JP6635086B2 - Manufacturing method of hot-dip galvanized steel strip - Google Patents

Manufacturing method of hot-dip galvanized steel strip Download PDF

Info

Publication number
JP6635086B2
JP6635086B2 JP2017075451A JP2017075451A JP6635086B2 JP 6635086 B2 JP6635086 B2 JP 6635086B2 JP 2017075451 A JP2017075451 A JP 2017075451A JP 2017075451 A JP2017075451 A JP 2017075451A JP 6635086 B2 JP6635086 B2 JP 6635086B2
Authority
JP
Japan
Prior art keywords
steel strip
gas
molten metal
hot
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017075451A
Other languages
Japanese (ja)
Other versions
JP2018178158A (en
Inventor
優 寺崎
優 寺崎
高橋 秀行
秀行 高橋
章央 山本
章央 山本
琢実 小山
琢実 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017075451A priority Critical patent/JP6635086B2/en
Publication of JP2018178158A publication Critical patent/JP2018178158A/en
Application granted granted Critical
Publication of JP6635086B2 publication Critical patent/JP6635086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融金属めっき鋼帯の製造方法に関し、特に、鋼帯表面の溶融金属の付着量(以下、「めっき付着量」ともいう。)を調整するガスワイピングに関するものである。   The present invention relates to a method for producing a hot-dip metal-plated steel strip, and more particularly to gas wiping for adjusting the amount of hot-metal deposited on the surface of a steel strip (hereinafter, also referred to as “plated coating amount”).

連続溶融金属めっきラインでは、図1に示すように、還元雰囲気の連続焼鈍炉で焼鈍された鋼帯Sは、スナウト10内を通過して、めっき槽12内の溶融金属浴14中に連続的に導入される。その後鋼帯Sは、溶融金属浴14中のシンクロール16、サポートロール18を介して溶融金属浴14の上方に引き上げられ、ガスワイピングノズル20A,20Bで所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。ガスワイピングノズル20A,20Bは、めっき槽12上方に、鋼帯Sを挟んで対向して配置され、その噴射口から鋼帯Sの両面に向けてガスを吹き付ける。このガスワイピングにより、余剰な溶融金属が掻き取られて、鋼帯表面のめっき付着量が調整されるとともに、鋼帯表面に付着した溶融金属が板幅方向及び板長手方向で均一化される。ガスワイピングノズル20A,20Bは、多様な鋼帯幅に対応するとともに、鋼帯引き上げ時の幅方向の位置ズレなどに対応するため、通常、鋼帯幅より幅広く構成され、鋼帯の幅方向端部より外側まで延びている。   In the continuous molten metal plating line, as shown in FIG. 1, the steel strip S annealed in the continuous annealing furnace in the reducing atmosphere passes through the snout 10 and continuously enters the molten metal bath 14 in the plating tank 12. Will be introduced. Thereafter, the steel strip S is pulled up above the molten metal bath 14 via the sink roll 16 and the support roll 18 in the molten metal bath 14, adjusted to a predetermined plating thickness by the gas wiping nozzles 20 </ b> A, 20 </ b> B, and then cooled. Then, it is led to a subsequent process. The gas wiping nozzles 20A and 20B are arranged above the plating tank 12 so as to face each other with the steel strip S interposed therebetween, and spray gas from the injection ports toward both surfaces of the steel strip S. By this gas wiping, excess molten metal is scraped off, the amount of plating applied to the surface of the steel strip is adjusted, and the molten metal attached to the surface of the steel strip is made uniform in the sheet width direction and the sheet longitudinal direction. The gas wiping nozzles 20A and 20B are generally configured to be wider than the steel strip width in order to cope with various steel strip widths and to cope with a positional deviation in the width direction when the steel strip is pulled up. Extending beyond the part.

このようなガスワイピング方式では、(1)ワイピングガスの衝突圧力の振動、(2)溶融金属の酸化/冷却による粘度ムラ、の一方又は両方に起因して、製造された溶融金属めっき鋼帯のめっき表面に波形流紋状の湯ジワ(湯ダレ)が発生しやすい。このような湯ジワが生じためっき鋼板は、外装板の用途において、そのめっき表面を塗装下地表面とした場合に、塗膜の表面性状、特に平滑性を阻害する。そのため、湯ジワが生じためっき鋼板は、外観の優れた塗装処理が求められる外装板に用いることができず、めっき鋼板の歩留まりに大きな影響を及ぼす。   In such a gas wiping method, one or both of (1) the vibration of the collision pressure of the wiping gas and (2) the unevenness in the viscosity due to oxidation / cooling of the molten metal causes the produced molten metal-plated steel strip to be produced. Wavy wrinkles in the shape of a wave pattern are easily generated on the plating surface. The plated steel sheet having such hot water wrinkles impairs the surface properties, particularly the smoothness, of the coating film when the plating surface is used as a coating base surface in the use of an exterior plate. For this reason, the plated steel sheet having the hot water wrinkles cannot be used as an exterior sheet requiring a coating treatment with excellent appearance, which greatly affects the yield of the plated steel sheet.

湯ジワというめっき表面欠陥を抑制する方法としては、以下の方法が知られている。特許文献1には、めっき後の工程である調質圧延に際して、調質圧延ロールの表面性状や圧延条件を変えることで、湯ジワを目立たなくする方法が記載されている。特許文献2には、鋼板を溶融亜鉛めっき浴中に導入する前に、スキンパスミル及びテンションレベラー等を用いて鋼板表面の粗さをめっき付着量に応じて調整して、湯ジワの発生を抑制する方法が記載されている。   The following methods are known as methods for suppressing plating surface defects called hot water wrinkles. Patent Literature 1 describes a method of making surface wrinkles less noticeable by changing the surface properties and rolling conditions of a temper rolling roll during temper rolling, which is a step after plating. Patent Document 2 discloses that before introducing a steel sheet into a hot-dip galvanizing bath, the surface roughness of the steel sheet is adjusted using a skin pass mill, a tension leveler or the like in accordance with the amount of coating to suppress the occurrence of hot water wrinkles. A method is described.

特開2004−27263号公報JP 2004-27263 A 特開昭55−21564号公報JP-A-55-21564

しかしながら、本発明者らが検討したところによれば、特許文献1に示された方法では、軽微な湯ジワは改善されるが、重度の湯ジワに対しては効果が見られなかった。また、特許文献2に示された方法では、溶融亜鉛めっき浴の前工程にスキンパスミル、テンションレベラー等を設置する必要性からコスト的な問題がある。また、これらを設置した場合も、前処理設備及び焼鈍炉での酸洗及び再結晶化に伴う亜鉛めっき被膜の化学的・物理的変化によって、理想とする表面粗度が得られにくく、湯ジワ発生を十分に抑制することが困難であると考えられる。   However, according to studies by the present inventors, the method disclosed in Patent Document 1 improves minor hot water wrinkles, but has no effect on severe hot water wrinkles. In addition, the method disclosed in Patent Document 2 has a problem in cost due to the necessity of installing a skin pass mill, a tension leveler, and the like in a pre-process of a hot-dip galvanizing bath. In addition, even when these are installed, it is difficult to obtain the ideal surface roughness due to the chemical and physical changes of the galvanized film due to the pickling and recrystallization in the pretreatment equipment and the annealing furnace, and the hot water It is considered that it is difficult to sufficiently suppress the occurrence.

そこで本発明は、上記課題に鑑み、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造可能な溶融金属めっき鋼帯の製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method of manufacturing a hot-dip metal-plated steel strip that can sufficiently suppress the generation of hot water wrinkles and can manufacture a high-quality hot-dip metal-plated steel strip at low cost. .

上記課題を解決するべく本発明者らが鋭意検討したところ、ガスワイピングノズルのヘッダ圧力とガス衝突圧変動量との間に正の線形相関があること、すなわち、ヘッダ圧力を制御することによってガスの衝突圧変動量を制御できることを初めて見出した。そして、ガスの衝突圧変動量を、鋼帯の走行速度及び目標のめっき厚さを考慮して、所定の値に設定することによって、湯ジワの発生を十分に抑えることができるとの知見を得た。   The present inventors have conducted intensive studies to solve the above-described problems, and found that there is a positive linear correlation between the header pressure of the gas wiping nozzle and the amount of gas collision pressure fluctuation, that is, by controlling the header pressure, It was found for the first time that the amount of fluctuation in the collision pressure could be controlled. By setting the gas collision pressure fluctuation amount to a predetermined value in consideration of the running speed of the steel strip and the target plating thickness, it has been found that generation of hot water wrinkles can be sufficiently suppressed. Obtained.

上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
[1]溶融金属浴に連続的に鋼帯を浸漬し、
前記溶融金属浴から引き上げられる鋼帯に、該鋼帯を挟んで配置される一対のガスワイピングノズルからガスを吹き付けて、該鋼帯の両面の溶融金属の付着量を調整して、
連続的に溶融金属めっき鋼帯を製造する溶融金属めっき鋼帯の製造方法であって、
前記ガスの衝突圧変動量σを、前記鋼帯の走行速度L及び目標のめっき厚さWに応じて、以下の式(1)を満足するように制御することを特徴とする、溶融金属めっき鋼帯の製造方法。

Figure 0006635086
σ:ガスの衝突圧変動量[Pa]
L:鋼帯の走行速度[m/min]
W:目標のめっき厚さ[μm]
α,β:定数 The gist configuration of the present invention completed on the basis of the above findings is as follows.
[1] A steel strip is continuously immersed in a molten metal bath,
Gas is blown from a pair of gas wiping nozzles disposed on the steel strip with the steel strip interposed between the steel strip pulled up from the molten metal bath, and the amount of molten metal deposited on both surfaces of the steel strip is adjusted.
A method for manufacturing a hot-dip metal-plated steel strip for continuously manufacturing a hot-dip metal-plated steel strip,
The molten metal plating is characterized in that the collision pressure fluctuation amount σ of the gas is controlled so as to satisfy the following expression (1) according to the running speed L of the steel strip and the target plating thickness W. Steel strip manufacturing method.
Figure 0006635086
σ: Gas impact pressure fluctuation [Pa]
L: Running speed of steel strip [m / min]
W: Target plating thickness [μm]
α, β: constant

[2]前記ガスワイピングノズルのヘッダ圧力P[kPa]と、前記ガスの衝突圧変動量σとの関係を予め求め、
前記ガスの衝突圧変動量σが式(1)を満足するように前記ヘッダ圧力Pを設定する、上記[1]に記載の溶融金属めっき鋼帯の製造方法。
[2] The relation between the header pressure P [kPa] of the gas wiping nozzle and the collision pressure fluctuation amount σ of the gas is obtained in advance,
The method for producing a hot-dip metal-plated steel strip according to the above [1], wherein the header pressure P is set such that the collision pressure fluctuation amount σ of the gas satisfies Expression (1).

[3]前記ガスワイピングノズルの先端の高さを、前記溶融金属浴の表面から250mm以下とする、上記[1]又は[2]に記載の溶融金属めっき鋼帯の製造方法。   [3] The method for producing a hot-dip metal-plated steel strip according to the above [1] or [2], wherein a height of a tip of the gas wiping nozzle is 250 mm or less from a surface of the hot-dip metal bath.

[4]前記鋼帯の幅方向端部近傍の鋼帯延長面上に、前記一対のガスワイピングノズルから噴射されたガス同士の衝突を回避するバッフルプレートを設置する、上記[1]〜[3]のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。   [4] A baffle plate for avoiding collision between gases injected from the pair of gas wiping nozzles is installed on a steel strip extension surface near an end in the width direction of the steel strip, [1] to [3]. ] The manufacturing method of the hot-dip metal-plated steel strip as described in any one of the above.

[5]前記溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる、上記[1]〜[4]のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。   [5] The above-mentioned [1] wherein the component of the molten metal contains 1.0 to 10% by mass of Al, 0.2 to 1% by mass of Mg, and 0 to 0.1% by mass of Ni, with the balance being Zn and unavoidable impurities. ] The manufacturing method of the hot-dip metal-plated steel strip as described in any one of-[4].

本発明の溶融金属めっき鋼帯の製造方法によれば、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造できる。   ADVANTAGE OF THE INVENTION According to the manufacturing method of the hot-dip metal-plated steel strip of this invention, generation | occurrence | production of hot water wrinkles is fully suppressed, and a high-quality hot-dip metal-plated steel strip can be manufactured at low cost.

連続溶融金属めっき設備の構成を示す模式図である。It is a schematic diagram which shows the structure of a continuous molten metal plating facility. 図1に示す連続溶融金属めっき設備における、ガスワイピングノズル20Aの先端部の周辺の拡大図である。FIG. 2 is an enlarged view of the vicinity of a tip end of a gas wiping nozzle 20A in the continuous hot-dip metal plating equipment shown in FIG. 1. 本実施形態で用いる連続溶融金属めっき設備における、鋼帯Sの幅方向端部近傍の構成を示す斜視図である。It is a perspective view showing the composition near the width direction end of steel strip S in the continuous molten metal plating equipment used in this embodiment. 一実験例における、ヘッダ圧力Pとガスの衝突圧変動量σとの関係を示すグラフである。6 is a graph showing a relationship between a header pressure P and a gas collision pressure fluctuation amount σ in one experimental example.

図1を参照して、本発明の一実施形態による溶融金属めっき鋼帯の製造方法で使用可能な連続溶融金属めっき設備100(以下、単に「めっき設備」とも称する。)を説明する。   With reference to FIG. 1, a continuous hot-dip metal plating facility 100 (hereinafter, also simply referred to as “plating facility”) that can be used in the method for producing a hot-dip metal-plated steel strip according to one embodiment of the present invention will be described.

図1を参照して、本実施形態のめっき設備100は、スナウト10と、溶融金属を収容するめっき槽12と、シンクロール16と、サポートロール18とを有する。スナウト10は、鋼帯Sが通過する空間を区画する、鋼帯進行方向に垂直な断面が矩形状の部材であり、その先端は、めっき槽12に形成される溶融金属浴14に浸漬されている。一実施形態において、還元雰囲気の連続焼鈍炉で焼鈍された鋼帯Sは、スナウト10内を通過して、めっき槽12内の溶融金属浴14中に連続的に導入される。その後鋼帯Sは、溶融金属浴14中のシンクロール16、サポートロール18を介して溶融金属浴14の上方に引き上げられ、一対のガスワイピングノズル20A,20Bで所定のめっき厚みに調整された後に、冷却されて後工程に導かれる。   Referring to FIG. 1, a plating facility 100 of the present embodiment includes a snout 10, a plating tank 12 for storing a molten metal, a sink roll 16, and a support roll 18. The snout 10 is a member that defines a space through which the steel strip S passes and whose cross section perpendicular to the steel strip traveling direction has a rectangular shape, and whose tip is immersed in a molten metal bath 14 formed in the plating tank 12. I have. In one embodiment, the steel strip S annealed in the continuous annealing furnace in the reducing atmosphere passes through the snout 10 and is continuously introduced into the molten metal bath 14 in the plating tank 12. Thereafter, the steel strip S is pulled up above the molten metal bath 14 via the sink roll 16 and the support roll 18 in the molten metal bath 14, and after being adjusted to a predetermined plating thickness by the pair of gas wiping nozzles 20A and 20B. , Is cooled and led to the subsequent process.

一対のガスワイピングノズル20A,20B(以下、単に「ノズル」ともいう。)は、めっき槽12上方に、鋼帯Sを挟んで対向して配置される。図1に加えて図2も参照して、ノズル20Aは、その先端で鋼帯の板幅方向に延在する噴射口26(ノズルスリット)から鋼帯Sに向けてガスを吹き付け、鋼帯の表面のめっき付着量を調整する。他方のノズル20Bも同様であり、これら一対のノズル20A,20Bによって、余剰な溶融金属が掻き取られて、鋼帯Sの両面のめっき付着量が調整され、かつ、板幅方向及び板長手方向で均一化される。   The pair of gas wiping nozzles 20A and 20B (hereinafter, also simply referred to as “nozzles”) are arranged above the plating tank 12 to face each other with the steel strip S interposed therebetween. Referring to FIG. 2 in addition to FIG. 1, nozzle 20A blows gas toward steel strip S from an injection port 26 (nozzle slit) extending in the plate width direction of the steel strip at its tip, and Adjust the amount of plating on the surface. The same applies to the other nozzle 20B. The excess molten metal is scraped off by the pair of nozzles 20A and 20B, the amount of plating applied to both surfaces of the steel strip S is adjusted, and the sheet width direction and the sheet longitudinal direction are adjusted. Is uniformed.

ノズル20A,20Bは、多様な鋼帯幅に対応するとともに、鋼帯引き上げ時の幅方向の位置ズレなどに対応するため、通常、鋼帯幅より長く構成され、鋼帯の幅方向端部より外側まで延びている。また、図2に示すように、ノズル20Aは、ノズルヘッダ22と、このノズルヘッダ22に連結された上ノズル部材24A及び下ノズル部材24Bとを有する。上下ノズル部材24A,24Bの先端部分は、鋼帯Sに垂直な断面視で互いに平行に対向する面を有し、これによりガスの噴射口26(ノズルスリット)を形成している。噴射口26は、鋼帯Sの板幅方向に延在している。ノズル20Aの縦断面形状は、先端に向かって先細りするテーパ形状となっている。上下ノズル部材24A,24Bの先端部の厚みは、1〜3mm程度とすればよい。また、噴射口の開口幅(ノズルギャップB)は、特に限定されないが0.5〜3.0mm程度とすることができる。図示しないガス供給機構から供給されるガスが、ヘッダ22の内部を通過し、さらに上下ノズル部材24A,24Bが区画するガス流路を通過し、噴射口26から噴射されて、鋼帯Sの表面に吹きつけられる。他方のノズル20Bも同様の構成を有する。本発明において、ノズルヘッダ22内でのガスの圧力を「ヘッダ圧力P」と定義する。   The nozzles 20A and 20B are generally configured to be longer than the width of the steel strip in order to cope with various widths of the steel strip and to cope with a positional deviation in the width direction when the steel strip is pulled up. It extends to the outside. Further, as shown in FIG. 2, the nozzle 20A has a nozzle header 22, and an upper nozzle member 24A and a lower nozzle member 24B connected to the nozzle header 22. The tip portions of the upper and lower nozzle members 24A, 24B have surfaces facing each other parallel to each other in a cross section perpendicular to the steel strip S, thereby forming a gas injection port 26 (nozzle slit). The injection port 26 extends in the plate width direction of the steel strip S. The vertical cross-sectional shape of the nozzle 20A has a tapered shape tapering toward the tip. The thickness of the tip portions of the upper and lower nozzle members 24A and 24B may be about 1 to 3 mm. The opening width (nozzle gap B) of the injection port is not particularly limited, but can be about 0.5 to 3.0 mm. A gas supplied from a gas supply mechanism (not shown) passes through the inside of the header 22, further passes through a gas flow path defined by the upper and lower nozzle members 24A and 24B, is injected from the injection port 26, and Sprayed on. The other nozzle 20B has a similar configuration. In the present invention, the gas pressure inside the nozzle header 22 is defined as “header pressure P”.

本実施形態の溶融金属めっき鋼帯の製造方法では、溶融金属浴14に連続的に鋼帯Sを浸漬し、溶融金属浴14から引き上げられる鋼帯Sに、該鋼帯Sを挟んで配置される一対のガスワイピングノズル20A,20Bからガスを吹き付けて、鋼帯Sの両面の溶融金属の付着量を調整して、連続的に溶融金属めっき鋼帯を製造するものである。   In the method for manufacturing a hot-dip metal-plated steel strip of the present embodiment, the steel strip S is continuously immersed in the hot-dip metal bath 14, and the hot-dip steel strip S is disposed on the hot-dip steel strip S with the steel strip S interposed therebetween. Gas is blown from a pair of gas wiping nozzles 20A and 20B to adjust the amount of molten metal adhered to both sides of the steel strip S, thereby continuously producing a hot-dip metal-plated steel strip.

ここで、上記で説明した湯ジワの発生原因としては、ワイピングガスが溶融金属表面に衝突する点(淀み点)での初期凹凸の生成が挙げられる。初期凹凸の生成原因は、(1)ワイピングガスの衝突圧力の振動、(2)溶融金属の酸化/冷却による粘度ムラ、の一方又は両方に起因して、鋼帯上で溶融金属が不規則に流れることであると考えられる。本発明は、このうち上記(1)の現象を抑えることによって、湯ジワの発生を抑制しようとするものである。   Here, as a cause of the occurrence of hot water wrinkles described above, generation of initial irregularities at a point (stagnation point) where the wiping gas collides with the surface of the molten metal can be cited. The initial irregularities are generated by one or both of (1) the vibration of the collision pressure of the wiping gas and (2) the unevenness of the viscosity due to the oxidation / cooling of the molten metal, and the molten metal is irregularly formed on the steel strip. It is thought to be flowing. The present invention is intended to suppress the occurrence of hot water wrinkles by suppressing the above phenomenon (1).

そこで本発明者らは、ワイピングガスの衝突圧の変動量を抑える方法について検討した。具体的には、ヘッダ圧力Pを変更しながらワイピングを実施し、ワイピングガスの衝突圧変動量σの測定と、ワイピング後の表面外観の検査を実施した。なお、ワイピングガスの衝突圧は、ワイピングガスが溶融金属表面に衝突する点(淀み点)で発生する音圧をマイクロフォンで測定することにより、測定することができる。この衝突圧は、ワイピングガスをある一定のヘッダ圧力で噴射していても、ある圧力値を中心に経時的にわずかに変動する。本発明において、衝突圧変動量σは、所定期間中に測定した衝突圧の値の標準偏差と定義する。この所定期間は0.1秒以上とする。0.1秒以上の期間で標準偏差を取れば、衝突圧のバラつきを精度よく評価することができるからである。なお、衝突圧の測定は、鋼帯の幅方向中心部で測定することが好ましいが、鋼帯幅方向端部から100mm以上内側であれば、測定値は同等である。鋼板端部では、衝突したワイピングガスは乱れてしまうため測定に適さない。   Therefore, the present inventors have studied a method for suppressing the fluctuation amount of the collision pressure of the wiping gas. Specifically, the wiping was performed while changing the header pressure P, and the measurement of the collision pressure fluctuation amount σ of the wiping gas and the inspection of the surface appearance after the wiping were performed. The collision pressure of the wiping gas can be measured by measuring the sound pressure generated at the point where the wiping gas collides with the surface of the molten metal (stagnation point) with a microphone. The collision pressure slightly fluctuates with time around a certain pressure value even when the wiping gas is injected at a certain header pressure. In the present invention, the collision pressure fluctuation amount σ is defined as a standard deviation of the value of the collision pressure measured during a predetermined period. This predetermined period is set to 0.1 second or more. This is because if the standard deviation is obtained in a period of 0.1 second or more, the variation in the collision pressure can be accurately evaluated. The collision pressure is preferably measured at the center in the width direction of the steel strip. However, the measurement value is equivalent if the impact pressure is 100 mm or more inside from the end in the width direction of the steel strip. At the end of the steel sheet, the wiping gas that has collided is disturbed and is not suitable for measurement.

図4に、一実験例におけるヘッダ圧力Pとガスの衝突圧変動量σとの関係を示す。図4から明らかなように、ヘッダ圧力Pとガスの衝突圧変動量σとの間には正の線形相関があることがわかった。ヘッダ圧力Pを増加させれば、衝突圧そのものも増加することは自明である。しかしながら、本発明者らは、図4に示すように、衝突圧変動量σも、ヘッダ圧力が増加するほど大きくなることを初めて見出したのである。そして、この実験例では、衝突圧変動量σが300Pa以上の範囲で湯ジワの発生を確認した。   FIG. 4 shows the relationship between the header pressure P and the gas collision pressure fluctuation amount σ in one experimental example. As is clear from FIG. 4, it has been found that there is a positive linear correlation between the header pressure P and the gas collision pressure fluctuation amount σ. It is obvious that if the header pressure P is increased, the collision pressure itself is also increased. However, the present inventors have found for the first time that the collision pressure fluctuation amount σ also increases as the header pressure increases, as shown in FIG. In this experimental example, occurrence of hot water wrinkles was confirmed in the range where the collision pressure fluctuation amount σ was 300 Pa or more.

衝突圧変動量σが大きい場合、衝突圧の変動がめっきの初期凹凸を発生させ、湯ジワ欠陥となってしまうと考えられる。従って、湯ジワ抑制には衝突圧変動量σの低減が有効である。そして、図4に示す知見によれば、ヘッダ圧力を制御することによってガスの衝突圧変動量を制御できることがわかる。衝突圧変動量σを制御することによって、目標のめっき付着量を高精度に実現しやすくなり、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造できる。   When the collision pressure fluctuation amount σ is large, it is considered that the fluctuation of the collision pressure generates initial unevenness of the plating and causes a wrinkle defect. Therefore, reduction of the collision pressure fluctuation amount σ is effective for suppressing hot water wrinkles. Then, according to the knowledge shown in FIG. 4, it can be understood that the collision pressure fluctuation amount of the gas can be controlled by controlling the header pressure. By controlling the impact pressure fluctuation amount σ, it becomes easy to achieve the target plating adhesion amount with high accuracy, the occurrence of hot water wrinkles can be sufficiently suppressed, and a high-quality hot-dip coated steel strip can be manufactured at low cost.

ただし、ヘッダ圧力Pと衝突圧変動量σとの関係は、正の線形相関があることは変わらないものの、具体的な値の関係については、ノズルの形状、ノズルのスリットギャップB、及びノズル角度θによって異なる。また、湯ジワが発生し始める衝突圧変動量の閾値は、鋼帯の走行速度L及び目標のめっき厚さWによって異なることがわかった。   However, although the relationship between the header pressure P and the collision pressure fluctuation amount σ still has a positive linear correlation, the specific value relationship is determined by the nozzle shape, the nozzle slit gap B, and the nozzle angle. Depends on θ. Further, it was found that the threshold value of the collision pressure fluctuation amount at which the occurrence of hot water wrinkles differs depending on the running speed L of the steel strip and the target plating thickness W.

そこで、本発明者らがさらに検討を進めたところ、ガスの衝突圧変動量σを、鋼帯の走行速度L及び目標のめっき厚さWに応じて、以下の式(1)を満足するように制御することにより、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を製造できることがわかった。

Figure 0006635086
σ:ガスの衝突圧変動量[Pa]
L:鋼帯の走行速度[m/min]
W:目標のめっき厚さ[μm]
α,β:定数 Therefore, the present inventors have further studied and found that the gas collision pressure fluctuation amount σ satisfies the following expression (1) according to the traveling speed L of the steel strip and the target plating thickness W. It was found that by controlling the temperature, the generation of hot water wrinkles was sufficiently suppressed, and a high-quality hot-dip coated steel strip could be produced.
Figure 0006635086
σ: Gas impact pressure fluctuation [Pa]
L: Running speed of steel strip [m / min]
W: Target plating thickness [μm]
α, β: constant

以下、式(1)を利用した操業条件の決定方法の一例について述べる。
(A)ノズルの形状、ノズルのスリットギャップB、及びノズル角度θが確定した使用めっき設備において、図4に示すような、ヘッダ圧力Pと衝突圧変動量σとの関係を予め求める。
(B)次に、目標のめっき厚さWを設定する。
(C)次に、鋼帯の厚さ及び幅に応じて、適正な鋼帯の走行速度Lを適宜決定する。
(D)次に、設定された目標のめっき厚さW及び鋼帯の走行速度Lを式(1)に代入して、ガスの衝突圧変動量σの好適範囲を決定する。
(E)次に、予め求めていたヘッダ圧力Pと衝突圧変動量σとの関係に基づいて、式(1)を満たすヘッダ圧力Pを決定する。
(F)次に、決定した鋼帯の走行速度L及びヘッダ圧力Pを考慮して、目標のめっき厚さWを得るための、ノズル先端−鋼帯間の距離D(図2参照)を決定する。
Hereinafter, an example of a method for determining operating conditions using Expression (1) will be described.
(A) In the plating equipment used in which the nozzle shape, the nozzle slit gap B, and the nozzle angle θ are determined, the relationship between the header pressure P and the collision pressure fluctuation amount σ as shown in FIG. 4 is obtained in advance.
(B) Next, a target plating thickness W is set.
(C) Next, an appropriate traveling speed L of the steel strip is appropriately determined according to the thickness and the width of the steel strip.
(D) Next, the set target plating thickness W and running speed L of the steel strip are substituted into the equation (1) to determine a suitable range of the gas collision pressure fluctuation amount σ.
(E) Next, the header pressure P that satisfies the expression (1) is determined based on the relationship between the header pressure P and the collision pressure fluctuation amount σ obtained in advance.
(F) Next, in consideration of the determined traveling speed L and header pressure P of the steel strip, a distance D (see FIG. 2) between the nozzle tip and the steel strip for obtaining the target plating thickness W is determined. I do.

なお、一般的な操業条件では、距離Dは3〜40mm程度とするが、この範囲内においては、距離Dの値に関わらず、ヘッダ圧力Pと衝突圧変動量σとの関係は変わらないことを、本発明者らは確認した。よって、上記(A)〜(F)の手順によって、湯ジワの発生を十分に抑えた操業が可能である。   Under general operating conditions, the distance D is about 3 to 40 mm. However, within this range, the relationship between the header pressure P and the collision pressure fluctuation amount σ does not change regardless of the value of the distance D. Have been confirmed by the present inventors. Therefore, by the above-described procedures (A) to (F), it is possible to perform an operation in which generation of hot water wrinkles is sufficiently suppressed.

ここで、式(1)における定数α,βは、ノズルの形状、ノズルのスリットギャップB、及びノズル角度θによって異なるため、オンライン実験で事前に決定する。以下、これら定数の求め方と、式(1)の技術的な意味について説明する。   Here, since the constants α and β in the equation (1) differ depending on the shape of the nozzle, the slit gap B of the nozzle, and the nozzle angle θ, they are determined in advance in an online experiment. Hereinafter, how to determine these constants and the technical meaning of equation (1) will be described.

ここで、式(1)の右辺は、湯ジワが発生しない衝突圧変動量σの上限値を示している。式(1)の右辺における各パラメータの意味について述べる。目標のめっき厚さWが増加すると、湯ジワが発生しやすくなるため、衝突圧変動量σの上限値が減少する。鋼帯走行速度Lが増加すると、ワイピングガスが衝突する時間が短くなり、湯ジワが発生しづらくなるため、衝突圧変動量σの上限値が上昇する。   Here, the right side of Expression (1) indicates the upper limit of the collision pressure fluctuation amount σ at which hot water wrinkles do not occur. The meaning of each parameter on the right side of Expression (1) will be described. When the target plating thickness W increases, hot water wrinkles easily occur, and the upper limit value of the collision pressure fluctuation amount σ decreases. When the steel strip traveling speed L increases, the time during which the wiping gas collides becomes shorter, and it becomes difficult to generate hot water wrinkles, so that the upper limit of the collision pressure fluctuation amount σ increases.

ここで、定数α,βは以下のように求める。既述の(B),(C)の方法で決定した目標のめっき厚さW及び鋼帯の走行速度Lの値の組み合わせ(W1、L1)において、ヘッダ圧力Pを種々変更して、湯ジワが発生し始める境界の衝突圧変動量σ1を求める。なお、めっき厚は、ヘッダ圧Pと、距離Dと、鋼帯の走行速度Lに依存する。よって、走行速度L1の操業下において、ヘッダ圧Pを種々変更するのに合わせて、目標めっき厚さW1を実現できるように、距離Dも適宜変更する必要がある。 Here, the constants α and β are obtained as follows. In the combination (W 1 , L 1 ) of the target plating thickness W and the value of the running speed L of the steel strip determined by the methods (B) and (C) described above, the header pressure P is variously changed. The collision pressure fluctuation amount σ 1 at the boundary where the hot water wrinkles begin to be generated is determined. The plating thickness depends on the header pressure P, the distance D, and the running speed L of the steel strip. Therefore, in the operation of a running speed L 1, the combined header pressure P to variously changed, so that it can realize the target plating thickness W 1, the distance D must be changed as appropriate.

さらに、既述の(B),(C)の方法で決定した別のW及びLの値の組合せ(W2、L2)において、ヘッダ圧力Pを種々変更して、湯ジワが発生し始める境界の衝突圧変動量σ2を求める。同様に、W及びLの値の複数の組合せ(Wk、Lk)(k;1〜nの整数)において、湯ジワが発生し始める境界の衝突圧変動量σkを求める。横軸をL/W2として、縦軸をσとしたグラフに、求めたn点をプロットする。n点のプロットから、最小二乗法で残差平方和が最小となる直線を求め、傾きの値をαとし、縦軸の切片をβとする。なお、「湯ジワが発生し始める境界の衝突圧変動量」とは、ワイピング後の鋼帯表面において、JIS B0601-2001の規格に基づいて測定した算術平均うねりWaが1.00μmとなる衝突圧変動量を意味するものとする。Waが1.00μmを超えると、目視で小さな湯ジワが確認できるからである。定数α,βの精度の観点から、nは4以上であることが好ましい。


Furthermore, in another combination (W 2 , L 2 ) of the values of W and L determined by the methods (B) and (C) described above, the header pressure P is variously changed, and hot water wrinkles begin to occur. The collision pressure fluctuation amount σ 2 at the boundary is obtained. Similarly, in a plurality of combinations of the values of W and L (W k , L k ) (k; an integer of 1 to n), the collision pressure fluctuation amount σ k at the boundary where the hot water wrinkle starts to be generated is obtained . The obtained n points are plotted on a graph in which the horizontal axis is L / W 2 and the vertical axis is σ. From the plot of n points, a straight line that minimizes the residual sum of squares is obtained by the least squares method, the value of the slope is α, and the intercept of the vertical axis is β. Note that the "impact pressure variation boundaries Yu wrinkles begin to occur" in the steel strip surface after wiping, the arithmetic mean waviness Wa is 1.00μm impact pressure variations measured based on the standard of JIS B0601-2001 Shall mean quantity . This is because if Wa exceeds 1.00 μm, small hot water wrinkles can be visually confirmed. From the viewpoint of the accuracy of the constants α and β, n is preferably 4 or more.


このように、湯ジワ欠陥を抑制するためには、鋼帯の走行速度L及び目標のめっき厚さWに応じて、ガスの衝突圧変動量σを制御する必要がある。そして、具体的には、図4に示すようなガスワイピングノズルのヘッダ圧力Pとガスの衝突圧変動量σとの関係を予め求め、ガスの衝突圧変動量σが式(1)を満足するようにヘッダ圧力Pを設定することができる。   As described above, in order to suppress hot water wrinkle defects, it is necessary to control the gas collision pressure fluctuation amount σ according to the running speed L of the steel strip and the target plating thickness W. More specifically, the relationship between the header pressure P of the gas wiping nozzle and the gas collision pressure fluctuation amount σ as shown in FIG. 4 is obtained in advance, and the gas collision pressure fluctuation amount satisfies Expression (1). The header pressure P can be set as described above.

そして、使用するめっき設備条件(ノズルの形状、ノズルのスリットギャップB、及びノズル角度θ)ごとに、図4に示すようなガスワイピングノズルのヘッダ圧力Pとガスの衝突圧変動量σとの関係を予め求め、また、オンライン実験で定数α,βを事前に決定しておく。そして、操業条件としての鋼帯の走行速度L及び目標のめっき厚さWの少なくとも1つが変更になった場合には、それに伴って、衝突圧変動量σの好適範囲、及びそれに対応するヘッダ圧力Pの好適範囲を変更する。   Then, the relationship between the header pressure P of the gas wiping nozzle and the gas collision pressure fluctuation amount σ as shown in FIG. 4 for each plating equipment condition (nozzle shape, nozzle slit gap B, and nozzle angle θ) used. Are determined in advance, and the constants α and β are determined in advance in an online experiment. When at least one of the running speed L of the steel strip and the target plating thickness W as operating conditions is changed, a suitable range of the collision pressure fluctuation amount σ and a corresponding header pressure are changed. Change the preferred range of P.

なお、図4に示す知見に従えば、湯ジワの発生を防ぐだけであれば、衝突圧変動量σ、すなわちヘッダ圧力Pを極力小さく設定すればよく、殊更に式(1)で湯ジワが発生しない衝突圧変動量σの上限値を把握する必要もない。しかしながら、衝突圧変動量σを低下させるためにヘッダ圧力Pを小さくすると、目標めっき厚さWを実現するために、距離Dを小さくせざるを得なくなる。すると、鋼帯の反りが発生した場合に、ノズルが鋼帯に接触したり、スプラッシュがノズルに付着しやすくなったりして、めっき表面に傷や欠陥が発生することが懸念される。また、ヘッダ圧力Pを小さくすると、特に鋼帯エッジ部の衝突圧力が弱まり、エッジ部の付着量が厚くなりすぎるため、鋼帯幅方向で不均一な付着量となってしまう可能性がある。この現状を本明細書ではエッジオーバーコートと呼ぶ。このような観点から、ヘッダ圧力Pは、衝突圧変動量σが式(1)を満たす範囲で極力大きく設定することが好ましい。そのため、本発明では、式(1)で湯ジワが発生しない衝突圧変動量σの上限値を把握することに意義がある。   According to the knowledge shown in FIG. 4, if only the occurrence of hot water wrinkles is to be prevented, the collision pressure fluctuation amount σ, that is, the header pressure P may be set as small as possible. It is not necessary to know the upper limit of the collision pressure fluctuation amount σ that does not occur. However, if the header pressure P is reduced to reduce the collision pressure fluctuation amount σ, the distance D must be reduced in order to achieve the target plating thickness W. Then, when the steel strip is warped, there is a concern that the nozzle may come into contact with the steel strip, splash may easily adhere to the nozzle, and scratches or defects may occur on the plating surface. In addition, when the header pressure P is reduced, the collision pressure particularly at the edge portion of the steel strip is weakened, and the adhesion amount at the edge portion becomes too thick, so that the adhesion amount may be uneven in the steel strip width direction. This situation is referred to herein as an edge overcoat. From such a viewpoint, it is preferable that the header pressure P is set as large as possible as long as the collision pressure fluctuation amount satisfies the expression (1). Therefore, in the present invention, it is significant to know the upper limit value of the collision pressure fluctuation amount σ at which the hot water wrinkle does not occur in Expression (1).

また、エッジオーバーコートを防ぐ有効な手段としては、ノズルの浴面からの高さの低下やバッフルプレートの使用が挙げられる。これらの手段の両方又は一方を実施することで、湯ジワやエッジオーバーコートの無いより美麗な外観を得ることが可能になる。   Effective means for preventing edge overcoat include lowering the height of the nozzle from the bath surface and using a baffle plate. By implementing both or one of these means, it becomes possible to obtain a more beautiful appearance without hot water wrinkles or edge overcoats.

ノズル高さを低下させると、鋼帯エッジ部のめっき表層が凝固する前にワイピングできるため、エッジオーバーコートを防止可能である。この観点から、ガスワイピングノズルの先端の高さを、溶融金属浴の表面から250mm以下とすることが好ましい。しかし、ワイピングノズル高さは低くしすぎると、浴面上でスプラッシュが多量に発生するため、100mm以上の高さが望ましい。   If the height of the nozzle is reduced, wiping can be performed before the plating surface layer of the steel strip edge portion solidifies, so that edge overcoat can be prevented. From this viewpoint, it is preferable that the height of the tip of the gas wiping nozzle be 250 mm or less from the surface of the molten metal bath. However, if the height of the wiping nozzle is too low, a large amount of splash occurs on the bath surface, so that a height of 100 mm or more is desirable.

また、図3を参照して、バッフルプレート28は、鋼帯Sの幅方向端部近傍の鋼帯延長面上に配置されるプレートを指す。バッフルプレートを設置することで、一対のガスワイピングノズルから噴射されたガス同士の衝突を回避できるため、エッジオーバーコートの防止が可能である。図3では、鋼帯Sの幅方向片側端部近傍に配置されたバッフルプレート28を図示したが、鋼帯幅方向の両側の端部近傍に、それぞれバッフルプレートを配置することが好ましい。バッフルプレート28と鋼帯Sの幅方向端部との最短距離dは、1〜10mm程度とすることが好ましい。   Referring to FIG. 3, baffle plate 28 indicates a plate arranged on the steel strip extension surface near the widthwise end of steel strip S. By installing a baffle plate, collision between gases injected from a pair of gas wiping nozzles can be avoided, so that edge overcoat can be prevented. In FIG. 3, the baffle plates 28 arranged near one end in the width direction of the steel strip S are illustrated, but it is preferable to arrange the baffle plates near the ends on both sides in the width direction of the steel strip. The shortest distance d between the baffle plate 28 and the widthwise end of the steel strip S is preferably about 1 to 10 mm.

ノズル20A,20Bから噴射されるガスは、不活性ガスであることが好ましい。不活性ガスにすることで、鋼帯表面上の溶融金属の酸化を防止できるため、溶融金属の粘度ムラをさらに抑制することができる。不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられるが、これらに限定されるものではない。   The gas injected from the nozzles 20A and 20B is preferably an inert gas. By using an inert gas, oxidation of the molten metal on the surface of the steel strip can be prevented, so that uneven viscosity of the molten metal can be further suppressed. Examples of the inert gas include, but are not limited to, nitrogen, argon, helium, and carbon dioxide.

本実施形態において、溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0〜0.1質量%を含有し、残部がZn及び不可避的不純物からなることが好ましい。このようにMgが含まれると、溶融金属の酸化/冷却による粘度ムラが生じやすく、湯ジワが発生しやすくなることが確認されている。また、上記の成分系では、Zn100%の溶融金属と比較すると粘度が低いため、淀み点で初期凹凸が発生した際に、溶融金属が固まる前により初期凹凸が大きく成長するため、湯ジワが発生しやすくなる。そのため、溶融金属が上記成分組成を有する場合に、本発明の湯ジワを抑制する効果が顕著に表れる。また、溶融金属の組成が、5質量%Al−Znの場合や、55質量%Al−Znの場合にも、本発明の湯ジワを抑制する効果を得ることができる。   In this embodiment, the components of the molten metal include Al: 1.0 to 10% by mass, Mg: 0.2 to 1% by mass, and Ni: 0 to 0.1% by mass, and the balance is preferably composed of Zn and inevitable impurities. . It has been confirmed that when Mg is contained as described above, unevenness in viscosity due to oxidation / cooling of the molten metal is likely to occur, and hot water wrinkles are likely to occur. In addition, in the above-mentioned component system, since the viscosity is lower than that of molten metal of 100% Zn, when initial unevenness occurs at the stagnation point, the initial unevenness grows larger before the molten metal solidifies, so that hot water wrinkles are generated. Easier to do. Therefore, when the molten metal has the above component composition, the effect of suppressing the hot water wrinkles of the present invention is remarkably exhibited. Further, even when the composition of the molten metal is 5% by mass Al—Zn or 55% by mass Al—Zn, the effect of suppressing hot water wrinkles of the present invention can be obtained.

本発明の製造方法で製造される溶融金属めっき鋼帯としては、溶融亜鉛めっき鋼板を挙げることができ、これは、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(GI)と、合金化処理を施すめっき鋼板(GA)のいずれも含む。   Examples of the hot-dip galvanized steel strip manufactured by the manufacturing method of the present invention include a hot-dip galvanized steel sheet. Includes any coated steel sheet (GA) to be treated.

溶融亜鉛めっき鋼帯の製造ラインにおいて、溶融亜鉛めっき鋼帯の製造試験を行った。各発明例及び比較例で、図1に示すめっき設備を用いた。ガスワイピングノズルは、ノズルギャップBが1.2mmのものを使用した。各発明例及び比較例で、めっき浴の組成、めっき浴の温度T、めっき浴の融点TM、目標のめっき厚さW、鋼帯の走行速度L、ワイピングノズルのヘッダガス圧力P、ワイピングガスの衝突圧変動量σ、ノズル先端と鋼帯との距離D、ノズル角度θ、ノズル高さH、バッフルプレートの使用有無は、表1に示すものとした。ノズル先端と鋼帯との距離Dは、鋼帯片面中央部のめっき付着量がWを満たすよう、鋼帯走行速度Lやヘッダ圧力Pの値を考慮して設定した。 A production test of a hot-dip galvanized steel strip was performed on a hot-dip galvanized steel strip manufacturing line. In each of the invention examples and the comparative examples, the plating equipment shown in FIG. 1 was used. The gas wiping nozzle used had a nozzle gap B of 1.2 mm. In each of the invention examples and comparative examples, the composition of the plating bath, the temperature T of the plating bath, the melting point T M of the plating bath, the target plating thickness W, the traveling speed L of the steel strip, the header gas pressure P of the wiping nozzle, and the Table 1 shows the impact pressure fluctuation amount σ, the distance D between the nozzle tip and the steel strip, the nozzle angle θ, the nozzle height H, and the use of the baffle plate. The distance D between the nozzle tip and the steel strip was set in consideration of the values of the steel strip running speed L and the header pressure P such that the plating adhesion amount at the center of one side of the steel strip satisfies W.

ガスワイピングノズルへのガス供給方法として、コンプレッサーで所定圧力に加圧したものを供給する方法を採用した。こうして、板厚1.2mm×板幅1000mmの鋼帯を通板して、溶融亜鉛めっき鋼帯を製造した。   As a method of supplying gas to the gas wiping nozzle, a method of supplying a gas pressurized to a predetermined pressure by a compressor was employed. In this way, a steel strip having a thickness of 1.2 mm and a width of 1000 mm was passed through to produce a hot-dip galvanized steel strip.

なお、事前のオンラインテストで式(1)中の定数をそれぞれ求めたところ、α=1725,β=-60であった。式(1)から算出される衝突圧変動量σの好適範囲も表1に示す。   In addition, when the constants in the equation (1) were obtained by a preliminary online test, they were α = 1725 and β = -60. Table 1 also shows a preferred range of the collision pressure fluctuation amount σ calculated from the equation (1).

また、製造された溶融亜鉛めっき鋼帯の外観と、両面の合計めっき付着量を評価した。鋼板の外観評価については、以下の基準で合否を判定した。結果を表1に示す。
×:不合格=目視で大きな湯ジワが確認できる亜鉛めっき鋼板(1.50<Wa)
△:不合格=目視で小さな湯ジワが確認できる亜鉛めっき鋼板(1.00<Wa≦1.50)
○:合格=目視で湯ジワが確認できない美麗な亜鉛めっき鋼板(0.50<Wa≦1.00)
◎:合格=目視で湯ジワが確認できない非常に美麗な亜鉛めっき鋼板(0<Wa≦0.50)
なお、Waは、JIS B0601-2001の規格に基づいて測定した算術平均うねりWa[μm]の値である。
In addition, the appearance of the manufactured hot-dip galvanized steel strip and the total coating weight of both sides were evaluated. Regarding the appearance evaluation of the steel sheet, pass / fail was determined based on the following criteria. Table 1 shows the results.
×: rejected = galvanized steel sheet (1.50 <Wa) where large hot water wrinkles can be visually confirmed
△: rejected = galvanized steel sheet (1.00 <Wa ≦ 1.50) where small wrinkles can be visually observed
:: Pass = beautiful galvanized steel sheet with no visible wrinkles (0.50 <Wa ≦ 1.00)
◎: Pass = Very beautiful galvanized steel sheet with no visible wrinkles (0 <Wa ≦ 0.50)
In addition, Wa is a value of the arithmetic mean waviness Wa [μm] measured based on the standard of JIS B0601-2001.

また、表1中のCは、C=(鋼帯端部の付着量−鋼帯中央部の付着量)/鋼帯中央部の付着量×100で示される、鋼帯中央と鋼帯端部のめっき付着量偏差[%]の値である。   C in Table 1 is C = (the amount of adhesion at the end of the steel strip−the amount of adhesion at the center of the steel strip) / the amount of adhesion at the center of the steel strip × 100. Is the value of the plating adhesion amount deviation [%].

Figure 0006635086
Figure 0006635086

表1から明らかなように、衝突圧変動量σが式(1)を満たしている場合、Waが低く美麗な表面外観が得られるのに対して、衝突圧変動量σが式(1)を満たしていない場合、Waが大きくなってしまった。特に、めっき種B,Eでは、衝突圧変動量σを本発明範囲とした場合の効果が顕著に得られた。   As is clear from Table 1, when the impact pressure fluctuation amount satisfies the expression (1), a beautiful surface appearance with a low Wa is obtained, whereas the collision pressure fluctuation amount σ is the expression (1). If not, Wa has increased. In particular, in the plating types B and E, the effect when the impact pressure fluctuation amount σ was within the range of the present invention was remarkably obtained.

また、ノズル高さHが250mm以下を満たしている場合やバッフルプレートを使用した場合は、幅方向の付着量偏差Cが低下しており、エッジオーバーコートを防止する効果を得られた。   Further, when the nozzle height H was less than 250 mm or when a baffle plate was used, the adhesion amount deviation C in the width direction was reduced, and an effect of preventing edge overcoat was obtained.

本発明の溶融金属めっき鋼帯の製造方法によれば、湯ジワの発生を十分に抑え、高品質の溶融金属めっき鋼帯を低コストで製造できる。   ADVANTAGE OF THE INVENTION According to the manufacturing method of the hot-dip metal-plated steel strip of this invention, generation | occurrence | production of hot water wrinkles is fully suppressed, and a high-quality hot-dip metal-plated steel strip can be manufactured at low cost.

100 連続溶融金属めっき設備
10 スナウト
12 めっき槽
14 溶融金属浴
16 シンクロール
18 サポートロール
20A,20B ガスワイピングノズル
22 ノズルヘッダ
24A 上ノズル部材
24B 下ノズル部材
26 噴射口(ノズルスリット)
28 バッフルプレート
S 鋼帯
B スリットギャップ
D ガスワイピングノズルの先端と鋼帯との距離
θ ノズル角度
REFERENCE SIGNS LIST 100 Continuous molten metal plating equipment 10 Snout 12 Plating bath 14 Molten metal bath 16 Sink roll 18 Support roll 20A, 20B Gas wiping nozzle 22 Nozzle header 24A Upper nozzle member 24B Lower nozzle member 26 Injection port (nozzle slit)
28 Baffle plate S Steel strip B Slit gap D Distance between tip of gas wiping nozzle and steel strip θ Nozzle angle

Claims (4)

溶融金属浴に連続的に鋼帯を浸漬し、
前記溶融金属浴から引き上げられる鋼帯に、該鋼帯を挟んで配置される一対のガスワイピングノズルからガスを吹き付けて、該鋼帯の両面の溶融金属の付着量を調整して、
連続的に溶融金属めっき鋼帯を製造する溶融金属めっき鋼帯の製造方法であって、
前記ガスワイピングノズルのヘッダ圧力P[kPa]と、前記ガスの衝突圧変動量σとの関係を予め求め、
当該関係に基づいて、前記ガスの衝突圧変動量σ、前記鋼帯の走行速度L及び目標のめっき厚さWに応じて、以下の式(1)を満足するように前記ヘッダ圧力Pを決定し、
目標のめっき厚さWを得るためのノズル先端−鋼帯間の距離Dを決定し、
決定された前記ヘッダ圧力P及び前記距離Dの条件下で、前記ガスの吹き付けを行うことを特徴とする、溶融金属めっき鋼帯の製造方法。
Figure 0006635086
σ:ガスの衝突圧変動量[Pa]
L:鋼帯の走行速度[m/min]
W:目標のめっき厚さ[μm]
α,β:定数
Continuously immerse steel strip in molten metal bath,
A gas is blown from a pair of gas wiping nozzles arranged on the steel strip pulled up from the molten metal bath, with the steel strip interposed therebetween to adjust the amount of adhered molten metal on both surfaces of the steel strip,
A method for manufacturing a hot-dip metal-plated steel strip for continuously manufacturing a hot-dip metal-plated steel strip,
A relationship between a header pressure P [kPa] of the gas wiping nozzle and a collision pressure fluctuation amount σ of the gas is obtained in advance,
Based on the relationship, impact pressure variation of the gas σ is in accordance with the running speed L and the target of the plating thickness W of the steel strip, the header pressure P so as to satisfy the following equation (1) Decide,
Determine the distance D between the nozzle tip and the steel strip to obtain the target plating thickness W,
The method of manufacturing a hot-dip metal-plated steel strip , wherein the blowing of the gas is performed under the determined conditions of the header pressure P and the distance D.
Figure 0006635086
σ: Gas impact pressure fluctuation [Pa]
L: Running speed of steel strip [m / min]
W: Target plating thickness [μm]
α, β: constant
前記ガスワイピングノズルの先端の高さを、前記溶融金属浴の表面から250mm以下とする、請求項に記載の溶融金属めっき鋼帯の製造方法。 The height of the tip of the gas wiping nozzle, said to the surface of the molten metal bath and 250mm or less, the production method of the molten metal plated steel strip according to claim 1. 前記鋼帯の幅方向端部近傍の鋼帯延長面上に、前記一対のガスワイピングノズルから噴射されたガス同士の衝突を回避するバッフルプレートを設置する、請求項1又は2に記載の溶融金属めっき鋼帯の製造方法。 On the steel strip extended surface in the width direction end portion vicinity of the steel strip, placing the baffle plate to avoid collisions of gas between ejected from said pair of gas wiping nozzle, the molten metal of claim 1 or 2 Manufacturing method of plated steel strip. 前記溶融金属の成分は、Al:1.0〜10質量%、Mg:0.2〜1質量%、Ni:0〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる、請求項1〜のいずれか一項に記載の溶融金属めっき鋼帯の製造方法。 Component of the molten metal, Al: 1.0 to 10 mass%, Mg: 0.2 to 1 mass%, Ni: 0 to 0.1 containing mass%, the balance being Zn and incidental impurities, according to claim 1 to 3 The method for producing a galvanized steel strip according to any one of the preceding claims.
JP2017075451A 2017-04-05 2017-04-05 Manufacturing method of hot-dip galvanized steel strip Active JP6635086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075451A JP6635086B2 (en) 2017-04-05 2017-04-05 Manufacturing method of hot-dip galvanized steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075451A JP6635086B2 (en) 2017-04-05 2017-04-05 Manufacturing method of hot-dip galvanized steel strip

Publications (2)

Publication Number Publication Date
JP2018178158A JP2018178158A (en) 2018-11-15
JP6635086B2 true JP6635086B2 (en) 2020-01-22

Family

ID=64282366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075451A Active JP6635086B2 (en) 2017-04-05 2017-04-05 Manufacturing method of hot-dip galvanized steel strip

Country Status (1)

Country Link
JP (1) JP6635086B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011395B2 (en) * 1995-07-31 2000-02-21 川崎製鉄株式会社 Method for producing thick galvanized steel sheet with excellent surface properties
JP3278607B2 (en) * 1998-02-20 2002-04-30 川崎製鉄株式会社 Method for producing hot-dip galvanized steel sheet with good surface properties
JP2002241918A (en) * 2001-02-15 2002-08-28 Nippon Steel Corp Method for producing hot dip plated steel sheet and production equipment therefor
EP3205741B1 (en) * 2014-10-08 2023-04-05 JFE Steel Corporation Continuous hot-dip metal plating method and continuous hot-dip metal plating equipment

Also Published As

Publication number Publication date
JP2018178158A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
AU2020204123B2 (en) Method for manufacturing molten metal plated steel strip and continuous molten metal plating equipment
KR102471806B1 (en) Manufacturing method of hot-dip metal plating steel strip and continuous hot-dip metal plating equipment
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP4857906B2 (en) Manufacturing method of molten metal plated steel strip
JP6638872B1 (en) Method for producing hot-dip coated steel strip and continuous hot-dip metal plating equipment
JP6414360B2 (en) Manufacturing method of molten metal plated steel strip
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP6772930B2 (en) Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP6870659B2 (en) Gas wiping nozzle for hot metal plating equipment, gas wiping method for hot metal plating, and manufacturing method for hot metal plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6635086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250