン化された誘電体層、透明層、光反射層等として使用されるかどうかにかかわらず、一旦、組成物が堆積および重合、必要に応じて硬化されると、シロキサン粒子層又は塊は熱的に非常に安定である。一例として、加熱又はUV重合による硬化後のインサイチュー材料を600℃まで昇温速度10℃/分で加熱すると、4.0%未満、好ましくは2.0%未満、例えば1.0%未満の質量損失200℃と300℃の両方で観測される(通常、200℃では0.5%未満の質量損失が観察され、図3の例では200℃で0.2%未満の質量損失が観察され)。300℃では、図の例では1%未満の又は特に0.6%未満の質量損失が観察される。同様の結果が重合した材料を200℃又は300℃で1時間単に加熱するだけで観察することができる。重合した堆積材料を375℃以上で少なくとも1時間加熱することにより、1%未満の質量損失の結果が可能である。図3に示すように、500℃を超える温度であっても、5%以下の質量損失が観察される。そのような熱的に安定な材料、特に、低温(例えば、30分間の硬化/焼成時間で175℃未満、好ましくは150℃未満、又は130℃未満)で堆積させることができる、またはUV光により重合させることができる、本明細書に開示されるものは望ましい
上記は例示的な実施形態を例示するものであり、本発明を限定するものとして解釈されるべきではない。いくつかの例示的な実施形態について説明したが、当業者であれば、新規の教示及び利点から実質的に逸脱することなく、多くの変更が例示的な実施形態において可能であることを容易に理解するであろう。したがって、そのような変更のすべては、特許請求の範囲に規定される本発明の範囲内に含まれることが意図される。したがって、前述は、様々な例示的な実施形態を例示するものであり、開示された特定の実施形態に限定されるものと解釈されるべきではなく、開示された実施形態に対する変更及び他の実施形態が、添付の特許請求の範囲の範囲内である。
本明細書に開示されるシロキサン組成物は、広範囲の用途を有する。これは、例えば基板を支持またはパッケージするためのシリコン基板などの上に形成されるマイクロエレクトロニクスデバイス又はオプトエレクトロニクスデバイスを接着するためなどの、半導体デバイスにおけるダイアタッチ接着剤などとして使用することができる。この材料は、フリップチップパッケージで使用されて、一方の基板上のボンドパッドを他方の基板に接続するために、アンダーフィル材料として、又は保護層又は封材料として使用することができる。選択された粒子に応じて、材料は断熱性及び/又は導電性又は電気絶縁性であってもよい。ディスプレイ、LEDランプ、又は光電池等のデバイスの光路内で使用される場合、材料は、可視スペクトルにおいて光学的に透過性であり得る。

Claims (15)

  1. 組成物の製造方法であって、
    化学式SiR 4−a(式中、aは1〜3であり、Rは反応性基であり、Rはアルキル基又はアリール基である)を有する第1のモノマーである第1の化合物、又はその分子量1000g/mol未満のオリゴマーを提供することと、
    化学式SiR 4−(b+c)(式中、Rは架橋性官能基であり、Rは反応性基であり、Rはアルキル又はアリール基であり、b=1〜2、c=1〜(4−b)である)を有する第2の化合物、又はその分子量1000g/mol未満のオリゴマーを提供することと、
    前記第1及び第2の化合物を一緒に重合させてシロキサンポリマーを形成することと、
    前記シロキサンポリマーを100ミクロン未満の平均粒子径を有する粒子と混合することと
    を含み、
    前記重合が、塩基触媒反応であり、
    前記第1の化合物中の反応性基が、ヒドロキシル、ハロゲン、アルコキシ、カルボキシル、アミン又はアシルオキシ基であり、前記第2の化合物中の反応性基が、ヒドロキシル、ハロゲン、アルコキシ、カルボキシル、アミン又はアシルオキシ基である、組成物の製造方法。
  2. 前記塩基触媒反応が、酸化マグネシウム、酸化カルシウム、酸化バリウム、水酸化バリウム、水酸化バリウム一水和物、水酸化バリウム8水和物又はトリエチルアミン、アンモニア、過塩素酸アンモニウム、水酸化ナトリウム、水酸化カリウム、イミダゾール又はn−ブチルアミンから選択される塩基触媒を用いて行われ
    前記塩基触媒が、前記第1及び第2の化合物の合計に対して、好ましくは0.5%未満の重量パーセントで、特に、0.1%未満の重量パーセントで提供される、請求項1に記載の方法。
  3. 前記第1の化合物中の反応性基がヒドロキシル基であり、
    前記第2の化合物中の反応性基が、O及びメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチルを有するアルコキシ基であり、好ましくは前記アルコキシ基は、メトキシまたはエトキシ基である請求項1または2に記載の方法。
  4. 前記第2の化合物中のRが、アルケン、アルキン、エポキシ、シアノ、オキセタン、チオール、アミン、無水物又はアクリレート基である、前請求項のいずれか一項に記載の方法。
  5. 以下の化学式を有するモノマーである第1のカップリング剤、又はその分子量1000g/mol未満のオリゴマーが、重合されたシロキサン材料に提供される、前請求項のいずれか一項に記載の方法。
    SiR 4−(d+e)
    (式中、
    は架橋性官能基であり、
    は反応性基であり、
    はアルキル又はアリール基であり、
    d=1〜2、e=1〜(4−d)である)
  6. 以下の化学式を有する第2のカップリング剤、又はその分子量1000g/mol未満のオリゴマーが、重合されたシロキサン材料に提供される、請求項5に記載の方法。
    SiR 4−(d+e)
    (式中、
    は架橋官能基であり、
    は反応性基であり、
    はアルキル又はアリール基であり、
    d=1〜2、e=1〜(4−d)である)
  7. 前記粒子が20ミクロン未満の平均粒子径を有し、特に、前記粒子が10ミクロン未満の平均粒子径を有する、前請求項のいずれか一項に記載の方法。
  8. 前記塩基触媒が、水酸化バリウム、水酸化バリウム一水和物、水酸化バリウム8水和物又はトリエチルアミンから選択される、前請求項のいずれか一項に記載の方法。
  9. 前記第2の化合物中の架橋性官能基が、アルケン、アルキン、アリル、Si−H、ビニル、アミン、無水物、エポキシ、チオール、シアノ又はアクリレート基であり、例えば、前記第2の化合物中の架橋性官能基が、2−(3,4−エポキシシクロヘキシル)エチル、グリシジルオキシプロピル、ビニル、アリル、プロピルアクリレート、プロピルメタクリレート又は3−メルカプトプロピルである、前請求項のいずれか一項に記載の方法。
  10. 前記第1の化合物が、ジフェニルシランジオール、ジメチルシランジオール、ジイソプロピルシランジオール、ジ−n−プロピルシランジオール、ジ−n−ブチルシランジオール、ジ−t−ブチルシランジオール、ジ−イソブチルシランジオール、及びフェニルメチルシランジオールから選択されるシランジオールである、前請求項のいずれか一項に記載の方法。
  11. 前記第1及び第2のカップリング剤が重合されたシロキサン材料に添加され、前記第1のカップリング剤中の架橋性官能基が、前記第2のカップリング剤中の架橋性官能基とは異なる、請求項6〜10のいずれか一項に記載の方法。
  12. 熱又は光の適用によって前記シロキサンポリマー中の前記架橋性基を活性化させるための触媒をさらに含む、前請求項のいずれか一項に記載の方法。
  13. 前記第1及び第2のカップリング剤中の前記架橋性基がそれぞれアクリル基及びエポキシ基である、前請求項のいずれか一項に記載の方法。
  14. 前記粒子が、金、銀、銅、白金、パラジウム、インジウム、鉄、ニッケル、アルミニウム、コバルト、ストロンチウム、亜鉛、モリブデン、チタン、タングステン、銀メッキ銅、銀メッキアルミニウム、ビスマス、スズ、ビスマス−スズ合金、銀メッキ繊維、又はこれらの合金又はそれらの組合せから選択される金属又は半金属粒子である、前請求項のいずれか一項に記載の方法。
  15. 形成された前記シロキサンポリマーを乾燥して、重合反応の残留アルコール又は他の副生成物を除去する、前請求項のいずれか一項に記載の方法。
JP2017518609A 2014-06-19 2015-06-22 シロキサンポリマー組成物の製造方法 Active JP6765368B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462014136P 2014-06-19 2014-06-19
FI20145600 2014-06-19
FI20145600 2014-06-19
US62/014,136 2014-06-19
PCT/FI2015/050457 WO2015193558A1 (en) 2014-06-19 2015-06-22 A method of making a siloxane polymer composition

Publications (3)

Publication Number Publication Date
JP2017518435A JP2017518435A (ja) 2017-07-06
JP2017518435A5 true JP2017518435A5 (ja) 2018-08-02
JP6765368B2 JP6765368B2 (ja) 2020-10-07

Family

ID=54934917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017518609A Active JP6765368B2 (ja) 2014-06-19 2015-06-22 シロキサンポリマー組成物の製造方法

Country Status (6)

Country Link
US (2) US10487179B2 (ja)
EP (1) EP3158004A1 (ja)
JP (1) JP6765368B2 (ja)
KR (1) KR102480589B1 (ja)
CN (1) CN106687531A (ja)
WO (1) WO2015193558A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20155713A (fi) * 2015-10-09 2017-04-10 Inkron Ltd Sähköisesti johtavat siloksaanipartikkelikalvot sekä niitä sisältävät laitteet
TWI738743B (zh) 2016-03-23 2021-09-11 美商道康寧公司 金屬-聚有機矽氧烷
WO2019005393A1 (en) * 2017-06-30 2019-01-03 Dow Silicones Corporation ORGANOPOLYSILOXANE COMPOSITION WITH DUAL POLYMERIZATION
JP7145125B2 (ja) * 2019-06-24 2022-09-30 信越化学工業株式会社 ラジカル硬化型シリコーン組成物及び硬化物
KR102331157B1 (ko) * 2019-10-23 2021-11-26 (주)휴넷플러스 폴리실록산 공중합체, 이의 제조방법 및 이를 포함하는 수지 조성물
DE102022205830A1 (de) * 2021-09-27 2023-03-30 Robert Bosch Gesellschaft mit beschränkter Haftung (Poly-)Silsesquioxan ausbildende Kompositzusammensetzung
WO2023046995A1 (de) * 2021-09-27 2023-03-30 Robert Bosch Gmbh (poly-)silsesquioxan ausbildende kompositzusammensetzung
US20230386690A1 (en) * 2022-05-24 2023-11-30 Stark Street Materials Company Silicon enhanced ionizing radiation shielding and its method of manufacture

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106538A (en) * 1987-07-21 1992-04-21 Raychem Corporation Conductive polymer composition
FR2742763B1 (fr) 1995-12-22 1998-03-06 Rhone Poulenc Chimie Elastomere silicone a haute conductibilite thermique
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP3962926B2 (ja) 2003-04-01 2007-08-22 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
KR100614976B1 (ko) 2004-04-12 2006-08-25 한국과학기술원 광소자 또는 디스플레이에 이용되는 무기/유기혼성올리고머, 나노혼성고분자 및 그 제조방법
KR100738650B1 (ko) 2005-04-19 2007-07-11 한국과학기술원 플라즈마 디스플레이 패널용 격벽의 제조방법
JP5392805B2 (ja) 2005-06-28 2014-01-22 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン樹脂組成物および光学部材
CA2618794A1 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
US20090088547A1 (en) 2006-10-17 2009-04-02 Rpo Pty Limited Process for producing polysiloxanes and use of the same
JP2008189917A (ja) * 2007-01-11 2008-08-21 Sekisui Chem Co Ltd 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
GB0806820D0 (en) * 2008-04-16 2008-05-14 Dow Corning Polymeric compositions
KR100980270B1 (ko) * 2008-07-31 2010-09-07 한국과학기술원 Led 봉지용 실록산 수지
EP2223957B1 (en) 2009-01-13 2013-06-26 Korea Advanced Institute of Science and Technology Transparent composite compound
JP2011079927A (ja) 2009-10-06 2011-04-21 Nagase Chemtex Corp 透明複合材
TWI467336B (zh) 2012-10-08 2015-01-01 Everlight Chem Ind Corp 黑色感光樹脂組成物及使用其之遮光層
CN103370361B (zh) * 2011-01-21 2017-07-18 弗劳恩霍弗应用技术研究院 可聚合组合物、由其得到的固化产物以及这些材料的用途
JP5409695B2 (ja) 2011-04-26 2014-02-05 信越化学工業株式会社 オルガノポリシロキサン、オルガノポリシロキサンを含む仮接着剤組成物、及びそれを用いた薄型ウエハの製造方法
US8559249B1 (en) 2012-03-27 2013-10-15 Apple Inc. Memory with redundant sense amplifier
CN103059573B (zh) 2012-12-19 2015-08-05 中科院广州化学有限公司 无机/有机杂化纳米复合树脂及其制备的led封装用材料

Similar Documents

Publication Publication Date Title
JP6885866B2 (ja) シロキサンポリマー及び粒子を有する組成物
US11001674B2 (en) Method of making a siloxane polymer composition
JP6712589B2 (ja) 透明シロキサン封入剤及び接着剤
EP3359373B1 (en) Method for making a 3d printed article and 3d printed article
JP2017518435A5 (ja)
JP6684273B2 (ja) シロキサン粒子材料を用いたledランプ
JP6948315B2 (ja) 導電性シロキサン粒子膜およびそれを有するデバイス
TWI694112B (zh) 具有矽氧烷聚合物的組成物及製造矽氧烷粒子組成物的方法
TWI785389B (zh) 矽氧烷聚合物組成物及其製造方法
TWI746428B (zh) 矽氧烷聚合物組成物及其製造方法
TWI784922B (zh) Led燈、led燈之製造方法以及led裝置之密封方法
TW202111062A (zh) Led燈、led燈之製造方法以及led裝置之密封方法