JP2007332450A - Hot-dipped wire, and cooling device therefor - Google Patents

Hot-dipped wire, and cooling device therefor Download PDF

Info

Publication number
JP2007332450A
JP2007332450A JP2006169093A JP2006169093A JP2007332450A JP 2007332450 A JP2007332450 A JP 2007332450A JP 2006169093 A JP2006169093 A JP 2006169093A JP 2006169093 A JP2006169093 A JP 2006169093A JP 2007332450 A JP2007332450 A JP 2007332450A
Authority
JP
Japan
Prior art keywords
cooling
wire
hot
plating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006169093A
Other languages
Japanese (ja)
Other versions
JP4777158B2 (en
Inventor
Junichi Kodama
順一 児玉
Yasuyuki Watanabe
康行 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006169093A priority Critical patent/JP4777158B2/en
Publication of JP2007332450A publication Critical patent/JP2007332450A/en
Application granted granted Critical
Publication of JP4777158B2 publication Critical patent/JP4777158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-dipped wire having excellent appearance and capable of ensuring the workability and the corrosion resistance of the hot-dipped wire, and to provide a cooling device for manufacturing the hot-dipped wire. <P>SOLUTION: The hot-dipped wire is characterized in that the mean grain size of surface solidified crystal grains of a hot-dipped layer having the coating weight of ≥ 250 g/m<SP>2</SP>is 10-200 μm. In the hot-dipped wire cooling device, water-cooling nozzles are provided in a cooling cylinder around the hot-dipped wire so as to obtain the hot-dipped wire, and gas blowing nozzles capable of varying the ejection angle are arranged below the nozzles, and a mechanism capable of directly performing the water cooling of the surface of the hot-dipped wire is provided. The hot-dipped wire cooling device has a mechanism in which the position of the water-cooling nozzles is slidable in the moving direction of the hot-dipped wire so as to start the cooling of the hot-dipped wire in a temperature range between the solidification temperature and the solidification temperature -70°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、亜鉛を主体とするめっき組成を有する加工性、表面性状が良好で、偏肉が少ない溶融めっき線および溶融めっき線を製造するための冷却装置に関するものである。   The present invention relates to a hot-dip plated wire and a cooling device for producing hot-plated wire having a plating composition mainly composed of zinc, good workability and surface properties, and less uneven thickness.

従来より、溶融めっきは亜鉛の犠牲防食、バリヤ効果により鋼の防食処理として適用されてきた。この溶融めっきを施した溶融めっき線を金網等に使用する場合や、その他の固定用途に使用する場合、めっき線は各種曲げ加工を受ける。この曲げ加工部分には引張り歪が発生するために溶融めっき線のめっき表面(めっき層)に割れが発生することがある。めっき層に割れが発生すると、割れが無い場合に比べ、短時間で腐食生成物が生成し、防食効果が低下する課題がある。
また、めっき線の表面が平滑でない場合は外観不良による商品価値の低下と共に比表面積の増加により腐食が促進する課題も存在する。
さらに、めっき層の厚さの不均一による偏肉が大きい場合もめっき層が薄い部分の耐食性が低下し、この部分がめっき線全体の耐食性を律速し、耐食性が低下するという問題がある。
Conventionally, hot dip plating has been applied as a corrosion protection treatment for steel due to the sacrificial corrosion protection and barrier effect of zinc. When the hot-dip plated wire subjected to hot-dip plating is used for a wire mesh or the like, or when used for other fixing purposes, the plated wire is subjected to various bending processes. Since tensile strain is generated in the bent portion, cracks may occur on the plating surface (plating layer) of the hot-dip wire. When a crack occurs in the plating layer, there is a problem that a corrosion product is generated in a short time and the anticorrosion effect is lowered as compared with the case where there is no crack.
Further, when the surface of the plated wire is not smooth, there is a problem that corrosion is promoted by an increase in specific surface area as well as a reduction in commercial value due to poor appearance.
Further, even when the uneven thickness due to the uneven thickness of the plating layer is large, there is a problem that the corrosion resistance of the portion where the plating layer is thin is reduced, and this portion determines the corrosion resistance of the entire plated wire and the corrosion resistance is reduced.

そこで、溶融めっき線には各種製品への加工時にめっき層が割れたり、はく離しないこと、めっき表面が平滑で綺麗な外観を有し、局部腐食の発生を抑制するために均一なめっき厚さが形成されていることが要求される。   Therefore, the plating layer does not crack or peel off during the processing of various products on the hot-dip wire, the plating surface has a smooth and clean appearance, and has a uniform plating thickness to suppress the occurrence of local corrosion. It is required to be formed.

従来、めっき層の加工性を改善するための技術としてはめっき層の初晶幅を3μm以下に限定したもの(特許文献1)があるが、めっき層の亀裂はめっき層組織よりも結合強度が低い結晶粒界から発生するために初晶幅の微細化のみでは十分な改善効果は得られない。   Conventionally, as a technique for improving the workability of the plating layer, there is a technique (Patent Document 1) in which the initial crystal width of the plating layer is limited to 3 μm or less. Since it is generated from a low grain boundary, a sufficient improvement effect cannot be obtained only by reducing the primary crystal width.

また、めっき線を製造するための冷却方法、装置としては各種提案があり、気体およびミストを吹き付けて冷却する方法(特許文献2)。冷却に空気や性状を制御したガスを用い、ガス流れを制御することにより冷却する装置や方法(特許文献3、4、5)、が提案されている。しかし、ガス冷却やミストスプレーでは十分な冷却効率を得ることが出来ない。一方、より効率的な水冷を行うために水槽を設け、水槽内をめっき線を通線し、冷却する方法も提案されている(特許文献6、7、8)。しかし、水槽による水冷方法ではめっき線の入線部からの水漏れを防止することが出来ず、実用上適用が困難である。   Moreover, there are various proposals as a cooling method and apparatus for manufacturing a plated wire, and a method of cooling by blowing gas and mist (Patent Document 2). There have been proposed devices and methods (Patent Documents 3, 4, and 5) for cooling by cooling air by controlling the gas flow using air or gas whose properties are controlled. However, sufficient cooling efficiency cannot be obtained by gas cooling or mist spraying. On the other hand, a method has been proposed in which a water tank is provided in order to perform more efficient water cooling, and the inside of the water tank is cooled by passing a plating wire (Patent Documents 6, 7, and 8). However, the water-cooling method using a water tank cannot prevent water leakage from the incoming portion of the plated wire, and is difficult to apply practically.

従って、これらの先行技術に於いてもめっき付着量が250g/m2以上の厚めっきにおける十分な冷却効果を得、加工性、耐食性および表面性状の良好なめっき線を得るには不十分なものである。 Therefore, even these prior arts are insufficient to obtain a sufficient cooling effect in thick plating with a plating adhesion amount of 250 g / m 2 or more, and to obtain a plated wire with good workability, corrosion resistance and surface properties. It is.

特開2002−235159号公報JP 2002-235159 A 特開平4−183844号公報JP-A-4-183844 特開2003−193214号公報JP 2003-193214 A 特開平10−60615号公報Japanese Patent Laid-Open No. 10-60615 特開2000−45056号公報JP 2000-45056 A 特開平6−81107号公報JP-A-6-81107 特開平8−60330号公報JP-A-8-60330 実公昭57−13880号公報Japanese Utility Model Publication No.57-13880

本発明は上記を鑑みて、めっき線の加工性、耐食性を確保し、外観の良好なめっき線とそのめっき線を製造するための冷却装置を提供することを目的としている。   In view of the above, an object of the present invention is to provide a plated wire having a good appearance and a cooling device for producing the plated wire while ensuring the workability and corrosion resistance of the plated wire.

上記目的を達成するために、本発明者らは、溶融めっき線加工時のめっき割れ抑制するための凝固形態および表面性状、偏肉の発生を防止するための水冷条件について詳細に検討した結果、溶融めっき線の線径、製造速度に対応した適正かつ十分な冷却を行い、溶融めっき層の凝固を制御することで加工性、外観、めっき厚の偏肉が改善されることを見いだしたものである。   In order to achieve the above object, the present inventors have examined in detail the solidification form and surface properties for suppressing plating cracking during hot dip wire processing, and water cooling conditions for preventing the occurrence of uneven thickness, It has been found that workability, appearance, and uneven thickness of plating thickness can be improved by performing appropriate and sufficient cooling corresponding to the wire diameter and production speed of the hot-dip wire and controlling the solidification of the hot-dip coating layer. is there.

具体的には溶融めっき線のめっき層の結晶方位解析をもとにその凝固の結晶粒を求め、平均粒子径とめっき層の割れについて解析した結果、めっき層のミクロ組織よりもめっき表層観察により求められる凝固時の凝固結晶粒が割れの発生に大きく影響することが明らかになった。また、この適正な凝固組織を得るためにめっき付着量が250g/m2以上の厚目付とするための高速通線速度でも十分かつ効率的な冷却能力を確保するための冷却装置を適用することで、めっき層の凝固組織制御が可能となり、加工性と良好な外観および均一なめっき厚さを有する溶融めっき線が得られることを知見し、本発明を完成するに至ったものである。 Specifically, the solidified crystal grains were determined based on the crystal orientation analysis of the plated layer of the hot dipped wire, and the average particle diameter and cracking of the plated layer were analyzed. As a result, the surface of the plated layer was observed rather than the microstructure of the plated layer. It was revealed that the required solidified crystal grains during solidification greatly affect the occurrence of cracks. In addition, in order to obtain this appropriate solidified structure, a cooling device for ensuring sufficient and efficient cooling capacity even at a high wiring speed for obtaining a coating weight of 250 g / m 2 or more is used. Thus, the solidification structure of the plating layer can be controlled, and it has been found that a hot-dip plated wire having workability, good appearance, and uniform plating thickness can be obtained, and the present invention has been completed.

本発明の要旨とするところは以下の通りである。
(1)めっき付着量が250g/m2以上を有する溶融めっき線に於いて、めっき表面の結晶粒の平均径が相当円換算で10μm以上、200μm以下であることを特徴とする溶融めっき線である。
(2)めっき浴から溶融めっき線を垂直に引き上げつつ冷却筒内で冷却する溶融めっき線の冷却装置に於いて、溶融めっき線が貫通して移動可能な冷却筒の周囲に溶融めっき線に冷却水を吹き付ける複数の水冷ノズルを設置し、該ノズルの下方に冷却筒内部にめっき線移動方向と順方向に噴出角度が可変なガスを吹き込むガス吹き付けノズルを設置したことを特徴とする溶融めっき線の冷却装置。
(3)前記複数の水冷ノズルからの冷却水流が干渉しないように複数の水冷ノズルをらせん状に設置することを特徴とする上記(2)記載の溶融めっき線の冷却装置。
(4)水冷開始時の溶融めっき線表面温度がめっき組成から求められる平衡凝固温度以下、平衡凝固温度−70℃以上の温度範囲で冷却開始可能なように水冷ノズルの位置をめっき線の移動方向にスライド可能な機構を有することを特徴とする上記(1)または(2)記載の溶融めっき線の冷却装置。
(5)溶融めっき線が貫通する冷却筒の下方に設置したガス吹き付けノズルから吹き出すガス流と溶融めっき線の移動方向が形成する角度を10〜70度の範囲で調整可能な機構を有することを特徴とする上記(2)〜(4)のいずれかに記載の溶融めっき線の冷却装置。
The gist of the present invention is as follows.
(1) In a hot-dip galvanized wire having a plating adhesion amount of 250 g / m 2 or more, the hot-dip galvanized wire characterized in that the average diameter of crystal grains on the plating surface is 10 μm or more and 200 μm or less in terms of equivalent circle is there.
(2) In a cooling device for a hot-dip plating wire that cools the hot-dip plating wire from the plating bath vertically while cooling it in the cooling tube, the hot-dip plating wire is cooled around the cooling tube through which the hot-plating wire can move. A plurality of water-cooling nozzles for spraying water are installed, and a gas spray nozzle for injecting a gas whose spray angle is variable in the forward direction and the plating wire movement direction is installed inside the cooling cylinder below the nozzles. Cooling system.
(3) The apparatus for cooling a hot dipped wire according to (2), wherein the plurality of water cooling nozzles are installed in a spiral shape so that the cooling water flows from the plurality of water cooling nozzles do not interfere with each other.
(4) The position of the water cooling nozzle is moved in the moving direction of the plating wire so that cooling can be started within the temperature range of the equilibrium solidification temperature-70 ° C or higher, which is equal to or lower than the equilibrium solidification temperature determined from the plating composition. The apparatus for cooling a hot dipped wire according to the above (1) or (2), wherein the device has a slidable mechanism.
(5) Having a mechanism capable of adjusting the angle formed by the gas flow blown from the gas spray nozzle installed below the cooling cylinder through which the hot dipped wire penetrates and the moving direction of the hot dipped wire within a range of 10 to 70 degrees. The apparatus for cooling a hot-dip galvanized wire according to any one of the above (2) to (4).

以上のように、本発明により、溶融めっき線は優れた加工性を有すると共に、綺麗な外観を有し、耐食性に優れためっき線を提供することが可能となる。
ここで、本発明の溶融めっき線のめっき層組成については特に限定はされないが、Znの他に、Alを5〜15%含む成分さらにMgを0.1〜5%含む組成のものが適用可能である。
As described above, according to the present invention, the hot-dip galvanized wire has excellent workability, has a clean appearance, and can provide a plated wire excellent in corrosion resistance.
Here, the plating layer composition of the hot dipped wire of the present invention is not particularly limited, but in addition to Zn, a component containing 5 to 15% Al and further a composition containing 0.1 to 5% Mg can be applied. It is.

本発明は、めっき付着量が250g/m2以上の厚目付材でも上述の如くめっき層の割れが発生しない加工性に優れた溶融めっき線であり、通線速度の高速化に対応可能な適正かつ十分な冷却能力を有する冷却装置により冷却を行うことで、めっき層の割れや表面性状の悪化、偏肉度が小さく、加工性、方面性状に優れ、綺麗な外観を有し、耐食性に優れためっき線を製造可能とするものである。 The present invention is a hot-dip galvanized wire excellent in workability that does not cause cracking of the plating layer as described above even when the coating weight is 250 g / m 2 or more. And by cooling with a cooling device with sufficient cooling capacity, cracking of plating layer, deterioration of surface properties, small unevenness, small workability, direction properties, clean appearance, excellent corrosion resistance It is possible to manufacture a plated wire.

以下、本発明の実施の一形態について図示例とともに説明する。
図1および2にめっき層の凝固条件の異なる表面の走査電子顕微鏡(以下SEMと記述)での観察写真の例を示す。この、めっき層組織はAl含有量が0.2%以下であり、SEMによりめっき線表面の凝固結晶粒を観察することができる。
一方、Alを5%以上含むめっき組成の場合は共晶凝固となるために凝固形態の違いからSEMによる観察は困難となるため、このような組成の溶融めっき線の凝固結晶粒は、後方散乱電位回折パターン(以下、EBSPと記す)により観察を行い、結晶粒を求めることが可能である。
Hereinafter, an embodiment of the present invention will be described together with illustrated examples.
FIG. 1 and FIG. 2 show examples of photographs taken with a scanning electron microscope (hereinafter referred to as SEM) of surfaces with different plating layer solidification conditions. The plating layer structure has an Al content of 0.2% or less, and solidified crystal grains on the surface of the plating wire can be observed by SEM.
On the other hand, in the case of a plating composition containing 5% or more of Al, since it becomes eutectic solidification, it is difficult to observe by SEM due to the difference in solidification form. It is possible to obtain crystal grains by observing with a potential diffraction pattern (hereinafter referred to as EBSP).

図1は本発明の冷却装置(水冷装置)を用いて凝固温度−30℃で水冷を開始したものである。図2は凝固温度より85℃低い温度で水冷を行ったものである。明らかに本発明の水冷条件で冷却した図1のめっき線の結晶粒が細かくなっている。平均結晶粒を測定した結果、図1が95μm、図2が250μmと粗大化している。それぞれのめっき線を図3に示すように線径と同じ曲率で曲げ加工した自径捲きめっき線8の表面を観察した結果を図4、5に示す。めっき層の凝固結晶粒が細粒の場合は、図4に示すように、表面に割れは認められないものの、凝固結晶粒が粗大化した場合は、図5に示すように、粒界に沿って割れが発生した。   FIG. 1 shows water cooling started at a solidification temperature of −30 ° C. using the cooling device (water cooling device) of the present invention. FIG. 2 shows water cooling performed at a temperature lower by 85 ° C. than the solidification temperature. Apparently, the crystal grains of the plated wire of FIG. 1 cooled under the water cooling condition of the present invention are fine. As a result of measuring the average crystal grains, FIG. 1 is coarsened to 95 μm and FIG. 2 is 250 μm. The results of observing the surface of the self-diameter-plated plated wire 8 obtained by bending each plated wire with the same curvature as the wire diameter as shown in FIG. 3 are shown in FIGS. When the solidified crystal grains of the plating layer are fine, no cracks are observed on the surface as shown in FIG. 4, but when the solidified crystal grains become coarse, as shown in FIG. Cracking occurred.

次に凝固結晶粒径の限定理由について述べる。
図6に冷却条件を種々変えてめっき付着量が420g/m2のめっき線を製造し、めっき層表面の凝固結晶粒と自径捲き時のめっき割れの発生頻度を示した。凝固の結晶粒が200μmを越えて大きくなると結晶粒界に沿った亀裂が発生し、めっき割れが多発することから凝固結晶粒の上限を200μmとした。一方、結晶粒が10μm以下の細粒となっても粒界に沿った割れは発生しないものの冷却が強化されるためにめっき線表面が乱れ、めっき層に割れが発生すると共にめっき厚さの偏肉(C断面内の最大と最小めっき厚さの比)が大きくなり耐食性が劣化するため10μmの凝固結晶粒を下限とした。
Next, the reason for limiting the solidified crystal grain size will be described.
FIG. 6 shows the frequency of occurrence of plating cracks when a plating wire having a coating adhesion amount of 420 g / m 2 is manufactured under various cooling conditions and the solidified crystal grains on the surface of the plating layer and the self-diametering. When the solidified crystal grains become larger than 200 μm, cracks along the crystal grain boundaries occur and plating cracks frequently occur. Therefore, the upper limit of the solidified crystal grains was set to 200 μm. On the other hand, cracks along the grain boundaries do not occur even if the crystal grains become fine grains of 10 μm or less, but because the cooling is strengthened, the surface of the plated wire is disturbed, cracks occur in the plated layer, and uneven plating thickness is generated. Since the meat (ratio between the maximum and minimum plating thickness in the C cross section) increases and the corrosion resistance deteriorates, the solidified crystal grain of 10 μm is set as the lower limit.

ここで、平均結晶粒はめっき線表面を200倍でSEM観察し、10視野の写真を撮影し、結晶粒界で区切られた結晶粒子の数を画像処理装置を用いて測定し、測定面積から粒子1個当たりの平均面積を求め、結晶粒の形状を円換算することで、以下の式により求めた。
平均粒子径=(結晶粒1個の平均面積×4/π)1/2
Here, the average crystal grain was observed by SEM at 200 times the surface of the plated wire, 10 photographs were taken, and the number of crystal grains delimited by the crystal grain boundary was measured using an image processing device. The average area per particle was obtained, and the shape of the crystal grain was converted into a circle to obtain the following equation.
Average particle size = (average area of one crystal grain × 4 / π) 1/2

次に冷却装置の各構成部の作用について述べる。   Next, the operation of each component of the cooling device will be described.

まず、冷却装置構成について述べる。
図7に本発明の冷却装置の配置レイアウト例を示す。めっき線1は溶融金属めっき浴5の中を通って浴表面に設置したワイピング装置6を通って垂直に上方に連続で移動し、ワイピング装置の上部に冷却装置2aが設置されている。冷却装置2aは冷却筒2を備えていて、図8(a)、(b)に示すように、めっき線1が貫通可能な冷却筒2は、冷却筒2に設けられた冷却水吹き出しノズル3からの冷却水によりめっき線1を冷却する。吹出した冷却水は線の周囲を伝って重力により下方に落下するため、この落下する水滴を除去するために冷却ノズルの下方にガス吹き付けノズル4を設置して構成される。
First, the cooling device configuration will be described.
FIG. 7 shows an example of the layout of the cooling device according to the present invention. The plating wire 1 continuously moves vertically upward through a wiping device 6 installed on the bath surface through a molten metal plating bath 5, and a cooling device 2 a is installed at the upper part of the wiping device. The cooling device 2 a includes a cooling cylinder 2. As shown in FIGS. 8A and 8B, the cooling cylinder 2 through which the plating wire 1 can penetrate is a cooling water blowing nozzle 3 provided in the cooling cylinder 2. The plated wire 1 is cooled with cooling water from Since the blown-out cooling water travels down the line and falls downward due to gravity, a gas blowing nozzle 4 is installed below the cooling nozzle in order to remove the falling water droplets.

次に各冷却装置の作用について述べる。
水冷ノズルはめっき線の周囲に均等な間隔となるように設置し、ノズル3から冷却水が噴出されることによりめっき線が冷却され、十分な冷却速度を確保できることから凝固結晶粒を微細に制御する作用を有する。
Next, the operation of each cooling device will be described.
Water-cooling nozzles are installed around the plating wire so that they are evenly spaced, and cooling water is ejected from the nozzle 3 to cool the plating wire and ensure a sufficient cooling rate, so that the solidified crystal grains are finely controlled. Have the effect of

冷却水吹き出しノズルは、溶融めっき線が貫通して移動可能な冷却筒の周囲(溶融めっき線の周囲となる)に複数設置する。これによって、冷却筒は水冷塔の役割を果たす。本例ではめっき線の円周に均等間隔で4個のノズルを設置しているが、ノズルは必要な冷却能力によりさらに円周方向の数を多くすることも少なくすることも可能である(例えば、3〜12個)と共に、高さ方向についても1段のみでなく複数段(例えば、2〜5段)設置することも可能である。また、1本のめっき線を冷却するために複数の水冷ノズルから噴出した冷却水がお互いに衝突、接触すると水流が乱れ、めっき線表面を乱すとともに効率良く均一に冷却することが出来なくなるために本発明では水流がお互いに衝突や接触して、冷却水流が干渉しないように水冷ノズルをめっき線の周囲にらせん状に設置している。   A plurality of cooling water blowing nozzles are installed around the cooling cylinder through which the hot dipped wire penetrates and can move. Thus, the cooling cylinder serves as a water cooling tower. In this example, four nozzles are installed at equal intervals around the circumference of the plating wire, but the number of nozzles can be further increased or decreased depending on the required cooling capacity (for example, In addition, it is possible to install not only one stage but also a plurality of stages (for example, 2 to 5 stages) in the height direction. Also, cooling water jetted from multiple water-cooling nozzles to cool one plating wire collide with each other and contact with each other, disturbing the water flow, disturbing the plating wire surface and making it impossible to cool efficiently and uniformly. In the present invention, water cooling nozzles are spirally installed around the plating wire so that the water flows do not collide with or come into contact with each other and the cooling water flow does not interfere.

水冷ノズルの高さ方向の調整手段、機構は特に限定されないが、例えば冷却筒2の固定治具を浴面に対して鉛直方向に設置した棒状のスライドバーに固定することで、スライドバーに沿って水冷ノズルを有する冷却筒ごと可動し、目的の高さに固定できる。   The adjustment means and mechanism in the height direction of the water cooling nozzle are not particularly limited. For example, by fixing the fixing jig of the cooling cylinder 2 to a rod-like slide bar installed in the vertical direction with respect to the bath surface, along the slide bar The cooling cylinder with the water-cooled nozzle can be moved and fixed at the desired height.

水冷部の下部に設けたガス吹き付けノズル4は冷却水の落下を防止するために設けたものであり、めっき線の円周に均等間隔でガスを冷却筒内に一定量吹き込んでめっき線に噴出した冷却水の落下を防止する作用を有している。流入ガス流量、ガス速度、流入角度を調整することにより冷却筒内から冷却水の落下をより効果的に防止することが可能である。   The gas spray nozzle 4 provided in the lower part of the water cooling part is provided to prevent the cooling water from dropping, and a certain amount of gas is blown into the cooling cylinder at regular intervals around the circumference of the plating wire and is ejected to the plating wire. It has the effect | action which prevents the fall of the cooled cooling water. By adjusting the inflow gas flow rate, the gas speed, and the inflow angle, it is possible to more effectively prevent the cooling water from falling from the inside of the cooling cylinder.

次にガス噴出角度αの限定理由について述べる。
冷却筒下方のガス噴出ノズルの角度αはめっき線に対して垂直方向のガス流が強くなるとめっき線がガス流速により振動する共に冷却水を冷却筒上部に押しやる機能が低下し、水滴の落下が激しくなる。このため、めっき線の移動方向とガスの噴出流が形成する角度の上限を70度とした。一方、噴出角度が10度より小さくなると冷却筒内でのガス流れが内壁近傍を主体に流れ、めっき線近傍の冷却水の落下を防ぐことが出来なくなるためにガス噴出角度αは10度を下限とした。より好ましくは、ガス噴出角度は20〜60度である。ガス吹き付け角度αを可変とするための手段、方法、機構は特に限定されないが、例えばボールジョイントタイプの自在継ぎ手を介しガス吹き付けノズルを固定する方法、ガス吹きつけノズルの左右端に角度調整機構可能なラチェットを有する固定治具を設置することにより、任意にガス吹き付け角度を調整することが可能となる。
Next, the reason for limiting the gas ejection angle α will be described.
The angle α of the gas jet nozzle below the cooling cylinder is such that when the gas flow in the direction perpendicular to the plating wire becomes stronger, the plating wire vibrates due to the gas flow rate and the function of pushing the cooling water to the upper part of the cooling cylinder is reduced, and water drops fall. Become intense. For this reason, the upper limit of the angle formed by the moving direction of the plating wire and the gas jet flow is set to 70 degrees. On the other hand, if the jet angle is smaller than 10 degrees, the gas flow in the cooling cylinder flows mainly in the vicinity of the inner wall, and it becomes impossible to prevent the cooling water from dropping near the plating wire. It was. More preferably, the gas ejection angle is 20 to 60 degrees. The means, method, and mechanism for making the gas spray angle α variable are not particularly limited. For example, a method of fixing the gas spray nozzle via a ball joint type universal joint, and an angle adjustment mechanism can be provided at the left and right ends of the gas spray nozzle. It is possible to arbitrarily adjust the gas spray angle by installing a fixing jig having a ratchet.

この結果、冷却筒内に効果的にガスを吹き込むことが可能となりめっき線に吹き付けられた冷却水は落下することなくめっき線の移動と共に上部に移動し、大気開放部分から放出され、図示していないドレン部で回収される。   As a result, the gas can be effectively blown into the cooling cylinder, and the cooling water sprayed on the plating wire moves upward with the movement of the plating wire without falling, and is discharged from the open part of the atmosphere. Not recovered at the drain part.

本例はめっき線単線毎に水冷する装置について示したが、図9に示すように冷却筒2内を複数本のめっき線1が通過する場合に於いても同様な構成が可能であり、この場合は特に図9(a)、(b)の左側に示すように冷却筒2からの水滴落下防止のためのガスノズルを冷却筒端部に設置し、同時に複数本のめっき線1に水冷ノズルからの冷却水がかかるように広角ノズルを設置することも可能である。この複数本の冷却筒では下部のドレンから排水することが可能である。   Although this example shows an apparatus for water-cooling for each plated wire, a similar configuration is possible even when a plurality of plated wires 1 pass through the cooling cylinder 2 as shown in FIG. In this case, in particular, as shown on the left side of FIGS. 9 (a) and 9 (b), a gas nozzle for preventing water droplets from falling from the cooling cylinder 2 is installed at the end of the cooling cylinder, and at the same time, a plurality of plating wires 1 are connected to the water cooling nozzle. It is also possible to install a wide-angle nozzle so that the cooling water is applied. The plurality of cooling cylinders can drain from the lower drain.

次に水冷開始温度の限定理由について述べる。
水冷開始温度はめっき層の凝固組織、表面性状を制御する上で非常に重要なポイントである。めっき層表面が平衡凝固温度以上の粘性が低い状態でノズルによる水冷を行うと、めっき表面の肌荒れおよび水流によるめっき層の流動が発生し、表面性状の悪化および偏肉の拡大となる。このため水冷開始温度を平衡凝固温度以下に限定した。一方、平衡凝固温度より70℃より低い温度で水冷を開始する場合は、既にめっき層の凝固がほとんど終了してしまっており、凝固結晶粒および表面性状を制御することは不可能となることから水冷開始下限温度をめっき層平衡凝固温度−70℃とした。
ここで、平衡凝固温度とは、一定の温度にめっき層成分の金属を保持したときに形成される安定金属相として液相中に固体相が晶出し始める温度である。
Next, the reason for limiting the water cooling start temperature will be described.
The water cooling start temperature is a very important point in controlling the solidification structure and surface properties of the plating layer. When water cooling with a nozzle is performed in a state where the viscosity of the plating layer surface is lower than or equal to the equilibrium solidification temperature, the surface of the plating surface becomes rough and the flow of the plating layer due to water flow occurs, resulting in deterioration of surface properties and expansion of uneven thickness. For this reason, the water cooling start temperature was limited to not more than the equilibrium solidification temperature. On the other hand, when water cooling is started at a temperature lower than 70 ° C. below the equilibrium solidification temperature, the solidification of the plating layer is almost completed, and it becomes impossible to control the solidified crystal grains and surface properties. The lower limit temperature for starting water cooling was set to the plating layer equilibrium solidification temperature of -70 ° C.
Here, the equilibrium solidification temperature is a temperature at which the solid phase starts to crystallize in the liquid phase as a stable metal phase formed when the metal of the plating layer component is held at a constant temperature.

本発明では、めっき層のめっき組成から平衡凝固温度を求める方法については特に限定しないがThermo−calcなどの熱力学的な平衡計算ソフトウエアーを用いてめっき層成分から凝固温度を求める方法およびめっき浴からサンプルを採集し、熱分析により凝固温度を実験的に求める方法により決定することができる。   In the present invention, the method for obtaining the equilibrium solidification temperature from the plating composition of the plating layer is not particularly limited, but the method and plating bath for obtaining the solidification temperature from the plating layer component using thermodynamic equilibrium calculation software such as Thermo-calc. The sample can be collected from the sample, and the solidification temperature can be determined experimentally by thermal analysis.

また、めっき線の表面温度の測定方法は特に限定されないが、直接熱電対を接触して測定する方法、放射温度計やサーモビューアーによる温度分布測定により決定することができる。   Further, the method for measuring the surface temperature of the plated wire is not particularly limited, but it can be determined by a method in which the surface temperature is measured by directly contacting a thermocouple, or a temperature distribution measurement by a radiation thermometer or a thermoviewer.

以上、本発明の実施形態について詳述したが、本発明の一例を示したものであり、記述内容のみに限定されるものではない。   As mentioned above, although embodiment of this invention was explained in full detail, it shows an example of this invention and is not limited only to description content.

以下、本発明を実施例により更に具体的に説明するが、下記実施例は本発明を限定する性質のものではないことは勿論である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but it is needless to say that the following examples are not intended to limit the present invention.

熱間圧延線材を冷間加工により線径4mmのJIS SWRM6K鋼種の鉄線を、Alを0.1%含む450℃の亜鉛めっき浴に浸漬し、線速27m/minで通線しめっき処理を行った。この時の冷却装置のガス噴出ノズルの角度、水冷ノズルでの水冷開始温度を変えてめっき付着量420g/m2のめっき線を製造した。 Cold rolled hot-rolled wire rods are immersed in a JIS SWRM6K grade steel wire with a wire diameter of 4 mm in a 450 ° C galvanizing bath containing 0.1% Al and plated at a wire speed of 27 m / min. It was. At this time, the angle of the gas jet nozzle of the cooling device and the water cooling start temperature at the water cooling nozzle were changed to produce a plated wire having a plating adhesion amount of 420 g / m 2 .

このめっき浴の平衡凝固温度をThermo−Calcで計算したところ418.7℃でAl添加無しの419.6℃より1℃程度低い値であった。   When the equilibrium solidification temperature of this plating bath was calculated by Thermo-Calc, it was 418.7 ° C., which was about 1 ° C. lower than 419.6 ° C. without Al addition.

また、製造しためっき線は表面をSEMで観察することで凝固結晶粒を測定し、めっき加工性は自径捲きを行った表面肌を外観観察により良、可、不良の3段階で評価した。また、めっき線のC断面を切断し、円周方向のめっき厚さを観察し、最大めっき厚/最小めっき厚を偏肉度として求めた。   In addition, solidified crystal grains were measured by observing the surface of the manufactured plated wire with an SEM, and the plating processability was evaluated in three stages: good, good, and poor by appearance observation of the surface skin that had been self-diametered. Moreover, the C cross section of the plating wire was cut, the plating thickness in the circumferential direction was observed, and the maximum plating thickness / minimum plating thickness was determined as the thickness deviation.

表1に水冷条件および得られためっき線の性状評価結果を併せて示す。
表1に示す如く、本発明の冷却装置による冷却を行い、本発明の凝固結晶粒度範囲のめっき線ではめっき層の割れや表面性状の悪化、偏肉度が小さく、加工性、方面性状に優れためっき線が得られた。
Table 1 also shows the water cooling conditions and the results of property evaluation of the plated wire obtained.
As shown in Table 1, cooling is performed by the cooling device of the present invention, and in the plated wire of the solidified crystal grain size range of the present invention, the crack of the plating layer, the deterioration of the surface properties, the uneven thickness are small, and the workability and the surface properties are excellent. A plated wire was obtained.

比較例9、10は平衡凝固温度より80℃低い温度で水冷を開始したために水冷ノズルの配置を増やしても凝固結晶粒が粗大化し、自径捲きで粒界に沿っためっき割れが発生した例である。   In Comparative Examples 9 and 10, since water cooling was started at a temperature 80 ° C. lower than the equilibrium solidification temperature, the solidified crystal grains became coarse even if the arrangement of the water cooling nozzles was increased, and plating cracks along the grain boundaries occurred due to self-diametering. It is.

比較例11は平衡凝固温度より高温で水冷を開始した例であり、めっき線表面の肌荒れが大きく、偏肉度が5以上と大きくなるとともに商品価値の低下を招いた例である。   Comparative Example 11 is an example in which water cooling is started at a temperature higher than the equilibrium solidification temperature, and is an example in which the surface roughness of the plated wire is large, the uneven thickness is increased to 5 or more, and the commercial value is lowered.

また、比較例12の冷却筒下方のガスノズル角度が本発明の範囲より大きい場合には線の振動が大きくなり安定した性状のめっき線の製造が不安定で、めっき割れ、表面肌不良、偏肉が大きくなった例である。比較例13は逆に角度が小さい場合であるが、この場合も冷却筒から冷却水の落下が多く浴表面の酸化促進、温度低下による安定製造が不可能となり、品質悪化を招いた例である。   Further, when the gas nozzle angle below the cooling cylinder of Comparative Example 12 is larger than the range of the present invention, the vibration of the wire becomes large, and the production of the plated wire having a stable property is unstable, plating cracking, surface skin defect, uneven thickness This is an example of increasing. In contrast, Comparative Example 13 is a case where the angle is small. In this case, too, cooling water falls from the cooling cylinder, and oxidation of the bath surface is promoted, and stable production due to a temperature drop is impossible, resulting in quality deterioration. .

本発明の凝固結晶粒径を示すめっき線表面の図面代用走査電子顕微鏡写真である。It is a drawing-substitute scanning electron micrograph of the plating wire surface showing the solidified crystal grain size of the present invention. 凝固結晶粒径が粗大化しためっき線表面の図面代用走査電子顕微鏡写真である。2 is a scanning electron micrograph in place of a drawing of the surface of a plated wire having a coarsened crystal grain size. 自径捲きめっき線の表面状態全体を示す図面である。It is drawing which shows the whole surface state of a self-diameter plating wire. 本発明のめっき線を自径捲きしためっき層の凝固結晶粒が細粒の表面を示す図面代用走査電子顕微鏡写真である。It is a drawing substitution scanning electron micrograph which shows the surface of the solidified crystal grain of the plating layer which plated the plating wire of this invention self-diameter, and is fine. めっき線を自径捲きした凝固結晶粒が粗大化しためっき線表面の図面代用走査電子顕微鏡写真である。It is a drawing-substitute scanning electron micrograph of the surface of the plated wire in which the solidified crystal grains obtained by rolling the plated wire are coarsened. めっき線凝固結晶粒径とめっき割れ発生率の関係を示す図である。It is a figure which shows the relationship between a plating wire solidification crystal grain diameter and a plating crack incidence. 本発明の溶融めっきにおける冷却装置配置レイアウトを示す図である。It is a figure which shows the cooling device arrangement layout in the hot dipping of this invention. 本発明の単線冷却装置を示す図で、(a)は平面図、(b)側面図である。It is a figure which shows the single wire cooling device of this invention, (a) is a top view, (b) It is a side view. 本発明の複数めっき線冷却装置を示す図で、(a)は平面図、(b)側面図である。It is a figure which shows the multiple plating wire cooling device of this invention, (a) is a top view, (b) It is a side view.

符号の説明Explanation of symbols

1 めっき線
2a 冷却装置
2 冷却筒
3 水冷ノズル
4 ガス吹き付けノズル
5 溶融金属
6 ワイピング装置
7 シンカロール
8 自径捲きめっき線
DESCRIPTION OF SYMBOLS 1 Plating wire 2a Cooling device 2 Cooling cylinder 3 Water cooling nozzle 4 Gas spray nozzle 5 Molten metal 6 Wiping device 7 Sinker roll 8 Self-diameter plating wire

Claims (5)

めっき付着量が250g/m2以上を有する溶融めっき線に於いて、めっき表面の結晶粒の平均径が相当円換算で10μm以上、200μm以下であることを特徴とする溶融めっき線。 A hot dipped wire having a plating adhesion amount of 250 g / m 2 or more, wherein the average diameter of crystal grains on the plating surface is 10 μm or more and 200 μm or less in terms of equivalent circle. めっき浴から溶融めっき線を垂直に引き上げつつ冷却筒内で冷却する溶融めっき線の冷却装置に於いて、溶融めっき線が貫通して移動可能な冷却筒の周囲に溶融めっき線に冷却水を吹き付ける複数の水冷ノズルを設置し、該ノズルの下方に冷却筒内部にめっき線移動方向と順方向に噴出角度が可変なガスを吹き込むガス吹き付けノズルを設置したことを特徴とする溶融めっき線の冷却装置。   In a cooling device for a hot dipped wire that cools the hot dipped wire from the plating bath vertically while cooling it in the cooling tube, cooling water is sprayed to the hot dipped wire around the cooling tube through which the hot dipped wire can move. A cooling apparatus for a hot dipped plating wire, wherein a plurality of water cooling nozzles are installed, and a gas blowing nozzle for blowing a gas whose jet angle is variable in the forward direction and the plating wire moving direction is installed inside the cooling cylinder below the nozzles . 前記複数の水冷ノズルからの冷却水流が干渉しないように複数の水冷ノズルをらせん状に設置することを特徴とする請求項2記載の溶融めっき線の冷却装置。   The apparatus for cooling a hot dipped wire according to claim 2, wherein the plurality of water cooling nozzles are installed in a spiral shape so that the cooling water flow from the plurality of water cooling nozzles does not interfere. 水冷開始時の溶融めっき線表面温度がめっき組成から求められる平衡凝固温度以下、平衡凝固温度−70℃以上の温度範囲で冷却開始可能なように水冷ノズルの位置をめっき線の移動方向にスライド可能な機構を有することを特徴とする請求項1または2記載の溶融めっき線の冷却装置。   The position of the water cooling nozzle can be slid in the plating wire movement direction so that cooling can be started within the temperature range of the equilibrium solidification temperature-70 ° C or higher, which is equal to or lower than the equilibrium solidification temperature determined from the plating composition. The apparatus for cooling a hot-dip galvanized wire according to claim 1, wherein the device has a simple mechanism. 溶融めっき線が貫通する冷却筒の下方に設置したガス吹き付けノズルから吹き出すガス流と溶融めっき線の移動方向が形成する角度を10〜70度の範囲で調整可能な機構を有することを特徴とする請求項2〜4のいずれかに記載の溶融めっき線の冷却装置。

It has a mechanism capable of adjusting an angle formed by a gas flow blown from a gas spray nozzle installed below a cooling cylinder through which a hot dipped wire penetrates and a moving direction of the hot dipped wire within a range of 10 to 70 degrees. The cooling apparatus of the hot dipped wire in any one of Claims 2-4.

JP2006169093A 2006-06-19 2006-06-19 Hot-dip galvanized wire and its cooling device Active JP4777158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169093A JP4777158B2 (en) 2006-06-19 2006-06-19 Hot-dip galvanized wire and its cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169093A JP4777158B2 (en) 2006-06-19 2006-06-19 Hot-dip galvanized wire and its cooling device

Publications (2)

Publication Number Publication Date
JP2007332450A true JP2007332450A (en) 2007-12-27
JP4777158B2 JP4777158B2 (en) 2011-09-21

Family

ID=38932201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169093A Active JP4777158B2 (en) 2006-06-19 2006-06-19 Hot-dip galvanized wire and its cooling device

Country Status (1)

Country Link
JP (1) JP4777158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593177A (en) * 2020-10-23 2021-04-02 宝钢集团南通线材制品有限公司 Method and device for cooling plating layer after hot dipping of steel wire with zinc-based multi-element alloy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149462A (en) * 1981-03-10 1982-09-16 Kokoku Kousensaku Kk High-speed hot-dip coating methode of wire material and apparatus therefor
JPS57210964A (en) * 1981-06-17 1982-12-24 Kobe Steel Ltd Hot dipping method using zn-al-sn alloy
JPS621848A (en) * 1985-06-27 1987-01-07 Shinko Kosen Kogyo Kk Method for coating metallic wire with solder by hot dipping
JPH0488158A (en) * 1990-07-28 1992-03-23 Showa Electric Wire & Cable Co Ltd Manufacture of zn-al alloy plated steel wire
JPH04141567A (en) * 1990-09-28 1992-05-15 Fujikura Ltd Method for removing liquid deposit
JPH04183844A (en) * 1990-11-16 1992-06-30 Tokyo Seiko Co Ltd Method for cooling zinc-aluminum alloy plated steel wire
JPH1060615A (en) * 1996-08-17 1998-03-03 Osaka Gas Co Ltd Wire rod plating device
JP2002294427A (en) * 2001-03-30 2002-10-09 Kokoku Kousensaku Kk Plated wire, and manufacturing method and apparatus therefor
JP2004115850A (en) * 2002-09-25 2004-04-15 Hokkai Koki Kk Apparatus for cooling plated steel wire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149462A (en) * 1981-03-10 1982-09-16 Kokoku Kousensaku Kk High-speed hot-dip coating methode of wire material and apparatus therefor
JPS57210964A (en) * 1981-06-17 1982-12-24 Kobe Steel Ltd Hot dipping method using zn-al-sn alloy
JPS621848A (en) * 1985-06-27 1987-01-07 Shinko Kosen Kogyo Kk Method for coating metallic wire with solder by hot dipping
JPH0488158A (en) * 1990-07-28 1992-03-23 Showa Electric Wire & Cable Co Ltd Manufacture of zn-al alloy plated steel wire
JPH04141567A (en) * 1990-09-28 1992-05-15 Fujikura Ltd Method for removing liquid deposit
JPH04183844A (en) * 1990-11-16 1992-06-30 Tokyo Seiko Co Ltd Method for cooling zinc-aluminum alloy plated steel wire
JPH1060615A (en) * 1996-08-17 1998-03-03 Osaka Gas Co Ltd Wire rod plating device
JP2002294427A (en) * 2001-03-30 2002-10-09 Kokoku Kousensaku Kk Plated wire, and manufacturing method and apparatus therefor
JP2004115850A (en) * 2002-09-25 2004-04-15 Hokkai Koki Kk Apparatus for cooling plated steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593177A (en) * 2020-10-23 2021-04-02 宝钢集团南通线材制品有限公司 Method and device for cooling plating layer after hot dipping of steel wire with zinc-based multi-element alloy

Also Published As

Publication number Publication date
JP4777158B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
CN102449182A (en) Metal-coated steel strip
EP3287541B1 (en) Production apparatus and production method for molten metal plated steel strip
JP4782247B2 (en) Zn-Al plated iron wire and method for producing the same
JP2858043B2 (en) Cooling method of zinc-aluminum alloy plated steel wire
JP5169307B2 (en) Manufacturing method of molten metal plated steel strip
JP4777158B2 (en) Hot-dip galvanized wire and its cooling device
JP2018009220A (en) Production method of molten metal plated steel strip, and continuous molten metal plating facility
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP3721967B2 (en) Method and apparatus for producing continuous hot dipped wire
JP5686438B2 (en) Al-Zn alloy plated steel sheet and method and apparatus for manufacturing the same
JP6031906B2 (en) Wiping method for continuous molten metal-plated steel strip.
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
KR102467206B1 (en) Hot-dip galvanizing treatment method, manufacturing method of alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing treatment method, manufacturing method of hot-dip galvanized steel sheet using the hot-dip galvanizing treatment method, alloyed hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP6772930B2 (en) Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP4835073B2 (en) Manufacturing method of molten metal plated steel strip
JP3762722B2 (en) Cooling apparatus and cooling method for hot dipped steel sheet
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP3814170B2 (en) Method and apparatus for cooling hot dipped steel sheet
JP6439755B2 (en) Method for producing galvannealed steel sheet
JP7161292B2 (en) Continuous hot dip metal plating apparatus and continuous hot dip metal plating method
JP2009057592A (en) Method for manufacturing base material of steel sheet by using p-containing steel
JP2004010960A (en) Cooling process in process line for manufacturing industrial product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R151 Written notification of patent or utility model registration

Ref document number: 4777158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350