JP2017223443A - 3次元レーザー測定装置 - Google Patents

3次元レーザー測定装置 Download PDF

Info

Publication number
JP2017223443A
JP2017223443A JP2016116754A JP2016116754A JP2017223443A JP 2017223443 A JP2017223443 A JP 2017223443A JP 2016116754 A JP2016116754 A JP 2016116754A JP 2016116754 A JP2016116754 A JP 2016116754A JP 2017223443 A JP2017223443 A JP 2017223443A
Authority
JP
Japan
Prior art keywords
reflection
reflector
dimensional laser
dimensional
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016116754A
Other languages
English (en)
Inventor
星川 努
Tsutomu Hoshikawa
努 星川
康弘 久保
Yasuhiro Kubo
康弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2016116754A priority Critical patent/JP2017223443A/ja
Publication of JP2017223443A publication Critical patent/JP2017223443A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報を得ることができる3次元レーザー測定装置を提供する。【解決手段】測定対象物に反射光を照射可能な位置に予め設定され、反射部材の所定の位置に基準点を有する反射器2と、レーザー光源15から出射したレーザー光を反射器2の反射点で反射させて測定対象物に照射し、測定対象物からの戻り光を受光部16で受光し、受光した時間と出射した時間との時間差から得られる距離と、前記基準点に基づき得られる情報から測定対象物の座標を求める制御部11を有する3次元レーザー測定器1とを備える。【選択図】図1

Description

本発明は、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる3次元レーザー測定装置に関する。
従来、複雑な構造物の3次元画像情報(座標)を得る場合、当該構造物に対して、レーザー光を照射して走査し、測定点から当該構造物までの角度と距離を測定し、測定された距離を順次プロットしてゆくことにより、3次元画像情報(座標)を得ている。
但し、構造物の複雑な部分や、死角等に位置して、直接、レーザー光が届かない構造物に関しては、反射光が得られないので、3次元画像情報を得ることができない。また、測定器が入らない狭所においても、3次元画像情報を得ることができない。
このため、既知点に設けられ、追尾機能を有するトータルステーションと、トータルステーションから発せられる測距光、追尾光を再帰反射するプリズムを有し、移動可能であると共に測定対象物の3次元測定が可能な移動測定器と、演算制御部とを具備することにより、測定環境が複雑な地形である等にかかわらず、3次元測定を容易に行うことができる測量システムが提案されている(例えば、特許文献1参照)。
このような特許文献1の測量システムでは、測定対象物を見通せる位置に、移動測定器を持ち込み移動させる必要性があり、例えば、駅における軌道の上部にある構造物や、電車線の付近にある構造物の3次元画像(座標)を得るためには、軌道内に立ち入って作業をしたり、或いは、電車線の近傍での高所作業が必要になる。
特開2015−087307号公報
しかしながら、営業運転中の鉄道の軌道内や、高圧電圧が印加されている電車線の近傍等の場所は、通常、立ち入ることができないので、結果として、このような場所の構造物の3次元画像(座標)に対しては、レーザー光を直接照射することができず、測定対象物の3次元画像情報(座標)を得ることができないといった問題点があった。
本発明の課題は、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる3次元レーザー測定装置を提供することにある。
上記課題を達成するため、この発明は、
測定対象物に反射光を照射可能な位置に予め設定され、反射部材の所定の位置に基準点を有する反射器と、
レーザー光源から出射したレーザー光を前記反射器の反射点で反射させて前記測定対象物に照射し、前記測定対象物からの戻り光を受光部で受光し、受光した時間と出射した時間との時間差から得られる距離と、前記基準点に基づき得られる情報から前記測定対象物の座標を求める制御部を有する3次元レーザー測定器と、
を備えるようにしたものである。
レーザー光源から出射したレーザー光を反射器の反射点で反射させて測定対象物に照射して、測定対象物からの戻り光を受光部で受光し、受光した時間と出射した時間との時間差から得られる距離と、基準点に基づき得られる情報から前記測定対象物の座標を求めることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記制御部は、測定現場の周辺に予め設置された座標基準点の位置に基づき前記3次元レーザー測定器の座標を特定する機能を有するようにしたものである。
測定現場の周辺に予め設置された座標基準点の位置に基づき、3次元レーザー測定器の座標を特定が特定でき、測定対象物の座標を求める際の原点とすることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記制御部は、前記基準点に基づき前記反射器の反射点における座標を求め、前記3次元レーザー測定器から前記反射点までの距離を求め、前記反射点から前記測定対象物までの距離を求め、前記反射器に対する入射角度を求め、前記反射点を通る法線に対する反射光の角度を求め、前記測定対象物の座標を求めるようにしたものである。
基準点の座標情報に基づき、測定対象物の座標を求めることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記3次元レーザー測定器は記憶部を有し、前記記憶部には、前記基準点の座標情報が予め記憶されているようにしたものである。
記憶部に予め記憶された基準点の座標情報に基づき、測定対象物の座標を求めることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記基準点は、少なくとも反射器の反射角度の情報を有するバーコード若しくは2次元バーコードを有するようにしたものである。
複数の反射角度を有する反射器であっても、バーコード若しくは2次元バーコードから反射角度の情報を取得することにより、測定対象物の座標を求める際に、複数の反射角度を求める必要がなく、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記反射器は、入射されるレーザー光を多方向に反射させる反射角度の異なる反射面を有するようにしたものである。
反射器により入射されるレーザー光が多方向に反射されるので、3次元レーザー測定器の側から直接視認できない部分を効率よくレーザー光で照射でき、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記反射器は、入射されるレーザー光を所定の方向に反射させる反射面を有するようにしたものである。
反射器により入射されるレーザー光が所定の方向に反射されるので、3次元レーザー測定器が出射するレーザー光の角度を走査することにより、3次元レーザー測定器の側から直接視認できない部分をレーザー光で照射でき、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記反射器は、入射されるレーザー光を所定の点に集光させる曲面状の反射面を有するようにしたものである。
反射器により入射されるレーザー光が所定の点に集光させるので、3次元レーザー測定器の側から直接視認できない部分を効率よくレーザー光で照射でき、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記反射器は、駆動部を有し、前記駆動部は、前記反射部材を駆動させることにより、前記反射器の反射角度を変化可能に構成するようにしたものである。
3次元レーザー測定器の側が出射するレーザー光の出射角度を走査することなく、測定対象物を走査することができ、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、望ましくは、前記反射器の反射部材の上面又は下面、或いは、周面には反射角度の異なる複数の反射面が形成されると共に、駆動部を有し、前記駆動部は、前記反射部材を駆動させることにより、前記複数の反射面からレーザー光が入射される反射面を選択可能に構成するようにしたものである。
3次元レーザー測定器の側が出射するレーザー光の出射角度を走査することなく、測定対象物を走査することができ、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
本発明によれば、測定対象物に反射光を照射可能な位置に予め設定され、反射部材の所定の位置に基準点を有する反射器と、レーザー光源から出射したレーザー光を反射器の反射点で反射させて測定対象物に照射し、測定対象物からの戻り光を受光部で受光し、受光した時間と出射した時間との時間差から得られる距離と、前記基準点に基づき得られる情報から測定対象物の座標を求めることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
実施形態に係る3次元レーザー測定装置の構成の一例を示す概略構成図である。 反射器の一例を示す概略正面図及び概略側面図である。 3次元レーザー測定器の動作の一例を示すフローチャートである。 測定対象物の座標を求める過程を示す説明図である。 反射器の一例を示す説明図である。 反射方向を動的に変化させる反射器の一例を示す説明図である。
(実施形態)
[1.構成の説明]
以下、図面を参照しつつ、本発明の実施形態である3次元レーザー測定装置を詳細に説明する。但し、発明の範囲は、図示例に限定されない。
[1−1.装置の構成の説明]
本発明の実施形態の3次元レーザー測定装置の構成について、図1を参照して説明する。図1は、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得る3次元レーザー測定装置100(以下、単に装置100と呼ぶ。)の機能をブロック図等として表した概略構成図である。
図1に示すように、装置100は、3次元レーザー測定器1及び反射器2とから構成される。3次元レーザー測定器1は、任意の位置に設置場所を選択することが可能である。一方、反射器2は、レーザー光を直接照射することができない場所にある測定対象物OB11に対して、反射光RL11を照射可能な位置に予め設置され、反射器2の反射面には少なくとも3個の基準点(後述)を有する。
ここで、基準点RP11等とは、基準点毎に形状や反射率等が異なるので、それぞれの基準点を識別することができる標識である。3次元レーザー測定装置100には、それぞれの基準点の座標情報(3次元座標情報)が記憶されており、3次元レーザー測定装置100は、識別した基準点の座標情報に基づき、レーザー光を入射させる反射点の座標や反射角度等を求める。
3次元レーザー測定時において、図1に示すように、3次元レーザー測定器1は、レーザー光源(後述)からレーザー光OL11を出射させ反射器2の反射点に入射させる。反射器2の反射点に入射されたレーザー光OL11は、反射点で反射され、反射光RL11として測定対象物OB11に照射される。そして、測定対象物OB11からの戻り光ML11は、反射器2で再び反射され、戻り光ML12として3次元レーザー測定器1の受光部(後述)に入射される。
ちなみに、図1においては、レーザー光OL11等を互いに区別し易いように、それぞれ異なる光路を示しているが、勿論、実際には、レーザー光OL11の光路と戻り光ML12の光路は同一であり、反射光RL11の光路と戻り光ML11の光路は同一である。
この時、3次元レーザー測定器1の制御部(後述)は、レーザー光OL11を出射した時間と、受光部で戻り光ML12を受光した時間との時間差を求めて、測定対象物OB11までの角度と距離を求める。そして、制御部は、基準点に基づき得られる情報により測定対象物OB11の座標を求める。
[1−2.3次元レーザー測定器1の構成の説明]
3次元レーザー測定器1は、制御部11、操作入力部12、表示部13、記憶部14、レーザー光源15、受光部16、走査部17を有する。また、3次元レーザー測定器1において、制御部11、操作入力部12、表示部13、記憶部14、レーザー光源15、受光部16、走査部17は、内部バスや配線等により互いに接続され、制御部11により制御可能な状態にある。
制御部11は、3次元レーザー測定器1動作を中央制御する。具体的には、制御部11は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを有しており、RAMの作業領域に展開されたROMや記憶部14に記憶されたプログラムデータとCPUとの協働により各部を統括制御する。
また、制御部11は、戻り光ML12を受光した時間と、レーザー光OL11を出射した時間から得られる距離と、前記基準点に基づき得られる情報から測定対象物OB11の座標を求める。
操作入力部12は、ユーザからの操作入力を受け付け、当該操作入力に応じた操作信号を制御部11へ出力する。例えば、操作入力部12は、反射器2の基準点の座標情報の入力を受け付けるものであってもよい。また、スマートフォンやタブレット端末等のように操作入力部12は、表示部13と一体的に形成されたタッチパネルなどであってもよい。
表示部13は、制御部11から出力された表示制御信号に基づいた画像を表示画面に表示する。例えば、表示部13は、LCD(Liquid Crystal Display)、有機EL(Electro Luminescence)素子を用いたFPD(Flat Panel Display)などであってよい。また、スマートフォンやタブレット端末等のように表示部13は、操作入力部12と一体的に形成されたタッチパネルなどであってもよい。
記憶部14は、プログラムデータや各種設定データ等のデータを制御部11から読み書き可能に記憶する。例えば、記憶部14は、HDD(Hard Disk Drive)や半導体メモリなどであってよい。また、記憶部14には、反射器2の基準点の座標情報が予め記憶されている。
レーザー光源15は、制御部11の制御により、測定対象物OB11までの角度と距離を測定するためのレーザー光を出射する。例えば、レーザー光源15は、半導体レーザー素子等であってよい。なお、レーザー光源15から出射されるレーザー光の波長及び出力パワーは、距離の測定に適した波長等であればよく、また、人間の目に安全な波長及び出力パワーであることが望ましい。
受光部16は、測定対象物OB11からの戻り光ML12を受光して制御部11に受光した情報等を出力する。例えば、受光部16は、フォトダイオード等の半導体受光素子であってよい。
走査部17は、出射されるレーザー光の出射角度を走査する。例えば、走査部17は、光学的に出射されるレーザー光の出射角度を走査するものであってよいし、或いは、機械的にレーザー光源15の出射方向を変化させてレーザー光の出射方向を走査するものであってよい。また、レーザー光源15自体が走査部17を機能を併せ持つものであってもよい。
[1−3.反射器2の構成の説明]
図2に示すように、反射器2は、入射されたレーザー光を反射させる方形の形状の反射部材RF11と、反射部材RF11の四隅に設けられた基準点RP11、基準点RP12、基準点RP13及び基準点RP14とから構成される。
反射部材RF11は、入射されたレーザー光を反射させることが可能な部材である。例えば、反射部材RF11は、ミラー、表面が鏡面加工された金属板、表面に反射層が形成された部材等であってよい。
基準点RP11、基準点RP12、基準点RP13及び基準点RP14は、前述の通り、互いに識別可能なように、個々の形状や反射率等が、それぞれ異なるように設定されている標識である。例えば、基準点は、反射部材RF11の表面に直接形成するもの、或いは、別部材として基準点を形成して反射部材RF11の表面に貼り付けるものであってよい。また、基準点の大きさは、3次元レーザー測定器1で識別可能な大きさであればよい。
なお、図2においては、反射部材RF11は、方形の形状を例示しているが、勿論、反射部材RF11の形状は任意であってよい。また、基準点は少なくとも3個あれば、反射点の3次元座標や反射角度を求めることができるので、図2に示すように4個の基準点を有する必要はない。
[2.動作の説明]
本発明の実施形態における装置100の具体的な動作の説明を図3及び図4を用いて詳細に行う。
[2−1.3次元レーザー測定器1の動作の説明]
ここで、3次元レーザー測定器1の動作について図3のフローチャートを用いて説明する。図4はある駅構内HS41において、プラットホームPH41に設置された3次元レーザー測定器1により、軌道RW41上部であって、レーザー光を直接照射できない測定点P4の座標を求める過程を示す説明図である。
なお、図4では、説明を簡単にするために、2次元座標を用いて説明しているが、勿論、z軸の座標情報を加味することにより、3次元座標に展開することは容易である。また、レーザー光の出射角度を走査部17で走査して、測定された3次元座標を順次プロットして3次元画像情報(座標)を得ることについても、その説明は省略する。
3次元レーザー測定器1の制御部11(以下、単に制御部11と呼ぶ。)は、レーザー光源15を制御してレーザー光を反射器2に向けて出射させると共に、受光部16で、測定点P4からの戻り光を受光し、レーザー光を出射した時間と、戻り光を受光した時間との時間差から測定点P4までの距離L(レーザー光の伝搬距離)を求める(ステップS31)。
図4に示すように、例えば、測定点P4までの距離Lは、レーザー光の伝搬速度に、レーザー光を出射した時間と戻り光を受光した時間との時間差を乗算した値の1/2の値として求まる。そして、測定点P4までの距離Lは、3次元レーザー測定器1から反射点P1までの距離L1と、反射点P1から測定点P4までの距離L2との和(L1+L2)の長さになる。
次に、制御部11は、3次元レーザー測定器1の座標を特定して原点(0,0)とする(ステップS32)。例えば、測定現場(駅構内HS41)の周辺に予め設置された座標基準点(不図示)の位置に基づき3次元レーザー測定器1の座標を特定する。
そして、制御部11は、反射器2に設けられた基準点P2及び基準点P3を認識して、それぞれの座標情報を記憶部14から取得し、(ステップS33)、反射点P1の座標(x1,y1)を計算する(ステップS34)。ちなみに、3次元座標を計算する際には、少なくとも基準点は3個必要になる。
例えば、記憶部14から取得した図4における基準点P2の座標が(x2,y2)、基準点P3の座標が(x3,y3)であるとした場合、距離L1の傾きAと、反射器2の切片bは、
A=tanθ1
b=y2−(x2(y3−y2)/(x3−x2))
但し、θ1は、3次元レーザー測定器1からのy軸方向の出射角度である
既知の値
となる。
そして、反射点P1の座標(x1,y1)は、
x1=−b/((y3−y2)/(x3−x2)−tanθ1)
y1=−tanθ1・b/((y3−y2)/(x3−x2)−tanθ1)
となる。
次に、制御部11は、3次元レーザー測定器1から反射点P1までの距離L1を計算し(ステップS35)、反射点P1から測定点P4までの距離L2を計算する(ステップS36)。
例えば、図4から分かるように、距離L1及び距離L2は、
L1=(x1+y11/2
L2=L−L1
となる。
また、制御部11は、レーザー光の反射器2の反射点P1に対する入射角度θ2を計算し(ステップS37)、反射点P1を通る法線に対する反射器2の角度θ3と、反射点P1を通る法線に対する反射光の角度θ4を計算する(ステップS38)
例えば、図4から分かるように、角度θ3及び角度θ4は、
θ2=tan−1・(((y3−y2)/(x3−x2)−tanθ1)
/(1+((y3−y2)/(x3−x2))・tanθ1))
θ3=90°−θ1−θ2
θ4=θ2−θ3
となる。
最後に、制御部11は、測定点P4の座標(x4,y4)を計算する(ステップS39)。
例えば、図4から分かるように、座標(x4,y4)は、
x4=x1−L2・sinθ4
y4=y1+L2・cosθ4
となる。
すなわち、レーザー光の照射により測定点P4までの距離Lを測定し、反射器2に設けられた基準点の座標情報に基づき、反射点P1から測定点P4までの距離L2や、反射点P1にける反射角度等を求めることにより、レーザー光を直接照射できない測定点P4の座標(x4,y4)を計算することができる。
なお、図3に示すフローチャートでは、測定点P4の座標の計算をすることのみついて記載していが、勿論、計算された測定点P4の座標情報を表示部13に表示させるようにしてもよい。或いは、3次元レーザー測定器1とは別の装置であるコンピュータ等の情報処理装置に、計算された測定点P4の座標情報を集約して、情報処理装置の表示画面に表示させるものであってもよい。
また、勿論、z軸の座標情報を加味することにより、3次元座標を求めて、表示部13に表示させることもできる。
以上のように、測定点P4に反射光を照射可能な位置に予め設定され、反射部材RF11の所定の位置に基準点を有する反射器2と、レーザー光源15から出射したレーザー光を反射器2の反射点P1で反射させて測定点P4に照射し、測定点P4からの戻り光を受光部16で受光し、受光した時間と出射した時間との時間差から得られる距離Lと、基準点に基づき得られる情報から測定点P4の座標を求めることにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
(変形例)
実施形態の説明に際しては、基準点の座標情報は予め記憶部14に記憶され、或いは、操作入力部12から手入力により座標情報を入力しているが、後述するように、1つの反射器2であって複数の反射角度を有する構成の場合には、反射点の座標と当該反射点における反射角度を個々に計算しなければならず、測定処理が煩雑になる。
このため、基準点に、少なくとも反射器の複数の反射角度の情報を有するバーコード若しくは2次元バーコードを設けてもよい。
この場合、複数の反射角度を有する反射器2であっても、バーコード若しくは2次元バーコードから反射角度の情報を取得することにより、測定対象物の座標を求める際に、複数の反射角度を個々に求める必要がなく、煩雑な測定処理を省略することができる。
なお、実施形態の説明に際しては、反射器2の反射部材としては、入射角度と反射角度が等しい平面状の反射部材を想定しているが、これに限定されるわけではない。
図5は反射器の一例を示す説明図であり、図5(a)は、実施形態の説明に際して用いた反射器である。図5(b)は、変形例等で用いられる複数の反射角度の反射面を有する構成であり、入射されるレーザー光を多方向に拡散させることができる。また、図5(c)は、点光源から入射れるレーザー光を平行光に、或いは、入射されるレーザー光を所定の点に集光させる曲面状の反射面を有する反射器である。
図5(b)及び図5(c)に示す反射器では、3次元レーザー測定器の側から直接視認できない部分を効率よくレーザー光で照射でき、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
図5(a)に示す反射器であっても、走査部17等により、出射されるレーザー光の出射方向を走査することにより、3次元レーザー測定器の側から直接視認できない部分を効率よくレーザー光で照射でき、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、実施形態の説明に際しては、反射器には可動部がないが、駆動部により反射器、或いは、反射部材を駆動することにより、反射方向を動的に変化させるようにしてもよい。
図6は、反射方向を動的に変化させる反射器の一例を示す説明図であり、図6(a)は、2軸にモーター等の駆動部を備え、反射部材RF61を駆動することにより、反射方向を動的に変化させるものである。
また、図6(b)及び図6(c)は、モーター等の駆動部により、円板状の反射部材RF62及びRF63を円板の中心軸で回転させ、反射部材RF62の上面又は下面、或いは、反射部材RF63の周面でレーザー光を反射させることにより、反射方向を動的に変化させるものである。
ちなみに、反射部材RF62の上面又は下面、或いは、反射部材RF63の周面には、反射角度の異なる複数の反射面が形成されている。
この場合、3次元レーザー測定器1の側で出射するレーザー光の出射角度を走査することなく、測定対象物を走査することができ、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得ることができる。
また、実施形態の説明に際しては、1つの反射器を測定対象物に反射光を照射可能な位置に予め設定しているが、勿論、複数台の反射器を所定の位置に設置しておき、順次、レーザー光を照射することにより、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得るようにしてもよい。
また、実施形態の説明に際しては、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)を得る旨説明しているが、レーザー光を直接照射することができる通常の測定対象物の3次元画像情報(座標)と、レーザー光を直接照射することができない場所にある測定対象物の3次元画像情報(座標)とを統合して、1つの3次元画像情報(座標)としてもよい。
また、このような統合処理は、3次元レーザー測定器1の制御部11において処理してもよいし、3次元レーザー測定器1とは別の装置であるコンピュータ等の情報処理装置おいて処理してもよい。
100 3次元レーザー測定装置
1 3次元レーザー測定器
2 反射器
11 制御部
12 操作入力部
13 表示部
14 記憶部
15 レーザー光源
16 受光部
17 走査部
RF11、RF61、RF62、RF63 反射部材
RP11、RP12、RP13、RP14 基準点
OB11 測定対象物
OL11 レーザー光
RL11 反射光
ML11、ML12 戻り光

Claims (10)

  1. 測定対象物に反射光を照射可能な位置に予め設定され、反射部材の所定の位置に基準点を有する反射器と、
    レーザー光源から出射したレーザー光を前記反射器の反射点で反射させて前記測定対象物に照射し、前記測定対象物からの戻り光を受光部で受光し、受光した時間と出射した時間との時間差から得られる距離と、前記基準点に基づき得られる情報から前記測定対象物の座標を求める制御部を有する3次元レーザー測定器と、
    を備えることを特徴とする3次元レーザー測定装置。
  2. 前記制御部は、測定現場の周辺に予め設置された座標基準点の位置に基づき前記3次元レーザー測定器の座標を特定する機能を有することを特徴とする請求項1に記載の3次元レーザー測定装置。
  3. 前記制御部は、
    前記基準点に基づき前記反射器の反射点における座標を求め、
    前記3次元レーザー測定器から前記反射点までの距離を求め、
    前記反射点から前記測定対象物までの距離を求め、
    前記反射器に対する入射角度を求め、
    前記反射点を通る法線に対する反射光の角度を求め、
    前記測定対象物の座標を求める機能を有することを特徴とする請求項1又は2に記載の3次元レーザー測定装置。
  4. 前記3次元レーザー測定器は記憶部を有し、
    前記記憶部には、前記基準点の座標情報が予め記憶されていることを特徴とする請求項1から3のいずれか一項に記載の3次元レーザー測定装置。
  5. 前記基準点は、少なくとも反射器の反射角度の情報を有するバーコード若しくは2次元バーコードを有することを特徴とする請求項1から4のいずれか一項に記載の3次元レーザー測定装置。
  6. 前記反射器は、入射されるレーザー光を多方向に反射させる反射角度の異なる反射面を有することを特徴とする請求項1から5のいずれか一項に記載の3次元レーザー測定装置。
  7. 前記反射器は、入射されるレーザー光を所定の方向に反射させる反射面を有することを特徴とする請求項1から5のいずれか一項に記載の3次元レーザー測定装置。
  8. 前記反射器は、入射されるレーザー光を所定の点に集光させる曲面状の反射面を有することを特徴とする請求項1から5のいずれか一項に記載の3次元レーザー測定装置。
  9. 前記反射器は、駆動部を有し、
    前記駆動部は、前記反射部材を駆動させることにより、前記反射器の反射角度を変化可能に構成したことを特徴とする請求項1から5のいずれか一項に記載の3次元レーザー測定装置。
  10. 前記反射器の反射部材の上面又は下面、或いは、周面には反射角度の異なる複数の反射面が形成されると共に、駆動部を有し、
    前記駆動部は、前記反射部材を駆動させることにより、前記複数の反射面からレーザー光が入射される反射面を選択可能に構成したことを特徴とする請求項1から5のいずれか一項に記載の3次元レーザー測定装置。
JP2016116754A 2016-06-13 2016-06-13 3次元レーザー測定装置 Pending JP2017223443A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016116754A JP2017223443A (ja) 2016-06-13 2016-06-13 3次元レーザー測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116754A JP2017223443A (ja) 2016-06-13 2016-06-13 3次元レーザー測定装置

Publications (1)

Publication Number Publication Date
JP2017223443A true JP2017223443A (ja) 2017-12-21

Family

ID=60687673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116754A Pending JP2017223443A (ja) 2016-06-13 2016-06-13 3次元レーザー測定装置

Country Status (1)

Country Link
JP (1) JP2017223443A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047507A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 領域特定システム、領域特定方法及び領域特定プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208415A (ja) * 1983-05-13 1984-11-26 Kumagai Gumi Ltd 測量方法
JPH0419503A (ja) * 1990-02-26 1992-01-23 Railway Technical Res Inst トロリー線の摩耗測定方法
JPH04504469A (ja) * 1989-04-06 1992-08-06 イェウトロニクス アクティエボラーグ 測定点の位置を形成又は画成するための装置
JPH06288768A (ja) * 1993-03-31 1994-10-18 Kajima Corp 測量方法および測量装置
JP2003232611A (ja) * 2002-02-07 2003-08-22 Kyobashi Kogyo Kk レーザー光による軌道変位検出装置
JP2015532718A (ja) * 2012-09-06 2015-11-12 ファロ テクノロジーズ インコーポレーテッド 追加の検出装置を備えたレーザスキャナ
JP2015225014A (ja) * 2014-05-29 2015-12-14 日本電信電話株式会社 位置推定装置、位置推定方法、およびプログラム
JP2017053772A (ja) * 2015-09-10 2017-03-16 公益財団法人鉄道総合技術研究所 変位測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208415A (ja) * 1983-05-13 1984-11-26 Kumagai Gumi Ltd 測量方法
JPH04504469A (ja) * 1989-04-06 1992-08-06 イェウトロニクス アクティエボラーグ 測定点の位置を形成又は画成するための装置
JPH0419503A (ja) * 1990-02-26 1992-01-23 Railway Technical Res Inst トロリー線の摩耗測定方法
JPH06288768A (ja) * 1993-03-31 1994-10-18 Kajima Corp 測量方法および測量装置
JP2003232611A (ja) * 2002-02-07 2003-08-22 Kyobashi Kogyo Kk レーザー光による軌道変位検出装置
JP2015532718A (ja) * 2012-09-06 2015-11-12 ファロ テクノロジーズ インコーポレーテッド 追加の検出装置を備えたレーザスキャナ
JP2015225014A (ja) * 2014-05-29 2015-12-14 日本電信電話株式会社 位置推定装置、位置推定方法、およびプログラム
JP2017053772A (ja) * 2015-09-10 2017-03-16 公益財団法人鉄道総合技術研究所 変位測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047507A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 領域特定システム、領域特定方法及び領域特定プログラム

Similar Documents

Publication Publication Date Title
CN103492870B (zh) 与远程投射器协作以输送信息的六自由度激光追踪器
US11004250B2 (en) Point cloud data display system
KR930701726A (ko) 공간 위치 측정 시스템
JP2016505838A (ja) 目標物の位置座標を決定するための方法及び装置
CN108253886B (zh) 三维测量装置
JP2009276150A (ja) レーザレーダ及びレーザレーダの据付方向調整方法
CN103975250A (zh) 在图像平面中利用动态掩模的空间选择性探测
CN103180689A (zh) 具有基于mems的光源的非接触式传感系统
JP2006276012A (ja) 物体の六つの自由度を求めるための測定システム
US20130070257A1 (en) Three-Dimensional Scanning System
JP2010071725A (ja) レーザレーダ及びレーザレーダによる境界監視方法
CN110389355A (zh) 一种多线激光雷达
CN106352850A (zh) 样品水平度测试装置和方法
CN103033143B (zh) 光学探测器
JP6742886B2 (ja) レーザー測定装置、レーザー測定方法及びレーザー測定プログラム
JP2019219238A (ja) 反射体位置算出装置、反射体位置算出方法および反射体位置算出用プログラム
US20130187892A1 (en) Optical touch device
CN104833315A (zh) 光学探测器、可装配盖和形状测量设备
EP2781932B1 (en) Distance measurement apparatus
JP2017223443A (ja) 3次元レーザー測定装置
JPH07261072A (ja) 自動焦点プロジェクター
JP2019190951A (ja) 移動体スキャナ
CN102346020A (zh) 用于互动介面的三维信息产生装置与三维信息产生方法
US20130099092A1 (en) Device and method for determining position of object
JP2020046188A (ja) 車載用測距装置の試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105