JP6772930B2 - Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet - Google Patents

Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP6772930B2
JP6772930B2 JP2017067929A JP2017067929A JP6772930B2 JP 6772930 B2 JP6772930 B2 JP 6772930B2 JP 2017067929 A JP2017067929 A JP 2017067929A JP 2017067929 A JP2017067929 A JP 2017067929A JP 6772930 B2 JP6772930 B2 JP 6772930B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
dip galvanized
galvanized steel
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067929A
Other languages
Japanese (ja)
Other versions
JP2018168435A (en
Inventor
悠一 小澤
悠一 小澤
大輔 原子
大輔 原子
真人 今村
真人 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017067929A priority Critical patent/JP6772930B2/en
Publication of JP2018168435A publication Critical patent/JP2018168435A/en
Application granted granted Critical
Publication of JP6772930B2 publication Critical patent/JP6772930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a hot-dip galvanized steel sheet and a method for manufacturing a hot-dip galvanized steel sheet.

従来、溶融亜鉛系めっき鋼板において、表面の光沢度を高める方法として、溶融亜鉛浴中の成分にSb等の微量金属を添加する方法(特許文献1参照)や、溶融亜鉛めっき原板の表面粗度を調整する方法(特許文献2参照)や、めっき後の調質圧延(SK処理)で用いるSKロールの粗度の変更する方法(特許文献3参照)等が提案されている。 Conventionally, as a method of increasing the surface gloss of a hot-dip galvanized steel plate, a method of adding a trace metal such as Sb to a component in a hot-dip galvan bath (see Patent Document 1) or a surface roughness of a hot-dip galvanized original plate (See Patent Document 2) and a method of changing the roughness of the SK roll used in temper rolling (SK treatment) after plating (see Patent Document 3) have been proposed.

特開平5−320848号公報Japanese Unexamined Patent Publication No. 5-320848 特開平9−263967号公報Japanese Unexamined Patent Publication No. 9-263967 特開2004−143505号公報Japanese Unexamined Patent Publication No. 2004-143505

しかしながら、特許文献1で提案された方法では、Sb等の微量金属を含む溶融亜鉛浴を、Sb等の微量金属を含まない通常の溶融亜鉛浴とは別に用意する必要があり、かつ鋼板に応じて両者を切り替える必要があるため、切り替えロスが発生するという問題があった。また、特許文献1で提案された方法は、ラインを一旦停止させなければ溶融亜鉛浴の切り替えを行うことができないため、現実の操業では適用が困難であった。 However, in the method proposed in Patent Document 1, it is necessary to prepare a hot-dip galvanized bath containing a trace metal such as Sb separately from a normal hot-dip zinc bath not containing a trace metal such as Sb, and depending on the steel sheet. Since it is necessary to switch between the two, there is a problem that switching loss occurs. Further, the method proposed in Patent Document 1 cannot be switched between hot-dip zinc baths unless the line is temporarily stopped, so that it is difficult to apply the method in actual operation.

また、特許文献2,3で提案された方法では、粗度を調整したロールへの変更に伴いコストが増加するという問題があった。 Further, the methods proposed in Patent Documents 2 and 3 have a problem that the cost increases with the change to the roll having the roughness adjusted.

本発明は、上記に鑑みてなされたものであって、高光沢度を有する溶融亜鉛めっき鋼板と、高光沢度を有する溶融亜鉛めっき鋼板を容易かつ低コストで製造することができる溶融亜鉛めっき鋼板の製造方法と、を提供することを目的とする。 The present invention has been made in view of the above, and a hot-dip galvanized steel sheet having a high glossiness and a hot-dip galvanized steel sheet having a high glossiness can be manufactured easily and at low cost. It is an object of the present invention to provide a method of manufacturing the above.

上述した課題を解決し、目的を達成するために、本発明に係る溶融亜鉛めっき鋼板は、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が45%以下であることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the hot-dip galvanized steel sheet according to the present invention has an orientation ratio of the (002) plane of Zn crystals on the surface of the hot-dip galvanized layer of 45% or less. It is a feature.

上述した課題を解決し、目的を達成するために、本発明に係る溶融亜鉛めっき鋼板の製造方法は、アルミニウム濃度が0.160%以下に制御された溶融亜鉛浴に鋼板を浸漬させるめっき工程を行うことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for producing a hot-dip galvanized steel sheet according to the present invention involves a plating step of immersing the steel sheet in a hot-dip galvanized bath in which the aluminum concentration is controlled to 0.160% or less. It is characterized by doing.

また、本発明に係る溶融亜鉛めっき鋼板の製造方法は、上記発明において、前記めっき工程の後に、加熱炉の出側板温が430℃〜455℃となるように、前記鋼板を加熱する加熱工程を行うことを特徴とする。 Further, in the method for producing a hot-dip galvanized steel sheet according to the present invention, in the above invention, after the plating step, a heating step of heating the steel sheet is performed so that the temperature of the outlet side plate of the heating furnace becomes 430 ° C. to 455 ° C. It is characterized by doing.

本発明に係る溶融亜鉛めっき鋼板は、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が45%以下に制御されているため、高光沢度を有している。また、本発明に係る溶融亜鉛めっき鋼板の製造方法によれば、アルミニウム濃度を0.160%以下に制御した溶融亜鉛浴によって鋼板のめっきを行うことにより、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率を45%以下に制御することができ、高光沢度を有する溶融亜鉛めっき鋼板を容易かつ低コストで製造することができる。 The hot-dip galvanized steel sheet according to the present invention has a high glossiness because the orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized layer is controlled to 45% or less. Further, according to the method for producing a hot-dip galvanized steel sheet according to the present invention, the Zn crystals on the surface of the hot-dip galvanized layer are formed by plating the steel sheet in a hot-dip zinc bath in which the aluminum concentration is controlled to 0.160% or less. The orientation ratio of the (002) surface can be controlled to 45% or less, and a hot-dip galvanized steel sheet having high gloss can be easily manufactured at low cost.

図1は、本発明の実施形態に係る溶融亜鉛めっき鋼板の製造方法に用いられる溶融亜鉛めっきライン1の要部を示す図である。FIG. 1 is a diagram showing a main part of a hot-dip galvanized line 1 used in the method for manufacturing a hot-dip galvanized steel sheet according to an embodiment of the present invention. 図2は、溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率と、溶融亜鉛めっき層の表面の光沢度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the orientation ratio of the (002) plane of Zn crystals on the surface of the hot-dip galvanized steel sheet and the glossiness of the surface of the hot-dip galvanized layer. 図3は、鋼板に発生した斜め模様を説明するための図である。FIG. 3 is a diagram for explaining an oblique pattern generated on the steel plate. 図4は、めっき後の鋼板の加熱温度と斜め模様との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the heating temperature of the steel sheet after plating and the oblique pattern.

本発明に係る溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板の製造方法について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 A method for manufacturing a hot-dip galvanized steel sheet and a hot-dip galvanized steel sheet according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

本実施形態に係る溶融亜鉛めっき鋼板を製造するための溶融亜鉛めっきライン1は、図1に示すように、溶融亜鉛ポット10と、シンクロール20と、一対のサポートロール30と、一対のワイピングノズル40と、合金化炉50と、を備えている。そして、この溶融亜鉛めっきライン1を利用した溶融亜鉛めっき鋼板の製造方法では、めっき工程と、付着量調整工程と、加熱工程と、を実施する。 As shown in FIG. 1, the hot-dip galvanized line 1 for manufacturing the hot-dip galvanized steel sheet according to the present embodiment includes a hot-dip galvanized pot 10, a sink roll 20, a pair of support rolls 30, and a pair of wiping nozzles. It is provided with 40 and an alloying furnace 50. Then, in the method for producing a hot-dip galvanized steel sheet using the hot-dip galvanized line 1, a plating step, an adhesion amount adjusting step, and a heating step are carried out.

めっき工程では、図示しないめっき工程の前工程で所定の熱処理が施され、かつ表面が清浄化および活性化された鋼板Sが、外気に触れないように図示しないスナウト内を介して、溶融亜鉛ポット10に保持された溶融亜鉛浴11に侵入する。そして、溶融亜鉛浴11に侵入した鋼板Sを、浴中のシンクロール20によって搬送方向を概ね鉛直上向き方向に方向転換し、サポートロール30によって溶融亜鉛浴11から引き上げる。 In the plating step, the hot-dip galvanized pot S, which has been subjected to a predetermined heat treatment in the pre-process of the plating step (not shown) and whose surface has been cleaned and activated, is passed through a snout (not shown) so as not to come into contact with the outside air. It invades the hot-dip galvanized bath 11 held in 10. Then, the steel plate S that has penetrated into the hot-dip galvanized bath 11 is changed in the transport direction substantially vertically upward by the sink roll 20 in the bath, and is pulled up from the hot-dip galvanized bath 11 by the support roll 30.

続いて、付着量調整工程では、溶融亜鉛浴11から引き上げた直後の鋼板Sに対して、ワイピングノズル40から高圧気体を吹き付け、鋼板Sに付着した過剰の溶融亜鉛を下方に絞り落とすことにより、鋼板Sの亜鉛付着量を調整する。 Subsequently, in the adhesion amount adjusting step, high-pressure gas is blown from the wiping nozzle 40 onto the steel sheet S immediately after being pulled up from the hot-dip zinc bath 11, and excess molten zinc adhering to the steel sheet S is squeezed downward. The amount of zinc adhered to the steel plate S is adjusted.

溶融亜鉛めっきを製造する場合、通常は、引き続く加熱工程(再加熱工程)である合金化炉50の使用の必要はないが、本実施例では、後記する鋼板Sの表面の斜め模様を改善するために、当該合金化炉50の出側板温を所定範囲となるように鋼板Sを加熱(再加熱)する。なお、溶融亜鉛浴11には、アルミニウムが微量添加されている。 When producing hot-dip galvanizing, it is usually not necessary to use the alloying furnace 50, which is a subsequent heating step (reheating step), but in this embodiment, the oblique pattern on the surface of the steel sheet S, which will be described later, is improved. Therefore, the steel plate S is heated (reheated) so that the temperature of the exit side plate of the alloying furnace 50 is within a predetermined range. A small amount of aluminum is added to the hot-dip zinc bath 11.

本発明者らは、溶融亜鉛めっきの光沢度を高めるため、種々の製造条件を試行し、光沢度が高くなる条件があることを突き止めた。また、光沢度が異なる鋼板を種々調査した結果、光沢度は、(002)面の配向性比率と相関があることを新たに見出した。 The present inventors have tried various production conditions in order to increase the glossiness of hot-dip galvanizing, and have found that there are conditions for increasing the glossiness. Further, as a result of various investigations of steel sheets having different glossiness, it was newly found that the glossiness has a correlation with the orientation ratio of the (002) plane.

ここで、図2は、溶融亜鉛めっき鋼板において、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率と、溶融亜鉛めっき層の表面の光沢度との関係を示しており、横軸が(002)面の配向性比率を、縦軸が光沢度(G値)を示している。 Here, FIG. 2 shows the relationship between the orientation ratio of the (002) plane of Zn crystals on the surface of the hot-dip galvanized steel sheet and the glossiness of the surface of the hot-dip galvanized layer. The horizontal axis represents the orientation ratio of the (002) plane, and the vertical axis represents the glossiness (G value).

本発明者らは、図2に示すように、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が低い程、溶融亜鉛めっき層の表面の光沢度(G値)が高くなることを見出した。そして、例えば「高光沢度」を、「光沢度(G値)が300以上」と定義した場合、同図のドット部に示すように、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率を45%以下に制御することにより、製造後の溶融亜鉛めっき鋼板の光沢度(G値)を300以上に制御できることが分かる。さらに、本発明者らは、鋭意検討の結果、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率を低下させるためには、溶融亜鉛浴11のアルミニウム濃度を低下させればよいことを見出した。 As shown in FIG. 2, the present inventors have a higher gloss (G value) on the surface of the hot-dip galvanized layer as the orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized layer is lower. I found that it would be. Then, for example, when "high glossiness" is defined as "glossiness (G value) of 300 or more", the (002) plane of the Zn crystal on the surface of the hot-dip galvanized layer is shown in the dot portion of the figure. It can be seen that the glossiness (G value) of the hot-dip galvanized steel sheet after production can be controlled to 300 or more by controlling the orientation ratio of 45% or less. Furthermore, as a result of diligent studies, the present inventors, in order to reduce the orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized layer, it is necessary to reduce the aluminum concentration of the hot-dip zinc bath 11. I found a good thing.

本実施形態では、以上の知見に基づき、めっき工程において、アルミニウム濃度が0.160%以下に制御された溶融亜鉛浴11に鋼板Sを浸漬してめっきを行う。これにより、製造後の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が45%以下に制御され、溶融亜鉛めっき層の表面の光沢度(G値)が300以上となる。なお、溶融亜鉛浴11のアルミニウム濃度は、0.140%以下とすることがさらに好ましい。 In the present embodiment, based on the above findings, in the plating step, the steel sheet S is immersed in the hot-dip zinc bath 11 in which the aluminum concentration is controlled to 0.160% or less to perform plating. As a result, the orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized steel sheet after production is controlled to 45% or less, and the glossiness (G value) of the surface of the hot-dip galvanized layer is controlled. Is 300 or more. The aluminum concentration of the hot-dip zinc bath 11 is more preferably 0.140% or less.

ここで、溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率R(hk・l)は、X線回折測定によって得られる回折ピーク強度に基づいて、下記式(1)のように定義することができる。 Here, the orientation ratio R (hk · l) of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized steel sheet is calculated by the following formula based on the diffraction peak intensity obtained by the X-ray diffraction measurement. It can be defined as (1).

R(hk・l)=[I(hk・l)/Is(hk・l)]/Σ[I(hk・l)/Is(hk・l)] ・・・(1) R (hk ・ l) = [I (hk ・ l) / Is (hk ・ l)] / Σ [I (hk ・ l) / Is (hk ・ l)] ・ ・ ・ (1)

但し、上記式(1)において、I(hk・l)は、X線回折測定によって得た溶融亜鉛めっき層の各結晶面(hk・l)の回折ピーク強度値(cps)であり、Is(hk・l)は、標準亜鉛粉末の各結晶面(hk・l)の回折ピーク強度値(cps)である。また、上記式(1)におけるΣは、評価に必要な10種の結晶面、すなわち(00・2),(10・0),(10・1),(10・2),(10・3),(11・0),(11・2),(20・1),(10・4),(20・3)の各結晶面についての値を合計することを意味している。 However, in the above formula (1), I (hk · l) is a diffraction peak intensity value (cps) of each crystal plane (hk · l) of the hot-dip galvanized layer obtained by X-ray diffraction measurement, and Is ( hk · l) is the diffraction peak intensity value (cps) of each crystal plane (hk · l) of the standard zinc powder. Further, Σ in the above formula (1) is 10 kinds of crystal planes necessary for evaluation, that is, (00.2), (10.0), (10.1), (10.2), (10.3). ), (11.0), (11.2), (20.1), (10.4), (20.3) means to sum the values for each crystal plane.

また、溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面の光沢度(G値)は、例えば「JIS Z 8741(1997年)」に基づいて、光沢度計で60度鏡面光沢度(G値)を測定することにより求めることが可能である。 Further, the glossiness (G value) of the surface of the hot-dip galvanized steel sheet of the hot-dip galvanized steel sheet is, for example, based on "JIS Z 8741 (1997)", and the glossiness meter measures the glossiness (G value) of 60 degrees. It can be obtained by measuring.

なお、めっき工程において、溶融亜鉛浴11のアルミニウム濃度が低すぎると、浴中にドロスが発生し、品質に影響を及ぼす可能性がある。従って、溶融亜鉛浴11のアルミニウム濃度は、0.100%以上に制御することが望ましい。 If the aluminum concentration of the hot-dip zinc bath 11 is too low in the plating step, dross may occur in the bath, which may affect the quality. Therefore, it is desirable to control the aluminum concentration of the hot-dip zinc bath 11 to 0.100% or more.

ここで、めっき工程において溶融亜鉛浴11のアルミニウム濃度を0.160%以下に制御してめっきを行うと、鋼板Sが溶融亜鉛浴11に侵入した際にその表面に形成される初期合金層が成長し、鋼板Sの表面に凹凸が形成される場合がある。そして、この凹凸は、付着量調整工程においてワイピングノズル40から高圧気体が吹き付けられると、高圧気体の衝突による凹凸助長効果(ベルヌーイの定理)によって成長する。これにより、例えば図3に示すように、鋼板Sの表面に複数の斜め模様(しわ)Pが形成され、高速で操業するほど外観品質が低下する可能性が高くなる。 Here, when plating is performed by controlling the aluminum concentration of the hot-dip zinc bath 11 to 0.160% or less in the plating step, an initial alloy layer formed on the surface of the steel sheet S when it invades the hot-dip zinc bath 11 is formed. It may grow and unevenness may be formed on the surface of the steel sheet S. Then, when the high-pressure gas is blown from the wiping nozzle 40 in the adhesion amount adjusting step, the unevenness grows due to the unevenness promoting effect (Bernoulli's theorem) due to the collision of the high-pressure gas. As a result, for example, as shown in FIG. 3, a plurality of diagonal patterns (wrinkles) P are formed on the surface of the steel sheet S, and the higher the operation speed, the higher the possibility that the appearance quality deteriorates.

そこで、本実施形態では、めっき工程の後に加熱工程を実施する。そして、この加熱工程では、合金化炉50において、当該合金化炉50の出側板温が430℃〜455℃となるように鋼板Sを加熱する。これにより、鋼板Sの表面を平準化し、図3に示すような斜め模様Pの発生を抑制する。なお、430℃未満では、改善効果が不足し、455℃超では、亜鉛と鋼板Sとの界面で合金化が進行して合金化溶融亜鉛めっきになってしまうため、加熱温度は430℃〜455℃の範囲とすることが好ましい。 Therefore, in the present embodiment, the heating step is carried out after the plating step. Then, in this heating step, in the alloying furnace 50, the steel plate S is heated so that the output side plate temperature of the alloying furnace 50 becomes 430 ° C. to 455 ° C. As a result, the surface of the steel sheet S is leveled and the occurrence of the diagonal pattern P as shown in FIG. 3 is suppressed. If the temperature is lower than 430 ° C, the improvement effect is insufficient, and if the temperature exceeds 455 ° C, alloying proceeds at the interface between zinc and the steel sheet S, resulting in alloyed hot-dip galvanizing. Therefore, the heating temperature is 430 ° C to 455 ° C. It is preferably in the range of ° C.

図4は、めっき後の鋼板Sの加熱温度(合金化炉50の出側板温)と、鋼板Sの表面に形成される斜め模様Pとの関係を示している。同図に示すように、めっき後の鋼板Sの加熱温度を430℃〜455℃に制御することにより、鋼板Sの表面に斜め模様Pが全く形成されないか(横軸の「◎」参照)、あるいは斜め模様Pは多少形成されるものの品質には影響を及ぼさない範囲(横軸の「○」参照)に留めることができる。一方、同図に示すように、めっき後の鋼板Sを加熱しない場合、当該鋼板Sの表面に、品質に影響を及ぼす程度の斜め模様Pが形成される(横軸の「×」参照)。 FIG. 4 shows the relationship between the heating temperature of the steel sheet S after plating (the temperature of the exit side of the alloying furnace 50) and the diagonal pattern P formed on the surface of the steel sheet S. As shown in the figure, by controlling the heating temperature of the steel sheet S after plating to 430 ° C. to 455 ° C., no diagonal pattern P is formed on the surface of the steel sheet S (see “◎” on the horizontal axis). Alternatively, the diagonal pattern P can be limited to a range (see “◯” on the horizontal axis) that does not affect the quality although it is formed to some extent. On the other hand, as shown in the figure, when the steel sheet S after plating is not heated, an oblique pattern P to the extent that affects the quality is formed on the surface of the steel sheet S (see “x” on the horizontal axis).

なお、溶融亜鉛めっきの光沢度を高めるという本発明の目的は、前記しためっき工程を実施することにより達成可能であり、加熱工程の実施は必須ではない。例えば加熱工程を実施しない、あるいは加熱工程における加熱温度が430℃〜455℃の範囲外であることを理由として、めっき後の鋼板Sに斜め模様Pが形成されたとしても、斜め模様Pが発生した部分を切り落とせば製品として使用可能である。すなわち、本実施形態では、めっき後の鋼板Sに斜め模様Pが発生した際の歩留り低下を抑制するために、めっき工程に加えて加熱工程を実施する。 The object of the present invention of increasing the glossiness of hot-dip galvanizing can be achieved by carrying out the above-mentioned plating step, and it is not essential to carry out the heating step. For example, even if the diagonal pattern P is formed on the steel sheet S after plating because the heating step is not performed or the heating temperature in the heating step is outside the range of 430 ° C. to 455 ° C., the diagonal pattern P is generated. It can be used as a product by cutting off the plated part. That is, in the present embodiment, in order to suppress a decrease in yield when a diagonal pattern P is generated on the steel sheet S after plating, a heating step is carried out in addition to the plating step.

加熱工程後は、鋼板Sに付着した溶融亜鉛が凝固するように当該鋼板Sを冷却し、必要に応じて形状矯正、化成処理、塗油等の処理が施す。これにより、溶融亜鉛めっき鋼板の製造が完了する。 After the heating step, the steel sheet S is cooled so that the molten zinc adhering to the steel sheet S solidifies, and if necessary, shape correction, chemical conversion treatment, oil coating, and the like are performed. This completes the production of the hot-dip galvanized steel sheet.

以上説明したような本実施形態に係る溶融亜鉛めっき鋼板の製造方法によれば、アルミニウム濃度を0.160%以下に制御した溶融亜鉛浴11によって鋼板Sのめっきを行うことにより、鋼板Sの溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率を45%以下に制御することができ、高光沢度(光沢度(G値)が300以上)を有する溶融亜鉛めっき鋼板を製造することができる。また、めっき後の鋼板Sを、合金化炉50の出側板温が430℃〜455℃となるように加熱することにより、鋼板Sの表面に不良が発生することを抑制することができる。 According to the method for producing a hot-dip galvanized steel sheet according to the present embodiment as described above, the steel sheet S is melted by plating the steel sheet S in the hot-dip zinc bath 11 in which the aluminum concentration is controlled to 0.160% or less. A hot-dip galvanized steel sheet having a high glossiness (glossiness (G value) of 300 or more) can be manufactured by controlling the orientation ratio of the (002) plane of Zn crystals on the surface of the zinc plating layer to 45% or less. can do. Further, by heating the plated steel sheet S so that the temperature of the exit side of the alloying furnace 50 becomes 430 ° C. to 455 ° C., it is possible to suppress the occurrence of defects on the surface of the steel sheet S.

また、本実施形態に係る溶融亜鉛めっき鋼板の製造方法は、特許文献1のように、Sbのような特別な成分を含む溶融亜鉛浴を用意する必要がなく、切り替えロスもないため、特許文献1と比較して溶融亜鉛めっき鋼板を容易に製造することが可能である。さらに、本実施形態に係る溶融亜鉛めっき鋼板の製造方法は、特許文献2,3のように冷間圧延時の仕上げロールやめっき後の調質圧延(SK処理)のロールの粗度を変更する必要がないため、特許文献2,3と比較して低コストで溶融亜鉛めっき鋼板を製造することが可能である。 Further, in the method for producing a hot-dip galvanized steel sheet according to the present embodiment, unlike Patent Document 1, it is not necessary to prepare a hot-dip galvanized bath containing a special component such as Sb, and there is no switching loss. Compared with No. 1, it is possible to easily manufacture a hot-dip galvanized steel sheet. Further, in the method for producing a hot-dip galvanized steel sheet according to the present embodiment, as in Patent Documents 2 and 3, the roughness of the finish roll during cold rolling and the roll roughness of temper rolling (SK treatment) after plating is changed. Since it is not necessary, it is possible to manufacture a hot-dip galvanized steel sheet at a lower cost as compared with Patent Documents 2 and 3.

また、本実施形態に係る溶融亜鉛めっき鋼板の製造方法によって製造された溶融亜鉛めっき鋼板は、溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が45%以下に制御されているため、高光沢度(光沢度(G値)が300以上)を有している。 Further, in the hot-dip galvanized steel sheet manufactured by the method for producing a hot-dip galvanized steel sheet according to the present embodiment, the orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized steel layer is controlled to 45% or less. Therefore, it has a high glossiness (glossiness (G value) of 300 or more).

以下、本発明の構成要件を満たした本発明例と、本発明の構成要件を満たさない比較例とを比較しながら、本発明の効果について説明する。 Hereinafter, the effects of the present invention will be described while comparing an example of the present invention that satisfies the constituent requirements of the present invention with a comparative example that does not satisfy the constituent requirements of the present invention.

本実施例では、表1に示すNo.1〜No.5の鋼板に対して、前記した溶融亜鉛めっき鋼板の製造方法、すなわちめっき工程、付着量調整工程および加熱工程の一部または全部を実施し、光沢度(G値)と、斜め模様の有無について評価を行った。なお、表1において、数値の下に示した下線は、その数値が本発明の構成要件を満たしていることを示している。また、表1における「斜め模様」の欄では、斜め模様が全く形成されなかったものを◎で、斜め模様が多少形成されたものの品質には影響を及ぼさないものを○で、品質に影響を及ぼす程度の斜め模様が形成されたものを×で示している。 In this embodiment, No. 1 shown in Table 1 is shown. 1-No. The above-mentioned method for producing a hot-dip galvanized steel sheet, that is, a part or all of a plating step, an adhesion amount adjusting step, and a heating step was carried out on the steel sheet of 5, and the glossiness (G value) and the presence or absence of an oblique pattern were obtained. Evaluation was performed. In Table 1, the underline shown below the numerical value indicates that the numerical value satisfies the constituent requirements of the present invention. In addition, in the "diagonal pattern" column in Table 1, those with no diagonal patterns formed are marked with ◎, and those with some diagonal patterns formed but do not affect the quality are marked with ○, which affects the quality. Those with diagonal patterns formed to the extent of the effect are indicated by x.

Figure 0006772930
Figure 0006772930

表1に示すように、No.1の鋼板は、溶融亜鉛浴のアルミニウム濃度を示す浴中AL濃度が0.160%を超えており、(002)面配向性比率が51%と高いため、光沢度(G値)が300未満であり、目標の光沢度(G値)に達していない。なお、No.1の鋼板は、めっき工程の後に加熱工程(合金化炉における加熱)を実施していないものの、浴中AL濃度が高いため、表面の斜め模様は発生していない。 As shown in Table 1, No. The steel sheet of No. 1 has an AL concentration in the bath, which indicates the aluminum concentration of the hot-dip zinc bath, exceeds 0.160%, and the (002) plane orientation ratio is as high as 51%, so that the glossiness (G value) is less than 300. Therefore, the target glossiness (G value) has not been reached. In addition, No. Although the steel sheet of No. 1 was not subjected to a heating step (heating in an alloying furnace) after the plating step, the diagonal pattern on the surface was not generated because the AL concentration in the bath was high.

次に、No.2の鋼板は、溶融亜鉛浴のアルミニウム濃度を示す浴中AL濃度を0.160%以下として溶融亜鉛めっきを行ったところ、(002)面配向性比率が40%であり、光沢度(G値)300以上を達成した。但し、ライン速度(鋼板の搬送速度)を80mpmとし、その後合金化炉で加熱を行わなかったところ、品質に影響を及ぼす程度の斜め模様が発生した。そのため、No.2の鋼板は、使用に際して、斜め模様が発生した部分を切り落とす必要があり、歩留まりが低下した。 Next, No. When the steel sheet of No. 2 was hot-dip galvanized with the AL concentration in the bath indicating the aluminum concentration of the hot-dip zinc bath set to 0.160% or less, the (002) plane orientation ratio was 40% and the glossiness (G value). ) Achieved more than 300. However, when the line speed (steel plate transfer speed) was set to 80 mpm and then heating was not performed in the alloying furnace, an oblique pattern that affected the quality was generated. Therefore, No. When using the steel plate of No. 2, it was necessary to cut off the portion where the diagonal pattern was generated, and the yield was lowered.

本発明者らは、上記のようなAL濃度を低くした場合に発生する斜め模様を改善する方法として、合金化炉を利用する方法を鋭意検討した。その結果、No.3の鋼板では、No.2と同じめっき条件で溶融亜鉛めっきした後、加熱工程における加熱温度(合金化炉の出側板温)を430℃として加熱を行ったところ、斜め模様が品質に影響を及ぼさない程度にまで改善した。 The present inventors have diligently studied a method using an alloying furnace as a method for improving the oblique pattern generated when the AL concentration is lowered as described above. As a result, No. In the steel plate of No. 3, No. After hot-dip galvanizing under the same plating conditions as in 2, heating was performed with the heating temperature (outside plate temperature of the alloying furnace) set to 430 ° C., and the diagonal pattern improved to the extent that it did not affect the quality. ..

また、No.4の鋼板では、No.2と同じめっき条件で溶融亜鉛めっきした後、加熱工程における加熱温度(合金化炉の出側板温)を445℃として加熱を行ったところ、斜め模様がさらに改善し、良好な外観が得られた。 In addition, No. In the steel plate of No. 4, No. After hot-dip galvanizing under the same plating conditions as in 2, heating was performed with the heating temperature (outside plate temperature of the alloying furnace) set to 445 ° C., and the diagonal pattern was further improved and a good appearance was obtained. ..

なお、No.5の鋼板では、No.2と同じめっき条件で溶融亜鉛めっきした後、加熱工程における加熱温度(合金化炉の出側板温)を465℃として加熱を行ったところ、斜め模様が改善し、良好な外観が得られたものの、合金化が進行して合金化溶融亜鉛めっきとなってしまい、目的の溶融亜鉛めっきとは異なるめっきに変化した。このように、No.5の鋼板の実験結果を通じて、合金化溶融亜鉛めっきとなることを避けるためには、加熱温度(合金化炉の出側板温)を455℃以下とする必要があることを確認した。 In addition, No. In the steel plate of No. 5, No. After hot-dip galvanizing under the same plating conditions as in 2, heating was performed with the heating temperature (outside plate temperature of the alloying furnace) set to 465 ° C., and the diagonal pattern was improved and a good appearance was obtained. As the alloying progressed, it became alloyed hot-dip galvanizing, and the plating changed to a different plating from the target hot-dip galvanizing. In this way, No. Through the experimental results of the steel plate of No. 5, it was confirmed that the heating temperature (outside plate temperature of the alloying furnace) must be 455 ° C. or lower in order to avoid alloying hot-dip galvanizing.

以上のように、めっき工程の後に加熱工程を実施することにより、ライン速度を速くすると、溶融亜鉛めっき層の表面に斜め模様が出やすくなるという問題が解消され、ライン速度にかかわらず、斜め模様の発生が抑制されることを確認した。 As described above, by carrying out the heating process after the plating process, the problem that an oblique pattern is likely to appear on the surface of the hot-dip galvanized layer when the line speed is increased is solved, and the oblique pattern is irrespective of the line speed. It was confirmed that the occurrence of

以上、本発明に係る溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板の製造方法について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 The method for producing a hot-dip galvanized steel sheet and a hot-dip galvanized steel sheet according to the present invention has been specifically described above with reference to embodiments and examples for carrying out the invention, but the gist of the present invention is limited to these descriptions. It must be broadly interpreted based on the description of the scope of claims. Needless to say, various changes, modifications, etc. based on these descriptions are also included in the gist of the present invention.

1 溶融亜鉛めっきライン
10 溶融亜鉛ポット
11 溶融亜鉛浴
20 シンクロール
30 サポートロール
40 ワイピングノズル
50 合金化炉
S 鋼板
1 Hot-dip galvanizing line 10 Hot-dip galvanized pot 11 Hot-dip zinc bath 20 Sink roll 30 Support roll 40 Wiping nozzle 50 Alloying furnace S Steel plate

Claims (3)

溶融亜鉛めっき層の表面におけるZn結晶の(002)面の配向性比率が36%〜45%であり、
光沢度(G値)が300〜435であることを特徴とする溶融亜鉛めっき鋼板。
The orientation ratio of the (002) plane of the Zn crystal on the surface of the hot-dip galvanized layer is 36% to 45 % .
A hot-dip galvanized steel sheet having a glossiness (G value) of 300 to 435.
アルミニウム濃度が0.135%に制御された溶融亜鉛浴に鋼板を浸漬させるめっき工程を行うことにより、光沢度(G値)が300〜435である溶融亜鉛めっき鋼板を製造することを特徴とする溶融亜鉛めっき鋼板の製造方法。 By the aluminum concentration perform plating step of immersing the steel sheet in a molten zinc bath that is controlled at 0.13 5%, and characterized in that gloss (G value) to produce a hot-dip galvanized steel sheet is 300 to 435 A method for manufacturing a hot-dip galvanized steel sheet. 前記めっき工程の後に、加熱炉の出側板温が430℃〜455℃となるように、前記鋼板を加熱する加熱工程を行うことを特徴とする請求項2に記載の溶融亜鉛めっき鋼板の製造方法。 The method for producing a hot-dip galvanized steel sheet according to claim 2, wherein after the plating step, a heating step of heating the steel sheet is performed so that the temperature of the outlet side plate of the heating furnace becomes 430 ° C. to 455 ° C. ..
JP2017067929A 2017-03-30 2017-03-30 Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet Active JP6772930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067929A JP6772930B2 (en) 2017-03-30 2017-03-30 Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067929A JP6772930B2 (en) 2017-03-30 2017-03-30 Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2018168435A JP2018168435A (en) 2018-11-01
JP6772930B2 true JP6772930B2 (en) 2020-10-21

Family

ID=64018450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067929A Active JP6772930B2 (en) 2017-03-30 2017-03-30 Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6772930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132240A1 (en) * 2022-01-06 2023-07-13 日本製鉄株式会社 Plated steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149757A (en) * 1984-01-13 1985-08-07 Nippon Kokan Kk <Nkk> Continuous type hot dipping installation
JPS61136664A (en) * 1984-12-05 1986-06-24 Kawasaki Steel Corp Method for plating molten metal at high speed
JPH0651903B2 (en) * 1990-01-30 1994-07-06 新日本製鐵株式会社 Method for producing zinc or zinc-based alloy hot-dip steel sheet with high sliding resistance
JPH10226863A (en) * 1996-12-09 1998-08-25 Kawasaki Steel Corp Hot dip galvanized steel sheet and its production
US20110256420A1 (en) * 2008-07-30 2011-10-20 Pangang Group Steel Vanadium & Titanium Co., Ltd. Hot-dip galvanized steel plate and production method thereof
JP5825244B2 (en) * 2012-10-31 2015-12-02 Jfeスチール株式会社 Hot-dip galvanized steel sheet
JP5907055B2 (en) * 2012-12-14 2016-04-20 Jfeスチール株式会社 Hot-dip galvanized steel sheet
JP5678951B2 (en) * 2012-12-27 2015-03-04 Jfeスチール株式会社 Hot-dip galvanized steel sheet
WO2016059743A1 (en) * 2014-10-17 2016-04-21 Jfeスチール株式会社 Hot-dip-galvanized steel sheet
WO2016059741A1 (en) * 2014-10-17 2016-04-21 Jfeスチール株式会社 High-strength hot-dip-galvanized steel sheet
WO2016059742A1 (en) * 2014-10-17 2016-04-21 Jfeスチール株式会社 High-strength hot-dip-galvanized steel sheet

Also Published As

Publication number Publication date
JP2018168435A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
CN104755647A (en) Hot-dip galvanized steel sheet
CN104838035A (en) Hot-dip-galvanized steel sheet
JP5114746B2 (en) Method for producing hot-dip aluminized steel sheet with pear skin surface
TW201432091A (en) Hot dip Al-Zn plated steel sheet and method of manufacturing the same
JP6135261B2 (en) Method for determining occurrence of molten metal embrittlement crack in hot stamped molded product and hot stamped molded product
JP6772930B2 (en) Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
TW202020188A (en) Method for manufacturing hot-dip metal plated steel strip, and continuous hot-dip metal plating facility
JP2017222923A (en) Production method of molten metal plated steel strip, and continuous molten metal plating facility
CN108642425B (en) Al-Si-Ti alloy coated steel plate for hot stamping and production method thereof
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JP2015193879A (en) Manufacturing method of molten-zinc/aluminum/magnesium alloy plated steel sheet
JP7321370B2 (en) ALUMINUM ALLOY PLATED STEEL SHEET EXCELLENT IN WORKABILITY AND CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME
JP5605045B2 (en) Method for producing galvannealed steel sheet
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP6638872B1 (en) Method for producing hot-dip coated steel strip and continuous hot-dip metal plating equipment
KR20150049254A (en) Semi-alloyed hot-rolled hot-dip galvanizing steel sheet having excellent workability and coating adhesion and method for manufacturing the same
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
TW202003874A (en) Method for manufacturing hot dip galvanized steel material
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JP2005290418A (en) HOT-DIP Al-Zn ALLOY PLATED STEEL SHEET SUPERIOR IN PRESS FORMABILITY, AND MANUFACTURING METHOD THEREFOR
CN115106378A (en) Production process of extremely-thin aluminum-silicon coated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250