WO2009131061A1 - Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ - Google Patents

Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ Download PDF

Info

Publication number
WO2009131061A1
WO2009131061A1 PCT/JP2009/057719 JP2009057719W WO2009131061A1 WO 2009131061 A1 WO2009131061 A1 WO 2009131061A1 JP 2009057719 W JP2009057719 W JP 2009057719W WO 2009131061 A1 WO2009131061 A1 WO 2009131061A1
Authority
WO
WIPO (PCT)
Prior art keywords
vwx
substrate
layer
grown
epitaxial wafer
Prior art date
Application number
PCT/JP2009/057719
Other languages
English (en)
French (fr)
Inventor
一成 佐藤
宮永 倫正
藤原 伸介
英章 中幡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP09735559.8A priority Critical patent/EP2302110B1/en
Priority to US12/989,015 priority patent/US8540817B2/en
Priority to CN2009801143989A priority patent/CN102016135B/zh
Priority to KR1020107020566A priority patent/KR101526632B1/ko
Publication of WO2009131061A1 publication Critical patent/WO2009131061A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24471Crackled, crazed or slit

Definitions

  • the present invention relates to a method for producing a Si (1-vwx) C w Al x N v substrate, a method for producing an epitaxial wafer, a Si (1-vwx) C w Al x N v substrate, and an epitaxial wafer.
  • Crystals are used as materials for semiconductor devices such as short-wavelength optical devices and power electronic devices. Such crystals are conventionally obtained by growing on a base substrate by a vapor phase growth method or the like.
  • a Si (1-vwx) C w Al x N v base material has attracted attention as a base substrate used for growing such materials.
  • a method for producing such a Si (1-vwx) C w Al x N v substrate for example, US Pat. No. 4,382,837 (Patent Document 1), US Pat. No. 6,086,672 (Patent Document 2) and Table 2005-506695 (Patent Document 3) may be mentioned.
  • Patent Document 1 discloses that a raw material is heated at 1900 ° C. to 2020 ° C. to produce a (SiC) (1-x) (AlN) x crystal on Al 2 O 3 (sapphire). ing.
  • a raw material is heated at 1810 ° C. to 2492 ° C. to grow (SiC) (1-x) (AlN) x crystals on SiC (silicon carbide) at 1700 ° C. to 2488 ° C.
  • Patent Document 3 discloses that the temperature of the source gas is set to 550 ° C. to 750 ° C., and (SiC) (1-x) (AlN) x crystals are grown on Si (silicon).
  • Patent Documents 1 and 2 a (SiC) (1-x) (AlN) x crystal is grown on an Al 2 O 3 substrate and a SiC substrate. Since the Al 2 O 3 substrate and the SiC substrate are chemically very stable materials, processing such as wet etching is difficult. Therefore, reducing the thickness of the Al 2 O 3 substrate and a SiC substrate, there is a problem that it is difficult, such as the removal of the Al 2 O 3 substrate and a SiC substrate.
  • the temperature of the crystal growth surface is set to a high temperature of 1700 ° C. to 2488 ° C.
  • the raw material is heated at 1900 ° C. to 2020 ° C. For this reason, although the surface temperature of the Al 2 O 3 substrate of Patent Document 1 is lower than the temperature of the raw material, it is as high as that of Patent Document 2.
  • the temperature of the source gas is set to about 550 ° C. to 750 ° C.
  • the surface temperature of the Si substrate in Patent Document 3 is a temperature exceeding at least 550 ° C.
  • the (SiC) (1-x) (AlN) x crystal is grown at a high temperature exceeding 550 ° C. (SiC) to obtain the (1-x) (AlN) x crystals, (SiC) (1-x) after completion of growth (AlN) x crystals, by cooling to room temperature (SiC) (1-x) It is necessary to remove the (AlN) x crystal from the apparatus.
  • the (SiC) (1-x) (AlN) x crystal and Al 2 O 3 , SiC and Si have different thermal expansion coefficients. For this reason, the (SiC) (1-x) (AlN) x crystal receives stress due to the difference in thermal expansion coefficient during cooling.
  • Patent Documents 1 to 3 grow at a high temperature, a large stress is applied to the (SiC) (1-x) (AlN) x crystal. Therefore, there is a problem that cracks are likely to occur in the (SiC) (1-x) (AlN) x crystal.
  • the present invention has been made in view of the above problems, and an object of the present invention is to produce a Si (1-vwx) C w Al x N v base material that suppresses generation of cracks and is easy to process.
  • An epitaxial wafer manufacturing method, an Si (1-vwx) C w Al x N v substrate, and an epitaxial wafer are provided.
  • the present inventor In order to suppress cracks occurring in the Si (1-vwx) C w Al x N v layer, the present inventor has determined that the temperature from the temperature at which the Si (1-vwx) C w Al x N v layer is grown to the room temperature. It was found that reducing the difference is effective. Accordingly, the present inventors have Si (1-vwx) C w Al x N v layer Si (1-vwx) for suppressing cracks occurring C w Al x N v layer intensive research as a result of the growth temperature of 550 It discovered that a crack could be suppressed by setting it as less than ° C.
  • the production method of Si (1-vwx) C w Al x N v substrate according to the present invention includes the following steps. First, a Si substrate is prepared. The temperature of the Si (1-vwx) C w Al x N v layer (0 ⁇ v ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ v + w + x ⁇ 1) on the Si substrate is less than 550 ° C. Grown in.
  • the Si (1-vwx) C w Al x N v layer is grown at less than 550 ° C.
  • the Si (1-vwx) C w Al x N v layer is grown and cooled to room temperature, the Si (1-vwx) C w Al x N v layer is affected by the difference in thermal expansion coefficient between the Si substrate and Si (1-vwx) C w Al x N v layer.
  • a stress is applied to the (1-vwx) C w Al x N v layer.
  • Si (1-vwx) C w Al x N v layer stress applied to the Si (1-vwx) C w Al x N v layer when the growth temperature is lower than 550 ° C. is, Si (1-vwx) to cause cracks in the C w Al x N v layer It is the size which can suppress. Therefore, it is possible to suppress the occurrence of cracks in the Si (1-vwx) C w Al x N v layer to be grown.
  • a Si (1-vwx) C w Al x N v layer is grown on the Si substrate.
  • the Si substrate has a high cleavage property and is easily etched with an acid. For this reason, the process for reducing the thickness of the Si substrate and the process for removing the Si substrate are easy. Accordingly, it is possible to manufacture a Si (1-vwx) C w Al x N v base material that is easy to process.
  • the Si substrate is easy to process. For this reason, the Si substrate can be easily removed. Therefore, an Si (1-vwx) C w Al x N v base material having an Si (1-vwx) C w Al x N v layer that does not contain a Si substrate and suppresses the generation of cracks is easily manufactured. be able to.
  • Si (1-vwx) C w Al x N v substrate manufacturing method preferably, in the growing step, Si (1-vwx) C w Al x N is performed by a pulsed laser deposition (PLD) method.
  • PLD pulsed laser deposition
  • the raw material of the Si (1-vwx) C w Al x N v layer is irradiated with a laser to generate plasma, and this plasma can be supplied onto the Si substrate. That is, the Si (1-vwx) C w Al x N v layer can be grown in a non-equilibrium state. Since this growth condition is not a stable state such as an equilibrium state, Si can bond to both C and N, and Al can bond to both C and N. Therefore, it is possible to grow a Si (1-vwx) C w Al x N v layer in which four elements of Si, C, Al and N are mixed.
  • the method for producing an epitaxial wafer of the present invention produces an Si (1-vwx) C w Al x N v substrate by the method for producing an Si (1-vwx) C w Al x N v substrate described above. And an Al (1-yz) Ga y In z N layer (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ y + z ⁇ 1) on the Si (1-vwx) C w Al x N v layer And a step of growing the substrate.
  • the method for manufacturing an epitaxial wafer of the present invention it is possible to manufacture a Si (1-vwx) C w Al x N v layer in which generation of cracks is suppressed. Therefore, a good crystalline Al (1-yz) Gay y In z N layer can be grown on the Si (1-vwx) C w Al x N v layer.
  • the lattice matching and the thermal expansion coefficient of the Al (1-yz) Ga y In z N layer have a small difference from the lattice matching and the thermal expansion coefficient of the Si (1-vwx) C w Al x N v layer. Therefore, the crystallinity of the Al (1-yz) Ga y In z N layer can be improved.
  • the epitaxial wafer includes a Si substrate, the Si substrate is easy to process, and thus the Si substrate can be easily removed from the epitaxial wafer.
  • the Si (1-vwx) C w Al x N v substrate of the present invention has an Si (1-vwx) C w Al x N v layer (0 ⁇ v ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 1 , 0 ⁇ v + w + x ⁇ 1) Si (1-vwx) C w Al x N v substrate, wherein the Si (1-vwx) C w Al x N v layer is 1 mm or more in a 10 mm square region
  • the number of cracks is 7 or less when 1> v + x> 0.5, 5 or less when 0.5 ⁇ v + x> 0.1, and 3 or less when 0.1 ⁇ v + x> 0.
  • the Si (1-vwx) C w Al x N v substrate of the present invention it is low by being produced by the above-described method for producing the Si (1-vwx) C w Al x N v substrate of the present invention. It is obtained by growing a Si (1-vwx) C w Al x N v layer at a temperature. Therefore, it is possible to realize a Si (1-vwx) C w Al x N v substrate in which the number of cracks in the Si (1-vwx) C w Al x N v layer is reduced as described above.
  • the Si (1-vwx) C w Al x N v base material preferably further comprises a Si substrate having a main surface, and the Si (1-vwx) C w Al x N v layer is formed on the main surface of the Si substrate. Is formed.
  • Si (1-vwx) C w Al x N v layer when a small thickness, such as Si (1-vwx) of C w Al x N v substrate may further include a Si substrate if necessary Good. Since the Si substrate is easy to process, it is particularly advantageous when it is necessary to remove the Si substrate from the Si (1-vwx) C w Al x N v layer.
  • the Si (1-vwx) C w Al x N v layer is preferably measured by an X-ray diffraction (XRD) method.
  • XRD X-ray diffraction
  • Si is bonded to both C and N, and Al is C and It is combined with any of N. Therefore, it is possible to grow a Si (1-vwx) C w Al x N v layer in which four elements of Si, C, Al and N are mixed. Therefore, a Si (1-vwx) C w Al x N v layer having a diffraction peak between the SiC diffraction peak and the AlN diffraction peak can be realized.
  • Epitaxial wafer of the present invention the above and Si (1-vwx) C w Al x N v substrate according to any one, Si (1-vwx) C w Al x N v formed on the layer Al (1 -yz) Ga y In z N layer (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ y + z ⁇ 1).
  • the Al (1-yz) Ga y In z N layer is formed on the Si (1-vwx) C w Al x N v layer in which the generation of cracks is suppressed. For this reason, the crystallinity of the Al (1-yz) Ga y In z N layer can be improved. Further, when the epitaxial wafer is provided with a Si substrate, the Si substrate can be easily removed, so that the Si substrate can be easily removed from the epitaxial wafer.
  • the Si substrate A Si (1-vwx) C w Al x N v layer is grown at a low temperature. Therefore, by suppressing the stress from being applied to the Si (1-vwx) C w Al x N v layer, the generation of cracks is suppressed and Si (1-vwx) C w Al x is easy to process. Nv substrate can be realized.
  • the Si (1-vwx) C w Al x N v substrate according to the first embodiment of the present invention is a cross-sectional view schematically showing.
  • the array of atoms constituting the Si (1-vwx) C w Al x N v layer according to the first embodiment of the present invention is a diagram schematically showing.
  • the PLD device that can be used in the production of Si (1-vwx) C w Al x N v substrate according to the first embodiment of the present invention is a diagram schematically showing.
  • a state in which the Si (1-vwx) C w Al x N v layer grown in an equilibrium state is a cross-sectional view schematically showing.
  • a state in which the Si (1-vwx) C w Al x N v layer grown in an equilibrium state is a cross-sectional view schematically showing.
  • Si (1-vwx) C w Al x N v substrate is a cross-sectional view schematically showing. It is sectional drawing which shows schematically the epitaxial wafer in Embodiment 3 of this invention. It is sectional drawing which shows roughly the epitaxial wafer in Embodiment 4 of this invention.
  • FIG. 1 is a cross-sectional view schematically showing a Si (1-vwx) C w Al x N v substrate in the present embodiment.
  • Si (1-vwx) C w Al x N v base material 10a in the present embodiment will be described.
  • Si (1-vwx) C w Al x N v substrate 10a includes a Si substrate 11, Si Si formed on the main surface 11a of the substrate 11 (1- vwx) C w Al x N v layer 12 (0 ⁇ v ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ v + w + x ⁇ 1).
  • the composition ratio 1-vwx is the molar ratio of Si
  • w is the molar ratio of C
  • x is the molar ratio of Al
  • V is the molar ratio of N.
  • the crack of 1 mm or more means the total distance along the longitudinal direction in one continuous crack.
  • FIGS. 2 to 4 are schematic diagrams showing diffraction peaks in the XRD method of the Si (1-vwx) C w Al x N v layer in the present embodiment.
  • the Si (1-vwx) C w Al x N v layer 12 has a diffraction peak between the SiC diffraction peak and the AlN diffraction peak measured by the XRD method. ing.
  • the diffraction peak of each material measured by the XRD method is a unique value.
  • the tube voltage is 45 kV
  • the tube current is 40 mA
  • the measurement method is 2 ⁇ - ⁇
  • the angular resolution is 0.001 deg step
  • the diffraction peak of SiC (102) plane appears near 35.72 deg.
  • the diffraction peak existing between the SiC diffraction peak and the AlN diffraction peak in the Si (1-vwx) C w Al x N v layer 12 is higher than the diffraction peak heights of SiC and AlN. And a case where the height is lower than the height of diffraction peaks of SiC and AlN, as shown in FIG. Further, as shown in FIG. 4, the Si (1-vwx) C w Al x N v layer 12 does not show SiC and AlN diffraction peaks, but only diffracts between the SiC diffraction peak and the AlN diffraction peak. You may have a peak.
  • the diffraction peak existing between the SiC diffraction peak and the AlN diffraction peak is not a noise-like peak, but a mixture of Si, C, Al, and N. It has a height that indicates that a crystallized state exists.
  • FIG. 5 is a diagram schematically showing the arrangement of atoms constituting Si (1-vwx) C w Al x N v in the present embodiment. Since it exists chemically and stably as SiC, Si is easy to bond with C and difficult to bond with N. Since AlN exists chemically and stably, Al is easily bonded to N and is not easily bonded to C. However, as shown in FIG. 5, in the Si (1-vwx) C w Al x N v layer 12, Si is bonded to both C and N, and Al is bonded to both C and N. . That is, the Si (1-vwx) C w Al x N v layer 12 does not aggregate as SiC or AlN, and Si, Al, C, and N are dispersed at the atomic level.
  • FIG. 6 is a schematic diagram schematically showing a PLD apparatus that can be used for manufacturing a Si (1-vwx) C w Al x N v substrate in the present embodiment.
  • the PLD apparatus 100 includes a vacuum chamber 101, a laser light source 102, a raw material 103, a stage 104, a pulse motor 105, a substrate holding unit 106, a heater (not shown), and a control.
  • Unit 107 a reflection high-energy electron diffraction apparatus (RHEED) 108, and a gas supply unit 109.
  • RHEED reflection high-energy electron diffraction apparatus
  • a laser light source 102 is disposed outside the vacuum chamber 101.
  • the laser light source 102 can emit laser light.
  • a raw material 103 serving as a target can be disposed in the vacuum chamber 101 at a position where the laser light source 102 emits laser light.
  • the raw material 103 can be placed on the stage 104.
  • the pulse motor 105 can drive the stage 104.
  • the substrate holding unit 106 can hold the Si substrate 11 as a base substrate.
  • the heater heats the Si substrate 11 held by the substrate holding unit 106.
  • the control unit 107 can control operations of the laser light source 102 and the pulse motor 105.
  • the RHEED 108 can measure the thickness of the Si (1-vwx) C w Al x N v layer 12 grown on the Si substrate 11 by monitoring vibration.
  • the gas supply unit 109 can supply gas into the vacuum chamber 101.
  • the PLD device 100 may include various elements other than those described above, the illustration and description of these elements are omitted for convenience of description.
  • the raw material 103 of the Si (1-vwx) C w Al x N v layer 12 is prepared.
  • the raw material 103 for example, a sintered body in which SiC and AlN are mixed can be used.
  • the composition v + x of the Si (1-vwx) C w Al x N v layer 12 can be controlled by the molar ratio of mixing SiC and AlN in the raw material 103.
  • the raw material 103 thus prepared is set on the stage 104 shown in FIG.
  • the Si substrate 11 is set on the surface of the substrate holding unit 106 installed in the vacuum chamber 101 at a position facing the raw material 103.
  • the surface temperature of the Si substrate 11 is heated to less than 550 ° C.
  • the surface temperature of the Si substrate 11 is less than 550 ° C., and preferably 540 ° C. or less. This heating is performed by, for example, a heater.
  • the heating method of the Si substrate 11 is not particularly limited to the heater, and other methods such as passing an electric current may be used.
  • the raw material 103 is irradiated with laser light emitted from the laser light source 102.
  • the laser for example, a KrF (krypton fluoride) excimer laser having an emission wavelength of 248 nm, a pulse repetition frequency of 10 Hz, and an energy per pulse of 1 to 3 J / shot can be used.
  • KrF (krypton fluoride) excimer laser having an emission wavelength of 248 nm, a pulse repetition frequency of 10 Hz, and an energy per pulse of 1 to 3 J / shot can be used.
  • ArF argon fluoride
  • the vacuum chamber 101 is evacuated to about 1 ⁇ 10 ⁇ 3 Torr to 1 ⁇ 10 ⁇ 6 Torr or less, for example. Thereafter, the inside of the vacuum chamber 101 is brought into an atmosphere of an inert gas such as argon (Ar) or nitrogen (N 2 ) by the gas supply unit 109. If the inside of the vacuum chamber 101 is a nitrogen atmosphere, nitrogen can be replenished during the growth of the Si (1-vwx) C w Al x N v layer 12. If the inside of the vacuum chamber is an inert gas atmosphere, only the raw material 103 is used when the Si (1-vwx) C w Al x N v layer 12 is grown, so that the value of v + x can be easily controlled.
  • an inert gas such as argon (Ar) or nitrogen (N 2 )
  • a laser having a short wavelength As described above.
  • ablation plasma plural which is plasma accompanied by explosive particle emission from the solid, can be generated in the vacuum chamber 101.
  • Ablation particles contained in the plasma move to the Si substrate 11 while changing its state due to recombination, collision with atmospheric gas, reaction, and the like. Each particle that reaches the Si substrate 11 diffuses through the Si substrate 11 and enters a site where it can be arranged, whereby the Si (1-vwx) C w Al x N v layer 12 is formed.
  • the sites where each particle can be placed are as follows. Sites where Al atoms can be arranged are sites that bond with C atoms or N atoms. Sites where Si atoms can be arranged are sites that combine with C atoms or N atoms. The site where C atoms can be arranged is a site that binds to Al atoms or Si atoms. The site at which N atoms can be arranged is a site that binds to Al atoms or Si atoms.
  • the thickness of the Si (1-vwx) C w Al x N v layer 12 to be grown can be monitored by vibration of the RHEED 108 attached to the vacuum chamber 101.
  • Si (1-vwx) on the Si substrate 11 C w Al x N v layer 12 can be grown at temperatures below 550 °C, Si (1-vwx shown in FIG. 1 ) can be produced C w Al x N v substrate 10a.
  • Si (1-vwx) C w Al x N v layer 12 by the PLD method has been described, but the present invention is not particularly limited thereto.
  • Si (1-vwx ) can be obtained by methods such as MOCVD (Metal Organic Chemical Vapor Deposition) method using a pulse supply method, MBE (Molecular Beam Epitaxy) method using a gas source method, sputtering method, etc. )
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • the Si (1-vwx) C w Al x N v layer 12 is grown at a temperature below 550 ° C.
  • the inventor has grown the Si (1-vwx) C w Al x N v layer 12 at a temperature below 550 ° C., so that it is cooled to room temperature after the Si (1-vwx) C w Al x N v layer 12 is grown.
  • the effect of stress on the Si (1-vwx) C w Al x N v layer 12 due to the difference in thermal expansion coefficient between the Si (1-vwx) C w Al x N v layer 12 and the Si substrate 11 is reduced.
  • the Si substrate 11 is used as a base substrate for the Si (1-vwx) C w Al x N v layer 12.
  • the Si substrate 11 is the mainstream of current electronic materials, and processing techniques such as etching have been established.
  • the Si substrate 11 has a high cleavage property and is easily etched with an acid. For this reason, the process for reducing the thickness of the Si substrate 11 and the process for removing the Si substrate can be easily performed.
  • the Si (1-vwx) C w Al x N v base material 10a is used for producing a light emitting device, the cleavage property of the Si substrate is very important. Therefore, it is possible to manufacture an easy Si (1-vwx) C w Al x N v substrate 10a of workability.
  • the Si (1-vwx) C w Al x N v layer 12 is formed using the Si substrate 11 as a base substrate. It was difficult to grow.
  • the Si (1-vwx) C w Al x N v layer 12 is grown at a low temperature of less than 550 ° C., it is possible to suppress the Si substrate 11 from being deteriorated by heat. . Therefore, it becomes possible to grow the Si (1-vwx) C w Al x N v layer 12 on the Si substrate 11.
  • a Si substrate 11 is used as a base substrate.
  • the Si substrate 11 is less expensive than a SiC substrate, a sapphire substrate, or the like. Therefore, it is possible to reduce the cost required for manufacturing a Si (1-vwx) C w Al x N v substrate 10a.
  • 1 mm or more cracks of 1 mm or more are 7 or less when 1> v + x> 0.5, 5 or less when 0.5 ⁇ v + x> 0.1, and 3 or less when 0.1 ⁇ v + x> 0.
  • Si (1-vwx) C w Al x N v layer Si (1-vwx) equipped with a 12 C w Al x N v can be realized substrate 10a.
  • the Si (1-vwx) C w Al x N v substrate 10a manufactured by the method of manufacturing the Si (1-vwx) C w Al x N v substrate 10a in the present embodiment is easy to process. Yes, crystallinity is improved.
  • functional devices utilizing various magnetoresistance effects such as tunnel magnetoresistive elements and giant magnetoresistive elements, light emitting elements such as light emitting diodes and laser diodes, rectifiers, bipolar transistors, field effect transistors (FETs), spin FETs It can be suitably used for electronic elements such as HEMT (High Electron Mobility Transistor), temperature sensors, pressure sensors, radiation sensors, semiconductor sensors such as visible-ultraviolet light detectors, and SAW devices.
  • HEMT High Electron Mobility Transistor
  • the Si (1-vwx) C w Al x N v substrate 10a preferably, in the growing step, the Si (1-vwx) C w Al x N v layer 12 is grown by the PLD method. .
  • the raw material 103 of the Si (1-vwx) C w Al x N v layer 12 is irradiated with a laser to generate plasma, and this plasma can be supplied onto the Si substrate 11. That is, the Si (1-vwx) C w Al x N v layer 12 can be grown in a non-equilibrium state. Since the non-equilibrium state is not as stable as the equilibrium state, Si can bond to both C and N, and Al can bond to both C and N. Therefore, as shown in FIG. 5, it is possible to grow a Si (1-vwx) C w Al x N v layer 12 in which four elements of Si, C, Al and N are mixed.
  • FIGS. 7 and 8 are cross-sectional views schematically showing a state when the Si (1-vwx) C w Al x N v layer 12 is grown in an equilibrium state.
  • the Si (1-vwx) C w Al x N v layer 112 When the Si (1-vwx) C w Al x N v layer 112 is grown in an equilibrium state, since SiC and AlN are stable, Si and C are bonded, and Al and N are bonded. Therefore, the Si (1-vwx) C w Al x N v layer 12 grows in a state where the SiC layer 112a and the AlN layer 112b are laminated in layers as shown in FIG. 7, or as shown in FIG. In many cases, the SiC layer 112a grows so that the agglomerated AlN layers 112b are scattered.
  • Figure 9 shows the diffraction peak measured by XRD method Si (1-vwx) C w Al x N v layer when the Si (1-vwx) C w Al x N v layer grown in an equilibrium state It is a schematic diagram.
  • the Si (1-vwx) C w Al x N v layer grown in this way is not a mixed crystal state of four elements of Si, C, Al and N as shown in FIGS.
  • FIG. 9 when measured by the XRD method, as shown in FIG. 9, only the SiC diffraction peak and the AlN diffraction peak are detected, and there is no diffraction peak between the SiC diffraction peak and the AlN diffraction peak.
  • a diffraction peak of an error such as noise occurs between the SiC diffraction peak and the AlN diffraction peak.
  • the Si (1-vwx) C w Al x N v layer 12 is grown by the PLD method, as shown in FIG. 5, the Si, C, Al, and N mixed crystal state Si elements are present.
  • the (1-vwx) C w Al x N v layer 12 can be grown.
  • the Si (1-vwx) C w Al x N v layer 12 having a diffraction peak between the SiC diffraction peak and the AlN diffraction peak measured by the XRD method.
  • Si (1-vwx) C w Al x N v base material 10a having the above can be manufactured.
  • FIG. 10 is a cross-sectional view schematically showing a Si (1-vwx) C w Al x N v substrate according to the present embodiment.
  • the Si (1-vwx) C w Al x N v substrate 10b in the present embodiment is different from the Si (1-vwx) C w Al x N v substrate 10a in the first embodiment. At least the Si substrate 11 is removed.
  • Si (1-vwx) in this embodiment C w Al x N v a method for manufacturing the substrate 10b.
  • the Si (1-vwx) C w Al x N v substrate 10a shown in FIG. 1 is produced according to the method for producing the Si (1-vwx) C w Al x N v substrate 10a in the first embodiment. .
  • the Si substrate 11 is removed. Note that only the Si substrate 11 may be removed, or a part of the Si substrate 11 and the Si (1-vwx) C w Al x N v layer 12 including a surface in contact with the Si substrate 11 may be removed. .
  • the removal method is not particularly limited, and for example, a chemical removal method such as etching, a mechanical removal method such as cutting, grinding, or cleavage can be used.
  • Cutting means that at least the Si substrate 11 is mechanically removed from the Si (1-vwx) C w Al x N v layer 12 with a slicer having an outer peripheral edge of an electrodeposited diamond wheel. Grinding refers to scraping in the thickness direction by contacting the surface while rotating the grindstone.
  • Cleaving means dividing the Si substrate 11 along the crystal lattice plane.
  • the manufacturing method of the present Si (1-vwx) in the embodiment of C w Al x N v substrate 10b further comprising a step of removing the Si substrate 11. Since the Si substrate 11 is easily removed, for example, the Si (1-vwx) C w Al x N v base material 10b having only the Si (1-vwx) C w Al x N v layer 12 is easily manufactured. be able to.
  • FIG. 11 is a cross-sectional view schematically showing an epitaxial wafer in the present embodiment. With reference to FIG. 11, epitaxial wafer 20a in the present embodiment will be described.
  • the epitaxial wafer 20a includes the Si (1-vwx) C w Al x N v substrate 10a and the Si (1-vwx) C w Al x N v substrate 10a according to the first embodiment. And an Al (1-yz) Ga y In z N (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ y + z ⁇ 1) layer 21 formed thereon.
  • the epitaxial wafer 20a includes the Si substrate 11, the Si (1-vwx) C w Al x N v layer 12 formed on the Si substrate 11, and the Si (1-vwx) C w Al x N. and an Al (1-yz) Ga y In z N layer 21 formed on the v layer 12.
  • the Si (1-vwx) C w Al x N v substrate 10a is manufactured according to the method for manufacturing the Si (1-vwx) C w Al x N v substrate 10a in the first embodiment.
  • Al (1-yz) Ga A y In z N layer 21 is grown.
  • the growth method is not particularly limited.
  • MOCVD method, HVPE (Hydride Vapor Phase Epitaxy) method, MBE method, vapor phase growth method such as sublimation method, liquid phase growth method and the like can be adopted.
  • the epitaxial wafer 20a shown in FIG. 11 can be manufactured.
  • a step of removing the Si substrate 11 from the epitaxial wafer 20a may be further performed.
  • Si (1-vwx) C w Al x N v Al (1-yz) on the substrate 10a Ga A y In z N layer 21 is formed.
  • the Si (1-vwx) C w Al x N v substrate 10a the occurrence of cracks is suppressed. Therefore, it is possible to grow the Si (1-vwx) C w Al x N v good crystalline Al (1-yz) on layer 12 Ga y In z N layer 21.
  • Al (1-yz) Ga y In z N layer is Si (1-vwx) C w Al x N v layer 21 difference in lattice matching of the differences and the thermal expansion coefficient is small, Al (1-yz ) The crystallinity of the Ga y In z N layer 21 can be improved. Furthermore, when the epitaxial wafer includes the Si substrate 11, the Si substrate 11 can be easily processed, and therefore the Si substrate 11 can be easily removed from the epitaxial wafer.
  • FIG. 12 is a cross-sectional view schematically showing an epitaxial wafer in the present embodiment. With reference to FIG. 12, epitaxial wafer 20b in the present embodiment will be described.
  • the epitaxial wafer 20b includes the Si (1-vwx) C w Al x N v substrate 10b and the Si (1-vwx) C w Al x N v substrate 10b according to the second embodiment. And an Al (1-yz) Ga y In z N (0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ y + z ⁇ 1) layer 21 formed thereon.
  • the epitaxial wafer 20 b includes the Si (1-vwx) C w Al x N v layer 12 and the Al (1-yz) formed on the Si (1-vwx) C w Al x N v layer 12. And a Ga y In z N layer 21.
  • the Si (1-vwx) C w Al x N v substrate 10b is manufactured according to the method for manufacturing the Si (1-vwx) C w Al x N v substrate 10b in the second embodiment.
  • the epitaxial wafer 20b shown in FIG. 12 can be manufactured.
  • Si (1-vwx) C w Al x N v Al (1-yz) on the substrate 10b Ga A y In z N layer 21 is formed.
  • Si (1-vwx) C w Al x N v substrate 10b since the occurrence of cracks is suppressed, to grow a good crystallinity of Al (1-yz) Ga y In z N layer 21 it can.
  • a raw material 103 of Si 0.05 C 0.05 (AlN) 0.9 layer 12 was prepared.
  • This raw material 103 was prepared by the following method. Specifically, SiC powder and AlN powder were mixed and pressed. This mixture was placed in a vacuum vessel, the inside of the vacuum vessel was evacuated to 10 ⁇ 6 Torr, and the atmosphere was filled with high-purity Ar gas. The mixture was then fired at 2300 ° C. for 20 hours. Thereby, the raw material 103 was prepared. Then, this raw material 103 was set on the stage 104 shown in FIG.
  • a Si substrate 11 was prepared as a base substrate.
  • This Si substrate 11 had the (001) plane as the main surface 11a and had a size of 1 inch.
  • the Si substrate 11 was set on the surface of the substrate holding unit 106 installed in the vacuum chamber 101 and at a position facing the raw material 103.
  • the surface temperature of the Si substrate 11 was heated to 540 ° C. Thereafter, the raw material 103 was irradiated with laser light emitted from the laser light source 102.
  • a laser a KrF excimer laser having an emission wavelength of 248 nm, a pulse repetition frequency of 10 Hz, and an energy per pulse of 1 to 3 J / shot was used.
  • the inside of the vacuum chamber 101 was evacuated to 1 ⁇ 10 ⁇ 6 Torr, and then the inside of the vacuum chamber 101 was set to a nitrogen atmosphere.
  • a Si 0.05 C 0.05 (AlN) 0.9 layer 12 having a thickness of 500 nm was grown by monitoring the vibration of the RHEED 108 attached to the vacuum chamber 101.
  • the Si 0.05 C 0.05 (AlN) 0.9 substrate 10a shown in FIG. 1 was manufactured.
  • Comparative Example 1 a Si 0.05 C 0.05 (AlN) 0.9 base material was basically produced in the same manner as Example 1 of the present invention. However, as a base substrate, sapphire having a main surface of (0001) plane instead of a Si substrate A substrate was used.
  • Comparative Example 2 a Si 0.05 C 0.05 (AlN) 0.9 base material was produced basically in the same manner as in Example 1 of the present invention. However, instead of the Si substrate as the base substrate, the main surface was 6H— with a (0001) plane. A SiC substrate was used.
  • the Si 0.05 C 0.05 (AlN) 0.9 base material of Comparative Example 2 using a SiC substrate as a base substrate did not have a good etching property of the SiC substrate, and thus the SiC substrate could not be sufficiently removed by etching.
  • the embodiment above it was confirmed to be capable of processing by using a Si substrate to produce an easy Si (1-vwx) C w Al x N v substrate.
  • Invention Example 2 was basically the same as Invention Example 1, but Si 0.05 C 0.05 Al 0.45 N 0.45 was grown using Si substrate 11 whose main surface is the (111) plane as the base substrate. I let you.
  • Invention Example 3 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.0005 C 0.0005 Al 0.4994 N 0.4996 . For this reason, the molar ratio of the AlN powder and SiC powder of the prepared raw material 103 was changed.
  • Invention Example 4 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.0005 C 0.0005 Al 0.4996 N 0.4994 .
  • Invention Example 5 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.0005 C 0.0005 Al 0.4995 N 0.4995 .
  • Invention Example 6 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.0006 C 0.0004 Al 0.4995 N 0.4995 .
  • Invention Example 7 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.0004 C 0.0006 Al 0.4995 N 0.4995 .
  • Invention Example 8 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.005 C 0.005 Al 0.495 N 0.495 .
  • Invention Example 9 was basically the same as Invention Example 1, except that the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.25 C 0.25 Al 0.25 N 0.25 .
  • Invention Example 10 was basically the same as Invention Example 1, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.45 C 0.45 Al 0.05 N 0.05 .
  • Invention Example 11 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.495 C 0.495 Al 0.005 N 0.005 .
  • Invention Example 12 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.4995 C 0.4995 Al 0.0004 N 0.0006 .
  • Invention Example 13 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.4995 C 0.4995 Al 0.0006 N 0.0004 .
  • Invention Example 14 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.4995 C 0.4995 Al 0.0005 N 0.0005 .
  • Invention Example 15 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.4996 C 0.4994 Al 0.0005 N 0.0005 .
  • Invention Example 16 was basically the same as Invention Example 2, but the grown Si (1-vwx) C w Al x N v layer 12 was Si 0.49945 C 0.4996 Al 0.0005 N 0.0005 .
  • Comparative Example 3 was basically the same as Inventive Example 2, but a Si 0.05 C 0.05 Al 0.45 N 0.45 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 4 was basically the same as Inventive Example 2, but a Si 0.0005 C 0.0005 Al 0.4994 N 0.4996 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 5 The comparative example 5 was basically the same as the inventive example 2, but the Si 0.0005 C 0.0005 Al 0.4996 N 0.4994 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 6 was basically the same as Inventive Example 2, but a Si 0.0005 C 0.0005 Al 0.4995 N 0.4995 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 7 was basically the same as Inventive Example 2, but a Si 0.0006 C 0.0004 Al 0.4995 N 0.4995 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 8 was basically the same as Inventive Example 2, but a Si 0.0004 C 0.0006 Al 0.4995 N 0.4995 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 9 was basically the same as Inventive Example 2, but a Si 0.005 C 0.005 Al 0.495 N 0.495 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the comparative example 10 was basically the same as the inventive example 2, but the Si 0.25 C 0.25 Al 0.25 N 0.25 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the comparative example 11 was basically the same as the inventive example 2, but the Si 0.45 C 0.45 Al 0.05 N 0.05 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the comparative example 12 was basically the same as the inventive example 2, but the Si 0.495 C 0.495 Al 0.005 N 0.005 layer was grown at a temperature of 550 ° C. of the main surface of the Si substrate.
  • the comparative example 13 was basically the same as the inventive example 2, but the Si 0.4995 C 0.4995 Al 0.0004 N 0.0006 layer was grown at a temperature of 550 ° C. of the main surface of the Si substrate.
  • Comparative Example 14 was basically the same as Inventive Example 2, but the Si 0.4995 C 0.4995 Al 0.0006 N 0.0004 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 15 was basically the same as Inventive Example 2, but the Si 0.4995 C 0.4995 Al 0.0005 N 0.0005 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the comparative example 16 was basically the same as the inventive example 2, but the Si 0.4996 C 0.4994 Al 0.0005 N 0.0005 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the comparative example 17 was basically the same as the inventive example 2, but the Si 0.4994 C 0.4996 Al 0.0005 N 0.0005 layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 18 was basically the same as Inventive Example 2, but the AlN layer was grown at a temperature of the main surface of the Si substrate of 540 ° C.
  • Comparative Example 19 was basically the same as Example 2 of the present invention, but the AlN layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • Comparative Example 20 Comparative Example 20 was basically the same as Inventive Example 2, but the SiC layer was grown at a temperature of the main surface of the Si substrate of 540 ° C.
  • Comparative Example 21 was basically the same as Example 2 of the present invention, but the SiC layer was grown at a temperature of the main surface of the Si substrate of 550 ° C.
  • the number of cracks in the v layer is 7 or less, and the Si (1-vwx) C w Al x N v layer is 5 or less, and the number of cracks in the v layer is 5 or less, and the Si (1 -vwx) It was found that the number of cracks in the C w Al x N v layer was 3 or less.
  • the Si (1-vwx) C w Al x N v layer (0 ⁇ v ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ v + w + x ⁇ 1) is generated in the Si (1-vwx) C w Al x N v layer (0 ⁇ v ⁇ 1, 0 ⁇ w ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ v + w + x ⁇ 1)). It was confirmed that the number of cracks could be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

クラックの発生を抑制するとともに、加工性の容易なSi(1-v-w-x)wAlxv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)wAlxv基材およびエピタキシャルウエハを提供する。 Si(1-v-w-x)wAlxv基材10aの製造方法は、以下の工程を備えている。まず、Si基板11が準備される。そして、Si基板上にSi(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を550°C未満の温度で成長される。

Description

[規則26に基づく補充 29.05.2009] Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ
  本発明は、Si(1-v-w-x)wAlxv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)wAlxv基材およびエピタキシャルウエハに関するものである。
  6.2eVのエネルギーバンドギャップ、約3.3WK-1cm-1の熱伝導率および高い電気抵抗を有するAlN(窒化アルミニウム)結晶などのAl(1-y-z)GayInzN(0≦y≦1、0≦z≦1、0≦y+z≦1)結晶は、短波長の光デバイス、パワー電子デバイスなどの半導体デバイス用の材料として用いられている。このような結晶は、従来から、気相成長法などで下地基板上に成長されることにより得ている。
  このような材料を成長させるために用いられる下地基板として、Si(1-v-w-x)wAlxv基材が注目されている。このようなSi(1-v-w-x)wAlxv基材の製造方法として、たとえば米国特許第4382837号明細書(特許文献1)、米国特許第6086672号明細書(特許文献2)および特表2005-506695号公報(特許文献3)が挙げられる。
  上記特許文献1には、1900℃~2020℃で原料を加熱して、Al23(サファイア)上に(SiC)(1-x)(AlN)x結晶を製造していることが開示されている。また上記特許文献2には、1810℃~2492℃で原料を加熱して、SiC(炭化珪素)上に1700℃~2488℃で(SiC)(1-x)(AlN)x結晶を成長することが開示されている。また上記特許文献3には、原料ガスの温度を550℃~750℃にして、Si(シリコン)上に(SiC)(1-x)(AlN)x結晶を成長することが開示されている。
米国特許第4382837号明細書 米国特許第6086672号明細書 特表2005-506695号公報
  しかし、上記特許文献1および2では、Al23基板およびSiC基板上に(SiC)(1-x)(AlN)x結晶を成長している。Al23基板およびSiC基板は、化学的に非常に安定な材料であるので、ウエットエッチングなどの加工が困難である。このため、Al23基板およびSiC基板の厚みを薄くすること、Al23基板およびSiC基板を除去することなどが困難であるという問題がある。
  また、上記特許文献2では、結晶成長面の温度を1700℃~2488℃の高温にしている。上記特許文献1では1900℃~2020℃で原料を加熱している。このため、上記特許文献1のAl23基板の表面温度は原料の温度よりは低いものの、上記特許文献2と同程度の高温である。
  上記特許文献3では、原料ガスの温度を約550℃~750℃としている。(SiC)(1-x)(AlN)x結晶を成長させるためには原料ガスをSi基板の表面で反応させる必要があるので、少なくともSi基板の表面温度は、原料ガスの温度よりも高くする必要がある。したがって、上記特許文献3でのSi基板の表面温度は少なくとも550℃を超える温度である。
  このように、上記特許文献1~3では、550℃を超える高温で(SiC)(1-x)(AlN)x結晶を成長している。(SiC)(1-x)(AlN)x結晶を得るためには、(SiC)(1-x)(AlN)x結晶の成長終了後に、常温まで冷却して(SiC)(1-x)(AlN)x結晶を装置から取り出す必要がある。しかし、(SiC)(1-x)(AlN)x結晶と、Al23、SiCおよびSiとは熱膨張係数が異なっている。このため、冷却時に熱膨張率の違いにより(SiC)(1-x)(AlN)x結晶は応力を受ける。成長温度から室温までの温度差が大きい程、(SiC)(1-x)(AlN)x結晶が受ける応力が大きい。上記特許文献1~3は高温で成長しているので、(SiC)(1-x)(AlN)x結晶に大きな応力が加えられる。したがって、(SiC)(1-x)(AlN)x結晶にクラックが発生しやすいという問題がある。
  本発明は、上記の課題に鑑みてなされたものであり、その目的は、クラックの発生を抑制するとともに、加工性の容易なSi(1-v-w-x)wAlxv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)wAlxv基材およびエピタキシャルウエハを提供することである。
  本発明者は、Si(1-v-w-x)wAlxv層に生じるクラックを抑制するためには、Si(1-v-w-x)wAlxv層を成長させる温度から室温までの温度差を小さくすることが効果的であることを見出した。そこで、本発明者はSi(1-v-w-x)wAlxv層に生じるクラックを抑制するためのSi(1-v-w-x)wAlxv層の成長温度を鋭意研究した結果、550℃未満とすることでクラックを抑制することができることを見出した。
  つまり、本発明のSi(1-v-w-x)wAlxv基材の製造方法は、以下の工程を備えている。まず、Si基板が準備される。そして、Si基板上にSi(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)が550℃未満の温度で成長される。
  本発明のSi(1-v-w-x)wAlxv基材の製造方法によれば、Si(1-v-w-x)wAlxv層を550℃未満で成長させている。Si(1-v-w-x)wAlxv層の成長終了後に、常温まで冷却する際に、Si基板とSi(1-v-w-x)wAlxv層との熱膨張率の違いによりSi(1-v-w-x)wAlxv層に応力が加えられる。しかし、成長温度を550℃未満としたときにSi(1-v-w-x)wAlxv層に加えられる応力は、Si(1-v-w-x)wAlxv層にクラックを生じさせることを抑制できる大きさである。したがって、成長させるSi(1-v-w-x)wAlxv層に生じるクラックの発生を抑制することができる。
  また、Si基板上にSi(1-v-w-x)wAlxv層を成長させている。Si基板は、へき開性が高く、酸によるエッチングが容易である。このため、Si基板の厚みを薄くするための加工、Si基板を除去するための加工が容易である。したがって、加工性の容易なSi(1-v-w-x)wAlxv基材を製造することができる。
  上記Si(1-v-w-x)wAlxv基材の製造方法において好ましくは、上記成長させる工程後に、Si基板を除去する工程をさらに備えている。
  上述したように、Si基板は加工性が容易である。このため、Si基板を容易に除去できる。したがって、Si基板を含まず、かつクラックの発生を抑制したSi(1-v-w-x)wAlxv層を備えたSi(1-v-w-x)wAlxv基材を容易に製造することができる。
  上記Si(1-v-w-x)wAlxv基材の製造方法において好ましくは、成長させる工程では、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法によりSi(1-v-w-x)wAlxv層を成長させる。
  これにより、Si(1-v-w-x)wAlxv層の原料にレーザを照射してプラズマを発生させて、このプラズマをSi基板上に供給することができる。つまり、非平衡状態でSi(1-v-w-x)wAlxv層を成長させることができる。この成長条件は平衡状態のような安定な状態でないので、Siは、CおよびNのいずれとも結合が可能であり、AlはCおよびNのいずれとも結合が可能である。このため、Si、C、AlおよびNの4元素が混晶したSi(1-v-w-x)wAlxv層を成長することができる。
  本発明のエピタキシャルウエハの製造方法は、上記いずれかに記載のSi(1-v-w-x)wAlxv基材の製造方法によりSi(1-v-w-x)wAlxv基材を製造する工程と、Si(1-v-w-x)wAlxv層上にAl(1-y-z)GayInzN層(0≦y≦1、0≦z≦1、0≦y+z≦1)を成長させる工程とを備えている。
  本発明のエピタキシャルウエハの製造方法によれば、クラックの発生を抑制したSi(1-v-w-x)wAlxv層を製造することができる。このため、このSi(1-v-w-x)wAlxv層上に良好な結晶性のAl(1-y-z)GayInzN層を成長することができる。また、Al(1-y-z)GayInzN層の格子整合性および熱膨張率は、Si(1-v-w-x)wAlxv層の格子整合性および熱膨張率との差が小さいので、Al(1-y-z)GayInzN層の結晶性を向上することができる。さらに、エピタキシャルウエハがSi基板を備えている場合には、Si基板の加工性は容易であるので、エピタキシャルウエハからSi基板を容易に除去することができる。
  本発明のSi(1-v-w-x)wAlxv基材は、Si(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を備えたSi(1-v-w-x)wAlxv基材であって、Si(1-v-w-x)wAlxv層の10mm四方の領域において1mm以上のクラックが1>v+x>0.5では7個以下、0.5≧v+x>0.1では5個以下、0.1≧v+x>0では3個以下であることを特徴としている。
  本発明のSi(1-v-w-x)wAlxv基材によれば、上述した本発明のSi(1-v-w-x)wAlxv基材の製造方法により製造することにより、低い温度でSi(1-v-w-x)wAlxv層を成長させることで得られる。このため、Si(1-v-w-x)wAlxv層のクラック数を上記のように低減したSi(1-v-w-x)wAlxv基材を実現することができる。
  上記Si(1-v-w-x)wAlxv基材において好ましくは、主表面を有するSi基板をさらに備え、Si(1-v-w-x)wAlxv層は、Si基板の主表面上に形成されている。
  このように、Si(1-v-w-x)wAlxv層の厚みが薄い場合などSi(1-v-w-x)wAlxv基材は必要に応じてSi基板をさらに備えていてもよい。Si基板は加工が容易なので、Si(1-v-w-x)wAlxv層からSi基板を除去する必要が生じた場合に特に有利である。
  上記Si(1-v-w-x)wAlxv基材において好ましくは、Si(1-v-w-x)wAlxv層は、X線回折(X-ray Diffraction:XRD)法で測定されるSiCの回折ピークとAlNの回折ピークとの間に回折ピークを有する。
  上述したように、PLD法などの非平衡状態で成長されたSi(1-v-w-x)wAlxv層では、Siは、CおよびNのいずれとも結合しており、Alは、CおよびNのいずれとも結合している。このため、Si、C、AlおよびNの4元素が混晶したSi(1-v-w-x)wAlxv層を成長することができる。したがって、SiCの回折ピークとAlNの回折ピークとの間に回折ピークを有するSi(1-v-w-x)wAlxv層を実現することができる。
  本発明のエピタキシャルウエハは、上記いずれかに記載のSi(1-v-w-x)wAlxv基材と、Si(1-v-w-x)wAlxv層上に形成されたAl(1-y-z)GayInzN層(0≦y≦1、0≦z≦1、0≦y+z≦1)とを備えている。
  本発明のエピタキシャルウエハによれば、クラックの発生を抑制したSi(1-v-w-x)wAlxv層上にAl(1-y-z)GayInzN層が形成されている。このため、Al(1-y-z)GayInzN層の結晶性を良好にすることができる。また、エピタキシャルウエハがSi基板を備えている場合には、Si基板の加工性は容易であるので、エピタキシャルウエハからSi基板を容易に除去することができる。
  本発明のSi(1-v-w-x)wAlxv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)wAlxv基材およびエピタキシャルウエハによれば、Si基板上に低温でSi(1-v-w-x)wAlxv層を成長させている。よって、Si(1-v-w-x)wAlxv層に応力が加えられることを抑制することにより、クラックの発生を抑制するとともに、加工性の容易なSi(1-v-w-x)wAlxv基材を実現できる。
本発明の実施の形態1におけるSi(1-v-w-x)wAlxv基材を概略的に示す断面図である。 本発明の実施の形態1におけるSi(1-v-w-x)wAlxv層のXRDにおける回折ピークを示す模式図である。 本発明の実施の形態1におけるSi(1-v-w-x)wAlxv層のXRDにおける回折ピークを示す模式図である。 本発明の実施の形態1におけるSi(1-v-w-x)wAlxv層のXRDにおける回折ピークを示す模式図である。 本発明の実施の形態1におけるSi(1-v-w-x)wAlxv層を構成する原子の配列を模式的に示す図である。 本発明の実施の形態1におけるSi(1-v-w-x)wAlxv基材の製造に使用可能なPLD装置を概略的に示す模式図である。 平衡状態でSi(1-v-w-x)wAlxv層を成長させたときの状態を模式的に示す断面図である。 平衡状態でSi(1-v-w-x)wAlxv層を成長させたときの状態を模式的に示す断面図である。 平衡状態でSi(1-v-w-x)wAlxv層を成長させたときのSi(1-v-w-x)wAlxv層のXRD法で測定される回折ピークを示す模式図である。 本発明の実施の形態2におけるSi(1-v-w-x)wAlxv基材を概略的に示す断面図である。 本発明の実施の形態3におけるエピタキシャルウエハを概略的に示す断面図である。 本発明の実施の形態4におけるエピタキシャルウエハを概略的に示す断面図である。
  以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。
  (実施の形態1)
  図1は、本実施の形態におけるSi(1-v-w-x)wAlxv基材を概略的に示す断面図である。始めに、図1を参照して、本実施の形態におけるSi(1-v-w-x)wAlxv基材10aを説明する。
  図1に示すように、本実施の形態におけるSi(1-v-w-x)wAlxv基材10aは、Si基板11と、Si基板11の主表面11a上に形成されたSi(1-v-w-x)wAlxv層12(0<v<1、0<w<1、0<x<1、0<v+w+x<1)とを備えている。Si(1-v-w-x)wAlxv層12において、組成比1-v-w-xはSiのモル比であり、wはCのモル比であり、xはAlのモル比であり、vはNのモル比である。
  Si(1-v-w-x)wAlxv層12の10mm四方の領域において1mm以上のクラックは、1>v+x>0.5では7個以下、0.5≧v+x>0.1では5個以下、0.1≧v+x>0では3個以下である。ここで、v+xは、AlNのモル比である。
  なお、クラックが1mm以上とは、連続する1つのクラックにおいて、長手方向に沿った距離の合計を意味する。
  図2~図4は、本実施の形態におけるSi(1-v-w-x)wAlxv層のXRD法における回折ピークを示す模式図である。図2~図4に示すように、Si(1-v-w-x)wAlxv層12は、XRD法で測定されるSiCの回折ピークとAlNの回折ピークとの間に回折ピークを有している。ここで、XRD法で測定される各材料の回折ピークは、固有の値である。たとえば、ターゲットが銅(Cu)で、管球電圧が45kVで、管球電流が40mAで、測定方式が2θ-ωで、角度分解能が0.001degステップである測定条件では、AlN(002)面の回折ピークは36.03deg付近に、SiC(102)面の回折ピークは35.72deg付近に現れる。
  図2に示すように、Si(1-v-w-x)wAlxv層12においてSiCの回折ピークとAlNの回折ピークとの間に存在する回折ピークは、SiCおよびAlNの回折ピークの高さよりも高い場合と、図3に示すように、SiCおよびAlNの回折ピークの高さよりも低い場合とを含んでいる。また、図4に示すように、Si(1-v-w-x)wAlxv層12は、SiCおよびAlNの回折ピークが現れずに、SiCの回折ピークとAlNの回折ピークの間にのみ回折ピークを有していてもよい。Si(1-v-w-x)wAlxv層12においてSiCの回折ピークとAlNの回折ピークとの間に存在する回折ピークは、ノイズ程度のピークではなく、Si、C、AlおよびNの混晶した状態が存在することを示す程度の高さを有している。
  図5は、本実施の形態におけるSi(1-v-w-x)wAlxv構成する原子の配列を模式的に示す図である。SiCとして化学的に安定に存在するので、SiはCと結合しやすく、Nとは結合しにくい。AlNとして化学的に安定に存在するので、AlはNと結合しやすく、Cとは結合しにくい。しかし、図5に示すように、Si(1-v-w-x)wAlxv層12において、Siは、CおよびNのいずれとも結合し、かつAlはCおよびNのいずれとも結合している。つまり、Si(1-v-w-x)wAlxv層12は、SiCとしてまたはAlNとして凝集せずに、Si、Al、CおよびNが原子レベルで分散している。
  続いて、図6を参照して、本実施の形態におけるSi(1-v-w-x)wAlxv基材10aの製造方法を説明する。図6は、本実施の形態におけるSi(1-v-w-x)wAlxv基材の製造に使用可能なPLD装置を概略的に示す模式図である。
  ここで、図6を参照して、PLD装置100の主要な構成について説明する。図6に示すように、PLD装置100は、真空チャンバ101と、レーザ光源102と、原料103と、ステージ104と、パルスモータ105と、基板保持部106と、ヒータ(図示せず)と、制御部107と、反射高速電子回折装置(RHEED)108と、ガス供給部109とを備えている。
  真空チャンバ101の外部には、レーザ光源102が配置されている。このレーザ光源102は、レーザ光を照射可能である。真空チャンバ101の内部であって、レーザ光源102からレーザ光が照射される位置に、ターゲットとなる原料103が配置可能である。ステージ104は、この原料103を載置可能である。パルスモータ105は、このステージ104を駆動可能である。基板保持部106は、下地基板としてのSi基板11を保持可能である。ヒータは、基板保持部106に保持されたSi基板11を加熱する。制御部107は、レーザ光源102およびパルスモータ105の動作制御を行なうことが可能である。RHEED108は、振動をモニタすることで、Si基板11上に成長したSi(1-v-w-x)wAlxv層12の厚みを測定可能である。ガス供給部109は、真空チャンバ101の内部にガスを供給可能である。
  なお、PLD装置100は、上記以外の様々な要素を含んでいてもよいが、説明の便宜上、これらの要素の図示および説明は省略する。
  まず、Si(1-v-w-x)wAlxv層12の原料103を準備する。この原料103は、たとえばSiCとAlNとを混合した焼結体を用いることができる。この原料103においてSiCとAlNとを混合するモル比により、Si(1-v-w-x)wAlxv層12の組成v+xを制御することができる。このようにして準備した原料103を、図6に示すステージ104上にセットする。
  次に、Si基板11を、真空チャンバ101内に設置された基板保持部106の表面上であって、原料103と対向する位置にセットする。
  次に、Si基板11の表面の温度を550℃未満に加熱する。Si基板11の表面の温度は550℃未満であり、好ましくは540℃以下である。この加熱は、たとえばヒータなどにより行なう。なお、Si基板11の加熱方法は、ヒータに特に限定されず、たとえば電流を流すなどの他の手法であってもよい。
  次に、レーザ光源102から放射されるレーザ光を原料103に照射する。なお、レーザとしては、たとえば発光波長が248nm、パルス繰り返し周波数が10Hz、パルス当たりのエネルギーが1~3J/shotのKrF(フッ化クリプトン)エキシマレーザを使用することができる。なお、発光波長が193nmのArF(フッ化アルゴン)エキシマレーザなどの他のレーザを使用することもできる。
  このとき、真空チャンバ101内は、たとえば1×10-3Torr~1×10-6Torr以下程度の真空状態にする。その後、真空チャンバ101内をガス供給部109によりアルゴン(Ar)などの不活性ガス、窒素(N2)などの雰囲気とする。なお、真空チャンバ101内を窒素雰囲気とすると、Si(1-v-w-x)wAlxv層12の成長の際に窒素を補給することができる。また、真空チャンバ内を不活性ガス雰囲気とすると、Si(1-v-w-x)wAlxv層12の成長の際に原料103のみが用いられるので、v+xの値を制御しやすい。
  レーザ光を原料103に照射するに際し、上記のような短波長のレーザを用いることが好ましい。短波長のレーザを用いた場合には、吸収係数が大きくなるので、原料103の表面近傍でレーザ光のほとんどが吸収されることとなる。この結果、原料103の表面温度が急激に上昇し、真空チャンバ101内で固体からの爆発的な粒子放出を伴うプラズマであるアブレーションプラズマ(プルーム)を生成することができる。プラズマ中に含まれるアブレーション粒子は、再結合や雰囲気ガスとの衝突、反応などにより状態を変化させながらSi基板11へ移動する。そして、Si基板11に到達した各粒子は、Si基板11を拡散し、配置可能なサイトに入ることで、Si(1-v-w-x)wAlxv層12が形成される。
  ここで、各粒子が入る配置可能なサイトとは、以下の通りである。Al原子の配置可能なサイトは、C原子またはN原子と結合するサイトである。Si原子の配置可能なサイトは、C原子またはN原子と結合するサイトである。C原子の配置可能なサイトは、Al原子またはSi原子と結合するサイトである。N原子の配置可能なサイトは、Al原子またはSi原子と結合するサイトである。
  なお、成長させるSi(1-v-w-x)wAlxv層12の厚みは、真空チャンバ101に取り付けたRHEED108の振動によりモニタすることができる。
  以上の工程を実施することによって、Si基板11上にSi(1-v-w-x)wAlxv層12を550℃未満の温度で成長させることができ、図1に示すSi(1-v-w-x)wAlxv基材10aを製造することができる。
  なお、本実施の形態では、PLD法によりSi(1-v-w-x)wAlxv層12を成長する方法を説明したが、特にこれに限定されない。たとえば、パルス供給方式のMOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相堆積)法、ガスソース方式のMBE(Molecular Beam Epitaxy:分子線エピタキシ)法、スパッタ法などの方法によりSi(1-v-w-x)wAlxv層12を成長させてもよい。
  以上説明したように、本実施の形態におけるSi(1-v-w-x)wAlxv基材10aの製造方法によれば、Si基板11を準備する工程と、このSi基板11上にSi(1-v-w-x)wAlxv層12(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を550℃未満の温度で成長させる工程とを備えている。
  本発明のSi(1-v-w-x)wAlxv基材10aの製造方法によれば、Si(1-v-w-x)wAlxv層12を550℃未満で成長させている。本発明者は、Si(1-v-w-x)wAlxv層12を550℃未満で成長させることによって、Si(1-v-w-x)wAlxv層12の成長後、室温まで冷却する際に、Si(1-v-w-x)wAlxv層12とSi基板11との熱膨張率差によりSi(1-v-w-x)wAlxv層12に生じる応力の影響を低減できることを見出した。つまり、成長温度を550℃未満としたときにSi(1-v-w-x)wAlxv層12に加えられる応力は、Si(1-v-w-x)wAlxv層12にクラックを生じさせることを抑制できることを見出した。したがって、成長させるSi(1-v-w-x)wAlxv層12に生じるクラックの発生を抑制することができる。
  また、Si(1-v-w-x)wAlxv層12の下地基板としてSi基板11を用いている。
Si基板11は、現在のエレクトロニクス材料の主流であり、エッチングなどの加工の技術が確立されている。Si基板11は、へき開性が高く、酸によるエッチングが容易である。このため、Si基板11の厚みを薄くするための加工、Si基板を除去するための加工を容易に行なうことができる。たとえば発光デバイスを作成するためにSi(1-v-w-x)wAlxv基材10aを用いる場合には、Si基板のへき開性などは非常に重要である。したがって、加工性の容易なSi(1-v-w-x)wAlxv基材10aを製造することができる。
  特に、従来では、Si(1-v-w-x)wAlxv層12の成長温度が高いので、Si基板11を下地基板として用いてSi(1-v-w-x)wAlxv層12を成長することが困難であった。しかし、本実施の形態では、550℃未満の低温でSi(1-v-w-x)wAlxv層12を成長させているので、Si基板11が熱により劣化することを抑制することができる。
このため、Si基板11上にSi(1-v-w-x)wAlxv層12を成長することが可能になる。
  さらに、下地基板としてSi基板11を用いている。Si基板11は、SiC基板、サファイア基板などよりも安価である。このため、Si(1-v-w-x)wAlxv基材10aを製造するために要するコストを低減することができる。
  このように550℃未満でSi(1-v-w-x)wAlxv層12を成長させる本実施の形態におけるSi(1-v-w-x)wAlxv基材10aの成長方法によれば、10mm四方の領域において1mm以上のクラックが1>v+x>0.5では7個以下、0.5≧v+x>0.1では5個以下、0.1≧v+x>0では3個以下であるSi(1-v-w-x)wAlxv層12を備えたSi(1-v-w-x)wAlxv基材10aを実現することができる。
  したがって、本実施の形態におけるSi(1-v-w-x)wAlxv基材10aの製造方法により製造されるSi(1-v-w-x)wAlxv基材10aは、加工が容易であり、結晶性を向上している。このため、たとえばトンネル磁気抵抗素子、巨大磁気抵抗素子などの種々の磁気抵抗効果を利用した機能デバイス、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ(FET)、スピンFET、HEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視-紫外光検出器などの半導体センサ、SAWデバイスなどに好適に用いることができる。
  上記Si(1-v-w-x)wAlxv基材10aの製造方法において好ましくは、成長させる工程では、PLD法によりSi(1-v-w-x)wAlxv層12を成長させている。
  これにより、Si(1-v-w-x)wAlxv層12の原料103にレーザを照射してプラズマを発生させて、このプラズマをSi基板11上に供給することができる。つまり、非平衡状態でSi(1-v-w-x)wAlxv層12を成長させることができる。非平衡状態は平衡状態のような安定な状態でないので、Siは、CおよびNのいずれとも結合が可能であり、AlはCおよびNのいずれとも結合が可能である。このため、図5に示すように、Si、C、AlおよびNの4元素が混晶したSi(1-v-w-x)wAlxv層12を成長することができる。
  ここで、平衡状態でSi(1-v-w-x)wAlxv層12を成長させた場合について図7および図8を参照して説明する。図7および図8は、平衡状態でSi(1-v-w-x)wAlxv層12を成長させたときの状態を模式的に示す断面図である。
  平衡状態でSi(1-v-w-x)wAlxv層112を成長させると、SiCおよびAlNが安定であるので、SiとCとが結合し、AlとNとが結合する。したがって、Si(1-v-w-x)wAlxv層12は、図7に示すように、SiC層112aとAlN層112bとが層状に積層した状態に成長したり、図8に示すように、SiC層112a中に、凝集したAlN層112bが点在するように成長する場合が多くなる。
  図9は、平衡状態でSi(1-v-w-x)wAlxv層を成長させたときのSi(1-v-w-x)wAlxv層のXRD法で測定される回折ピークを示す模式図である。このように成長したSi(1-v-w-x)wAlxv層は、図7および図8のようにSi、C、AlおよびNの4元素の混晶状態ではない。このため、XRD法で測定すると、図9に示すように、SiCの回折ピークおよびAlNの回折ピークのみが検出され、SiCの回折ピークとAlNの回折ピークとの間に回折ピークは存在しない。なお、SiCの回折ピークとAlNの回折ピークとの間にノイズなどの誤差程度の回折ピークが発生する場合はある。
  したがって、PLD法でSi(1-v-w-x)wAlxv層12を成長させた場合には、図5に示すように、Si、C、AlおよびNの4元素の混晶状態のSi(1-v-w-x)wAlxv層12を成長することができる。その結果、図2~図4に示すように、XRD法で測定されるSiCの回折ピークとAlNの回折ピークとの間に回折ピークを有するSi(1-v-w-x)wAlxv層12を備えたSi(1-v-w-x)wAlxv基材10aを製造することができる。
  (実施の形態2)
  図10は、本実施の形態におけるSi(1-v-w-x)wAlxv基材を概略的に示す断面図である。図10を参照して、本実施の形態におけるSi(1-v-w-x)wAlxv基材10bは、実施の形態1におけるSi(1-v-w-x)wAlxv基材10aから少なくともSi基板11が除去されている。
  続いて、本実施の形態におけるSi(1-v-w-x)wAlxv基材10bの製造方法について説明する。
  まず、実施の形態1におけるSi(1-v-w-x)wAlxv基材10aの製造方法にしたがって、図1に示すSi(1-v-w-x)wAlxv基材10aを製造する。
  次に、Si基板11を除去する。なお、Si基板11のみを除去してもよく、Si基板11およびSi(1-v-w-x)wAlxv層12においてSi基板11と接触している面を含む一部分を除去してもよい。
  除去する方法は特に限定されず、たとえばエッチングなど化学的な除去方法、切断、研削、へき開など機械的な除去方法などを用いることができる。切断とは、電着ダイヤモンドホイールの外周刃を持つスライサーなどで機械的にSi(1-v-w-x)wAlxv層12から少なくともSi基板11を除去することをいう。研削とは、砥石を回転させながら表面に接触させて、厚さ方向に削り取ることをいう。へき開とは、結晶格子面に沿ってSi基板11を分割することをいう。
  以上説明したように、本実施の形態におけるSi(1-v-w-x)wAlxv基材10bの製造方法によれば、Si基板11を除去する工程をさらに備えている。Si基板11は容易に除去されるので、たとえばSi(1-v-w-x)wAlxv層12のみを備えたSi(1-v-w-x)wAlxv基材10bを容易に製造することができる。
  (実施の形態3)
  図11は、本実施の形態におけるエピタキシャルウエハを概略的に示す断面図である。
図11を参照して、本実施の形態におけるエピタキシャルウエハ20aについて説明する。
  図11に示すように、エピタキシャルウエハ20aは、実施の形態1におけるSi(1-v-w-x)wAlxv基材10aと、このSi(1-v-w-x)wAlxv基材10a上に形成されたAl(1-y-z)GayInzN(0≦y≦1、0≦z≦1、0≦y+z≦1)層21とを備えている。言い換えると、エピタキシャルウエハ20aは、Si基板11と、このSi基板11上に形成されたSi(1-v-w-x)wAlxv層12と、このSi(1-v-w-x)wAlxv層12上に形成されたAl(1-y-z)GayInzN層21とを備えている。
  続いて、本実施の形態におけるエピタキシャルウエハ20aの製造方法について説明する。
  まず、実施の形態1におけるSi(1-v-w-x)wAlxv基材10aの製造方法にしたがって、Si(1-v-w-x)wAlxv基材10aを製造する。
  次に、Si(1-v-w-x)wAlxv基材10a(本実施の形態では、Si(1-v-w-x)wAlxv層12)上に、Al(1-y-z)GayInzN層21を成長させる。成長させる方法は特に限定されず、たとえばMOCVD法、HVPE(Hydride Vapor Phase Epitaxy:ハイドライド気相成長)法、MBE法、昇華法などの気相成長法、液相成長法などが採用できる。
  以上の工程を実施することにより、図11に示すエピタキシャルウエハ20aを製造することができる。なお、このエピタキシャルウエハ20aから、Si基板11を除去する工程をさらに実施してもよい。
  以上説明したように、本実施の形態におけるエピタキシャルウエハ20aおよびエピタキシャルウエハ20aの製造方法によれば、Si(1-v-w-x)wAlxv基材10aの上にAl(1-y-z)GayInzN層21が形成されている。Si(1-v-w-x)wAlxv基材10aは、クラックの発生が抑制されている。このため、このSi(1-v-w-x)wAlxv層12上に良好な結晶性のAl(1-y-z)GayInzN層21を成長することができる。また、Al(1-y-z)GayInzN層はSi(1-v-w-x)wAlxv層21の格子整合性の差および熱膨張率の差が小さいので、Al(1-y-z)GayInzN層21の結晶性を向上することができる。さらに、エピタキシャルウエハがSi基板11を備えている場合には、Si基板11の加工は容易であるので、エピタキシャルウエハからSi基板11を容易に除去することができる。
  (実施の形態4)
  図12は、本実施の形態におけるエピタキシャルウエハを概略的に示す断面図である。
図12を参照して、本実施の形態におけるエピタキシャルウエハ20bについて説明する。
  図12に示すように、エピタキシャルウエハ20bは、実施の形態2におけるSi(1-v-w-x)wAlxv基材10bと、このSi(1-v-w-x)wAlxv基材10b上に形成されたAl(1-y-z)GayInzN(0≦y≦1、0≦z≦1、0≦y+z≦1)層21とを備えている。言い換えると、エピタキシャルウエハ20bは、Si(1-v-w-x)wAlxv層12と、このSi(1-v-w-x)wAlxv層12上に形成されたAl(1-y-z)GayInzN層21とを備えている。
  続いて、本実施の形態におけるエピタキシャルウエハ20bの製造方法について説明する。
  まず、実施の形態2におけるSi(1-v-w-x)wAlxv基材10bの製造方法にしたがって、Si(1-v-w-x)wAlxv基材10bを製造する。
  次に、Si(1-v-w-x)wAlxv基材10b(本実施の形態では、Si(1-v-w-x)wAlxv層12)上に、実施の形態3と同様に、Al(1-y-z)GayInzN層21を成長させる。
  以上の工程を実施することにより、図12に示すエピタキシャルウエハ20bを製造することができる。
  以上説明したように、本実施の形態におけるエピタキシャルウエハ20bおよびエピタキシャルウエハ20bの製造方法によれば、Si(1-v-w-x)wAlxv基材10bの上にAl(1-y-z)GayInzN層21が形成されている。Si(1-v-w-x)wAlxv基材10bは、クラックの発生が抑制されているため、良好な結晶性のAl(1-y-z)GayInzN層21を成長することができる。
  本実施例では、Si基板上にSi(1-v-w-x)wAlxv層を成長させることによる効果について調べた。
  (本発明例1)
  本発明例1では、基本的には、実施の形態1におけるSi(1-v-w-x)wAlxv基材10aの製造方法にしたがって、図6に示すPLD装置でSi(1-v-w-x)wAlxv基材10aを製造した。また、Si(1-v-w-x)wAlxv層12としてAlNの組成比であるx+v=0.9のSi0.050.05(AlN)0.9を製造した。
  具体的には、まず、Si0.050.05(AlN)0.9層12の原料103を準備した。この原料103は、以下の方法により準備した。具体的には、SiC粉末とAlN粉末とを混合し、プレスした。この混合物を真空容器内に配置して、真空容器内を10-6Torrまで真空引きをし、雰囲気を高純度のArガスで満たした。その後、この混合物を2300℃で20時間焼成した。これにより、原料103を準備した。その後、この原料103を、図6に示すステージ104上にセットした。
  次に、下地基板としてSi基板11を準備した。このSi基板11は、(001)面を主表面11aとして有し、かつ1インチの大きさを有していた。このSi基板11を、真空チャンバ101内に設置された基板保持部106の表面上であって、原料103と対向する位置にセットした。
  次に、Si基板11の表面の温度を540℃に加熱した。その後、レーザ光源102から放射されるレーザ光を原料103に照射した。なお、レーザとしては、発光波長が248nm、パルス繰り返し周波数が10Hz、パルス当たりのエネルギーが1~3J/shotのKrFエキシマレーザを使用した。
  このとき、真空チャンバ101内は、1×10-6Torrの真空状態にした後、真空チャンバ101内を窒素雰囲気とした。
  真空チャンバ101に取り付けたRHEED108の振動によりモニタして、500nmの厚みを有するSi0.050.05(AlN)0.9層12を成長させた。
  以上の工程を実施することによって、図1に示すSi0.050.05(AlN)0.9基材10aを製造した。
  (比較例1)
  比較例1は、基本的には本発明例1と同様にSi0.050.05(AlN)0.9基材を製造したが、下地基板として、Si基板の代わりに、主表面が(0001)面のサファイア基板を用いた。
  (比較例2)
  比較例2は、基本的には本発明例1と同様にSi0.050.05(AlN)0.9基材を製造したが、下地基板としてSi基板の代わりに、主表面が(0001)面の6H-SiC基板を用いた。
  (測定方法)
  本発明例1、比較例1および比較例2のSi0.050.05(AlN)0.9基材の下地基板について、フッ化水素(HF)と硝酸(HNO3)との混合液、および水酸化カリウム(KOH)によるエッチング性と、へき開性とを各々調べた。
  その結果を下記の表1に示す。表1中、○は、良好に下地基板が除去されたことを示し、×は、下地基板を十分に除去できなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
  (測定結果)
  表1に示すように、下地基板としてSi基板を用いた本発明例1のSi0.050.05(AlN)0.9基材は、Si基板のエッチング性およびへき開性が良好であった。このため、Si基板の加工が容易であることが確認できた。
  一方、下地基板としてサファイア基板を用いた比較例1のSi0.050.05(AlN)0.9基材は、サファイア基板のエッチング性およびへき開性が良好でなかったので、サファイア基板を十分に除去できなかった。
  また下地基板としてSiC基板を用いた比較例2のSi0.050.05(AlN)0.9基材は、SiC基板のエッチング性が良好でなかったので、エッチングによりSiC基板を十分に除去できなかった。
  以上より、本実施例によれば、Si基板を用いることで加工が容易なSi(1-v-w-x)wAlxv基材を製造することができることが確認できた。
  本実施例では、550℃未満の温度でSi(1-v-w-x)wAlxv層を成長することによる効果について調べた。
  (本発明例2)
  本発明例2では、基本的には本発明例1と同様であったが、下地基板として主表面が(111)面であるSi基板11を用いて、Si0.050.05Al0.450.45を成長させた。
  (本発明例3)
  本発明例3は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.00050.0005Al0.49940.4996とした。このため、準備した原料103のAlN粉末およびSiC粉末のモル比を変更した。
  (本発明例4)
  本発明例4は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.00050.0005Al0.49960.4994とした。
  (本発明例5)
  本発明例5は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.00050.0005Al0.49950.4995とした。
  (本発明例6)
  本発明例6は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.00060.0004Al0.49950.4995とした。
  (本発明例7)
  本発明例7は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.00040.0006Al0.49950.4995とした。
  (本発明例8)
  本発明例8は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.0050.005Al0.4950.495とした。
  (本発明例9)
  本発明例9は、基本的には本発明例1と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.250.25Al0.250.25とした。
  (本発明例10)
  本発明例10は、基本的には本発明例1と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.450.45Al0.050.05とした。
  (本発明例11)
  本発明例11は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.4950.495Al0.0050.005とした。
  (本発明例12)
  本発明例12は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.49950.4995Al0.00040.0006とした。
  (本発明例13)
  本発明例13は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.49950.4995Al0.00060.0004とした。
  (本発明例14)
  本発明例14は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.49950.4995Al0.00050.0005とした。
  (本発明例15)
  本発明例15は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.49960.4994Al0.00050.0005とした。
  (本発明例16)
  本発明例16は、基本的には本発明例2と同様であったが、成長させたSi(1-v-w-x)wAlxv層12をSi0.499450.4996Al0.00050.0005とした。
  (比較例3)
  比較例3は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.050.05Al0.450.45層を成長させた。
  (比較例4)
  比較例4は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.00050.0005Al0.49940.4996層を成長させた。
  (比較例5)
  比較例5は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.00050.0005Al0.49960.4994層を成長させた。
  (比較例6)
  比較例6は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.00050.0005Al0.49950.4995層を成長させた。
  (比較例7)
  比較例7は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.00060.0004Al0.49950.4995層を成長させた。
  (比較例8)
  比較例8は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.00040.0006Al0.49950.4995層を成長させた。
  (比較例9)
  比較例9は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃でSi0.0050.005Al0.4950.495層を成長させた。
  (比較例10)
  比較例10は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.250.25Al0.250.25層を成長させた。
  (比較例11)
  比較例11は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.450.45Al0.050.05層を成長させた。
  (比較例12)
  比較例12は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.4950.495Al0.0050.005層を成長させた。
  (比較例13)
  比較例13は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.49950.4995Al0.00040.0006層を成長させた。
  (比較例14)
  比較例14は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.49950.4995Al0.00060.0004層を成長させた。
  (比較例15)
  比較例15は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.49950.4995Al0.00050.0005層を成長させた。
  (比較例16)
  比較例16は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.49960.4994Al0.00050.0005層を成長させた。
  (比較例17)
  比較例17は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、Si0.49940.4996Al0.00050.0005層を成長させた。
  (比較例18)
  比較例18は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が540℃で、AlN層を成長させた。
  (比較例19)
  比較例19は、基本的には本発明例2と同様であったが、Si基板の主表面の温度を550℃で、AlN層を成長させた。
  (比較例20)
  比較例20は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が540℃で、SiC層を成長させた。
  (比較例21)
  比較例21は、基本的には本発明例2と同様であったが、Si基板の主表面の温度が550℃で、SiC層を成長させた。
  (測定方法)
  本発明例2~16および比較例3~21のSi(1-v-w-x)wAlxv層、AlN層およびSiC層の10mm四方の領域について、クラックの数を光学顕微鏡で測定した。クラックは、長手方向の総距離が1mm以上のものを1つとし、それ未満の長さのものはカウントしなかった。その結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
  (測定結果)
  表2に示すように、540℃で成長させた本発明例2~8のv+x=0.9、0.999、0.99の組成のSi(1-v-w-x)wAlxv層のクラック数は7個であった。一方、550℃で成長させた比較例3~9のv+x=0.9、0.999、0.99の組成のSi(1-v-w-x)wAlxv層のクラック数は8個であった。
  また、本発明例9の540℃で成長したSi0.250.25Al0.250.25層のクラック数は5個であった。一方、比較例10の550℃で成長した本発明例9と同じ組成のSi0.250.25Al0.250.25層のクラック数は6個であった。
  また、540℃で成長させた本発明例10~16のv+x=0.1、0.01、0.001の組成のSi(1-v-w-x)wAlxv層のクラック数は3個であった。一方、550℃で成長させた比較例11~17のv+x=0.1、0.01、0.001の組成のSi(1-v-w-x)wAlxv層のクラック数は4個であった。
  このことから、同じ組成のSi(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を成長させる場合には、成長温度を550℃未満とすることによって、クラック数を低減できることがわかった。
  また、Si(1-v-w-x)wAlxv層のv+xが大きいほどSi基板11との組成のずれが大きくなるので、クラックが多くなる。このため、表2の結果から、540℃でSi(1-v-w-x)wAlxv層を成長させることによって、1>v+x>0.5のSi(1-v-w-x)wAlxv層のクラックは7個以下、0.5≧v+x>0.1のSi(1-v-w-x)wAlxv層のクラックは5個以下、0.1≧v+x>0のSi(1-v-w-x)wAlxv層のクラックは3個以下になることがわかった。
  さらに、540℃および550℃でAlNを成長した比較例18および19は、クラック数が10個と同一であった。また540℃および550℃でSiCを成長した比較例20および21は、クラック数が2個と同一であった。このことから、Si(1-v-w-x)wAlxv層においてv+x=0およびv+x=1の場合には、成長温度を550℃未満としてもクラック数を低減できる効果を有していないことがわかった。
  以上より、本実施例によれば、550℃未満でSi(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を成長させることによって、Si(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1))に発生するクラック数を低減できることを確認した。
  以上のように本発明の実施の形態および実施例について説明を行なったが、各実施の形態および実施例の特徴を適宜組み合わせることも当初から予定している。また、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  10a,10b  Si(1-v-w-x)wAlxv基材、11  Si基板、11a  主表面、12  Si(1-v-w-x)wAlxv層、20a,20b  エピタキシャルウエハ、21  Al(1-y-z)GayInzN層、100  PLD装置、101  真空チャンバ、102  レーザ光源、103  原料、104  ステージ、105  パルスモータ、106  基板保持部、107  制御部、109  ガス供給部。

Claims (8)

  1.   Si基板を準備する工程と、
      前記Si基板上にSi(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を550℃未満の温度で成長させる工程とを備えた、Si(1-v-w-x)wAlxv基材の製造方法。
  2.   前記成長させる工程後に、前記Si基板を除去する工程をさらに備えた、請求項1に記載のSi(1-v-w-x)wAlxv基材の製造方法。
  3.   前記成長させる工程では、パルスレーザー堆積法により前記Si(1-v-w-x)wAlxv層を成長させる、請求項1または2に記載のSi(1-v-w-x)wAlxv基材の製造方法。
  4.   請求項1~3のいずれかに記載のSi(1-v-w-x)wAlxv基材の製造方法によりSi(1-v-w-x)wAlxv基材を製造する工程と、
      前記Si(1-v-w-x)wAlxv層上にAl(1-y-z)GayInzN層(0≦y≦1、0≦z≦1、0≦y+z≦1)を成長させる工程とを備えた、エピタキシャルウエハの製造方法。
  5.   Si(1-v-w-x)wAlxv層(0<v<1、0<w<1、0<x<1、0<v+w+x<1)を備えたSi(1-v-w-x)wAlxv基材であって、
      前記Si(1-v-w-x)wAlxv層の10mm四方の領域において1mm以上のクラックが、1>v+x>0.5では7個以下、0.5≧v+x>0.1では5個以下、0.1≧v+x>0では3個以下であることを特徴とする、Si(1-v-w-x)wAlxv基材。
  6.   主表面を有するSi基板をさらに備え、
      前記Si(1-v-w-x)wAlxv層は、前記Si基板の前記主表面上に形成されている、請求項5に記載のSi(1-v-w-x)wAlxv基材。
  7.   前記Si(1-v-w-x)wAlxv層は、X線回折法で測定されるSiCの回折ピークとAlNの回折ピークとの間に回折ピークを有する、請求項5または6に記載のSi(1-v-w-x)wAlxv基材。
  8.   請求項5~7のいずれかに記載のSi(1-v-w-x)wAlxv基材と、
      前記Si(1-v-w-x)wAlxv層上に形成されたAl(1-y-z)GayInzN層(0≦y≦1、0≦z≦1、0≦y+z≦1)とを備えた、エピタキシャルウエハ。
PCT/JP2009/057719 2008-04-24 2009-04-17 Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ WO2009131061A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09735559.8A EP2302110B1 (en) 2008-04-24 2009-04-17 Method of manufacturing a si(1-v-w-x)cwalxnv substrate, method of manufacturing an epitaxial wafer, si(1-v-w-x)cwalxnv substrate, and epitaxial wafer
US12/989,015 US8540817B2 (en) 2008-04-24 2009-04-17 Method of manufacturing a Si(1-v-w-x)CwAlxNv substrate, method of manufacturing an epitaxial wafer, Si(1-v-w-x)CwAlxNv substrate, and epitaxial wafer
CN2009801143989A CN102016135B (zh) 2008-04-24 2009-04-17 制造Si(1-v-w-x)CwAlxNv衬底的方法、制造外延晶片的方法、Si(1-v-w-x)CwAlxNv衬底以及外延晶片
KR1020107020566A KR101526632B1 (ko) 2008-04-24 2009-04-17 Si(1-v-w-x)CwAlxNv 기재의 제조 방법, 에피택셜 웨이퍼의 제조 방법, Si(1-v-w-x)CwAlxNv 기재 및 에피택셜 웨이퍼

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008114465 2008-04-24
JP2008-114465 2008-04-24
JP2009-056913 2009-03-10
JP2009056913A JP2009280484A (ja) 2008-04-24 2009-03-10 Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ

Publications (1)

Publication Number Publication Date
WO2009131061A1 true WO2009131061A1 (ja) 2009-10-29

Family

ID=41216797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057719 WO2009131061A1 (ja) 2008-04-24 2009-04-17 Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ

Country Status (6)

Country Link
US (1) US8540817B2 (ja)
EP (1) EP2302110B1 (ja)
JP (1) JP2009280484A (ja)
KR (1) KR101526632B1 (ja)
CN (1) CN102016135B (ja)
WO (1) WO2009131061A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621199B2 (ja) * 2008-04-24 2014-11-05 住友電気工業株式会社 Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ
JP2009280903A (ja) * 2008-04-24 2009-12-03 Sumitomo Electric Ind Ltd Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086672A (en) * 1998-10-09 2000-07-11 Cree, Inc. Growth of bulk single crystals of aluminum nitride: silicon carbide alloys
JP2005506695A (ja) * 2001-10-16 2005-03-03 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステート ユニバーシティ 四元ワイドバンドギャップ半導体の低温エピタキシャル成長

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382837A (en) * 1981-06-30 1983-05-10 International Business Machines Corporation Epitaxial crystal fabrication of SiC:AlN
JPS61291495A (ja) 1985-06-18 1986-12-22 Sharp Corp 炭化珪素単結晶基板の製造方法
JPH067594B2 (ja) * 1987-11-20 1994-01-26 富士通株式会社 半導体基板の製造方法
JPH04167477A (ja) 1990-10-31 1992-06-15 Toshiba Corp 半導体素子
JP3754294B2 (ja) * 2000-12-28 2006-03-08 株式会社東芝 炭化珪素単結晶基板の製造方法及び半導体装置の製造方法
US6911084B2 (en) * 2001-09-26 2005-06-28 Arizona Board Of Regents Low temperature epitaxial growth of quaternary wide bandgap semiconductors
KR100659579B1 (ko) * 2004-12-08 2006-12-20 한국전자통신연구원 발광 소자 및 발광 소자의 제조방법
CN102130234A (zh) * 2005-10-29 2011-07-20 三星电子株式会社 半导体器件的制造方法
US7371282B2 (en) * 2006-07-12 2008-05-13 Northrop Grumman Corporation Solid solution wide bandgap semiconductor materials
US20080277778A1 (en) * 2007-05-10 2008-11-13 Furman Bruce K Layer Transfer Process and Functionally Enhanced Integrated Circuits Products Thereby
JP2009280903A (ja) * 2008-04-24 2009-12-03 Sumitomo Electric Ind Ltd Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ
JP5621199B2 (ja) * 2008-04-24 2014-11-05 住友電気工業株式会社 Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086672A (en) * 1998-10-09 2000-07-11 Cree, Inc. Growth of bulk single crystals of aluminum nitride: silicon carbide alloys
JP2005506695A (ja) * 2001-10-16 2005-03-03 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステート ユニバーシティ 四元ワイドバンドギャップ半導体の低温エピタキシャル成長

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUANG, S.-Y. ET AL.: "Synthesis and property study of nanoparticle quaternary semiconductor SiCAlN films with co-sputtering under lower temperature", SURF. REV. LETT., vol. 12, no. 3, June 2005 (2005-06-01), pages 397 - 400, XP008143012 *
ROUCKA, R. ET AL.: "Low-temperature growth of SiCAlN films of high hardness on Si(lll) substrates", APPL. PHYS. LETT., vol. 79, no. 18, 29 October 2001 (2001-10-29), pages 2880 - 2882, XP012029248 *
See also references of EP2302110A4 *
TOLLE, J. ET AL.: "Growth of SiCAlN on Si(lll) via a crystalline oxide interface", APPL. PHYS. LETT., vol. 81, no. 12, 16 September 2002 (2002-09-16), pages 2181 - 2183, XP012031945 *

Also Published As

Publication number Publication date
US8540817B2 (en) 2013-09-24
KR20100133978A (ko) 2010-12-22
EP2302110A1 (en) 2011-03-30
JP2009280484A (ja) 2009-12-03
US20110039071A1 (en) 2011-02-17
EP2302110A4 (en) 2013-06-05
KR101526632B1 (ko) 2015-06-05
CN102016135B (zh) 2013-01-02
CN102016135A (zh) 2011-04-13
EP2302110B1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US9650723B1 (en) Large area seed crystal for ammonothermal crystal growth and method of making
RU2272090C2 (ru) Буля нитрида элемента iii-v групп для подложек и способ ее изготовления и применения
JP5621199B2 (ja) Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ
US11168411B2 (en) Impurity control during formation of aluminum nitride crystals and thermal treatment of aluminum nitride crystals
JP6013383B2 (ja) β−Ga2O3系単結晶基板の製造方法
JP2010042950A (ja) AlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法
US20210047749A1 (en) Diameter expansion of aluminum nitride crystals during growth by physical vapor transport
US8937339B2 (en) Si(1-V-W-X)CWAlXNV substrate, and epitaxial wafer
JP2008207968A (ja) 酸化ガリウム−窒化ガリウム複合基板の製造方法、及び酸化ガリウム−窒化ガリウム複合基板
WO2009131061A1 (ja) Si(1-v-w-x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1-v-w-x)CwAlxNv基材およびエピタキシャルウエハ
JP2009215116A (ja) 化合物半導体単結晶の製造装置および製造方法
US20110117376A1 (en) Method of Gallium Nitride growth over metallic substrate using Vapor Phase Epitaxy
Satoh et al. Method of manufacturing a Si (1-vwx) C w Al x N v substrate, method of manufacturing an epitaxial wafer, Si (1-vwx) C w Al x N v substrate, and epitaxial wafer
JP2008254941A (ja) サファイア単結晶基板及びその製造方法
Satoh et al. Process for producing Si (1-vwx) C w Al x N v base material, process for producing epitaxial wafer, Si (1-vwx) C w Al x N v base material, and epitaxial wafer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114398.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020566

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009735559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12989015

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE