JP2006307244A - Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip - Google Patents

Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip Download PDF

Info

Publication number
JP2006307244A
JP2006307244A JP2005127742A JP2005127742A JP2006307244A JP 2006307244 A JP2006307244 A JP 2006307244A JP 2005127742 A JP2005127742 A JP 2005127742A JP 2005127742 A JP2005127742 A JP 2005127742A JP 2006307244 A JP2006307244 A JP 2006307244A
Authority
JP
Japan
Prior art keywords
cooling
gas
seal
sealing
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005127742A
Other languages
Japanese (ja)
Inventor
Itaru Hashimoto
格 橋本
Sukebumi Takemura
資文 武村
Taro Oguro
太朗 大黒
Mikio Kawamura
三喜夫 川村
Yasuo Matsuura
泰夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005127742A priority Critical patent/JP2006307244A/en
Publication of JP2006307244A publication Critical patent/JP2006307244A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing unit and sealing method for cooling process in a continuous heat treatment facility for steel strip, wherein the lowering of quality in the steel strip and the lowering of cooling accuracy can be prevented at low cost by preventing the blowing-out of mist and generated steam from a cooling zone during cooling with the cooling water. <P>SOLUTION: A sealing body 19 forming a passing gap 21 for sealing fluid is arranged in between the passed steel strip 11 at a front process side near the hole in the cooling zone 5a, and a sealing space 22 is formed between the sealing body 19 and the cooling zone 5a, and a suction circulating unit 24 for sucking atmospheric gas. is arranged in the cooling space 22. In the circulating passage 25 for atmospheric gas sucked with the suction circulating unit 24, a mist removal unit 26 for atmospheric gas and a gas dispersing unit 27 for adjusting the atmospheric pressure in the sealing space with the atmospheric pressure in the cooling zone 5a and a circulation supplying passage for supplying the atmospheric gas after removing the mist with the mist removal unit 26 as the sealing fluid into the sealing unit are arranged. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水を冷却媒体として用いる冷却工程を備えた、鋼帯の連続熱処理設備における冷却工程のシール装置およびシール方法に関し、より具体的には、鋼帯の連続熱処理設備における冷却工程で冷却中に冷却工程から前工程へのミストや発生水蒸気の吹き出しを防止するための冷却工程のシール装置およびシール方法に関するものである。   The present invention relates to a sealing device and a sealing method for a cooling process in a steel strip continuous heat treatment facility, which includes a cooling process using water as a cooling medium, and more specifically, cooling in a cooling process in a steel strip continuous heat treatment facility. The present invention relates to a sealing device and a sealing method in a cooling process for preventing a mist and a generated steam from blowing out from the cooling process to the previous process.

一般の鋼帯の連続熱処理に用いられる連続熱処理設備は、例えば図3に示すように、ペイオフリール1から巻き戻された鋼帯11は、洗浄装置2を通って加熱工程3、均熱工程4、一次冷却工程5、復熱工程6、過時効工程7、二次冷却工程8を通り、後処理工程9を経てテンションリール10に巻き取られるようになっている。一次冷却工程5では、冷却媒体として、ガスや冷却水、気水が用いられている。
この一次冷却工程5では、温度が500〜700℃の鋼帯を冷却対象とし、200℃/sec以下の冷却速度で冷却するため、冷却中に冷却空間からのミストや発生水蒸気(以下「ミスト等」とも言う。)などが吹き出すことがある。これらは、露点上昇作用があり、例えば冷却工程直前の均熱工程・徐冷工程などと冷却工程間において、鋼帯11を酸化させて鋼帯11の表面品質を直接的に低下させ、また、鋼帯11の酸化に起因する炉内ロールのビルドアップ発生させ鋼帯11の表面性状を間接的に低下させる問題を起こすことがある。また、このミスト等は、冷却工程入側で鋼帯11の温度を測定する板温計の測温視野をさえぎり測温精度を低下させる原因となり、ひいては冷却精度にばらつきを生じさせる等、鋼帯11の均一冷却を安定的に実現することが困難になり、鋼帯11の良品歩留まりを高位に安定確保することができなくなる。
For example, as shown in FIG. 3, the steel strip 11 unwound from the payoff reel 1 passes through the cleaning device 2 and is heated in a heating process 3 and a soaking process 4. The primary cooling process 5, the recuperation process 6, the overaging process 7, and the secondary cooling process 8 are passed through the post-treatment process 9 and wound around the tension reel 10. In the primary cooling step 5, gas, cooling water, or air is used as a cooling medium.
In this primary cooling step 5, a steel strip having a temperature of 500 to 700 ° C. is to be cooled and cooled at a cooling rate of 200 ° C./sec or less. Therefore, mist and generated water vapor (hereinafter referred to as “mist or the like” from the cooling space during cooling are used. Etc.)) may blow out. These have a dew point raising action, for example, between the soaking step immediately before the cooling step and the slow cooling step and the cooling step, the steel strip 11 is oxidized to directly reduce the surface quality of the steel strip 11, A build-up of the in-furnace roll due to oxidation of the steel strip 11 may occur, causing a problem of indirectly reducing the surface properties of the steel strip 11. Moreover, this mist etc. causes the temperature measurement field of the plate thermometer which measures the temperature of the steel strip 11 on the cooling process entrance side to be interrupted, resulting in a decrease in the temperature measurement accuracy, and thus causing a variation in the cooling accuracy. Therefore, it becomes difficult to stably achieve the uniform cooling of the steel strip 11, and the yield of the steel strip 11 cannot be secured stably at a high level.

この対策として、例えば冷却工程の入口にシールガスを通板鋼帯に対して直角に噴射して冷却工程からのミストや水蒸気の吹き出しを防止する方法も知られている。しかし、この場合、十分なシール性を確保するために、大量のシールガスが必要となる問題があった。
また、例えば特許文献1には、冷却工程とその前後工程との境界に、鋼帯を挟むようにシールロールまたは仕切り板によるシール体を配設し、鋼帯とシール体との間隙にガス吐出ノズルを向けて設置して、シールガス噴流を鋼帯幅方向全域に吹き付け可能にしたシール装置が開示され、更には、シールガス噴流速度を対向する冷却工程からの冷却媒体の速度より大きくすることも開示されている。
しかし、特許文献1に記載の発明では、例えば、実施例で、シールガスとして、別系からの窒素ガスを用いているが、シール性を高めるためには、冷却媒体の流速より大きな流速を確保するための、大量のシールガスが必要でコスト高になるという問題がある。また、この場合、シールガスが冷却工程内に多量に侵入して冷却工程内の圧力を上昇させることになり、シール性確保のために更にシールガスの供給量を増加させる必要があることに加え、冷却工程に侵入するシールガスによって冷却を不安定(低下)にする懸念がある。
As a countermeasure, for example, a method is known in which a sealing gas is injected at a right angle to the steel strip at the inlet of the cooling process to prevent mist and water vapor from blowing out from the cooling process. However, in this case, there is a problem that a large amount of sealing gas is required to ensure sufficient sealing performance.
Further, for example, in Patent Document 1, a seal body made of a seal roll or a partition plate is disposed so as to sandwich a steel strip at the boundary between the cooling process and the preceding and following processes, and gas is discharged into the gap between the steel strip and the seal body. Disclosed is a sealing device in which a nozzle is installed so that a seal gas jet can be sprayed across the entire width of the steel strip. Further, the seal gas jet velocity is made larger than the speed of the cooling medium from the opposing cooling process. Is also disclosed.
However, in the invention described in Patent Document 1, for example, nitrogen gas from another system is used as the seal gas in the embodiment, but in order to improve the sealing performance, a flow rate larger than the flow rate of the cooling medium is ensured. Therefore, there is a problem that a large amount of sealing gas is required to increase the cost. Further, in this case, a large amount of the sealing gas enters the cooling process and increases the pressure in the cooling process, and it is necessary to further increase the supply amount of the sealing gas to ensure the sealing performance. There is a concern that the cooling may become unstable (decreased) due to the sealing gas entering the cooling process.

近年、例えば自動車業界では、車体の軽量化による燃費向上、衝突時の安全性確保のために、例えば引張強さ780MPa級以上の高強度鋼板のニーズが高まり、最近ではTS1470MPa級の高強度鋼板の要請も高まってきている。
このような高強度鋼板を得るために、通常の場合、連続熱処理設備の均熱工程後あるいは均熱徐冷工程後の急速冷却工程(一次冷却工程)で、冷却速度を一般鋼帯の場合より格段に大きくして焼入をすることで所望強度を確保するようにしている。
このような高強度鋼板を得るための急速冷却には、大きな冷却速度を得るため、気水冷却や水スプレー冷却、あるいは水ディップ/クェンチ(焼き入れ)冷却など、冷却媒体として水を用いるが、冷却負荷が大きいために冷却水量を多くする必要があり、スプレー水や発生水蒸気が通常の一般鋼帯を冷却対象とした場合に比較して格段に多く、その吹き出し流速も格段に大きいものになる。
In recent years, for example, in the automobile industry, the need for high-strength steel sheets with a tensile strength of 780 MPa or higher, for example, has been increasing in order to improve fuel efficiency by reducing the weight of the vehicle body and ensure safety during a collision. Requests are also increasing.
In order to obtain such a high-strength steel sheet, the cooling rate is usually higher in the rapid cooling process (primary cooling process) after the soaking process or after the soaking annealing process of the continuous heat treatment equipment than in the case of a general steel strip. The desired strength is ensured by significantly increasing the size and quenching.
For rapid cooling to obtain such a high-strength steel sheet, water is used as a cooling medium such as air-water cooling, water spray cooling, or water dip / quenching (quenching) cooling in order to obtain a large cooling rate. Since the cooling load is large, it is necessary to increase the amount of cooling water, and the amount of spray water and generated water vapor is much higher than when cooling ordinary general steel strips, and the blowout flow rate is also significantly higher. .

このため、冷却水や発生水蒸気が、急速冷却工程からその直前の徐冷工程あるいは均熱工程に吹き出しやすく、これらは露点上昇作用が顕著であり鋼板を酸化させ、また、急速冷却工程入側の板温計の視野をさえぎる度合いが大きく、板温計の測温にばらつきを生じやすい。
この急速冷却工程入側の板温のばらつきは、急速冷却工程での冷却精度にも影響し、急速冷却工程出側の鋼帯温度にばらつきを生じ、鋼帯品質のばらつきにつながり、製品歩留に影響する度合いは一般鋼帯に比較して格段に顕著であることから、急冷工程からのミストや発生水蒸気の吹き出しを防止して、鋼板酸化の防止や冷却精度の向上を一層図る必要がある。
For this reason, the cooling water and the generated steam are likely to blow out from the rapid cooling process to the slow cooling process or the soaking process immediately before the rapid cooling process, which has a remarkable dew point raising action and oxidizes the steel sheet. The degree of obstruction of the visual field of the plate thermometer is large, and the temperature measurement of the plate thermometer tends to vary.
This variation in the plate temperature on the entry side of the rapid cooling process also affects the cooling accuracy in the rapid cooling process, resulting in variations in the steel strip temperature on the exit side of the rapid cooling process, leading to variations in steel strip quality and product yield. The degree of impact on the steel strip is much more remarkable than that of general steel strips, so it is necessary to prevent mist from the rapid cooling process and the generation of generated steam to prevent steel plate oxidation and improve cooling accuracy. .

このTS1470MPa級の高強度鋼板を得るための連続熱処理設備の冷却工程に、特許文献1に記載の発明のシール装置の適用も考えられるが、これを使用した場合には、上記特許文献1に記載の発明のシール装置適用の問題点がさらに顕著になるため、そのままで適用することは難しい。
現状での対応策として、急速冷却工程直前の徐冷工程や均熱工程側の圧力を上げたりしているが、制御可能な圧力には操業上の上限があるため十分な解決には至っていない。
特開平10−298667号公報
Although the application of the sealing device of the invention described in Patent Document 1 can be considered in the cooling process of the continuous heat treatment equipment for obtaining the TS1470 MPa class high-strength steel sheet, when this is used, it is described in Patent Document 1 above. Since the problem of applying the sealing device of the present invention becomes more prominent, it is difficult to apply it as it is.
The current countermeasure is to increase the pressure in the slow cooling process and soaking process just before the rapid cooling process, but the controllable pressure has an operational upper limit, so it has not been fully resolved. .
Japanese Patent Laid-Open No. 10-298667

本発明は、冷却水(ここでは、水および水と気体の混合体を意味し、以下、単に「冷却水」ともいう。)を冷却媒体とする鋼帯の連続熱処理設備の冷却工程で冷却中に、ミストや発生水蒸気が冷却工程前の均熱工程や徐冷工程側に吹き出すのを防止して、均熱工程や徐冷工程での鋼帯の酸化による表面質の低下や鋼帯酸化による炉内ロールのビルドアップの発生による鋼帯の品質(表面性状)の低下を防止するとともに、冷却工程入側の板温計の測温精度のばらつきによる冷却精度の低下を低コストで防止可能な、鋼帯の連続熱処理設備における冷却工程のシール装置およびシール方法を提供する。   The present invention is cooling in the cooling process of a continuous heat treatment equipment for steel strip using cooling water (herein, water and a mixture of water and gas, hereinafter also simply referred to as “cooling water”) as a cooling medium. In addition, mist and generated steam are prevented from blowing out to the soaking process and slow cooling process before the cooling process, and due to the deterioration of the surface quality due to the oxidation of the steel strip in the soaking process and the slow cooling process. Prevents deterioration of steel strip quality (surface properties) due to build-up of in-furnace rolls, and prevents low cost cooling due to variations in temperature measurement accuracy of the thermometer on the inlet side of the cooling process The present invention provides a sealing device and a sealing method for a cooling process in a continuous heat treatment facility for a steel strip.

本発明は、上記の課題を解決するために、以下の(1)〜(5)を要旨とするものである。
(1) 冷却媒体として冷却水を用いる冷却工程を有し冷却工程から前工程側へのミストや水蒸気の吹き出しを防止するシールガスによるシール構造を備えた鋼帯の連続熱処理設備において、冷却工程の冷却帯入口近傍の前工程側に、通板鋼帯との間にシールガスの通入間隙を形成するシール体を配設してシール体と冷却帯との間に冷却帯と連通するシール空間を形成し、このシール空間の前工程側に通板鋼帯に向けてシールガスを斜めに噴射し通入間隙経由でシール空間に通入するシールガス噴射装置を配設して、シール空間内に流入したシールガスと冷却帯からのミストや水蒸気からなる雰囲気ガスを吸引する吸引循環装置と、この吸引循環装置で吸引した雰囲気ガスの循環路に配設した雰囲気ガスのミスト除去装置と、シール空間の圧力を調整するガス放散装置を備えた圧力調整装置と、ミスト除去装置でミスト除去後のガスをシールガスとしてシールガス噴射装置に供給する循環供給路を配設したことを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール装置。
(2) (1)において、シール空間を形成するシール体が、通板鋼帯を挟んで対向配置されたロールであることを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール装置。
(3) (1)または(2)において、シールガス噴射装置が別系からの不活性ガス供給装置と、混合装置または切替装置を介して連結してなり、不活性ガスをシール用流体として併用可能に構成したことを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール装置。
In order to solve the above-described problems, the present invention has the following (1) to (5).
(1) In a continuous heat treatment facility for a steel strip having a cooling structure using a cooling water as a cooling medium and having a sealing structure with a sealing gas that prevents mist and steam from blowing out from the cooling process to the previous process side, A seal space is formed between the seal body and the cooling zone so that a sealing body is formed between the sealing plate and the cooling zone. A seal gas injection device is disposed on the upstream side of the seal space at a pre-process side to inject the seal gas obliquely toward the plate steel strip and to enter the seal space through the insertion gap. A suction circulation device for sucking the atmosphere gas composed of the seal gas and the mist and water vapor from the cooling zone, the atmosphere gas mist removal device disposed in the circulation path of the atmosphere gas sucked by the suction circulation device, and the seal Space pressure A pressure adjusting device having a gas diffusing device for adjusting the gas, and a circulation supply path for supplying the gas after mist removal by the mist removing device as a seal gas to the seal gas injection device, Sealing device for cooling process in continuous heat treatment equipment.
(2) A sealing device for a cooling process in a continuous heat treatment facility for steel strips, characterized in that, in (1), the sealing body forming the seal space is a roll disposed opposite to the sheet steel strip.
(3) In (1) or (2), the seal gas injection device is connected to an inert gas supply device from another system via a mixing device or a switching device, and the inert gas is used as a sealing fluid. A sealing device for a cooling process in a continuous heat treatment facility for steel strip, characterized in that it is configured.

(4) 冷却媒体として冷却水を用いる冷却工程から前工程側への水ミストや水蒸気の吹き出しをシールガス噴射流により防止するようにした鋼帯の連続熱処理設備の冷却工程のシール方法において、冷却工程の冷却帯の入口近傍の前工程側に、通板鋼帯とシールガスの通入間隙を有して冷却帯に連通するシール空間を形成し、通板鋼帯に向けてシールガスを斜めに噴射して通入間隙経由でシール空間に通入し、シール空間内の通入シールガスと冷却帯からのミストや水蒸気からなる雰囲気ガスをシール空間から吸引して、シール空間内の圧力を冷却帯の圧力を過剰上昇させない圧力範囲に調整し、この吸引雰囲気ガス中のミストを除去してシールガスとして循環使用することを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール方法。
(5) (4)において、シールガスとして不活性ガスを併用することを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール方法。
(4) In the sealing method of the cooling process of the continuous heat treatment equipment for the steel strip, which prevents the blowing of water mist and water vapor from the cooling process using the cooling water as the cooling medium to the previous process side by the seal gas jet flow. A seal space is formed on the front process side in the vicinity of the inlet of the cooling zone of the process and has a gap between the sheet metal strip and the seal gas to communicate with the cooling zone, and the seal gas is slanted toward the plate steel strip. Is injected into the seal space via the inlet gap, and the atmosphere gas consisting of the inlet seal gas in the seal space and the mist and water vapor from the cooling zone is sucked from the seal space, and the pressure in the seal space is reduced. Adjusting the pressure in the cooling zone to a pressure range that does not cause an excessive rise, removing the mist in the suction atmosphere gas and circulating it as a seal gas, sealing the cooling process in the continuous heat treatment equipment for the steel strip Law.
(5) In (4), an inert gas is used in combination as a seal gas, and the sealing method for the cooling step in the steel strip continuous heat treatment facility.

本発明では、シール空間から吸引したシールガスと冷却帯からのミストや水蒸気からなる雰囲気ガスを、ミスト除去後にシールガスとして循環使用するので、別系からの不活性ガスの使用量を大幅に削減でき、シールガスコストを大幅に低減できる。
また、シール空間(または冷却帯)の雰囲気ガス圧力を冷却帯の冷却精度が阻害されない範囲にするように、雰囲気ガスを吸引して圧力を調整(例えば放散や不活性ガス補充などによる)するので、シール空間で冷却帯での冷却精度を阻害することなく安定的にシールすることができる。
その上で、冷却工程からのミストや発生水蒸気の吹き出しによる測温視界の悪化を防止して、冷却工程入側の板温の測温精度のばらつきを小さくし冷却精度を安定確保することができ、一般鋼帯、高張力鋼帯のいずれを冷却対象とした場合も、冷却して得られた鋼帯の温度のばらつきを小さくし、表面性状に優れ抗張力のばらつきの少ない品質の良好な製品を安定確保できる。
In the present invention, the sealing gas sucked from the sealing space and the atmospheric gas consisting of mist and water vapor from the cooling zone are circulated and used as the sealing gas after mist removal, greatly reducing the amount of inert gas used from other systems. This can greatly reduce the sealing gas cost.
Also, because the atmospheric gas pressure in the sealing space (or cooling zone) is adjusted so that the cooling accuracy of the cooling zone is not hindered, the pressure is adjusted by sucking the atmospheric gas (for example, by diffusion or inert gas replenishment). Thus, it is possible to stably seal the sealing space without hindering the cooling accuracy in the cooling zone.
In addition, it can prevent the temperature measurement visibility from deteriorating due to the mist from the cooling process and the generation of generated water vapor, and reduce the variation in the temperature measurement accuracy of the plate temperature at the inlet side of the cooling process, ensuring stable cooling accuracy. When cooling either general steel strips or high-tensile steel strips, it is possible to reduce the temperature variation of the steel strip obtained by cooling, and to produce a good quality product with excellent surface properties and little variation in tensile strength. Can ensure stability.

本発明は、鋼帯の連続熱処理設備の冷却工程における冷却帯の入口近傍の前工程側に、例えばロールを配設してシール空間を形成し、このシール空間に低露点のシールガスを噴射して、冷却中の冷却帯からシール空間に吹き出された水や水蒸気とシールガスからなる雰囲気ガス(ここでは以下「雰囲気ガス」という。)がシール空間から前工程である例えば均熱工程側へ流入しないようにシールするものである。
この場合、シール空間から雰囲気ガスが冷却帯に過剰に逆流して冷却帯での冷却精度を阻害しないように、シール空間から雰囲気ガスを吸引してシール空間の圧力を最適範囲に調整する。
シール空間から吸引した雰囲気ガスは、シールガスとして循環使用するため、ミスト(ここでは微小水滴を意味する、以下「ミスト」という。)を除去し低露点化してからシールガスとしてシールガス噴射装置に供給し、別系から不活性ガスの併用を考慮しながら、冷却帯の入口近傍の外部側から通板鋼帯に向けて斜めに噴射してシール空間に通入することによって、高露点の雰囲気ガスが冷却工程から前工程に流入するのを防止するように構成したものである。
冷却帯の圧力が大きい場合でも十分なシール性を確保できるものであることから、一般鋼帯から高強度鋼帯までを冷却対象とする連続熱処理設備の冷却工程に適用可能である。
In the cooling process of the steel strip continuous heat treatment equipment, the present invention forms, for example, a roll on the front side near the inlet of the cooling zone to form a seal space, and a low dew point seal gas is injected into the seal space. Then, an atmosphere gas (hereinbelow referred to as “atmosphere gas”) consisting of water, water vapor and seal gas blown from the cooling zone being cooled into the seal space flows into the soaking process side, for example, from the seal space. It is to be sealed so that it does not.
In this case, the atmospheric gas is sucked from the seal space and the pressure in the seal space is adjusted to the optimum range so that the atmospheric gas does not excessively flow back from the seal space to the cooling zone and impair the cooling accuracy in the cooling zone.
The atmospheric gas sucked from the seal space is circulated and used as the seal gas. Therefore, the mist (herein, “micro mist”, hereinafter referred to as “mist”) is removed and the dew point is lowered before the seal gas is injected into the seal gas injection device. High dew point atmosphere by supplying and injecting into the seal space obliquely from the outside near the inlet of the cooling zone toward the sheet steel strip while considering the combined use of inert gas from another system It is configured to prevent the gas from flowing from the cooling process to the previous process.
Since sufficient sealing performance can be ensured even when the pressure in the cooling zone is large, it can be applied to a cooling process of a continuous heat treatment facility for cooling from a general steel strip to a high-strength steel strip.

以下、本発明を、高張力鋼帯(以下「鋼帯」と略称する。)の連続熱処理設備において、均熱工程の後に配設した、気水を冷却媒体とする一次冷却工程に適用した場合を例にして、図1に基づき主要部を主体にさらに具体的に説明する。
図1において、5aは冷却工程5の冷却帯で、均熱工程4からの500〜700℃に均熱された鋼帯11を下向きに通板して、その両面側に配置した斜め上向きの気水噴射口を有する複数の気水ノズル(スリットノズル)14から、気水15を噴射して鋼帯11を200℃/s以下の冷却速度で両面冷却して焼入れし、次工程(図示省略)に通板する。冷却後の気水は、大半は高露点である水蒸気17化して上昇する(一部は水として落下して回収・循環利用される)。この冷却中の冷却帯5aの圧力は、200Pa程度である。
Hereinafter, when the present invention is applied to a primary cooling process using air and water as a cooling medium in a continuous heat treatment facility for a high-strength steel strip (hereinafter abbreviated as “steel strip”). Will be described more specifically with reference to FIG.
In FIG. 1, 5a is a cooling zone of the cooling step 5, and the steel strip 11 which has been soaked from 500 to 700 ° C. from the soaking step 4 is passed downward, and the diagonally upward air disposed on both sides thereof. A plurality of steam nozzles (slit nozzles) 14 having water jets are sprayed with steam 15 to cool both sides of the steel strip 11 at a cooling rate of 200 ° C./s or less and quench, and the next step (not shown). Pass through. Most of the air after cooling rises to steam 17 which is a high dew point and rises (partly falls as water and is collected and circulated). The pressure in the cooling zone 5a during cooling is about 200 Pa.

ここで、均熱工程4、冷却工程5での鋼帯11は、外気と遮断した通板空間16を通板する。冷却帯5aは、均熱工程4からの通板空間16より広い冷却空間12を有するものであるが、水蒸気17は冷却空間12に充満して冷却帯5aから吹き出し均熱工程4側に流入しようとする。
高露点の水蒸気17が通板空間16を均熱工程4側に流入した場合、前述したように、均熱工程4から通板される鋼帯11を酸化させ品質を低下させたり、炉内ロールのビルドアップ発生により鋼帯11の品質をさらに悪化させるなど不都合を生じる懸念が大である。
また、冷却工程入側の板温計18の測温視野をさえぎる度合いが大きくなり、板温計18の測温にばらつきを生じやすく、冷却開始点のずれなどにより冷却帯5aでの冷却精度にばらつきを生じ冷却精度を低下させることにもなる。
Here, the steel strip 11 in the soaking step 4 and the cooling step 5 passes through the plate space 16 that is blocked from the outside air. The cooling zone 5a has a cooling space 12 wider than the passage space 16 from the soaking step 4, but the steam 17 fills the cooling space 12 and flows out of the cooling zone 5a to the soaking step 4 side. And
When the high dew point water vapor 17 flows through the plate passing space 16 to the soaking process 4 side, as described above, the steel strip 11 passed through the soaking process 4 is oxidized to reduce the quality, or the furnace roll There is a great concern that the quality of the steel strip 11 is further deteriorated due to the occurrence of build-up.
In addition, the degree of obstruction of the temperature measuring field of the plate thermometer 18 on the inlet side of the cooling process is increased, the temperature measurement of the plate thermometer 18 is likely to vary, and the cooling accuracy in the cooling zone 5a is improved due to the deviation of the cooling start point. Variations may occur and cooling accuracy may be reduced.

そこで、本発明では、冷却帯5aの上端部(鋼帯11への気水衝突領域の上方部)の入口近傍の通板空間16に、通板鋼帯11を挟み相対するように、シール体としてシールロール19を、通板鋼帯11との間にシールガス20噴流の通入間隙21を形成するように近接配置して、冷却帯5aの入口近傍の外部側に冷却帯5aに連通するシール空間22を形成する。
シールガス20は、シールガス噴射装置23の下向きに屈曲したスリットノズル23aから通板鋼帯11に対して斜め(ここでは約30度程度の角度)に噴射して、通入間隙21経由でシール空間22に通入させ、このシールガス20噴流で冷却帯5aから均熱工程4側への水蒸気17の流入を防止する。
ここで用いたシールロール19は、シールガス20噴流をシール空間22に押し込む方向に回転させることが有効であるが、回転させないロールであってもよく、ロール以外のシール体(例えばシール板など)を使用することもできる。
Therefore, in the present invention, the sealing body is arranged so that the plate steel strip 11 is sandwiched and opposed to the plate plate space 16 near the inlet of the upper end portion of the cooling zone 5a (the upper portion of the air-water collision region to the steel strip 11). The seal roll 19 is disposed close to the sheet steel strip 11 so as to form a gap 21 for the jet of the seal gas 20 and communicates with the cooling zone 5a on the outside near the inlet of the cooling zone 5a. A seal space 22 is formed.
The seal gas 20 is injected obliquely (in this case, an angle of about 30 degrees) from the slit nozzle 23 a bent downward to the seal gas injection device 23 and sealed through the insertion gap 21. It is made to pass into the space 22 and the inflow of the water vapor 17 from the cooling zone 5a to the soaking process 4 side is prevented by this jet of the seal gas 20.
The seal roll 19 used here is effective to rotate the jet of the seal gas 20 in the direction of pushing into the seal space 22, but it may be a roll that does not rotate, and a seal body other than the roll (for example, a seal plate). Can also be used.

シール空間22には、通入したシールガス20噴流と冷却帯5aからの水蒸気17による雰囲気ガスが充満し、シール空間22の圧力が冷却帯5a内の雰囲気圧力より過剰に高くなった場合には、冷却帯5a内に雰囲気ガスが流入しやすく、冷却帯5aでの冷却精度を安定確保できなくなるという問題を生じやすいので、シール空間22内の圧力を管理する。
具体的には、シール空間22のシールロール19側の側壁部から雰囲気ガスを吸引する吸引循環装置(ブロアー)24を配設して、吸引量調整や放散により圧力調整をして、シール空間22内の圧力を冷却帯5a内の設定圧力より低圧になるようにし、シール空間22から吸引した雰囲気ガスを、シールガス20として循環使用することによって、シールガス20のコストを低減する。
In the case where the seal space 22 is filled with the jet gas of the seal gas 20 and the atmospheric gas due to the water vapor 17 from the cooling zone 5a, and the pressure in the seal space 22 becomes excessively higher than the atmospheric pressure in the cooling zone 5a. Since the atmospheric gas tends to flow into the cooling zone 5a and the cooling accuracy in the cooling zone 5a cannot be secured stably, the pressure in the seal space 22 is managed.
Specifically, a suction circulation device (blower) 24 that sucks atmospheric gas from the side wall portion of the seal space 22 on the seal roll 19 side is arranged, and the pressure is adjusted by adjusting the suction amount or radiating the seal space 22. By reducing the internal pressure to be lower than the set pressure in the cooling zone 5 a and circulating and using the atmospheric gas sucked from the seal space 22 as the seal gas 20, the cost of the seal gas 20 is reduced.

ここで、シール空間22内のシールロール19の近傍領域の側壁から雰囲気ガスを吸引するようにしたのは、図2(a)、(b)に示すように、通板鋼帯11に斜めに噴射したシールガス20噴流が、冷却帯5aからシール空間22内に吹き出した水蒸気17の上昇流を、効果的に遮りながらシールロール19の近傍領域でシール空間22の側壁方向に流動するために、この領域の側壁部で雰囲気ガスを吸引することが有利であるとの知見によるものである。   Here, the atmospheric gas is sucked from the side wall in the vicinity of the seal roll 19 in the seal space 22 as shown in FIGS. 2 (a) and 2 (b). In order for the injected seal gas 20 jet to flow toward the side wall of the seal space 22 in the region near the seal roll 19 while effectively blocking the rising flow of the water vapor 17 blown out from the cooling zone 5a into the seal space 22. This is due to the finding that it is advantageous to suck the atmospheric gas at the side wall of this region.

シール空間22から吸引した雰囲気ガスは多量のミストを含み高露点化されており、そのままシールガス20として循環使用した場合には、冷却工程入側での鋼帯11の酸化や、板温計18の視野確保を阻害するなどの問題を生じるため、吸引循環装置24による吸引循環路25に設けたミスト除去装置26でミストを除去し低露点化してシールガス噴射装置23に循環供給するものである。
この循環供給のための循環供給路25には放散装置27を配設し、シール空間22(や冷却帯5a)に圧力計28を設けて、シール空間22(や冷却帯5a)の圧力が過剰になる懸念がある場合には、ミスト除去後の雰囲気ガスを適量放散してシール空間22に通入するシールガス20噴流の圧力調整を行い、冷却帯5aへのシールガス20の流入(過剰侵入)を防止し、冷却帯5aでの冷却精度を安定確保する。
The atmospheric gas sucked from the seal space 22 contains a large amount of mist and has a high dew point. When the gas is circulated as it is as it is, the oxidation of the steel strip 11 on the inlet side of the cooling process or the plate thermometer 18 is performed. Therefore, the mist removal device 26 provided in the suction circulation path 25 by the suction circulation device 24 removes the mist, lowers the dew point, and supplies it to the seal gas injection device 23 in a circulating manner. .
A diffusion device 27 is provided in the circulation supply path 25 for circulation supply, and a pressure gauge 28 is provided in the seal space 22 (and the cooling zone 5a), so that the pressure in the seal space 22 (and the cooling zone 5a) is excessive. If there is a concern that the amount of atmospheric gas after mist removal will be dissipated, the pressure of the jet of the seal gas 20 passing through the seal space 22 is adjusted, and the inflow of the seal gas 20 into the cooling zone 5a (excess penetration) ) To ensure stable cooling accuracy in the cooling zone 5a.

ミスト除去装置26としては、例えばフィン付熱交換器のような機器を吸引循環路25に配置して、吸引した雰囲気ガスを冷却し、ミストを除去し低露点化してシールガス20として循環使用する。このミスト除去は、吸引循環装置24の容量を小さくする上で、シール空間22の近傍の吸引循環装置24の前段で行うことが有利である。   As the mist removing device 26, for example, a device such as a finned heat exchanger is disposed in the suction circulation path 25, the sucked atmospheric gas is cooled, the mist is removed, the dew point is lowered, and the seal gas 20 is circulated and used. . In order to reduce the capacity of the suction circulator 24, this mist removal is advantageously performed before the suction circulator 24 in the vicinity of the seal space 22.

なお、シール空間22から雰囲気ガスを吸引する吸引口(ノズル)は、シールロール19を回転させない場合には、シールロール19に設けることもでき、この場合、省スペース化になり設置費用も安価にできる。
また、シールロール19を、冷媒を通して冷却体として兼用し、その冷却作用で雰囲気ガスを冷却して、シール空間22内でミストを除去して排出することも有効である。
また、使用するシールガス20としては、シール空間22から吸引した雰囲気ガスを、ミスト除去して循環使用するが、これのみでは十分なシール性を確保できない場合、あるいは、低露点化したい場合がある。この場合は、別系からの一般に非酸化雰囲気ガスとして用いられるN+Hの混合ガスやNガスなどの低露点の非酸化性ガス(ここでは以下「不活性ガス」という。)を併用してシールガス20を低露点化することを考慮する。
したがって、シールガス噴射装置23には、別系からの不活性ガスを切替え供給または混合供給装置29を介して、不活性ガス供給装置(図示省略)の供給路を連結している。
The suction port (nozzle) for sucking the atmospheric gas from the seal space 22 can be provided in the seal roll 19 when the seal roll 19 is not rotated. In this case, the space is saved and the installation cost is low. it can.
It is also effective to use the seal roll 19 as a cooling body through the refrigerant, cool the atmospheric gas by its cooling action, remove the mist in the seal space 22 and discharge it.
Further, as the sealing gas 20 to be used, the atmospheric gas sucked from the sealing space 22 is circulated and used by removing the mist. However, there is a case where sufficient sealing performance cannot be ensured by this alone, or a low dew point may be desired. . In this case, a non-oxidizing gas (hereinafter referred to as “inert gas”) having a low dew point such as a mixed gas of N 2 + H 2 or N 2 gas generally used as a non-oxidizing atmosphere gas from another system is used in combination. Therefore, it is considered to lower the dew point of the seal gas 20.
Therefore, a supply path of an inert gas supply device (not shown) is connected to the seal gas injection device 23 through a switching supply or mixed supply device 29 of an inert gas from another system.

図3に示すような鋼帯の連続熱処理設備において、均熱工程4の後段に配置した気水を冷却媒体とする一次冷却工程に、図1に示すように構成した本発明のシール装置(例)を設けて、均熱工程4からの温度500〜700℃に均熱された厚み0.2〜3mm、幅600〜1800mmのTS1470MPa級の鋼帯11を下向きに50〜400m/分の速度で冷却帯5aに通板し、その両面側に配置した斜め上向きの気水噴射口を有する複数の気水ノズル(スリットノズル)14から流量2〜30Nm/分、噴射圧力を水0.5MPa、エアー10kPaの気水15を噴射して鋼帯11を0〜200℃/sの冷却速度で両面冷却して焼入れし、次工程(図示省略)に通板する場合に、冷却工程で本発明のシール方法(例)を実施した。なお、シールガス20の噴射角度αは30度にし、シールロール19間の通入間隙21は120mmにした。 In the continuous heat treatment equipment for the steel strip as shown in FIG. 3, the sealing device of the present invention configured as shown in FIG. ) And a TS1470 MPa grade steel strip 11 having a thickness of 0.2 to 3 mm and a width of 600 to 1800 mm soaked at a temperature of 500 to 700 ° C. from the soaking step 4 at a speed of 50 to 400 m / min. A flow rate of 2 to 30 Nm 3 / min from a plurality of air-water nozzles (slit nozzles) 14 passing through the cooling zone 5 a and having obliquely upward air-water injection ports arranged on both sides thereof, the injection pressure of water 0.5 MPa, In the case where the steel strip 11 is cooled on both sides at a cooling rate of 0 to 200 ° C./s and quenched by injecting air 10 kPa of air 10 kPa, and passing through the next step (not shown), the cooling step The sealing method (example) was implemented. The injection angle α of the seal gas 20 was set to 30 degrees, and the penetration gap 21 between the seal rolls 19 was set to 120 mm.

この実施例では、冷却中の冷却帯5aの圧力を安定冷却を確保できる200Paに設定し、冷却開始から不活性ガスによるシールガス20を、流量100〜300Nm/分、噴射圧力を3kPaでシール空間22に通入して、雰囲気ガスが均熱工程に吹き出し逆流しないようにシールし、その後、シール空間22の圧力が上昇して雰囲気ガスが冷却帯5aに逆流しないように、シール空間22から雰囲気ガスを吸引して、シール空間22の圧力を200Paになるように調整し、吸引したガスをミスト除去して循環させ、シールガス20とし、流量100〜300Nm/分、噴射圧力を3kPaに維持してシール空間22に通入しシールを継続した。この間、不活性ガスの使用は停止した。
この結果、
(1)冷却帯5aで冷却中に、シール空間22からの雰囲気ガスが均熱工程4側に吹き出すことはなく、シール空間22に通入する鋼帯11に酸化に伴う品質低下は認められなかった。
(2)冷却工程5の入側の板温計18の視界悪化がないため、測温精度を安定確保でき、また雰囲気ガスの冷却帯5aへの流入を防止でき冷却帯5aの圧力を安定確保して冷却精度を安定確保し、所望の特性の鋼帯11が安定して得られた。
In this embodiment, the pressure of the cooling zone 5a during cooling is set to 200 Pa that can ensure stable cooling, and the sealing gas 20 by an inert gas is sealed at a flow rate of 100 to 300 Nm 3 / min and the injection pressure is 3 kPa from the start of cooling. The space 22 is passed through and sealed so that the atmospheric gas is not blown back in the soaking process, and then the pressure in the sealing space 22 rises so that the atmospheric gas does not flow back to the cooling zone 5a. Atmospheric gas is sucked and the pressure of the seal space 22 is adjusted to 200 Pa. The sucked gas is mist removed and circulated to obtain a seal gas 20 with a flow rate of 100 to 300 Nm 3 / min and an injection pressure of 3 kPa. The seal was continued and kept in the seal space 22. During this time, the use of inert gas was stopped.
As a result,
(1) During cooling in the cooling zone 5a, the atmospheric gas from the seal space 22 is not blown out to the soaking process 4 side, and no deterioration in quality due to oxidation is observed in the steel strip 11 passing through the seal space 22 It was.
(2) Since there is no deterioration in the visibility of the inlet side thermometer 18 in the cooling step 5, temperature measurement accuracy can be secured stably, and the inflow of atmospheric gas to the cooling zone 5a can be prevented, and the pressure in the cooling zone 5a can be secured stably. Thus, the cooling accuracy was ensured stably, and the steel strip 11 having desired characteristics was stably obtained.

本発明は、上記のシール装置とシール方法例に限定されるものではない。例えば、上記の例では本発明のシール装置を均熱工程の後段の、気水を冷却媒体とする冷却工程に適用した場合のものであるが、冷却水を冷却媒体とする冷却工程にも適用でき、徐冷工程の後段の冷却工程にも適用することもできる。
また、本発明のシール装置の構造、配置、シールガスおよび噴射条件などについては、冷却対象の鋼帯条件、冷却媒体の種類、冷却条件などに応じて、本発明の請求項を満足する範囲内で変更のあるものである。
The present invention is not limited to the above-described sealing device and sealing method example. For example, in the above example, the sealing device of the present invention is applied to a cooling process using air / water as a cooling medium after the soaking process, but is also applied to a cooling process using cooling water as a cooling medium. It can also be applied to a cooling step subsequent to the slow cooling step.
Further, the structure, arrangement, sealing gas, and injection conditions of the sealing device of the present invention are within the range satisfying the claims of the present invention, depending on the steel strip conditions to be cooled, the type of cooling medium, the cooling conditions, and the like. There are some changes.

本発明の鋼帯の連続熱処理設備における冷却工程のシール装置例での要部構造例を示す断面説明図。Cross-sectional explanatory drawing which shows the principal part structural example in the example of the sealing device of the cooling process in the continuous heat treatment equipment of the steel strip of this invention. (a)図は、図1のシール装置例でのシール空間におけるシールガスと冷却帯からの水蒸気の流動状態例を示す断面説明図、(b)図は、(a)図のAa−Ab矢視平面説明図。1A is a cross-sectional explanatory view showing an example of a flow state of seal gas and water vapor from a cooling zone in the seal space in the seal apparatus example of FIG. 1, and FIG. 2B is an Aa-Ab arrow in FIG. FIG. 本発明を適用する冷却工程を有する鋼帯の連続熱処理設備の配置例を示す側面説明図。Side surface explanatory drawing which shows the example of arrangement | positioning of the continuous heat treatment equipment of the steel strip which has a cooling process to which this invention is applied.

符号の説明Explanation of symbols

1 ペイオフリール 2 洗浄装置
3 加熱工程 4 均熱工程
5 一次冷却工程 5a 冷却帯
6 復熱工程 7 過時効工程
8 二次冷却工程 9 後処理工程
10 テンションリール 11 鋼帯
12 冷却空間 13 欠番
14 気水ノズル 15 気水
16 通板空間 17 水蒸気
18 板温計 19 シールロール
20 シールガス 21 通入間隙
22 シール空間 23 シールガス噴射装置
23a スリットノズル 24 吸引循環装置
25 吸引循環路 26 ミスト除去装置
27 放散装置 28 圧力計
29 切替えまたは混合供給装置
DESCRIPTION OF SYMBOLS 1 Pay-off reel 2 Cleaning apparatus 3 Heating process 4 Soaking process 5 Primary cooling process 5a Cooling zone 6 Reheating process 7 Overaging process 8 Secondary cooling process 9 Post-processing process 10 Tension reel 11 Steel strip 12 Cooling space 13 No. 14 Air Water nozzle 15 Air water 16 Passing plate space 17 Water vapor 18 Plate thermometer 19 Seal roll 20 Seal gas 21 Passing gap 22 Seal space 23 Seal gas injection device 23a Slit nozzle 24 Suction circulation device 25 Suction circulation path 26 Mist removal device 27 Radiation Device 28 Pressure gauge 29 Switching or mixing supply device

Claims (5)

冷却媒体として冷却水を用いる冷却工程を有し冷却工程から前工程側へのミストや水蒸気の吹き出しを防止するシールガスによるシール構造を備えた鋼帯の連続熱処理設備において、冷却工程の冷却帯入口近傍の前工程側に、通板鋼帯との間にシールガスの通入間隙を形成するシール体を配設してシール体と冷却帯との間に冷却帯と連通するシール空間を形成し、このシール空間の前工程側に通板鋼帯に向けてシールガスを斜めに噴射し通入間隙経由でシール空間に通入するシールガス噴射装置を配設して、シール空間内に流入したシールガスと冷却帯からのミストや水蒸気からなる雰囲気ガスを吸引する吸引循環装置と、この吸引循環装置で吸引した雰囲気ガスの循環路に配設した雰囲気ガスのミスト除去装置と、シール空間の圧力を調整するガス放散装置を備えた圧力調整装置と、ミスト除去装置でミスト除去後のガスをシールガスとしてシールガス噴射装置に供給する循環供給路を配設したことを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール装置。   In a continuous heat treatment facility for a steel strip that has a cooling process using cooling water as a cooling medium and has a sealing structure with a seal gas that prevents mist and steam from blowing out from the cooling process to the previous process side, the cooling zone inlet of the cooling process A seal body that forms a gap for the seal gas between the sheet steel strip is disposed on the front side in the vicinity to form a seal space that communicates with the cooling zone between the seal body and the cooling zone. A seal gas injection device that injects the seal gas obliquely toward the sheet steel strip toward the front plate side of the seal space and enters the seal space through the insertion gap flows into the seal space. A suction circulator for sucking atmospheric gas consisting of seal gas and mist and water vapor from the cooling zone, an atmospheric gas mist removing device disposed in a circulation path of the atmospheric gas sucked by the suction circulator, and a pressure in the seal space Adjust A continuous heat treatment of a steel strip, characterized in that a pressure adjusting device provided with a gas diffusion device and a circulation supply path for supplying the gas after mist removal by the mist removal device as a seal gas to the seal gas injection device Sealing device for cooling process in equipment. シール空間を形成するシール体が、通板鋼帯を挟んで対向配置されたロールであることを特徴とする、請求項1に記載の鋼帯の連続熱処理設備における冷却工程のシール装置。   The sealing device for a cooling process in a continuous heat treatment facility for steel strips according to claim 1, wherein the seal body forming the seal space is a roll disposed oppositely across the sheet steel strip. シールガス噴射装置が別系からの不活性ガス供給装置と、混合装置または切替装置を介して連結してなり、不活性ガスをシール用流体として併用可能に構成したことを特徴とする、請求項1または2記載の鋼帯の連続熱処理設備における冷却工程のシール装置。   The seal gas injection device is connected to an inert gas supply device from another system via a mixing device or a switching device, and the inert gas can be used together as a sealing fluid. A sealing device for a cooling process in the continuous heat treatment equipment for steel strips according to 1 or 2. 冷却媒体として冷却水を用いる冷却工程から前工程側への水や水蒸気の吹き出しをシールガス噴射流により防止するようにした鋼帯の連続熱処理設備の冷却工程のシール方法において、冷却工程の冷却帯の入口近傍の前工程側に、通板鋼帯とシールガスの通入間隙を有して冷却帯に連通するシール空間を形成し、通板鋼帯に向けてシールガスを斜めに噴射して通入間隙経由でシール空間に通入し、シール空間内の通入シールガスと冷却帯からのミストや水蒸気からなる雰囲気ガスをシール空間から吸引して、シール空間内の圧力を冷却帯の圧力を過剰上昇させない圧力範囲に調整し、この吸引雰囲気ガス中のミストを除去してシールガスとして循環使用することを特徴とする、鋼帯の連続熱処理設備における冷却工程のシール方法。   In the sealing method of the cooling process of the continuous heat treatment equipment of the steel strip, which prevents the blowing of water and water vapor from the cooling process using the cooling water as the cooling medium to the previous process side by the seal gas jet flow, the cooling zone of the cooling process A seal space is formed on the front process side in the vicinity of the inlet of the steel plate and has a gap between the sheet metal strip and the seal gas to communicate with the cooling zone, and the seal gas is injected obliquely toward the sheet metal strip. The seal space is passed through the entrance gap, and the atmosphere gas consisting of the admitted seal gas in the seal space and the mist and water vapor from the cooling zone is sucked from the seal space, and the pressure in the seal space is changed to the pressure in the cooling zone. A method for sealing a cooling process in a continuous heat treatment facility for a steel strip, wherein the pressure is adjusted so as not to excessively increase, the mist in the suction atmosphere gas is removed, and the gas is circulated and used as a seal gas. シールガスとして不活性ガスを併用することを特徴とする、請求項4に記載の鋼帯の連続熱処理設備における冷却工程のシール方法。   The sealing method of the cooling process in the continuous heat treatment equipment for steel strip according to claim 4, wherein an inert gas is used in combination as the sealing gas.
JP2005127742A 2005-04-26 2005-04-26 Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip Pending JP2006307244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127742A JP2006307244A (en) 2005-04-26 2005-04-26 Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127742A JP2006307244A (en) 2005-04-26 2005-04-26 Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip

Publications (1)

Publication Number Publication Date
JP2006307244A true JP2006307244A (en) 2006-11-09

Family

ID=37474462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127742A Pending JP2006307244A (en) 2005-04-26 2005-04-26 Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip

Country Status (1)

Country Link
JP (1) JP2006307244A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150685A (en) * 2006-12-19 2008-07-03 Sumitomo Metal Ind Ltd Manufacturing method and manufacturing apparatus of cold-rolled steel plate
WO2012152508A1 (en) * 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Device and method for treating a steel sheet product in a continuous manner
WO2014054511A1 (en) * 2012-10-03 2014-04-10 シャープ株式会社 Substrate firing device
KR101717960B1 (en) * 2016-03-03 2017-03-20 (주)나우이엔씨 Atmosphere gas sealing apparatus for continuous heating furnace
JP2018003047A (en) * 2016-06-28 2018-01-11 中外炉工業株式会社 Treatment furnace
JP6282372B1 (en) * 2017-06-12 2018-02-21 中外炉工業株式会社 Processing furnace
KR20190130942A (en) 2018-05-15 2019-11-25 (주)넥스이앤에스 Atmospheric gas sealing apparatus and pressure control method
CN110760650A (en) * 2019-11-05 2020-02-07 江苏江顺精密机电设备有限公司 Online guenching unit of wind fog defogging

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582722A (en) * 1978-12-15 1980-06-21 Nippon Steel Corp Sealing apparatus in cooling zone for steel sheet
JPS5743937A (en) * 1980-08-28 1982-03-12 Nippon Steel Corp Sealing apparatus in continuous annealing installation
JPH05195085A (en) * 1992-01-13 1993-08-03 Mitsubishi Heavy Ind Ltd Gas seal device for vertical furnace
JPH05339648A (en) * 1992-06-08 1993-12-21 Nippon Steel Corp Furnace body partition device for vertical type direct firing heating furnace
JPH05339649A (en) * 1992-06-04 1993-12-21 Nippon Steel Corp Strip temperature measuring instrument for strip cooling equipment
JPH10226824A (en) * 1997-02-14 1998-08-25 Nisshin Steel Co Ltd Method for sealing inlet side in bright annealing and device therefor
JPH10298667A (en) * 1997-04-25 1998-11-10 Nippon Steel Corp Device for sealing continuous type steel strip heat treatment furnace
JP2003129125A (en) * 2001-10-15 2003-05-08 Daido Steel Co Ltd Continuous heat treatment furnace for strip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582722A (en) * 1978-12-15 1980-06-21 Nippon Steel Corp Sealing apparatus in cooling zone for steel sheet
JPS5743937A (en) * 1980-08-28 1982-03-12 Nippon Steel Corp Sealing apparatus in continuous annealing installation
JPH05195085A (en) * 1992-01-13 1993-08-03 Mitsubishi Heavy Ind Ltd Gas seal device for vertical furnace
JPH05339649A (en) * 1992-06-04 1993-12-21 Nippon Steel Corp Strip temperature measuring instrument for strip cooling equipment
JPH05339648A (en) * 1992-06-08 1993-12-21 Nippon Steel Corp Furnace body partition device for vertical type direct firing heating furnace
JPH10226824A (en) * 1997-02-14 1998-08-25 Nisshin Steel Co Ltd Method for sealing inlet side in bright annealing and device therefor
JPH10298667A (en) * 1997-04-25 1998-11-10 Nippon Steel Corp Device for sealing continuous type steel strip heat treatment furnace
JP2003129125A (en) * 2001-10-15 2003-05-08 Daido Steel Co Ltd Continuous heat treatment furnace for strip

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150685A (en) * 2006-12-19 2008-07-03 Sumitomo Metal Ind Ltd Manufacturing method and manufacturing apparatus of cold-rolled steel plate
WO2012152508A1 (en) * 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Device and method for treating a steel sheet product in a continuous manner
US9551046B2 (en) 2011-05-10 2017-01-24 Thyssenkrupp Steel Europe Ag Apparatus and method for the treatment of a flat steel product, taking place in throughput
WO2014054511A1 (en) * 2012-10-03 2014-04-10 シャープ株式会社 Substrate firing device
KR101717960B1 (en) * 2016-03-03 2017-03-20 (주)나우이엔씨 Atmosphere gas sealing apparatus for continuous heating furnace
JP2018003047A (en) * 2016-06-28 2018-01-11 中外炉工業株式会社 Treatment furnace
JP6282372B1 (en) * 2017-06-12 2018-02-21 中外炉工業株式会社 Processing furnace
WO2018229999A1 (en) * 2017-06-12 2018-12-20 中外炉工業株式会社 Treatment furnace
JP2019002031A (en) * 2017-06-12 2019-01-10 中外炉工業株式会社 Processing furnace
KR20200016158A (en) * 2017-06-12 2020-02-14 쥬가이로 고교 가부시키가이샤 With treatment
KR102354084B1 (en) 2017-06-12 2022-01-20 쥬가이로 고교 가부시키가이샤 processing furnace
KR20190130942A (en) 2018-05-15 2019-11-25 (주)넥스이앤에스 Atmospheric gas sealing apparatus and pressure control method
CN110760650A (en) * 2019-11-05 2020-02-07 江苏江顺精密机电设备有限公司 Online guenching unit of wind fog defogging

Similar Documents

Publication Publication Date Title
JP2006307244A (en) Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip
KR100645152B1 (en) A gas jet cooling device
JP5200406B2 (en) Steel strip cooling method
US5885382A (en) Primary cooling method in continuously annealing steel strip
EP3156512B1 (en) Method for cooling steel strip and cooling installation
EP2495343B1 (en) Gas jet cooling device for continuous annealing furnace
US11072839B2 (en) Process and device for cooling a metal substrate
US6913659B2 (en) Rapid cooling device for steel band in continuous annealing equipment
JP4123690B2 (en) Method for supplying atmospheric gas into continuous annealing furnace
JP5197967B2 (en) Drainer
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP2015004080A (en) Vertical cooling device for steel plate, and method of manufacturing galvanized steel plate using the same
KR100362671B1 (en) Cooling method of alloyed hot-dip galvanized steel sheet and cooling apparatus used therein
JP2807134B2 (en) Gas jet chamber sealing device
JP2006144104A (en) Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP5151049B2 (en) Cooling method for cold-rolled steel sheet
JP3867073B2 (en) Cooling apparatus and cooling method for hot rolled steel sheet
JP2006316345A (en) Process for cooling steel strip in cooling zone of continuous heat treatment equipment and cooling apparatus
JP4901276B2 (en) Steel strip cooling device
JP2020117792A (en) Gas jet cooling device and cooling method
JPS63241123A (en) Cooling method for steel strip
WO2022163044A1 (en) Metal sheet quench-hardening apparatus and quench-hardening method, and steel sheet production method
JP4561104B2 (en) Cooling method for cold-rolled steel sheet
JPH07290136A (en) Method and device for cooling wide flange shape
JP2004217979A (en) Forcible convection type cooling method for steel strip in continuous type heat treatment facility and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A02