JP2017508706A - フロートゾーンシリコンウェーハ製造システム - Google Patents

フロートゾーンシリコンウェーハ製造システム Download PDF

Info

Publication number
JP2017508706A
JP2017508706A JP2016553493A JP2016553493A JP2017508706A JP 2017508706 A JP2017508706 A JP 2017508706A JP 2016553493 A JP2016553493 A JP 2016553493A JP 2016553493 A JP2016553493 A JP 2016553493A JP 2017508706 A JP2017508706 A JP 2017508706A
Authority
JP
Japan
Prior art keywords
silicon
float zone
workpiece
high energy
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016553493A
Other languages
English (en)
Inventor
アンドリュー エックス ヤクブ
アンドリュー エックス ヤクブ
ジェームズ ベンジャミン ローゼンツヴァイク
ジェームズ ベンジャミン ローゼンツヴァイク
マーク スタンリー グールスキー
マーク スタンリー グールスキー
Original Assignee
レイトン ソーラー インコーポレイテッド
レイトン ソーラー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レイトン ソーラー インコーポレイテッド, レイトン ソーラー インコーポレイテッド filed Critical レイトン ソーラー インコーポレイテッド
Publication of JP2017508706A publication Critical patent/JP2017508706A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation

Abstract

シリコンウェーハを製造するプロセスは、剥離するフロートゾーンシリコン加工物を装着するステップと、マイクロ波装置に通電して、フロートゾーンシリコン加工物の外表面層に浸透するのに十分な高エネルギービームを発生させるステップと、その高エネルギービームを用いて、フロートゾーンシリコン加工物の外表面層を剥離するステップと、剥離された外表面層を、フロートゾーンシリコン加工物から、100マイクロメートル未満の厚さを有するシリコンウェーハとして取り外すステップとを含む。

Description

本発明は一般に、ウェーハを製造するプロセスおよび装置に関する。より具体的には、本発明は、インゴット(ingot)の外部表面を剥離して、太陽電池等級(solar grade)の光起電力ウェーハ(photovoltaic wafer)などをインゴットからより効率的に生産するプロセスおよび装置に関する。
従来、単結晶シリコンなどのウェーハ材料は、最初に円筒形の単結晶シリコンインゴットを作製することによって、太陽電池等級の光起電力(「PV」)ウェーハに処理される。このインゴットは、石英でできたチャンバ(chamber)などの不活性チャンバ内で、高純度半導体等級のウェーハ材料を溶融させることによって作製される。この溶融したウェーハ材料に、ホウ素、リン、ヒ素、アンチモンなどの、精確な量(例えば1013または1016原子/cm3程度)のドーパント不純物原子を添加して、この材料を、バルクn型(負)またはp型(正)半導体として規定することができ、この添加は、ウェーハ材料に所望の電気特性を与える。次いで、ロッドに装着された種結晶を、溶融したウェーハ材料に浸し、ゆっくりと引き上げ、同時にゆっくりと回転させて、単結晶であることが好ましい円筒形のインゴットを抜き取る。温度勾配、抜き取る速度および回転速度の制御は、不必要な不安定性を痕跡量しか有しない単一のインゴットの生産を容易にする。このプロセスは通常、アルゴンなどの不活性雰囲気中で実行される。
個々のウェーハは基本的に、半導体材料の薄層を、このより大きなインゴットからスライスによって切り離すことにより作製される。ウェーハは正方形、長方形または円形とすることができ、ウェーハはしばしば、集積回路の製造および太陽電池パネルなどの他のマイクロデバイスまたは電子デバイスの製造で使用される。一例では、直径約20マイクロメートルのダイヤモンド被覆ワイヤ(diamond coated wire)によって、円筒形のインゴットの端から円形のウェーハがスライスによって切り離される。この生産方法の問題は、このダイヤモンドワイヤが、インゴットの一部分を削って、ダイヤモンド被覆ワイヤの直径に等しい厚さのダストにすることである。したがって、作製される円形のウェーハごとに、少なくとも20マイクロメートルのウェーハ材料がダスト残留物として無駄になる。
しかし、これらの円形のウェーハを太陽電池パネルで使用することは好ましくない。正方形または長方形のウェーハの方が、太陽光エネルギーにさらされる表面積を最大にするためである。正方形または長方形のウェーハを作るためには、その代わりに、最初に、この円筒形のストックインゴットを四角く削って、長さ約1.5メートルの細長い長方形のボックス形にする。四角く削るこのプロセスは、直径20マイクロメートルの同様の従来のダイヤモンド被覆ワイヤを使用する。上記の説明と同様に、長方形のブロックを形成するためにダイヤモンドワイヤがインゴットの部分をカットするときに、インゴットの外部の部分がダストとして失われる。さらに、四角く削るこのプロセスでは、貴重で高価なウェーハ材料の比較的に大きな塊を切り落として、円筒形のインゴットを四角にする必要がある。ここから、長方形の半導体ブロックの端から、正方形のまたはいくぶん長方形の個々のウェーハを、円形のウェーハに関して上で説明したとおりにスライスする。この長方形の半導体ブロックから、厚さ160〜200マイクロメートルの範囲の比較的に正方形または長方形の数百枚のウェーハをスライスすることができるが、ウェーハをカットするごとに、半導体ブロックをカットしているダイヤモンドワイヤの幅に等しい量のウェーハ材料を無駄にする。ダイヤモンド被覆ワイヤによってウェーハをカットすることの他の欠点は、ソー(saw)が、ウェーハに対する表面損傷を引き起こすことがあり、その表面損傷を修復する必要があることである。
最近、上で説明したシリコンインゴットまたは長方形のシリコンブロックからカットされた既存のウェーハから、より薄い追加のウェーハを作製するより新しい技術が開発された。例えば、Glavish他の米国特許第7,939,812号、Smick他の第7,982,197号、Glavish他の第7,989,784号およびRyding他の第8,044,374号は、シリコンウェーハを剥離して、結晶性半導体材料のより薄いラミナ(lamina)を生産する目的に使用される水素イオン注入装置(hydrogen ion implanter)を開示している。これらのそれぞれの文献の内容は、その全体が参照によって本明細書に組み込まれる。この点に関して、このイオン注入装置は、シリコンウェーハの表面にある深さまで浸透する。次いで、シリコンのこの浸透された層を、シリコンウェーハから剥がす(すなわち剥離する)ことができる。元のシリコンウェーハを加工物として使用して、より薄いシリコンウェーハを効果的に作製する。この剥離プロセスを使用すると、160〜200マイクロメートル程度のシリコンウェーハ加工物を使用して、約20マイクロメートルの厚さを有する8〜10枚の新たなシリコンウェーハを作製することができ、このプロセスの間にシリコン材料はほとんど無駄にならない。この着想に関して、ともにPurser他に発行された米国特許第8,058,626号および第8,089,050号は、基板の表面にイオンを注入する前述のプロセスで使用する、ビーム方向に対して垂直な細長い断面を有する変更されたリボン形のイオンビームを生み出す実施形態を開示している。これらの文献の内容はともに参照によって本明細書に組み込まれる。
上で説明したプロセスなどの現行の剥離プロセスは、剥離されたウェーハ材料のシートを作製するのに2つのステップを必要とする。より具体的には、1つの処理ステップでインゴットから個々のウェーハを剥離し、次いで、第2の処理ステップで、剥離された層またはウェーハをインゴットから取り外す。この従来のツーステッププロセスは、その多ステップ性により、コストおよび時間がかかる。さらに、この従来のプロセスは、ウェーハ材料の剥離された個々のシートを多数、生産し、これらのシートの取扱いおよび個々のウェーハへのスタンピングには比較的に大きなコストがかかる。
従来の太陽電池は通常、チョクラルスキー(Czochralski)プロセスによって生産されたシリコンから製造され、このプロセスによって生産すると、坩堝を使用する結果として、酸素含量が望ましくないほどに高くなる(例えば1立方センチメートル当たり1018酸素原子)。シリコンウェーハ中の酸素などの不純物は、太陽電池の電圧および電流容量を低下させる。そのため、フロートゾーンシリコン(float zone silicon:「FZシリコン」)などのより低酸素含量のシリコンがより望ましい。FZシリコンの方がより効率的な太陽電池を生産するためである。FZシリコンは、垂直ゾーンメルティング(vertical zone melting)と呼ばれるプロセスで作られる。このプロセスでは、超高純度の電子工学等級(electronic grade)のシリコンの多結晶ロッドをRF加熱コイルに通して、限局された溶融ゾーンを生み出す。ロッドの一端で種結晶を使用して、結晶インゴット成長を開始させる。この垂直ゾーンメルティングプロセスは、排気されたチャンバ内または不活性ガスパージ内で実施される。チョクラルスキープロセスとは違い、成長の間、溶融したゾーンが、シリコンインゴットからの酸素などの不純物を含み(これは例えば、大部分の不純物は、結晶中よりも溶融物中でより可溶性であるためである)、それによってシリコンインゴット中の不純物濃度を低減させる。そのため、FZシリコンは、チョクラルスキープロセスによって作られたシリコンに比べて相対的に純粋である。しかし、FZシリコンの問題は、所望のウェーハサイズよりも厚く(例えば300〜500μm程度の厚さに)カットしなければならないことである。これは、堅い材料特性が、知られている方法(例えばダイヤモンドワイヤ)によって材料をより薄くカットすることを妨げるためである。したがって、FZシリコンなどから作られたシリコンウェーハは現在、材料コストおよびウェーハの現在使用可能な最小製造厚さに関する限界のため、コストが極端に高い。
したがって、当技術分野には、FZシリコンストックインゴットから正方形のウェーハおよび長方形のウェーハをより効率的に生産するプロセスおよび関連装置に対する重大な必要性が存在する。このようなプロセスおよび関連装置は、正方形または長方形のFZシリコンインゴットを装着するステップと、インゴットの外表面の選択された層に浸透するステップと、長方形または正方形のFZシリコンインゴットの1つまたは複数の側面に沿って、ウェーハ材料のこの衝撃された層を剥離するステップと、その材料ストリップをプレス(press)に運んで、個々のウェーハにスライスするステップとを含むことができ、これらは全て、ダイヤモンドソーを用いてインゴットをカットまたはスライスして個々のウェーハにすることに関連した廃棄物を生じない。このようなプロセスおよび装置をさらに、ウェーハ材料の単一の連続シートをインゴットから剥離し、同時に取り外すことができるものとすることができる。本発明は、これらの必要性を満たし、関連した追加の利点を提供する。
シリコンウェーハを製造する本明細書に開示された1つの方法は、剥離するフロートゾーンシリコン加工物を装着すること、マイクロ波装置に通電して、フロートゾーンシリコン加工物の外表面層に浸透するのに十分な高エネルギービーム(energized beam)を発生させること、その高エネルギービームを用いて、フロートゾーンシリコン加工物の外表面層を剥離すること、および剥離された外表面層を、フロートゾーンシリコン加工物から、100マイクロメートル未満の厚さ、より好ましくは2〜70μmもしくは4〜20μmの厚さを有するシリコンウェーハとして取り外すことを含む。一実施形態では、フロートゾーンシリコン加工物が、160〜600μmの厚さおよび1立方センチメートル当たり1016酸素原子未満の酸素含量を有する予めカットされたフロートゾーンシリコン加工物である。
この方法は、シリコンウェーハをカットして複数のシリコンウェーハにするステップと、それらの複数のシリコンウェーハをそれぞれコンベヤに沿って移動させ、またはフロートゾーンシリコン加工物から運び去るステップとをさらに含む。一実施形態では、シリコンウェーハが正方形である。別の実施形態では、シリコンウェーハが長方形であり、長方形のフロートゾーンシリコン加工物から剥離される。さらに、マイクロ波装置は、イオンビームまたは陽子ビームを含み、フロートゾーンシリコン加工物の幅にほぼまたがることができる高エネルギービームを発生させるクライストロン(klystron)を含むことが好ましい。一実施形態では、高エネルギービームが、フロートゾーンシリコン加工物に対して移動し、約5×1014〜5×1016イオン/cm2の注入密度を含む。
代替実施形態では、シリコンウェーハを製造する方法が、1立方センチメートル当たり1016酸素原子未満の酸素含量を有するフロートゾーンシリコン加工物を装着すること、マイクロ波装置に通電して、フロートゾーンシリコン加工物の外表面層に浸透する約5×1014〜5×1016イオン/cm2の注入密度を有する高エネルギービームを発生させること、高エネルギービームを用いて、フロートゾーンシリコン加工物の外表面層を剥離すること、および剥離された外表面層を、フロートゾーンシリコン加工物からシリコンウェーハとして取り外すことを含む。このシリコンウェーハは、100マイクロメートル未満の厚さ、より具体的には4〜20μmの厚さを有することが好ましい。さらに、シリコンウェーハをカットして複数のシリコンウェーハにすることができ、コンベヤに沿って加工物から移動させることができる。
さらに、フロートゾーンシリコン加工物は、160〜600μmの厚さを有する予めカットされたフロートゾーンシリコン加工物を含むことができ、この予めカットされたフロートゾーンシリコン加工物は、2〜70μmの厚さを有する正方形のシリコンウェーハを形成することができる。この実施形態では、マイクロ波装置が、高エネルギービームを発生させるクライストロンを含むことができ、この高エネルギービームは、イオンビームまたは陽子ビームを含むことができる。高エネルギービームはさらに、フロートゾーンシリコン加工物に対して移動することができ、または、高エネルギービームを、長方形のフロートゾーンシリコン加工物とほぼ同じ幅とすることができる。
別の代替方法では、複数のシリコンウェーハを製造することが、1立方センチメートル当たり1016酸素原子未満の酸素含量を有し、160〜600μmの厚さを有する予めカットされたフロートゾーンシリコン加工物を装着するステップと、マイクロ波装置に通電して、フロートゾーンシリコン加工物の外表面層に浸透するのに十分な高エネルギービームを発生させるステップと、高エネルギービームを用いて、フロートゾーンシリコン加工物の外表面層を剥離するステップであり、高エネルギービームが、フロートゾーンシリコン加工物に対して移動するステップと、剥離された外表面層を、フロートゾーンシリコン加工物から、2〜70マイクロメートルの厚さを含むシリコンウェーハとして取り外すステップと、シリコンウェーハをカットして複数のシリコンウェーハにするステップと、前記複数のシリコンウェーハをそれぞれコンベヤに沿って移動させるステップとを含む。
フロートゾーンシリコン加工物から複数のシリコンウェーハを製造する、本明細書に開示された装置は、剥離表面を有するフロートゾーンシリコン加工物を選択的に受け取り、保持するマウント(mount)を含むことができる。マイクロ波は、約5×1014〜5×1016イオン/cm2の注入密度を有する高エネルギービームを生成することができる。このマイクロ波は、高エネルギービームを剥離表面の方向に発射するようにマウントに対して配置されることが好ましく、このマイクロ波とフロートゾーンシリコン加工物との相対運動が、100μm未満の厚さを有するシリコンウェーハを剥離する。次いで、コンベヤが、剥離表面から剥離された前記複数のシリコンウェーハをそれぞれ、フロートゾーンシリコン加工物から離れるように縦方向に運ぶ。
好ましい一実施形態では、マイクロ波が、クライストロンまたはDC加速器(DC accelerator)を含み、高エネルギービームが、イオンビームまたは陽子ビームを含み、高エネルギービームが、剥離表面の幅とほぼ同じ幅を有する細長いビーム(elongated beam)である。さらに、フロートゾーンシリコン加工物は長方形の形状を含むことができ、1立方センチメートル当たり1016酸素原子未満の酸素含量を有することができる。フロートゾーンシリコン加工物から剥離されたシリコンウェーハは、2〜70μmの厚さを有することが好ましい。
追加の代替実施形態では、ウェーハを製造する本明細書に開示されたプロセスが、縦の回転軸を軸とした回転を可能にするような方式でインゴットを加工物として装着するステップと、縦の回転軸を軸にインゴットを回転させるステップとを含む。インゴットは円筒形の形状を有し、その縦の回転軸を軸とした円筒形のインゴットの回転を容易にするロータに装着可能な回転可能なシャフトによって担持されることが好ましい。インゴットは、単結晶または多結晶シリコンから作ることができる。次いで、回転しているインゴットの外表面層に浸透するのに十分な高エネルギービームを発生させるマイクロ波装置に通電する。これに応じて、回転しているインゴットの外表面層を、高エネルギービームを用いて剥離する。インゴットが回転し続けると、次いで、剥離された外表面層を、インゴット加工物から、連続した平らなストリップとして取り外すことができ、このストリップをカットしてウェーハとすることができる。この時点で、回転しているインゴットの角速度とほぼ同じ速度で移動しているコンベヤ、好ましくは回転しているインゴットの角速度と実質的に同期して移動しているコンベヤに沿って、この連続した平らなストリップを輸送することができる。インゴットをインクリメンタルに(incrementally)回転させる場合、コンベヤも、同様のインクリメンタルな移動で、連続した平らなストリップを、順方向へインクリメンタルに移動させるであろう。言うまでもなく、この連続したストリップをプレスによってカットまたはスタンピングして、複数のウェーハにすることができる。
加えて、このウェーハ製造プロセスはさらに、局所温度の増大の結果としてインゴット材料の化学特性が変化することを防ぐために、前記インゴットの外表面層を高エネルギービームが衝撃する浸透点のところでインゴットを冷却するステップを含むことができる。このような冷却ステップは、0.15〜1.7メガ電子ボルトの間のエネルギーレベルで高エネルギービームが作用するときに特に好ましいことがある。このマイクロ波装置は、陽子ビームまたはイオンビームを含む高エネルギービームを発生させるクライストロンとすることができる。マイクロ波装置は、Q値を最大にするように較正されていることが好ましい。さらに、この高エネルギービームは、複数の高エネルギービームを含むことができ、これらの複数の高エネルギービームは、回転しているインゴットの対応するそれぞれの外表面層を同時に剥離して、複数の対応するそれぞれの剥離された外表面層を同時に生み出し、それらの複数の剥離された外表面層は、インゴット加工物から剥がしまたは取り外すことができる。一実施形態では、高エネルギービームが、完成したウェーハ製品の幅とほぼ同じ幅である。例えば、このウェーハは正方形とすることができ、160〜200mmの間の幅を有することができ、外表面層の厚さは3〜30マイクロメートルの間とすることができる。
ウェーハを製造する本明細書に開示された他のプロセスでは、円筒形に形成され、回転可能なシャフトによって担持されたインゴットを、ロータに装着する。このロータは、円筒形のインゴットをその縦の回転軸を軸に回転させることができる。次に、ロータが起動し、円筒形のインゴットを、マイクロ波装置によって生成された高エネルギービームが、回転しているインゴットの所定の外表面層に浸透することができるような態様で回転させる。これによって、この製造プロセスは、回転しているインゴットと同期したコンベヤに沿って、外表面層を、円筒形のインゴット加工物から、連続した平らなストリップとして剥離することができる。限局された温度の増大の結果としてインゴット材料の化学特性が変化することを防ぐため、高エネルギービームが外表面層を衝撃する浸透点のところで、この円筒形のインゴット加工物を冷却することができる。次いで、この連続したストリップをスタンピングして、例えば太陽電池パネル内などで使用可能な複数のウェーハにする。
0.15〜1.7メガ電子ボルトの間のエネルギーレベルを有する高エネルギービームが、回転している円筒形のインゴットの外表面に効率的に浸透するように、このマイクロ波装置を較正してQ値を最大にすることができる。一実施形態では、このマイクロ波装置が、陽子またはイオンの高エネルギービームを発生させるクライストロンである。他の実施形態では、このマイクロ波装置が、電子サイクロトロン共鳴を利用して高電流イオンを生成する。さらに、このプロセスは、回転しているインゴットの対応するそれぞれの外表面セクションを同時に剥離する複数の高エネルギービームを使用して、インゴットの外表面を、その垂直高さの全体に沿って、より効率的に剥離することを含むことができる。高エネルギービームは、160〜200mmの間など、ウェーハ製品の幅とほぼ同じ幅であることが好ましい。円筒形のインゴットは、単結晶または多結晶シリコンから作ることができ、ほぼ3〜30マイクロメートルの間の外表面層の厚さが剥離されるように、インクリメンタルに回転させることができる。
ウェーハを製造する装置は、インゴット加工物を選択的に装着可能に受け取り、そのインゴット加工物を縦の回転軸を軸に回転させるように構成された回転体(rotator)を含む。インゴットは円筒形であることが好ましく、単結晶または多結晶シリコンから作ることができる。高エネルギービームを生成するマイクロ波が、発射された高エネルギービームが、回転しているインゴットの縦の回転軸と整列する態様で、回転体に対して配置される。この高エネルギービームは、回転しているインゴットの外表面層に浸透するのに十分なエネルギーレベルを有することが好ましい。高エネルギービームがインゴットの外表面層を衝撃する浸透点の近くに配置された水冷却器または空気冷却器が、この製造中、インゴットの表面温度を制御することができる。剥離された外表面層を、連続した平らなストリップとして、回転しているインゴットから横方向に運ぶため、この装置はさらに、回転しているインゴットと同期したコンベヤを含む。次いで、この連続した平らなストリップをカッティング機構によってカットして、1枚または複数枚のウェーハにする。この点に関して、このようなカッティング機構は、連続したストリップをストロークごとにカットして複数のウェーハにするスタンピングダイを含むことができる。最終的なウェーハ製品は、160〜200mmの間の幅および3〜30マイクロメートルの間の厚さを有することが好ましい。特に好ましい実施形態では、マイクロ波が、エネルギー加速器を含むクライストロンである。このために、高エネルギービームをイオンビームまたは陽子ビームとすることができ、高エネルギービームは、前記ウェーハの幅とほぼ同じ幅を有する細長いビームであることが好ましい。
本発明の他の特徴および利点は、本発明の原理を例として示す以下のより詳細な説明を、添付図面ともに検討したときに明白となる。
添付図面は本発明を例示する。
ウェーハを製造する方法およびプロセスに関連して使用されるステップを示す流れ図である。 不活性チャンバ内での高純度半導体等級のウェーハ材料およびドーパントの溶融を示す略図である。 回転可能なシャフトの一端に装着された種結晶を溶融した混合物中へ下ろしている様子を示す略図である。 種結晶に対する溶融した混合物の触媒結晶化を示す略図である。 混合物からの種結晶の制御された取出しによるインゴットの形成を示す略図である。 溶融した混合物からのインゴットの完全な形成を示す略図である。 回転体へのインゴットの一端の装着を示す略透視図である。 代替として2つの回転体に結合されたときのインゴットの縦軸を軸にしたインゴットの回転を示す略透視図である。 1つまたは複数のビームを用いたインゴットの外表面の衝撃を示す、一部が切り取られた略透視図である。 1つまたは複数の細長いビームを用いたインゴットの外表面の衝撃を示す、一部が切り取られた代替の略透視図である。 インゴットの外表面に所定の深さまで浸透している陽子を示すインゴットの略側面図である。 インゴットの剥離を示すインゴットの略側面図である。 単層剥離を示す、衝撃されたインゴットの略上面図である。 多層剥離を示す、衝撃されたインゴットの代替の略上面図である。 剥離された層をインゴットから運び去る様子を示す略側面図である。 剥離された層をカットして個々のウェーハにする様子を示す略側面図である。 ダイヤモンドワイヤを用いて円筒形のインゴットをカットして正方形または長方形のインゴットにすることを示す略図である。 細長いビームを用いた、図11の四角に削られたインゴットの外側の前被削面(front work surface)の衝撃を示す、略透視図である。 細長いビームを用いた、図11の四角に削られたインゴットの外側の側被削面(side work surface)の衝撃を示す、略透視図である。 図12Aで剥離した前被削面から剥がれた、剥離された層を示す略透視図である。 図12Bで剥離した側被削面から剥がれた、剥離された層を示す略透視図である。 コンベヤによって加工物から運び去られている剥離された層を示す略側面図である。
例示のためのこれらの図面に示されているように、ウェーハを製造する改良されたプロセスに関する本発明は、その全体が図1の流れ図に関して示されており、図2〜10には、この製造プロセスの操作がより詳細に示されている。より具体的には、最初のステップは、図1に示されているように、インゴットを作製するステップ100である。好ましい一実施形態では、このインゴット100が、円筒形の単結晶シリコンインゴットである。しかしながら、このインゴット100は、剥離するのに適した、多結晶シリコンを含む任意の材料とすることができ、多角形の断面形状など任意の断面形状を有することができる。本明細書に開示された一組のプロセスおよび装置は、とりわけ、太陽電池パネルなどで使用する正方形または長方形のシリコンウェーハを作製するための加工物として使用する円筒形インゴットを正方形に切削することに関連した廃棄物を減らすことを目指している。さらに、本明細書に開示されたプロセスおよび装置は、前述のダイヤモンド被覆ワイヤを使用して個々のウェーハをスライスする必要性を排除することで、作製されるウェーハごとに、無駄になるウェーハ材料を、少なくとも1桁さらに低減させることができる。したがって、太陽電池等級の単結晶光起電力材料を生産する際のこれらの無駄の多い両方のステップを排除することは、同じ大きさのコスト節減に対応する。したがって、後により詳細に説明するが、生産される太陽光PV材料の量は、伝統的なまたは従来の製造方法によって使用された同じインゴットの少なくとも20倍になる。このことが、原料コストの非常に大きな節減に対応することは明らかである。さらに、後により詳細に説明するが、ウェーハ材料の連続シートをインゴットから剥離し、同時に取り外すことは、相対的によりコスト集約的なツーステップ剥離プロセスの必要性を排除し、先行技術で知られている、剥離されたウェーハ材料の多数の個々のシートを取り扱うことに関連したコストを低下させる。
図2Aに示されているように、石英から作られたチャンバなどの不活性チャンバ12内で、高純度半導体等級のウェーハ材料10を溶融させる。ウェーハ材料10は、剥離するのに適した任意の材料とすることができるが、好ましいウェーハ材料は単結晶シリコンである。ウェーハ材料10に不純物、好ましくは1013または1016原子/cm3程度の不純物を添加して、n型(負)半導体またはp型(正)半導体としての極性を組成物に与えるため、溶融したウェーハ材料10にドーパント14(例えばホウ素、リン、ヒ素またはアンチモン)を加える。次いで、結晶化プロセスを開始するため、図2Bに示されているように、この溶融したウェーハ材料10とドーパント14との多少なりとも不純な混合物20の中に、回転可能なシャフト18の一端に装着された種結晶16を下ろす。図2Cに示されているように混合物20に浸されると、種結晶16は、シャフト18の周りの溶融したウェーハ材料混合物20の結晶化を始める触媒の働きをする。次いで、シャフト18をゆっくりと引き上げ、それと同時にゆっくりと回転させて、この溶融物から大きなインゴット22を抜き取る。インゴット22は、円筒形の単結晶インゴットであることが好ましいが、多結晶インゴットまたは当技術分野で知られている他の組成物とすることもできる。混合物20から形成されるインゴット22のこの結晶化は、図2Cから図2Eに進むにつれて、不活性チャンバ12内の混合物20の量が減っていることによって示されている。この点に関して、図2Eは、本明細書に開示されたプロセスで使用する1つのインゴット22を示している。
ステップ100に従ってインゴット22を作製する上述のプロセスは、ウェーハの所望の用途および最終特性に応じて変更することができることを当業者は容易に理解するであろう。例えば、溶融したウェーハ材料10の組成、溶融したウェーハ材料10に導入し溶融したウェーハ材料10と混合するドーパント14の量および/またはタイプ、不活性チャンバ12内の温度、シャフト18の回転の角速度、ならびに種結晶16を抜き取る速度を変更することができる。この点に関して、ウェーハ材料作製プロセス100は、当業者によく知られていると考えるべきである。特に好ましい実施形態では、インゴット22中の不純物、特に酸素不純物の数を減らすために、インゴット22が、垂直ゾーンメルティングプロセスによって作られたFZシリコンインゴットである。
ステップ100中にインゴット22を作製した後、図1に基づく次のステップ102は、剥離プロセスの準備としてインゴット22を装着するステップである。この好ましい実施形態では、装着された後もインゴット22は静止したままである。別の実施形態では、インゴット22が、図3に示された回転体24に装着される。一実施形態では、回転体24がシャフト18に結合するか、またはインゴット22の本体から延出した他の延長部分に結合する。この実施形態では、図3に関して示された全体に水平の位置にあるインゴット22を、回転体24が保持し回転させることができることが好ましい。あるいは、図4に示されているように、一対の回転アーム26、26’が、回転体(全体が符号24として示されている)から延出し、または回転体の一部分を構成し、インゴット22の一対の平らな端面28、28’に接続される。ここで、回転アーム26、26’は、グリップ、クランプまたは他の装置の形態の取付け機構30を含むことができ、取付け機構30は、取付け機構30間にインゴット22を(例えば圧縮ばめによって)保持するための高摩擦表面を有する。この点に関して、回転体24と接続した状態でインゴット22を支持することができ、安定した一定の速度でインゴット22を回転させることができるものであれば、当技術分野で知られているどの取付け機構30でも十分である。さらに、回転体24、回転アーム26、26’または取付け機構30を、個別にまたは互いに組み合わせて利用して、後により詳細に説明するように、装着されたインゴット22を、イオン注入プロセス中に、インゴット22の回転軸32を軸にして両方向に回転させることもできる。
図1に示されている次のステップは、軸32を軸にしてインゴット22が回転しているときにマイクロ波装置に通電するステップ106であり、このマイクロ波装置は、インゴット22の外表面に浸透することができる高エネルギー陽子または高エネルギーイオンのビームを生成する。ここで、図5Aおよび5Bは、本明細書に開示されたプロセスで使用するこのようなマイクロ波装置の2つの例を示す。例えば、図5Aでは、マイクロ波装置が、クライストロン34(すなわちマイクロ波領域の電磁放射を速度変調によって発生させまたは増幅する目的に使用される電子管)を含み、クライストロン34は、インゴット22の外表面40に向かって導かれる陽子ビーム36(図5A)または細長い陽子ビーム37(図5B)を加速器38から発生させる。クライストロン34は、直流銃(Direct Current Gun)またはペレトロン加速器(Pelletron accelerator)38を含むことが好ましいが、高周波(「RF」)加速器など、当技術分野で知られている他の匹敵する加速装置を使用することもできる。加速器38(例えばRF共振空胴)は、クライストロン源34からのマイクロ波を共振空胴内へ誘導して、所望のエネルギーレベルまで陽子を加速させる高勾配電磁場を生成する。このことは、マイクロ波装置のサイズを最小化(高eV/m)し、同時に高いプロダクションバリュー(production value)を維持する。この点に関して、交差する電磁式ウェーブガイドのハイウェイ(highway)を使用することによって、1つのクライストロン34を、多くのRF共振加速空洞(例えば図5Aに示された追加の加速器38’、38”)に取り付けることができる。したがって、PV材料の年間生産ごとに工場全体が産出するギガワットは、ただ1つのクライストロン34によって供給することができる。これらの共振空胴は、クオリティファクター(quality factor)すなわちQ値を最大にするように、したがってマイクロ波源の必要な入力エネルギーを最小化するように設計される。
図1に示されている次のステップは、インゴット22の選択された層に浸透するステップである。インゴット22が回転している実施形態では、この浸透が、インゴット22の回転軸108に対してほぼ平行に起こることが好ましい。ウェーハ材料の選択された表面深さに浸透し、本質的に剥離する当技術分野で知られている例示的な装置が例えば、前述のGlavish他の米国特許第7,939,812号、Smick他の第7,982,197号、Glavish他の第7,989,784号およびRyding他の第8,044,374号に示され、記載されている。ここで、提案された方法は、高エネルギー陽子を有する陽子ビーム36、37で、インゴット22の外表面40を、所定の深さ42(図6)まで衝撃する。この高エネルギー陽子は、0.2〜2.5メガ電子ボルト(「MeV」)の範囲のエネルギーレベルを有することが好ましい。これに応じて、陽子は、約3〜30マイクロメートルの表皮深さ(skin depth)42まで、インゴット22に浸透する。インゴット22がその軸32を軸にして回転すると、陽子ビーム36、37は、外表面40の新たな層に連続的にエネルギーを与える。言うまでもなく、深さ42は、マイクロ波装置のタイプ、陽子加速器38内で発生させるエネルギーレベルなどに応じて変更することができる。図7にその全体が示されているように、この陽子衝撃ステップ108は、衝撃された表面40の層44が、インゴット22の本体から剥がされまたは剥離されて、連続コンベヤ46に載せられることを可能にする。表皮深さ42は、注入する陽子のエネルギーに応じて3〜30マイクロメートルの範囲にある。
ステップ108の間に、インゴット22の衝撃された表面の温度は、陽子ビーム36、37の結果として増大する。そのため、冷却機構を利用してインゴット22の外表面40を冷却し、それによって、加熱に起因するインゴット22の材料特性の不利なまたは予想外の変化を防ぐことが好ましい。この点に関しては、剥離されているインゴット22の内部および周囲のエリアを冷却することが特に重要である。インゴット22の直接冷却または間接冷却も提供するため、本明細書に開示されたプロセスとともに、水循環ベースまたは空気循環ベースの冷却装置を使用することができる。
例示の目的上、図6および7では、剥離された層44の厚さが誇張されている。この点に関して、この剥離された層44の相対的な厚さは、ステップ100に従って作られたインゴット22の初期の太さよりもはるかに小さいことを当業者は容易に理解するであろう。一実施形態では、インゴット22の軸32を軸にしてインゴット22が連続的に剥離されるにつれて、インゴット22の直径が小さくなり、剥離される層44の深さ42に対するインゴット22の直径の相対的なサイズ差も小さくなる。
一般に、ビーム36または細長いビーム37は、結果として得られるウェーハの所望の幅に従って、インゴット22のその長さに沿ったインゴット22の一部分にエネルギーを与える必要がある。このプロセスは、ビーム36、37のタイプおよびステップ100で作製したインゴット22の長さに応じて変更することができる。例えば、図5Aは、1つの加速器38から単一のビーム36が発射される一実施形態を示す。ここで、ビーム36は、外表面40の一部分と単一の点で接触する。幅48を有する層44(図8A、8B)を作製するため、ビーム36は、インゴット22の縦軸に沿って(すなわちインゴット22の高さまたは軸32に対して平行に)左から右へおよび右から左へ移動して、インゴット22の幅48の全体にエネルギーを与えることができる。この実施形態では、ビーム36が幅48を首尾よく横断することを可能にするために、インゴット22が、インクリメンタルに回転することができる。これを実行した後、インゴット22は順方向に回転し、外表面40の次のインクリメントにエネルギーを与え、インゴット22の本体から剥離することができる。インゴット22の全幅を同時に処理および剥離して、例えば図8Bに示された層44、44’、44”を作製することができるように、クライストロン34とともに、追加のビーム36’、36”、36nを生成する追加の加速器38’、38”、38nを含めることができる。あるいは、ビーム36、36’、36n、加速器38、38’、38nまたはクライストロン34のうちの任意の1つを移動させる代わりに、インゴット22自体が左右に移動してもよい。
あるいは、図5Bに示されているように、クライストロン34は、完成した所望のウェーハの幅48に等しいビーム幅を有する細長いビーム37を生成することもできる。ビーム36に関する上記の説明と同様に、複数の細長いビーム37、37’、37n(図5Bに追加のビーム37’、37nは示されていない)を使用して、図8Bに関する上記の説明と同様に、インゴット22の全幅の部分または実質的に全幅を剥離することができる。1つまたは複数の細長いビーム37を使用する利点は、インゴット22の軸32を軸としたインゴット22の回転を停止させたりまたはインゴット22をインクリメンタルに回転させたりする必要がない場合があることである。この点に関して、ビーム37は、通常なら、ビーム36がするようなインゴット22の長さに沿った縦運動を必要としないと考えられるため、インゴット22の回転および冷却のタイミングを調整して、連続剥離を特に容易にすることができる。
図1に示されている次のステップは、浸透されたウェーハ材料の層をインゴットから取り外すステップ110である。一実施形態に関して上で説明したとおり、インゴット22は、ビーム36、37が、表面40の以前に衝撃されたエリアと重ならないように、回転軸32を軸にして角回転することができる。この衝撃プロセスが継続するにつれて、剥離された材料の層44はインゴット22から剥がれて、コンベヤ46に載る。図7に全体が示されているが、コンベヤ46は、剥離された層44を把持しまたはインゴット22から引き離すのに十分な高い摩擦係数を有する金属基板50または他の匹敵する表面を含むことができる。これは、インゴット22が回転したときに、剥離された層44が、表面40の近くでひだを作ることを防ぐ。
インゴット22の回転は、剥離された材料を、単一の連続シートとして剥離し、同時に取り外すことを可能にする。より具体的には、インゴット22が回転すると、インゴット22の角位置が変化するにつれて、インゴット22の外表面40の剥離されている部分が変わる。同時に、この回転によって、インゴット22が回転するにつれて、剥離されたウェーハの材料の層44がインゴット22から剥がされる。剥離された層44は、インゴット22の角位置が変わるにつれてインゴット22から連続的に剥がれるため、ウェーハ材料の単一の連続シートが生産される。すなわち、回転しているインゴット22が、紙ロールまたは金属コイルと同じように「ほどける」。剥離されたウェーハ材料の連続シートが生産されるため、このプロセスは、従来の剥離プロセスを上回る大きな節減を提供する。
取外しステップ110は、衝撃陽子エネルギーに応じた厚さ3〜30マイクロメートルのウェーハ材料の(例えば図8Bに示されているような)1つまたは複数の基板層44、44’、44nのリボンを生産することができる。インゴット22は、剥離してコンベヤ46の金属基板50上に載せるのに正確に十分な材料を生み出す金属基板の幅に等しい距離だけ順方向へ移動する。金属基板の幅は、衝撃されたインゴット表面の幅48に対応し、160〜200mmの範囲とすることができる。
次いで、後続の個々のウェーハへのスタンピング114(図1)のため、ステップ112の間に、PV材料を有する金属基板のこの新たなリボンまたは層44を、インゴット22から運び去る。この点に関して、図9は、インゴット22から離れてプレス52に向かう剥離されたウェーハ材料の層またはストリップ44の移動を示す。プレス52は、リボンまたは層44を特定の間隔でカットまたは剪断して個々のウェーハ58(図10)にするように設計された1つまたは複数のブレード56を備えるダイ54を有する。例えば、図10に示されているようにプレス52がダイ54を下方へ延ばすと、ブレード56は、ウェーハ材料のストリップ44と接触し、160〜200mmごとなどの間隔でストリップ44をカットして、複数のウェーハ58にし、それによって160×160mmウェーハまたは200×200mmウェーハを生産する。これらのサイズは、平均的な正方形のPVウェーハの現行の寸法とすることができるが、ウェーハ58のサイズはそのようなサイズだけに限定されるべきではない。すなわち、ウェーハ58の結果としてのサイズは、層44をカットして個々のウェーハ58にするのに使用する技術に応じて、これよりも大きくまたは小さくすることができる。さらに、代替のスタンピング機構またはソーイング(sawing)機構など、ウェーハ材料のストリップをスライスまたはカットする当技術分野で知られている装置を利用して、ストリップまたは層44からウェーハ58を作製することもできる。好ましくは、このようなカッティングまたはソーイングステップは、可能な限り少ない残留ウェーハ材料廃棄物を生み出すべきである。この時点で、最終的な製品は、正方形または長方形のPVウェーハ58であり、このウェーハ58を、従来の配線およびパッケージング機械に通して、住宅規模、商業規模または公共事業規模の太陽エネルギー生産で使用する完成した太陽電池パネルを生産することができる。
言うまでもなく、上で説明したプロセスおよび装置を、単結晶シリコンインゴットとともに使用することだけに限定すべきではない。このようなプロセスおよび装置は、FZシリコンを含む、本明細書に開示されたとおりにさらに処理するのに適した形状に鋳造された任意のタイプの金属材料など、さまざまな形状、サイズおよび材料のインゴットに対して適用することができる。
例えば、インゴット22は多角形の断面を有することができる。このような形状を有するインゴットは、インゴットの縦軸を軸に、円筒形のインゴットと同じように回転させることができる。回転させながら処理される大部分の加工物(すなわち回転体または旋盤上で回される加工物)は円筒形でなければならず、そのため、工具(すなわち旋盤カッタ)は、その360度の回転の全体にわたって加工物と接触し続ける。しかしながら、この剥離プロセスでは、位置が固定された工具がインゴットと常に接触し続ける必要はない。その代わりに、非円形の回転する物体の変化する回転直径に対応することができる高エネルギービームが、加工物インゴットを処理することが好ましい。すなわち、回転しているインゴットの直径が、角度によって変化する多角形の断面を有するとしても、高エネルギービームは、インゴットの外表面に衝撃を与え、ウェーハ材料の層に浸透する。したがって、上でより詳細に論じた円筒形のインゴットと同じ方式で、多角形の断面を有するインゴットを剥離することができる。
さらに、ウェーハ材料は単結晶シリコンだけに限定されない。限定はされないが、フロートゾーンシリコン(「FZシリコン」)、多結晶シリコン、テルル化カドミウム、サファイヤ結晶およびセレン化銅インジウムガリウムを含む、ウェーハを構築するのに適した当技術分野で知られている任意の材料を使用することができる。その上、ウェーハ材料はn型材料とすることもまたはp型材料とすることもできる。ウェーハ材料の選択に応じて、ドーパントのタイプおよび濃度ならびに温度などの特定の処理パラメータを変更することができることは明白である。
本明細書に開示された実施形態の他の代替の態様では、ウェーハを製造する改良されたプロセスが、フロートゾーンシリコンすなわちFZシリコンの使用を含むことができる。この点に関して、この製造プロセスは、ステップ(100)〜(114)に関して上で説明した装置およびプロセスと同様とすることができる。あるいは、図3〜10に示された円筒形のインゴット22を使用する代わりに、最初にインゴット22を、ダイヤモンドワイヤ60または他の匹敵するカッティング機構によってカットしまたは四角く削って、図11に全体的に示されているような全体に長方形のシリコンブロック62を形成することができる。言うまでもなく、シリコンブロック62は、長方形または正方形としてカットすることができ、希望に応じていくつかの異なるサイズまたは形状にカットすることができる。図11に示された実施形態では、シリコンブロック62が、前被削面64(および同様に形づくられた後被削面(back work surface)64’)ならびに長さ最大3フィートの側被削面66(および対応する他の側被削面66’〜66’’’)を有する。これらの被削面は全て、本明細書に記載された実施形態に従って剥離する準備ができていることが好ましい。単純にするため、以下では、前被削面64および側被削面66に関してこの剥離プロセスを説明するが、この剥離プロセスは、単独でまたは被削面64’および66’〜66’’’のうちの1つまたは複数の被削面と同時に等しく良好に機能することができる。
あるいは、本明細書に開示された剥離プロセスを、当技術分野で知られている方法によって既に200〜600μm程度の厚さにカットされたフロートゾーンシリコンウェーハと一緒に使用することもできる。この点に関して、これらの既存のまたは予めカットされたウェーハを剥離して、2〜70マイクロメートル程度の、より好ましくは4〜20マイクロメートル程度のより薄い複数のウェーハを形成することができる。例えば、300マイクロメートルの予めカットされたフロートゾーンウェーハを、本明細書に開示されたプロセスによって剥離して、25マイクロメートルの厚さを有する12枚のフロートゾーンウェーハを生産することができる。このような予めカットされたフロートゾーンウェーハは、後により詳細に説明するシリコンブロック62に代わる加工物として本質的に使用されるであろう。
当技術分野で知られている方法を使用してシリコンブロック62を作製したら、剥離プロセスの準備のために、ブロック62を、上で説明した実施形態または当技術分野で知られている他の実施形態に従って装着することができる。1つの違いは、円筒形のシリコンインゴット22に関する上記の説明とは違い、シリコンブロック62を回転させる必要がないことである。これは、平らなウェーハ材料を生産するにはその軸を中心にして回転させる必要がある丸められたまたは円筒形の被削面とは対照的に、被削面64、66が平らな剥離表面を提供するためである。
この点に関して、図12Aおよび12Bは、上で説明した外側の被削面64、66を剥離する2つの方法を示す。例えば、図12Aでは、クライストロン34が、前被削面64の幅に関して接触する細長い陽子ビーム37を生成する。方向矢印によって示されているように、ビーム37は、上から下へ移動させることが好ましい。図12Bは、クライストロン34が、同様の細長い陽子ビーム37を生成する同様の実施形態を示し、細長い陽子ビーム37は、側被削面66の幅にまたがり、方向矢印によって示されているように上から下へ移動することが好ましい。この点に関しては、図13Aおよび13Bに示されているように、シリコン材料の剥離された層68、68’が、上で説明した実施形態に従ってシリコンブロック62から剥離または剥がれ始める。同様に、この剥離された層68または68’をコンベヤ46などによって加工物62から運び去ることができる(図14)。この剥離プロセスは、例えば、結果として生じるシリコンウェーハ58の所望の寸法に一致した前被削面64を剥離することによって、または、(例えば側被削面66を通る)より大きなエリアを剥離し、次いでその後に、剥離された層44に関して上で説明したのと同様に、剥離されたシリコンのストリップをカットしてストリップにすることによって、個々のシリコンウェーハ58を作製することができる。
本明細書に開示された実施形態の1つの特定の利点は、この剥離プロセスが、比較的に低い酸素含量(例えば1立方センチメートル当たり1015酸素原子)を有するフロートゾーン(すなわち「FZ」シリコン)または他のシリコン材料と一緒に使用されることである。一方で、太陽電池パネルで使用するようにサイズが決められたシリコンウェーハを作製するために使用されている現行の太陽電池等級のシリコン材料は、比較的に高い酸素含量(例えば1立方センチメートル当たり1018酸素原子)を有し、チョクラルスキープロセスによって生産される。これらのシリコンウェーハの効率は19%〜20%でしかないが、経済的に生産することができる。他方、比較的に低い酸素含量、したがってより高い効率を有するシリコン材料(例えばフロートゾーンシリコンウェーハの効率は約24.7%である)は、所望のサイズよりも大きく(例えば厚さ300〜500μm程度に)カットしなければならない。これは、堅い材料特性が、知られている方法(例えばダイヤモンドワイヤ)によって材料をより薄くカットすることを妨げるためである。したがって、フロートゾーンシリコンなどから作られたシリコンウェーハは現在、材料コストおよびウェーハの現在使用可能な最小製造厚さのため、コストが極端に高い。
したがって、上で説明した剥離プロセスは、比較的に低い酸素含量およびより小さな厚さ(例えば2〜70μm、好ましくは4〜20μm。100+μmとは対照をなす)を有するより高い等級のシリコン材料(例えばフロートゾーンシリコン)からシリコンウェーハを経済的に生産する際に特に有用である。これは、前述のイオン注入法を用いて、フロートゾーンシリコンの表面エリア構造を、DC加速器または強化されたエネルギーレベルを有する他のビームなどによって衝撃することによって達成される。この表面エリア衝撃は、知られている方法に比べて特に好ましい。これは、より高純度のシリコン材料の表面エリア張力が、(例えばダイヤモンドワイヤによる)ソーイングによってウェーハを、経済的な厚さ(例えば100μm未満)に物理的に切削するのを妨げるためである。
図13A、13bおよび14に示されているように、剥離された層68または68’は、その表面を衝撃しているイオンのエネルギーレベルによって決定される厚さだけ、シリコンブロック62から剥がれる。この点に関して、ビーム37のエネルギーレベルを増大させると、表面レベル浸透はより深く、ウェーハ58はより厚くなり、ビーム37のエネルギーレベルを低くすると、表面レベル浸透はより浅く、ウェーハ58はより薄くなる。より具体的には、約5×1014〜5×1016イオン/cm2の注入密度を使用すると、2〜70μm、好ましくは4〜20μmの相対厚さを有するウェーハ58を生産するのに十分な深さまで、フロートゾーンシリコンの表面レベルに浸透する。これらの比較的に薄いウェーハ58を、ウェーハ58が生産されるたびにウェーハ58をシリコンブロック62から引き離す導電性表面またはバッキング70を含む表面を有するコンベヤ46上に置くことができる。
例示のため、いくつかの実施形態を詳細に説明したが、本発明の範囲および趣旨から逸脱することなくさまざまな変更を加えることができる。したがって、添付の特許請求の範囲による場合を除いて、本発明は限定されない。

Claims (28)

  1. シリコンウェーハを製造する方法であって、
    剥離するフロートゾーンシリコン加工物を装着するステップと、
    マイクロ波装置に通電して、前記フロートゾーンシリコン加工物の外表面層に浸透するのに十分な高エネルギービームを発生させるステップと、
    前記高エネルギービームを用いて、前記フロートゾーンシリコン加工物の前記外表面層を剥離するステップと、
    剥離された前記外表面層を、前記フロートゾーンシリコン加工物から、100マイクロメートル未満の厚さを含む前記シリコンウェーハとして取り外すステップと
    を含む方法。
  2. 前記フロートゾーンシリコン加工物が、160〜600μmの厚さを有する予めカットされたフロートゾーンシリコン加工物を含む、請求項1に記載の方法。
  3. 前記フロートゾーンシリコン加工物が、1立方センチメートル当たり1015個未満の酸素原子を含む酸素含量を含む、請求項1に記載の方法。
  4. 前記シリコンウェーハが2〜70μmの厚さを含む、請求項1に記載の方法。
  5. 前記シリコンウェーハが4〜20μmの厚さを含む、請求項1に記載の方法。
  6. 前記高エネルギービームが、約5×1014〜5×1016イオン/cm2の注入密度を含む、請求項1に記載の方法。
  7. 前記シリコンウェーハをカットして複数のシリコンウェーハにするステップを含む、請求項1に記載の方法。
  8. 前記複数のシリコンウェーハをそれぞれコンベヤに沿って移動させるステップを含む、請求項7に記載の方法。
  9. 前記シリコンウェーハが正方形のシリコンウェーハを含む、請求項1に記載の方法。
  10. 前記マイクロ波装置が、イオンビームまたは陽子ビームを含む前記高エネルギービームを発生させるクライストロンを備える、請求項1に記載の方法。
  11. 前記高エネルギービームが、前記フロートゾーンシリコン加工物の幅とほぼ同じ幅を含む、請求項1に記載の方法。
  12. 前記高エネルギービームが、前記フロートゾーンシリコン加工物に対して移動する、請求項11に記載の方法。
  13. 前記フロートゾーンシリコン加工物が長方形の形状を含む、請求項1に記載の方法。
  14. シリコンウェーハを製造する方法であって、
    1立方センチメートル当たり1015酸素原子未満の酸素含量を含むフロートゾーンシリコン加工物を装着するステップと、
    マイクロ波装置に通電して、前記フロートゾーンシリコン加工物の外表面層に浸透する約5×1014〜5×1016イオン/cm2の注入密度を含む高エネルギービームを発生させるステップと、
    前記高エネルギービームを用いて、前記フロートゾーンシリコン加工物の前記外表面層を剥離するステップと、
    剥離された前記外表面層を、前記フロートゾーンシリコン加工物から、100マイクロメートル未満の厚さを含む前記シリコンウェーハとして取り外すステップと
    を含む方法。
  15. 前記フロートゾーンシリコン加工物が、160〜600μmの厚さを有する予めカットされたフロートゾーンシリコン加工物を含む、請求項14に記載の方法。
  16. 前記シリコンウェーハが4〜20μmの厚さを含む、請求項14に記載の方法。
  17. 前記シリコンウェーハをカットして複数のシリコンウェーハにし、前記複数のシリコンウェーハをそれぞれコンベヤに沿って移動させるステップを含む、請求項14に記載の方法。
  18. 前記シリコンウェーハが、2〜70μmの厚さを有する正方形のシリコンウェーハを含む、請求項14に記載の方法。
  19. 前記マイクロ波装置が、イオンビームまたは陽子ビームを含む前記高エネルギービームを発生させるクライストロンを備え、前記高エネルギービームが、前記フロートゾーンシリコン加工物に対して移動する、請求項14に記載の方法。
  20. 前記高エネルギービームが、長方形のフロートゾーンシリコン加工物の幅とほぼ同じ幅を含む、請求項14に記載の方法。
  21. 複数のシリコンウェーハを製造する方法であって、
    1立方センチメートル当たり1015酸素原子未満の酸素含量を含み、160〜600μmの厚さを有する予めカットされたフロートゾーンシリコン加工物を装着するステップと、
    マイクロ波装置に通電して、前記フロートゾーンシリコン加工物の外表面層に浸透するのに十分な高エネルギービームを発生させるステップと、
    前記高エネルギービームを用いて、前記フロートゾーンシリコン加工物の前記外表面層を剥離するステップであり、前記高エネルギービームが、前記フロートゾーンシリコン加工物に対して移動するステップと、
    剥離された前記外表面層を、前記フロートゾーンシリコン加工物から、2〜70マイクロメートルの厚さを含む前記シリコンウェーハとして取り外すステップと、
    前記シリコンウェーハをカットして複数のシリコンウェーハにするステップと、
    前記複数のシリコンウェーハをそれぞれコンベヤに沿って移動させるステップと
    を含む方法。
  22. フロートゾーンシリコン加工物から複数のシリコンウェーハを製造する装置であって、
    剥離表面を有する前記フロートゾーンシリコン加工物を選択的に受け取り、保持するマウントと、
    約5×1014〜5×1016イオン/cm2の注入密度を含む高エネルギービームを生成するマイクロ波であり、前記高エネルギービームを前記剥離表面の方向に発射するように前記マウントに対して配置されたマイクロ波と
    を備え、前記マイクロ波と前記フロートゾーンシリコン加工物との相対運動が、100μm未満の厚さを含むシリコンウェーハを前記剥離表面から剥離し、前記装置がさらに、
    前記剥離表面から剥離された前記複数のシリコンウェーハをそれぞれ、前記フロートゾーンシリコン加工物から離れるように縦方向に運ぶコンベヤ
    を備える装置。
  23. 前記マイクロ波が、クライストロンまたはDC加速器を備える、請求項22に記載の装置。
  24. 前記高エネルギービームが、イオンビームまたは陽子ビームを含む、請求項22に記載の装置。
  25. 前記高エネルギービームが、前記剥離表面の幅とほぼ同じ幅を有する細長いビームを含む、請求項22に記載の装置。
  26. 前記フロートゾーンシリコン加工物が長方形の形状を含む、請求項22に記載の装置。
  27. 前記フロートゾーンシリコン加工物が、1立方センチメートル当たり1015酸素原子未満の酸素含量を含む、請求項22に記載の装置。
  28. 前記シリコンウェーハが2〜70μmの厚さを含む、請求項22に記載の装置。
JP2016553493A 2014-02-18 2015-02-18 フロートゾーンシリコンウェーハ製造システム Pending JP2017508706A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461941325P 2014-02-18 2014-02-18
US61/941,325 2014-02-18
PCT/US2015/016436 WO2015126980A1 (en) 2014-02-18 2015-02-18 Float zone silicon wafer manufacturing system

Publications (1)

Publication Number Publication Date
JP2017508706A true JP2017508706A (ja) 2017-03-30

Family

ID=53878923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016553493A Pending JP2017508706A (ja) 2014-02-18 2015-02-18 フロートゾーンシリコンウェーハ製造システム

Country Status (8)

Country Link
EP (1) EP3108044A4 (ja)
JP (1) JP2017508706A (ja)
KR (1) KR20160145550A (ja)
CN (1) CN106133210B (ja)
AU (1) AU2015219029A1 (ja)
CA (1) CA2939214A1 (ja)
PH (1) PH12016501653A1 (ja)
WO (1) WO2015126980A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517292A (ja) * 1991-07-05 1993-01-26 Nippon Steel Corp シリコンの冷却方法
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
JP2003529526A (ja) * 2000-04-03 2003-10-07 エス オー イ テク シリコン オン インシュレータ テクノロジース 基板製作方法及び装置
US20090170298A1 (en) * 2008-01-01 2009-07-02 Vaxis Technologies Llc Crystal Film Fabrication
US20090194162A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Method to form a photovoltaic cell comprising a thin lamina
JP2010509757A (ja) * 2006-11-06 2010-03-25 シリコン ジェネシス コーポレーション 線形加速器を用いる厚層転写のための方法および構造体
US20140026617A1 (en) * 2012-07-30 2014-01-30 Andrew X. Yakub Processes and apparatuses for manufacturing wafers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623137B1 (en) * 2008-05-07 2014-01-07 Silicon Genesis Corporation Method and device for slicing a shaped silicon ingot using layer transfer
JP5428216B2 (ja) * 2008-06-20 2014-02-26 富士電機株式会社 シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
JP2011138866A (ja) * 2009-12-28 2011-07-14 Mitsubishi Materials Corp 多結晶シリコンブロック材の製造方法、多結晶シリコンウエハの製造方法及び多結晶シリコンブロック材
CN102729342A (zh) * 2012-06-06 2012-10-17 海润光伏科技股份有限公司 用于制造高效多晶硅硅片的制备方法
CN103112093A (zh) * 2013-01-25 2013-05-22 浙江向日葵光能科技股份有限公司 一种多晶硅太阳能电池切片方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517292A (ja) * 1991-07-05 1993-01-26 Nippon Steel Corp シリコンの冷却方法
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
JP2003529526A (ja) * 2000-04-03 2003-10-07 エス オー イ テク シリコン オン インシュレータ テクノロジース 基板製作方法及び装置
JP2010509757A (ja) * 2006-11-06 2010-03-25 シリコン ジェネシス コーポレーション 線形加速器を用いる厚層転写のための方法および構造体
US20090170298A1 (en) * 2008-01-01 2009-07-02 Vaxis Technologies Llc Crystal Film Fabrication
US20090194162A1 (en) * 2008-02-05 2009-08-06 Twin Creeks Technologies, Inc. Method to form a photovoltaic cell comprising a thin lamina
US20140026617A1 (en) * 2012-07-30 2014-01-30 Andrew X. Yakub Processes and apparatuses for manufacturing wafers

Also Published As

Publication number Publication date
KR20160145550A (ko) 2016-12-20
AU2015219029A1 (en) 2016-09-01
CN106133210B (zh) 2018-10-12
EP3108044A4 (en) 2017-09-06
CA2939214A1 (en) 2015-08-27
CN106133210A (zh) 2016-11-16
EP3108044A1 (en) 2016-12-28
WO2015126980A1 (en) 2015-08-27
PH12016501653A1 (en) 2017-02-06

Similar Documents

Publication Publication Date Title
US9404198B2 (en) Processes and apparatuses for manufacturing wafers
Hartanto et al. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume
EP1113096B1 (en) Method of producing a crystal sheet
US2809136A (en) Apparatus and method of preparing crystals of silicon germanium group
US8048223B2 (en) Grown diamond mosaic separation
JP5879102B2 (ja) β−Ga2O3単結晶の製造方法
EP2048267A1 (en) Process for producing single-crystal substrate with off angle
US10811245B2 (en) Float zone silicon wafer manufacturing system and related process
Henley Kerf-free wafering: Technology overview and challenges for thin PV manufacturing
WO2010016337A1 (ja) 超伝導高周波加速空洞の製造方法
EP2785898B1 (en) Production of mono-crystalline silicon
WO2005080645A2 (en) Diamond structure separation
US20170092463A1 (en) Wafer manufacturing system and related process
Kaule et al. Laser-assisted spalling of large-area semiconductor and solid state substrates
JP2017508706A (ja) フロートゾーンシリコンウェーハ製造システム
JP5891028B2 (ja) Ga2O3系基板の製造方法
JP5201446B2 (ja) ターゲット材およびその製造方法
WO2009131064A1 (ja) Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ
JP2005272197A (ja) ダイヤモンドの製造方法
JP4923249B2 (ja) バルク多結晶材料の製造方法
Seredin et al. Precision silicon doping with acceptors by temperature gradient zone melting
WO2014020831A1 (ja) Fz単結晶の製造方法
WO2009131061A1 (ja) Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ
WO2015166996A1 (ja) 単結晶育成方法及び単結晶育成装置
Cohen et al. Floating crystalline Si-foils for photovoltaic applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190425