JP2017222900A - Production method of alloyed galvanized steel plate - Google Patents

Production method of alloyed galvanized steel plate Download PDF

Info

Publication number
JP2017222900A
JP2017222900A JP2016118731A JP2016118731A JP2017222900A JP 2017222900 A JP2017222900 A JP 2017222900A JP 2016118731 A JP2016118731 A JP 2016118731A JP 2016118731 A JP2016118731 A JP 2016118731A JP 2017222900 A JP2017222900 A JP 2017222900A
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
steel plate
carbon dioxide
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118731A
Other languages
Japanese (ja)
Other versions
JP6439755B2 (en
Inventor
広和 杉原
Hirokazu Sugihara
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016118731A priority Critical patent/JP6439755B2/en
Publication of JP2017222900A publication Critical patent/JP2017222900A/en
Application granted granted Critical
Publication of JP6439755B2 publication Critical patent/JP6439755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an alloyed galvanized steel plate capable of suppressing uneven cooling in the plate width direction in cooling after alloying and suppressing generation of defects caused by the uneven cooling without impairing improvement of productivity of the steel plate.SOLUTION: In a production method of an alloyed galvanized steel plate, an annealed steel plate is galvanized and heated to alloy the zinc plating applied thereon and then sprayed with fine droplets of a cooling liquid to be cooled to a cooling-stop temperature T (°C). The liquid droplets have dissolved therein carbon dioxide of 1.0% or more of saturated solubility of carbon dioxide at 20°C and 1 atm of carbon dioxide. The average diameter D (μm) of the liquid droplets is determined so that the liquid droplets vaporize before coming into contact with the surface of the steel plate and the thus formed vapor film is kept during the cooling period from the beginning of cooling to the end of cooling when the cooling-stop temperature T (°C) is attained.SELECTED DRAWING: None

Description

本発明は、連続合金化溶融亜鉛めっき設備を用いた合金化溶融亜鉛めっき鋼板の製造方法に関し、特に合金化後に行う冷却に関するものである。   The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet using a continuous alloying hot-dip galvanizing facility, and particularly relates to cooling performed after alloying.

一般に、合金化溶融亜鉛めっき鋼板は、図1のような連続合金化溶融亜鉛めっき設備100を用いて以下のように製造される。まず、図示しない連続焼鈍炉で焼鈍された鋼板(鋼帯)Pは、溶融亜鉛めっき浴20に連続的に導入され、ここで鋼板Pに溶融亜鉛めっきが施される。鋼板Pは、溶融亜鉛めっき浴20中のシンクロール21によって、その進行方向が上方になる。鋼板Pは溶融亜鉛めっき浴20の上方に引き上げられた後、ガスワイピング装置22でめっき付着量が調整される。その後、合金化炉23で鋼板Pに施された亜鉛めっきが加熱合金化される。その後、冷却装置10で冷却液を微細化した液滴群を鋼板Pに向けて噴射して、鋼板Pを冷却する。その後、トップロール25近傍で放射温度計24によって鋼板温度が測定される。なお、図1中の矢印は鋼板Pの進行方向である。   In general, an alloyed hot-dip galvanized steel sheet is manufactured as follows using a continuous alloying hot-dip galvanizing equipment 100 as shown in FIG. First, a steel plate (steel strip) P annealed in a continuous annealing furnace (not shown) is continuously introduced into a hot dip galvanizing bath 20 where hot dip galvanization is applied to the steel plate P. The steel plate P is moved upward by the sink roll 21 in the hot dip galvanizing bath 20. After the steel sheet P is pulled up above the hot dip galvanizing bath 20, the plating adhesion amount is adjusted by the gas wiping device 22. Thereafter, the zinc plating applied to the steel sheet P in the alloying furnace 23 is heated and alloyed. Then, the droplet group which refined the cooling liquid with the cooling device 10 is sprayed toward the steel plate P, and the steel plate P is cooled. Thereafter, the steel plate temperature is measured by the radiation thermometer 24 in the vicinity of the top roll 25. In addition, the arrow in FIG. 1 is the advancing direction of the steel plate P.

合金化後の冷却方法としては、空気等の気体を噴射する冷却(ガス冷却)と、図1の冷却装置10のように、冷却液を微細化した液滴群を噴射する冷却(ミスト冷却)とがある。ミスト冷却は、ガス冷却よりも冷却効率が高いため、限られた冷却設備長で、高い冷却速度で冷却を行うことができ、生産性を向上させるために用いられる。   As a cooling method after alloying, cooling (gas cooling) for injecting a gas such as air and cooling (mist cooling) for injecting a droplet group in which the cooling liquid is made fine like the cooling device 10 in FIG. There is. Since mist cooling has higher cooling efficiency than gas cooling, cooling can be performed at a high cooling rate with a limited cooling facility length, and is used to improve productivity.

しかし、合金化後のミスト冷却では、鋼板の幅方向で冷却ムラが生じ、これが起因となり、鋼板表面にシワが発生したり、鋼板が変形したりするなどの形状不良が発生することが知られている。この冷却ムラを防止するため、種々の対策が検討されている。   However, in mist cooling after alloying, uneven cooling occurs in the width direction of the steel sheet, which is known to cause shape defects such as wrinkles on the steel sheet surface or deformation of the steel sheet. ing. In order to prevent this uneven cooling, various measures have been studied.

特許文献1には、冷却装置を鋼板進行方向に複数のゾーンに分割して、各ゾーン出側の鋼板温度に応じて、ゾーン毎にミスト冷却およびガス冷却のどちらを使用するか判定する方法が記載されている。また、特許文献2には、冷却装置を二分割し、後段の冷却を前段の冷却よりも緩冷却にする方法が記載されている。   In Patent Literature 1, there is a method of dividing the cooling device into a plurality of zones in the steel plate traveling direction and determining which one of mist cooling and gas cooling is used for each zone according to the steel plate temperature on the exit side of each zone. Have been described. Further, Patent Document 2 describes a method in which the cooling device is divided into two, and the latter cooling is performed more slowly than the preceding cooling.

特開2000−256818号公報JP 2000-256818 A 特開2006−111945号公報JP 2006-111945 A

しかし、特許文献1、2に記載の方法では、特に冷却設備の後半ゾーンでの冷却速度が大きく規制される。そのため、冷却設備長の延長を行わない場合、鋼板の通板速度も規制する必要があり、生産性向上の阻害要因となる。   However, in the methods described in Patent Documents 1 and 2, the cooling rate in the latter half zone of the cooling facility is largely restricted. Therefore, if the cooling facility length is not extended, it is necessary to regulate the plate passing speed of the steel plate, which becomes an impediment to productivity improvement.

そこで本発明は、上記課題に鑑み、鋼板の生産性向上を阻害することなく、合金化後の冷却における鋼板幅方向の冷却ムラを抑制し、それに起因する欠陥の発生を抑制することが可能な合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention can suppress uneven cooling in the width direction of the steel sheet in cooling after alloying without inhibiting improvement in the productivity of the steel sheet, and can suppress the occurrence of defects resulting therefrom. It aims at providing the manufacturing method of a galvannealed steel plate.

本発明者は、上記課題を解決するために鋭意検討を行った。冷却ノズルから噴射された液滴が鋼板表面に付着することが原因で、鋼板幅方向の冷却ムラは拡大する。つまり、冷却の開始から終了まで、液滴群が鋼板の表面に接触せず、液滴群が蒸発して蒸気膜が形成された状態(以下、「膜沸騰状態」とも称する。)で、鋼板が冷却されることで、鋼板幅方向の冷却ムラが抑制できる。そして、本発明者は、液滴群の平均液滴直径D(μm)を、冷却停止温度T(℃)との関係で、ある所定値未満とすることによって、冷却の開始から終了まで膜沸騰状態を維持でき、その結果、鋼板幅方向の冷却ムラを抑制できることを見出した。   The present inventor has intensively studied to solve the above problems. Due to the droplets ejected from the cooling nozzle adhering to the steel plate surface, the cooling unevenness in the steel plate width direction is enlarged. That is, from the start to the end of cooling, the droplet group does not contact the surface of the steel sheet, and the droplet group is evaporated to form a vapor film (hereinafter also referred to as “film boiling state”). As a result of cooling, uneven cooling in the width direction of the steel sheet can be suppressed. Then, the inventor sets the average droplet diameter D (μm) of the droplet group to less than a predetermined value in relation to the cooling stop temperature T (° C.), thereby boiling the film from the start to the end of the cooling. It has been found that the state can be maintained, and as a result, uneven cooling in the width direction of the steel sheet can be suppressed.

本発明は、上記の知見によって完成されたものであり、その要旨構成は以下のとおりである。
[1]焼鈍された鋼板に溶融亜鉛めっきを施し、その後、前記鋼板に施された亜鉛めっきを加熱合金化し、次いで冷却液を微細化した液滴群を前記鋼板に向けて噴射して前記鋼板を冷却停止温度T(℃)まで冷却する合金化溶融亜鉛めっき鋼板の製造方法であって、
前記液滴群には、20℃、二酸化炭素1気圧の場合における二酸化炭素の飽和溶解量の1.0%以上の二酸化炭素が溶解しており、前記液滴群の平均液滴直径D(μm)は、前記冷却の開始から前記冷却停止温度T(℃)となる冷却終了まで、前記液滴群が前記鋼板の表面に接触せず、前記液滴群が蒸発して蒸気膜を形成した状態が維持されるサイズであることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[2]前記液滴群の平均液滴直径D(μm)は、前記冷却停止温度T(℃)との関係で下記式(1)を満足することを特徴とする[1]に記載の合金化溶融亜鉛めっき鋼板の製造方法。
D<5.0×10−3×T−2.0×T+2.2×10・・・(1)
[3]前記液滴群の平均液滴直径D(μm)は、前記冷却停止温度T(℃)、との関係でさらに下記式(2)を満足することを特徴とする[2]に記載の合金化溶融亜鉛めっき鋼板の製造方法。
D≧3.0×10−3×T−1.2×T+1.3×10・・・(2)
[4]焼鈍された鋼板に溶融亜鉛めっきを施し、その後、前記鋼板に施された亜鉛めっきを加熱合金化し、次いで冷却液を微細化した液滴群を前記鋼板に向けて噴射して前記鋼板を冷却停止温度T(℃)まで冷却する合金化溶融亜鉛めっき鋼板の製造方法であって、前記液滴群には、20℃、二酸化炭素1気圧の場合における二酸化炭素の飽和溶解量の1.0%以上の二酸化炭素が溶解しており、前記冷却の開始から前記冷却停止温度T(℃)となる冷却終了まで、前記液滴群が前記鋼板の表面に接触せず、前記液滴群が蒸発して蒸気膜が形成された状態が維持される、前記液滴群の平均液滴直径D(μm)と前記冷却停止温度T(℃)との関係式を予め求め、該関係式を満足する平均液滴直径D(μm)で冷却を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
This invention is completed by said knowledge, The summary structure is as follows.
[1] Hot-dip galvanizing is performed on the annealed steel sheet, and then the galvanization applied to the steel sheet is heat-alloyed, and then a droplet group in which a coolant is refined is sprayed toward the steel sheet to thereby inject the steel sheet. Is a method for producing an alloyed hot-dip galvanized steel sheet that is cooled to a cooling stop temperature T (° C.),
In the droplet group, carbon dioxide of 1.0% or more of the saturated dissolution amount of carbon dioxide at 20 ° C. and 1 atmosphere of carbon dioxide is dissolved, and the average droplet diameter D (μm) of the droplet group is dissolved. ) Is a state in which the droplet group does not contact the surface of the steel plate from the start of the cooling to the end of cooling at the cooling stop temperature T (° C.), and the droplet group evaporates to form a vapor film. A method for producing an alloyed hot-dip galvanized steel sheet, characterized in that the size is maintained.
[2] The alloy according to [1], wherein an average droplet diameter D (μm) of the droplet group satisfies the following formula (1) in relation to the cooling stop temperature T (° C.): Method for producing a galvannealed steel sheet.
D <5.0 × 10 −3 × T 2 −2.0 × T + 2.2 × 10 2 (1)
[3] The average droplet diameter D (μm) of the droplet group further satisfies the following formula (2) in relation to the cooling stop temperature T (° C.): [2] Method for producing an alloyed hot-dip galvanized steel sheet.
D ≧ 3.0 × 10 −3 × T 2 −1.2 × T + 1.3 × 10 2 (2)
[4] Hot-dip galvanizing is performed on the annealed steel sheet, and then the galvanization applied to the steel sheet is heat-alloyed, and then a droplet group in which a coolant is refined is sprayed toward the steel sheet to form the steel sheet. Of the galvannealed steel sheet is cooled to a cooling stop temperature T (° C.), and the droplet group has a saturated dissolution amount of carbon dioxide in the case of 20 ° C. and 1 atmosphere of carbon dioxide. From the start of cooling until the end of cooling at the cooling stop temperature T (° C.), the droplet group does not contact the surface of the steel plate, and the droplet group is dissolved. A relational expression between the average droplet diameter D (μm) of the droplet group and the cooling stop temperature T (° C.), which maintains the state where the vapor film is formed by evaporation, is satisfied in advance. Alloying characterized by cooling with an average droplet diameter D (μm) Manufacturing method of hot dip galvanized steel sheet.

本発明の合金化溶融亜鉛めっき鋼板の製造方法によれば、鋼板の生産性向上を阻害することなく、合金化後の冷却における鋼板幅方向の冷却ムラを抑制し、それに起因する欠陥の発生を抑制することが可能である。   According to the method for producing an alloyed hot-dip galvanized steel sheet of the present invention, the unevenness of cooling in the width direction of the steel sheet in the cooling after alloying is suppressed without hindering the productivity improvement of the steel sheet, and the occurrence of defects due to it is suppressed. It is possible to suppress.

図1は、連続合金化溶融亜鉛めっき設備の模式図である。FIG. 1 is a schematic view of a continuous alloying hot dip galvanizing facility. 図2の(A)は、冷却装置の模式図であり、図2の(B)は、冷却装置の空気用ヘッダの模式図である。2A is a schematic diagram of the cooling device, and FIG. 2B is a schematic diagram of an air header of the cooling device. 図3は、合金化後のミスト冷却における、鋼板温度と冷却能力との関係を示す概念図である。FIG. 3 is a conceptual diagram showing the relationship between the steel plate temperature and the cooling capacity in mist cooling after alloying. 図4は、本発明の一実施形態における、液滴群の平均液滴直径Dと遷移温度Tとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the average droplet diameter D of the droplet group and the transition temperature T 1 in one embodiment of the present invention. 図5は、本発明の一実施形態における、冷却停止温度Tと液滴群の平均液滴直径Dとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the cooling stop temperature T and the average droplet diameter D of the droplet group in one embodiment of the present invention.

本発明の一実施形態における合金化溶融亜鉛めっき鋼板の製造方法で用いる連続合金化溶融亜鉛めっき設備100は、図1に示すように、焼鈍炉(図示せず)、溶融亜鉛めっき浴20、シンクロール21、ガスワイピング装置22、合金化炉23、冷却装置10、走査型放射温度計24、およびトップロール25を有する。   As shown in FIG. 1, a continuous alloying hot dip galvanizing equipment 100 used in the method for producing an alloyed hot dip galvanized steel sheet in one embodiment of the present invention includes an annealing furnace (not shown), a hot dip galvanizing bath 20, a sink. It has a roll 21, a gas wiping device 22, an alloying furnace 23, a cooling device 10, a scanning radiation thermometer 24, and a top roll 25.

図示しない連続焼鈍炉で焼鈍された鋼板Pは、溶融亜鉛めっき浴20に連続的に導入され、ここで鋼板Pに溶融亜鉛めっきが施される。鋼板Pは、溶融亜鉛めっき浴20中のシンクロール21によって、その進行方向が上方になる。鋼板Pは溶融亜鉛めっき浴20の上方に引き上げられた後、ガスワイピング装置22でめっき付着量が調整される。その後、合金化炉23で鋼板Pに施された亜鉛めっきが加熱合金化される。その後、冷却装置10で冷却液を微細化した液滴群を鋼板Pに向けて噴射して、鋼板Pを冷却する。その後、トップロール25近傍で放射温度計24によって鋼板温度が測定される。   The steel sheet P annealed in a continuous annealing furnace (not shown) is continuously introduced into the hot dip galvanizing bath 20 where the hot dip galvanizing is applied to the steel sheet P. The steel plate P is moved upward by the sink roll 21 in the hot dip galvanizing bath 20. After the steel sheet P is pulled up above the hot dip galvanizing bath 20, the plating adhesion amount is adjusted by the gas wiping device 22. Thereafter, the zinc plating applied to the steel sheet P in the alloying furnace 23 is heated and alloyed. Then, the droplet group which refined the cooling liquid with the cooling device 10 is sprayed toward the steel plate P, and the steel plate P is cooled. Thereafter, the steel plate temperature is measured by the radiation thermometer 24 in the vicinity of the top roll 25.

冷却装置10の構成を、図2を参照して説明する。冷却装置10の主要部分は、図2(A)に示すように、空気用ヘッダ12と、これに取り付けられたノズル14である。空気用ヘッダ12の内部には、図示しない冷却液用ヘッダがある。空気用ヘッダ12には所定の圧力に加圧された空気が、また、冷却液用ヘッダには所定の圧力に加圧された冷却液が、それぞれ供給される。空気および冷却液はノズル14の内部で混合され、その結果、冷却液は微細化され、ノズル14の開口部から液滴群が鋼板Pに向けて噴霧される。なお、この冷却液には、事前に二酸化炭素を溶解させてある。図2(B)に示すように、1つの空気用ヘッダ12には、その延在方向に所定間隔で複数個のノズル14が取り付けられている。空気用ヘッダ12は、その延在方向が鋼板Pの幅方向と一致するように設置されているため、鋼板Pを幅方向にわたって冷却できる。また、図2(A)に示すように、空気用ヘッダ12は冷却設備長に応じて鋼板Pの進行方向に複数個配置される。さらに、空気用ヘッダ12は、鋼板Pの両面に配置されるので、鋼板Pの表面および裏面を冷却できる。冷却液は特に限定されないが、水であることが好ましい。なお、冷却装置10の構造は、液滴群を噴霧可能な装置であれば、上記で説明したものには限定されない。   The configuration of the cooling device 10 will be described with reference to FIG. As shown in FIG. 2A, the main part of the cooling device 10 is an air header 12 and a nozzle 14 attached thereto. Inside the air header 12 is a coolant header (not shown). The air header 12 is supplied with air pressurized to a predetermined pressure, and the coolant header is supplied with coolant pressurized to a predetermined pressure. The air and the cooling liquid are mixed inside the nozzle 14, and as a result, the cooling liquid is miniaturized, and a droplet group is sprayed toward the steel plate P from the opening of the nozzle 14. In this cooling liquid, carbon dioxide is dissolved in advance. As shown in FIG. 2B, one air header 12 is provided with a plurality of nozzles 14 at predetermined intervals in the extending direction. Since the air header 12 is installed so that the extending direction thereof coincides with the width direction of the steel plate P, the steel plate P can be cooled in the width direction. As shown in FIG. 2 (A), a plurality of air headers 12 are arranged in the traveling direction of the steel sheet P in accordance with the cooling equipment length. Furthermore, since the air header 12 is disposed on both surfaces of the steel plate P, the front and back surfaces of the steel plate P can be cooled. The coolant is not particularly limited, but is preferably water. The structure of the cooling device 10 is not limited to that described above as long as it is a device capable of spraying a droplet group.

また、前述のように水と空気を混合して噴射する場合以外にも、水のみを加圧して液滴を噴霧する方法でも良い。   In addition to the case where water and air are mixed and jetted as described above, a method of spraying droplets by pressurizing only water may be used.

図3を参照して、合金化後のミスト冷却における鋼板の冷却メカニズムを説明する。まず、冷却開始直後で鋼板の温度が高い段階では、冷却能力は比較的低く、しかも鋼板の温度変化に対して冷却能力の変化が小さい状態である(領域A)。この領域Aの段階では、液滴群が鋼板の表面に接触せず、液滴群が蒸発して鋼板表面のごく近傍(鋼板表面と液滴群との間)に蒸気膜が形成された膜沸騰状態で、鋼板が冷却される。この領域Aは、安定した熱流速が得られる状態である。   With reference to FIG. 3, the cooling mechanism of the steel plate in the mist cooling after alloying will be described. First, at the stage where the temperature of the steel sheet is high immediately after the start of cooling, the cooling capacity is relatively low, and the change in the cooling capacity is small with respect to the temperature change of the steel sheet (area A). In this region A stage, the droplet group does not contact the surface of the steel sheet, and the droplet group evaporates and a film is formed in the vicinity of the steel sheet surface (between the steel sheet surface and the droplet group). In the boiling state, the steel sheet is cooled. This region A is a state where a stable heat flow rate can be obtained.

鋼板の温度が所定温度T以下に低下すると、鋼板温度の低下にともない冷却能力が増加する(領域B)。この領域Bの段階では、一部の液滴は鋼板の表面に接触せずに蒸発して、蒸気膜を形成するが、残りの液滴は蒸発せず、鋼板の表面に衝突する状態(部分膜沸騰状態)で、鋼板が冷却される。鋼板温度が低下するほど、鋼板の表面に直接衝突する液滴の割合が増加する。この領域Bは、不安定な熱流速しか得られない状態であり、鋼板幅方向の冷却ムラが拡大する。つまり、合金化後冷却前の鋼板温度が幅方向に多少ばらついたり、図2(B)に示す複数のノズル14間で噴射量が不可避的に数%ばらつくことが、鋼板幅方向の冷却ムラの原因となっているところ、領域Bでは、鋼板温度が低下している箇所がより高い冷却能力で冷却されるため、鋼板幅方向の冷却ムラが拡大するのである。なお、領域Aから領域Bに切り替わる鋼板温度Tを、本明細書では「遷移温度」と称する。 When the temperature of the steel sheet drops below the predetermined temperature T 1, along with the reduction of the temperature of the steel strip cooling capacity is increased (region B). In this region B, some droplets evaporate without contacting the surface of the steel sheet to form a vapor film, but the remaining droplets do not evaporate and collide with the surface of the steel sheet (partial). In the film boiling state), the steel sheet is cooled. As the steel plate temperature decreases, the proportion of droplets that directly collide with the surface of the steel plate increases. This region B is a state in which only an unstable heat flow rate can be obtained, and the cooling unevenness in the width direction of the steel sheet increases. That is, the steel plate temperature after alloying and before cooling varies somewhat in the width direction, or the injection amount inevitably varies by a few percent between the plurality of nozzles 14 shown in FIG. As a cause, in the region B, the portion where the steel plate temperature is lowered is cooled with a higher cooling capacity, so that the cooling unevenness in the steel plate width direction is expanded. Incidentally, the steel sheet temperature T 1 of switching from the region A to the region B, is referred to herein as a "transition temperature".

鋼板温度がさらに低下すると、鋼板温度の低下にともない冷却能力も低下し、安定した冷却状態となる(領域C)。この領域Cの段階では、全ての液滴が鋼板の表面に衝突する状態で、鋼板が冷却される。   When the steel plate temperature further decreases, the cooling capacity also decreases as the steel plate temperature decreases, and a stable cooling state is obtained (region C). In the region C, the steel sheet is cooled in a state where all droplets collide with the surface of the steel sheet.

つまり、冷却の開始から終了まで、領域Aの膜沸騰状態を維持できれば、鋼板幅方向の冷却ムラが抑制できる。そこで本発明者は、図3の曲線を左方向にシフトして領域Aを低温側に拡大する、つまり遷移温度Tを冷却停止温度T(℃)よりも低温にする手段を検討した。その結果、鋼板表面近傍での液滴群の平均液滴直径D(μm)が小さいほど、領域Aが低温側に広がることが判明した。 That is, if the film boiling state in the region A can be maintained from the start to the end of cooling, uneven cooling in the steel sheet width direction can be suppressed. The present inventors, to expand the region A on the low temperature side to shift the curve of FIG. 3 in the left direction, that was investigated means to a temperature lower than the transition temperature T 1 of the cooling stop temperature T (° C.). As a result, it was found that the region A spreads to the low temperature side as the average droplet diameter D (μm) of the droplet group near the steel plate surface is smaller.

また、本発明では、二酸化炭素を溶解させた冷却液を用いる。これにより、液滴群には二酸化炭素が溶解しているため、液滴化した冷却液が鋼板に衝突して鋼板から熱を奪う際、冷却液の温度上昇にともない、溶解できなくなった気体により発泡する。その発泡により、蒸気膜が形成されやすくなり、領域Aの膜沸騰状態を低温でも維持可能になる。   In the present invention, a coolant in which carbon dioxide is dissolved is used. As a result, since carbon dioxide is dissolved in the droplet group, when the cooling liquid droplets collide with the steel sheet and take heat away from the steel sheet, the gas cannot be dissolved as the temperature of the cooling liquid rises. Foam. Due to the foaming, a vapor film is easily formed, and the film boiling state of the region A can be maintained even at a low temperature.

冷却液への二酸化炭素の溶解量が少ないと、発泡効果が十分に発現しないため、本発明では、20℃、二酸化炭素1気圧の場合における二酸化炭素の飽和溶解量の1.0%以上の二酸化炭素を溶解させた冷却液を用いる。なお、20℃、空気1気圧の場合、二酸化炭素の水に対する飽和溶解量は0.61mg/Lである。一方、20℃、二酸化炭素1気圧の場合、二酸化炭素の水に対する飽和溶解量は1700mg/Lである。   When the amount of carbon dioxide dissolved in the cooling liquid is small, the foaming effect is not sufficiently exhibited. Therefore, in the present invention, the carbon dioxide having a saturation dissolution amount of 1.0% or more of carbon dioxide at 20 ° C. and 1 atmosphere of carbon dioxide is used. A cooling solution in which carbon is dissolved is used. In the case of 20 ° C. and 1 atm of air, the saturated dissolution amount of carbon dioxide in water is 0.61 mg / L. On the other hand, in the case of 20 ° C. and 1 atmosphere of carbon dioxide, the saturated dissolution amount of carbon dioxide in water is 1700 mg / L.

二酸化炭素を溶解させた冷却液は、例えば、冷却液の入った容器に所定圧の二酸化炭素を吹き込むことにより(バブリング)、二酸化炭素を事前に溶解させた冷却液を、冷却用ヘッダから供給し、ノズル14の内部で空気と混合すればよい。   The cooling liquid in which carbon dioxide is dissolved is supplied from the cooling header by, for example, bubbling carbon dioxide at a predetermined pressure into a container containing the cooling liquid (bubbling). What is necessary is just to mix with air inside the nozzle 14.

なお、工業的に入手しやすいという点で、本発明では二酸化炭素を冷却液に溶解させるが、二酸化炭素と同様に、水に溶解する気体であれば、同様の効果が発現する。   In the present invention, carbon dioxide is dissolved in the cooling liquid in terms of industrial availability. However, similar to carbon dioxide, the same effect can be obtained if it is a gas that dissolves in water.

そこで、図1に示す連続合金化溶融亜鉛めっき設備を用いて、液滴群の平均液滴直径D(μm)と遷移温度T(℃)との関係について検討した。冷却液は水を用いた。また、二酸化炭素を飽和量の10%以上溶解させた冷却液とした。液滴群の平均液滴直径D(μm)は、水に対する空気の流量比を変化させることにより変更した。それ以外の実験条件は以下のとおりである。
鋼板:板厚1.0mm、板幅1000mm、引張強さ450MPa
通板速度:150mpm
溶融亜鉛めっき浴の浴温:460℃
合金化直後の鋼板温度:500℃
合金化後のミスト冷却における、液滴群の平均液滴直径D(μm)と遷移温度T(℃)との関係を図4に示す。図4に示すように、液滴群の平均液滴直径D(μm)が小さいほど遷移温度Tは低くなった。
Therefore, the relationship between the average droplet diameter D (μm) of the droplet group and the transition temperature T 1 (° C.) was examined using the continuous alloying galvanizing equipment shown in FIG. Water was used as the cooling liquid. Moreover, it was set as the cooling liquid which melt | dissolved the carbon dioxide 10% or more of saturation amount. The average droplet diameter D (μm) of the droplet group was changed by changing the flow ratio of air to water. The other experimental conditions are as follows.
Steel plate: plate thickness 1.0mm, plate width 1000mm, tensile strength 450MPa
Plate speed: 150 mpm
Hot dip galvanizing bath temperature: 460 ° C
Steel plate temperature immediately after alloying: 500 ° C
FIG. 4 shows the relationship between the average droplet diameter D (μm) of the droplet group and the transition temperature T 1 (° C.) in the mist cooling after alloying. As shown in FIG. 4, as the transition temperatures T 1 mean droplet diameter D of the droplet group ([mu] m) is small becomes lower.

そこで、図4に基づいて、遷移温度T(℃)を冷却停止温度T(℃)未満とするための、液滴群の平均液滴直径D(μm)と冷却停止温度T(℃)との関係を求めた。その結果、液滴群の平均液滴直径D(μm)は、冷却停止温度T(℃)との関係で下記式(1)を満足すれば、遷移温度T(℃)を冷却停止温度T(℃)未満とすることができることがわかった。
D<5.0×10−3×T−2.0×T+2.2×10・・・(1)
冷却停止温度T(℃)は、通常、250〜450℃の範囲とすることができる。そこで、本発明の一実施形態では、冷却停止温度T(℃)を定めたら、その値を式(1)の右辺に代入し、液滴群の平均液滴直径D(μm)を右辺の値未満に制御して、鋼板の冷却を行えばよい。なお、本発明における液滴群の平均液滴直径D(μm)は、ザウター(Sauter)平均粒径で定義され、浸液法や、液滴にレーザー光を照射するレーザー法で測定することができる。
Therefore, based on FIG. 4, the average droplet diameter D (μm) of the droplet group and the cooling stop temperature T (° C.) for making the transition temperature T 1 (° C.) less than the cooling stop temperature T (° C.) Sought the relationship. As a result, if the average droplet diameter D (μm) of the droplet group satisfies the following formula (1) in relation to the cooling stop temperature T (° C.), the transition temperature T 1 (° C.) is changed to the cooling stop temperature T. It was found that the temperature could be less than (° C.).
D <5.0 × 10 −3 × T 2 −2.0 × T + 2.2 × 10 2 (1)
The cooling stop temperature T (° C.) can usually be in the range of 250 to 450 ° C. Therefore, in one embodiment of the present invention, once the cooling stop temperature T (° C.) is determined, the value is substituted into the right side of Equation (1), and the average droplet diameter D (μm) of the droplet group is the value on the right side. The steel sheet may be cooled by controlling to less than the above. The average droplet diameter D (μm) of the droplet group in the present invention is defined by the Sauter average particle size, and can be measured by an immersion method or a laser method of irradiating a droplet with laser light. it can.

液滴群の平均液滴直径D(μm)は、ノズルの構造、混合前の空気および冷却液の圧力比、空気および冷却液の流量比、などによって制御できる。例えば、冷却液の圧力に対して空気の圧力を高くすれば、液滴群の平均液滴直径D(μm)は小さくなる。また、冷却液の流量に対して空気の流量を多くすれば、液滴群の平均液滴直径D(μm)は小さくなる。また、流量が同じ前提であれば、ノズル径が小さいほど液滴群の平均液滴直径D(μm)は小さくなる。   The average droplet diameter D (μm) of the droplet group can be controlled by the structure of the nozzle, the pressure ratio of air and cooling liquid before mixing, the flow rate ratio of air and cooling liquid, and the like. For example, if the air pressure is increased with respect to the coolant pressure, the average droplet diameter D (μm) of the droplet group decreases. Further, if the air flow rate is increased with respect to the coolant flow rate, the average droplet diameter D (μm) of the droplet group is reduced. If the flow rate is the same, the smaller the nozzle diameter, the smaller the average droplet diameter D (μm) of the droplet group.

ただし、液滴群の平均液滴直径D(μm)を小さくするには、上述のように例えば空気の噴射圧力を高くする必要がある。その場合、ブロアやコンプレッサといった圧縮空気製造装置が高価になる、ランニングコストが増加するといった追加コストが必要になるため、必要以上に液滴群の平均液滴直径D(μm)を小さくすることは好ましくない。そこで、本発明者は、冷却停止温度T(℃)に対し、鋼板幅方向の冷却ムラを低減する効果が飽和する液滴群の平均液滴直径D(μm)の下限を調査した。鋼板幅方向の冷却ムラを低減する効果が飽和する液滴群の平均液滴直径D(μm)の下限は部分膜沸騰(遷移沸騰)が生じる限界の温度であり、調査した結果、液滴群の平均液滴直径D(μm)は、冷却停止温度T(℃)との関係でさらに下記式(2)を満足することが好ましいことがわかった。
D≧3.0×10−3×T−1.2×T+1.3×10・・・(2)
図5に、式(1)および式(2)による冷却停止温度T(℃)と液滴群の平均液滴直径D(μm)との関係を示す。破線が式(1)であり、実線が式(2)である。
However, in order to reduce the average droplet diameter D (μm) of the droplet group, it is necessary to increase the air injection pressure, for example, as described above. In that case, additional costs such as increased cost of compressed air production equipment such as blowers and compressors and increased running costs are required. Therefore, it is not possible to reduce the average droplet diameter D (μm) of the droplet group more than necessary. It is not preferable. Therefore, the inventor investigated the lower limit of the average droplet diameter D (μm) of the droplet group at which the effect of reducing the cooling unevenness in the steel plate width direction is saturated with respect to the cooling stop temperature T (° C.). The lower limit of the average droplet diameter D (μm) of the droplet group that saturates the cooling unevenness in the width direction of the steel sheet is the limit temperature at which partial film boiling (transition boiling) occurs. It has been found that the average droplet diameter D (μm) of the above satisfies the following formula (2) further in relation to the cooling stop temperature T (° C.).
D ≧ 3.0 × 10 −3 × T 2 −1.2 × T + 1.3 × 10 2 (2)
FIG. 5 shows the relationship between the cooling stop temperature T (° C.) according to the equations (1) and (2) and the average droplet diameter D (μm) of the droplet group. A broken line is Formula (1) and a continuous line is Formula (2).

なお、液滴群の平均液滴直径D(μm)と冷却停止温度T(℃)との関係式は、操業条件、特に冷却条件によって、式(1)や式(2)とは異なる可能性がある。このため、本発明はこれらの式には限定されず、液滴群の平均液滴直径D(μm)が、冷却停止温度T(℃)との関係で、冷却の開始から冷却停止温度T(℃)となる冷却終了まで膜沸騰状態が維持されるサイズであることが重要である。これにより、合金化後の冷却における鋼板幅方向の冷却ムラを抑制し、それに起因する欠陥の発生を抑制することが可能である。なお、本発明は、相対的には冷却能力の低い膜沸騰状態で冷却を行うものではあるが、液滴の噴霧量を適切に制御すれば、十分な冷却能力を得ることができる。そのため、ガス冷却を含む特許文献1や、後段の冷却を前段の冷却よりも緩冷却にする特許文献2のように、生産性を阻害することはない。   The relational expression between the average droplet diameter D (μm) of the droplet group and the cooling stop temperature T (° C.) may be different from the formula (1) and the formula (2) depending on the operation conditions, particularly the cooling conditions. There is. For this reason, the present invention is not limited to these equations, and the average droplet diameter D (μm) of the droplet group is related to the cooling stop temperature T (° C.) from the start of cooling to the cooling stop temperature T ( It is important that the film boiling state be maintained until the cooling is completed. Thereby, it is possible to suppress cooling unevenness in the steel plate width direction in cooling after alloying, and to suppress generation of defects due to the cooling unevenness. In the present invention, cooling is performed in a film boiling state having a relatively low cooling capacity, but sufficient cooling capacity can be obtained by appropriately controlling the droplet spray amount. Therefore, the productivity is not hindered as in Patent Document 1 including gas cooling and Patent Document 2 in which the latter cooling is performed more slowly than the preceding cooling.

本発明の他の実施形態では、本発明を適用する操業条件において、冷却の開始から冷却停止温度T(℃)となる冷却終了まで、液滴群が鋼板の表面に接触せず、膜沸騰状態が維持される、液滴群の平均液滴直径D(μm)と冷却停止温度T(℃)との関係式を予め求め、求めた関係式を満足するように、液滴群の平均液滴直径D(μm)を制御して、合金化後の鋼板の冷却を行えばよい。これにより、合金化後の冷却における鋼板幅方向の冷却ムラを抑制し、それに起因する欠陥の発生を抑制することが可能である。   In another embodiment of the present invention, in the operating conditions to which the present invention is applied, the droplet group does not contact the surface of the steel plate from the start of cooling to the end of cooling at the cooling stop temperature T (° C.), and the film is boiling. Is maintained in advance, a relational expression between the average droplet diameter D (μm) of the droplet group and the cooling stop temperature T (° C.) is obtained in advance, and the average droplet of the droplet group is satisfied so as to satisfy the obtained relational expression. The steel sheet after alloying may be cooled by controlling the diameter D (μm). Thereby, it is possible to suppress cooling unevenness in the steel plate width direction in cooling after alloying, and to suppress generation of defects due to the cooling unevenness.

図1に示す連続合金化溶融亜鉛めっき設備を用いて、上述の式(1)および式(2)を求めた実験と同じ操業条件で、合金化溶融亜鉛めっき鋼板を製造した。冷却停止温度T(℃)を300℃、350℃、400℃の3水準として、液滴群の平均液滴直径D(μm)、二酸化炭素の飽和溶解量に対する溶解量の割合(%)を表1に示すものとした。冷却後の鋼板の幅方向温度差(最大温度−最小温度)を放射温度計により測定し、結果を表1に示した。   Using the continuous alloying hot-dip galvanizing equipment shown in FIG. 1, an alloyed hot-dip galvanized steel sheet was manufactured under the same operating conditions as the experiments for obtaining the above-described equations (1) and (2). The cooling stop temperature T (° C.) is set to three levels of 300 ° C., 350 ° C., and 400 ° C., and the average droplet diameter D (μm) of the droplet group and the ratio (%) of the dissolution amount to the saturated dissolution amount of carbon dioxide are shown. As shown in FIG. The temperature difference (maximum temperature-minimum temperature) of the steel sheet after cooling was measured with a radiation thermometer, and the results are shown in Table 1.

また、冷却中の鋼板表面近傍をカメラで撮影した映像を目視で観察し、冷却中の液滴群の状態を調べた。   In addition, an image obtained by photographing the vicinity of the surface of the steel sheet being cooled with a camera was visually observed, and the state of the droplet group being cooled was examined.

また、鋼板の欠陥については、得られた鋼板を目視し、シワ状模様が無いものを合格とした。   Moreover, about the defect of a steel plate, the obtained steel plate was observed visually and the thing without a wrinkle-like pattern was set as the pass.

Figure 2017222900
Figure 2017222900

表1に示すように、式(1)を満足しない比較例では、鋼板幅方向の温度差が大きくなり、鋼板表面にシワ状の模様が発生するといった欠陥が生じた。これに対し、式(1)を満足する本発明例では、鋼板幅方向の温度差が非常に小さく、鋼板表面にシワ状の模様が発生するといった欠陥は生じなかった。また、観察の結果、比較例では、冷却の初期は膜沸騰状態であったが、後半で部分膜沸騰状態となっていたのに対し、発明例では、冷却の初期から終了まで膜沸騰状態が維持されていた。   As shown in Table 1, in the comparative example not satisfying the formula (1), the temperature difference in the steel plate width direction was increased, and a defect such that a wrinkled pattern was generated on the steel plate surface occurred. On the other hand, in the example of the present invention satisfying the formula (1), the temperature difference in the width direction of the steel sheet was very small, and there was no defect that a wrinkled pattern was generated on the surface of the steel sheet. Moreover, as a result of observation, in the comparative example, the initial stage of cooling was in a film boiling state, but in the latter half it was in a partial film boiling state, whereas in the inventive example, the film boiling state was from the initial stage to the end of cooling. It was maintained.

本発明の合金化溶融亜鉛めっき鋼板の製造方法によれば、鋼板の生産性向上を阻害することなく、合金化後の冷却における鋼板幅方向の冷却ムラを抑制し、それに起因する欠陥の発生を抑制することが可能である。   According to the method for producing an alloyed hot-dip galvanized steel sheet of the present invention, the unevenness of cooling in the width direction of the steel sheet in the cooling after alloying is suppressed without hindering the productivity improvement of the steel sheet, and the occurrence of defects due to it is suppressed. It is possible to suppress.

100 連続合金化溶融亜鉛めっき設備
10 冷却装置
12 空気用ヘッダ
14 ノズル
20 溶融亜鉛めっき浴
21 シンクロール
22 ガスワイピング装置
23 合金化炉
24 (走査型)放射温度計
25 トップロール
P 鋼板
DESCRIPTION OF SYMBOLS 100 Continuous alloying hot dip galvanization equipment 10 Cooling device 12 Air header 14 Nozzle 20 Hot dip galvanizing bath 21 Sink roll 22 Gas wiping device 23 Alloying furnace 24 (Scanning type) Radiation thermometer 25 Top roll P Steel plate

Claims (4)

焼鈍された鋼板に溶融亜鉛めっきを施し、その後、前記鋼板に施された亜鉛めっきを加熱合金化し、次いで冷却液を微細化した液滴群を前記鋼板に向けて噴射して前記鋼板を冷却停止温度T(℃)まで冷却する合金化溶融亜鉛めっき鋼板の製造方法であって、
前記液滴群には、20℃、二酸化炭素1気圧の場合における二酸化炭素の飽和溶解量の1.0%以上の二酸化炭素が溶解しており、
前記液滴群の平均液滴直径D(μm)は、前記冷却の開始から前記冷却停止温度T(℃)となる冷却終了まで、前記液滴群が前記鋼板の表面に接触せず、前記液滴群が蒸発して蒸気膜を形成した状態が維持されるサイズであることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
Hot-dip galvanizing is applied to the annealed steel sheet, and then the galvanization applied to the steel sheet is heat-alloyed, and then cooling of the steel sheet is stopped by spraying a group of droplets with a refined coolant toward the steel sheet. A method for producing an alloyed hot-dip galvanized steel sheet that is cooled to a temperature T (° C),
In the droplet group, carbon dioxide of 1.0% or more of the saturated dissolution amount of carbon dioxide at 20 ° C. and 1 atmosphere of carbon dioxide is dissolved,
The average droplet diameter D (μm) of the droplet group is such that the droplet group does not contact the surface of the steel plate from the start of cooling until the end of cooling at the cooling stop temperature T (° C.). A method for producing an alloyed hot-dip galvanized steel sheet, characterized in that the droplet group has a size capable of maintaining a state in which a vapor film is formed by evaporation.
前記液滴群の平均液滴直径D(μm)は、前記冷却停止温度T(℃)との関係で下記式(1)を満足することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。
D<5.0×10−3×T−2.0×T+2.2×10・・・(1)
2. The alloyed molten zinc according to claim 1, wherein an average droplet diameter D (μm) of the droplet group satisfies the following formula (1) in relation to the cooling stop temperature T (° C.). Manufacturing method of plated steel sheet.
D <5.0 × 10 −3 × T 2 −2.0 × T + 2.2 × 10 2 (1)
前記液滴群の平均液滴直径D(μm)は、前記冷却停止温度T(℃)、との関係でさらに下記式(2)を満足することを特徴とする請求項2に記載の合金化溶融亜鉛めっき鋼板の製造方法。
D≧3.0×10−3×T−1.2×T+1.3×10・・・(2)
3. The alloying according to claim 2, wherein an average droplet diameter D (μm) of the droplet group further satisfies the following formula (2) in relation to the cooling stop temperature T (° C.). Manufacturing method of hot dip galvanized steel sheet.
D ≧ 3.0 × 10 −3 × T 2 −1.2 × T + 1.3 × 10 2 (2)
焼鈍された鋼板に溶融亜鉛めっきを施し、その後、前記鋼板に施された亜鉛めっきを加熱合金化し、次いで冷却液を微細化した液滴群を前記鋼板に向けて噴射して前記鋼板を冷却停止温度T(℃)まで冷却する合金化溶融亜鉛めっき鋼板の製造方法であって、
前記液滴群には、20℃、二酸化炭素1気圧の場合における二酸化炭素の飽和溶解量の1.0%以上の二酸化炭素が溶解しており、
前記冷却の開始から前記冷却停止温度T(℃)となる冷却終了まで、前記液滴群が前記鋼板の表面に接触せず、前記液滴群が蒸発して蒸気膜が形成された状態が維持される、前記液滴群の平均液滴直径D(μm)と前記冷却停止温度T(℃)との関係式を予め求め、
該関係式を満足する平均液滴直径D(μm)で冷却を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
Hot-dip galvanizing is applied to the annealed steel sheet, and then the galvanization applied to the steel sheet is heat-alloyed, and then cooling of the steel sheet is stopped by spraying a group of droplets with a refined coolant toward the steel sheet. A method for producing an alloyed hot-dip galvanized steel sheet that is cooled to a temperature T (° C),
In the droplet group, carbon dioxide of 1.0% or more of the saturated dissolution amount of carbon dioxide at 20 ° C. and 1 atmosphere of carbon dioxide is dissolved,
From the start of the cooling to the end of cooling at the cooling stop temperature T (° C.), the droplet group does not contact the surface of the steel sheet, and the droplet group evaporates to form a vapor film. A relational expression between the average droplet diameter D (μm) of the droplet group and the cooling stop temperature T (° C.) is obtained in advance,
A method for producing an alloyed hot-dip galvanized steel sheet, wherein cooling is performed with an average droplet diameter D (μm) satisfying the relational expression.
JP2016118731A 2016-06-15 2016-06-15 Method for producing galvannealed steel sheet Active JP6439755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118731A JP6439755B2 (en) 2016-06-15 2016-06-15 Method for producing galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118731A JP6439755B2 (en) 2016-06-15 2016-06-15 Method for producing galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2017222900A true JP2017222900A (en) 2017-12-21
JP6439755B2 JP6439755B2 (en) 2018-12-19

Family

ID=60686330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118731A Active JP6439755B2 (en) 2016-06-15 2016-06-15 Method for producing galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP6439755B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110934A (en) * 1978-02-20 1979-08-30 Daido Steel Co Ltd Method and apparatus for jet type cooling of strip in continuous plating machine
JPH10237613A (en) * 1997-02-21 1998-09-08 Nkk Corp Hot-dip zinc-aluminum alloy coated steel sheet excellent in surface smoothness, and its production
JP2000256818A (en) * 1999-03-05 2000-09-19 Kawasaki Steel Corp Method and device for cooling galvanized steel sheet
WO2008105242A1 (en) * 2007-02-28 2008-09-04 Yamaguchi University Sterilization method using expansion of dissolved gas
JP2012187464A (en) * 2011-03-09 2012-10-04 Iwase:Kk Mixer apparatus
JP2013245376A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing hot-dip galvanized steel plate
JP2014004326A (en) * 2012-05-28 2014-01-16 Hot Album Tansansen Tablet Inc Production method and production apparatus of carbon dioxide gas-containing hot water, and kit tablet for carbon dioxide gas dissolver
JP2015004080A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Vertical cooling device for steel plate, and method of manufacturing galvanized steel plate using the same
JP2015055002A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
JP2015055001A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
WO2016013240A1 (en) * 2014-07-24 2016-01-28 新日鐵住金株式会社 Cooling method and cooling device for strip steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110934A (en) * 1978-02-20 1979-08-30 Daido Steel Co Ltd Method and apparatus for jet type cooling of strip in continuous plating machine
JPH10237613A (en) * 1997-02-21 1998-09-08 Nkk Corp Hot-dip zinc-aluminum alloy coated steel sheet excellent in surface smoothness, and its production
JP2000256818A (en) * 1999-03-05 2000-09-19 Kawasaki Steel Corp Method and device for cooling galvanized steel sheet
WO2008105242A1 (en) * 2007-02-28 2008-09-04 Yamaguchi University Sterilization method using expansion of dissolved gas
JP2012187464A (en) * 2011-03-09 2012-10-04 Iwase:Kk Mixer apparatus
JP2013245376A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing hot-dip galvanized steel plate
JP2014004326A (en) * 2012-05-28 2014-01-16 Hot Album Tansansen Tablet Inc Production method and production apparatus of carbon dioxide gas-containing hot water, and kit tablet for carbon dioxide gas dissolver
JP2015004080A (en) * 2013-06-19 2015-01-08 Jfeスチール株式会社 Vertical cooling device for steel plate, and method of manufacturing galvanized steel plate using the same
JP2015055002A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
JP2015055001A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
WO2016013240A1 (en) * 2014-07-24 2016-01-28 新日鐵住金株式会社 Cooling method and cooling device for strip steel

Also Published As

Publication number Publication date
JP6439755B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6011740B2 (en) Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility
WO2016013240A1 (en) Cooling method and cooling device for strip steel
JP5169307B2 (en) Manufacturing method of molten metal plated steel strip
AU2019323956B2 (en) Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating line
JP2018009220A (en) Production method of molten metal plated steel strip, and continuous molten metal plating facility
JP2006307244A (en) Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip
JPWO2018037916A1 (en) Method for cooling high-temperature metal and method for producing hot-dip galvanized steel strip
JP6439755B2 (en) Method for producing galvannealed steel sheet
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP2001262220A (en) Method for cooling steel material
JP6031906B2 (en) Wiping method for continuous molten metal-plated steel strip.
KR101560935B1 (en) Plating Apparatus and Plating Method
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP6638872B1 (en) Method for producing hot-dip coated steel strip and continuous hot-dip metal plating equipment
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JP6414360B2 (en) Manufacturing method of molten metal plated steel strip
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP2007070664A (en) Hot dip metal coated steel strip manufacturing method
JP4410653B2 (en) Alloying furnace outlet side water cooling method
JP2023156878A (en) Production method of galvanized steel sheet
JP2007332450A (en) Hot-dipped wire, and cooling device therefor
JP2004010960A (en) Cooling process in process line for manufacturing industrial product
JPH04285195A (en) Method for preventing quench staining of tin plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250