JP4410653B2 - Alloying furnace outlet side water cooling method - Google Patents

Alloying furnace outlet side water cooling method Download PDF

Info

Publication number
JP4410653B2
JP4410653B2 JP2004302413A JP2004302413A JP4410653B2 JP 4410653 B2 JP4410653 B2 JP 4410653B2 JP 2004302413 A JP2004302413 A JP 2004302413A JP 2004302413 A JP2004302413 A JP 2004302413A JP 4410653 B2 JP4410653 B2 JP 4410653B2
Authority
JP
Japan
Prior art keywords
water
air
cooling
stage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302413A
Other languages
Japanese (ja)
Other versions
JP2006111945A (en
Inventor
徳博 水野
外次 大笹
清志 叶多
晃一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004302413A priority Critical patent/JP4410653B2/en
Publication of JP2006111945A publication Critical patent/JP2006111945A/en
Application granted granted Critical
Publication of JP4410653B2 publication Critical patent/JP4410653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、溶融亜鉛めっき設備に付帯する合金化炉の出側における気水冷却方法に関するものである。   The present invention relates to an air-water cooling method on the outlet side of an alloying furnace attached to a hot dip galvanizing facility.

鋼板の溶融亜鉛めっき処理工程では、亜鉛浴から垂直に引き上げられた鋼板を合金化炉に通して必要な合金化処理を行ったうえ、合金化炉出側に設置された冷却手段により急速冷却している。このような急速冷却を行うことにより、鉄−亜鉛合金層中に脆性相であるΓ相が成長することを抑制し、めっき密着性を確保することができる。   In the hot dip galvanizing process for steel sheets, the steel sheets pulled up vertically from the zinc bath are passed through the alloying furnace to perform the necessary alloying treatment, and then rapidly cooled by the cooling means installed on the outlet side of the alloying furnace. ing. By performing such rapid cooling, it is possible to suppress the growth of the Γ phase, which is a brittle phase, in the iron-zinc alloy layer, and to secure plating adhesion.

このための冷却手段として、特許文献1では空気冷却とミスト冷却(気水冷却)とを切り替えて用いる方法が開示されている。しかし近年における通板速度の上昇により、気水冷却を行ってもなお冷却能力が不足勝ちとなるため、上下2段に気水冷却手段を設け、冷却能力を高めることも行われている。この場合、後段(上段)と前段(下段)の気水水量を同一とし、めっき鋼板がこれらの気水冷却手段を通過する間に、均等な速度で冷却されるようにするのが普通である。   As a cooling means for this purpose, Patent Document 1 discloses a method of switching between air cooling and mist cooling (air-water cooling). However, due to the recent increase in the plate passing speed, even if air-water cooling is performed, the cooling capacity is still insufficient. Therefore, air-cooling means are provided in two upper and lower stages to increase the cooling capacity. In this case, it is common that the amount of air / water in the latter stage (upper stage) and the former stage (lower stage) is the same, and the plated steel sheet is cooled at an equal speed while passing through these air / water cooling means. .

ところが、気水水量を増加させると鋼板に付着したタレ水等の影響により後段の気水冷却手段の出口板温が下がり過ぎ、めっき鋼板の表面に気水シワと呼ばれる疵が発生することがあった。この気水シワは過冷により鋼板が板幅方向に収縮し、座屈が発生するためと考えられる。特に冷却負荷が大きい難合金化材を通板する際には、気水シワが発生しやすかった。   However, when the amount of air and water is increased, the outlet plate temperature of the subsequent air / water cooling means is excessively lowered due to the influence of sauce water or the like adhering to the steel plate, and wrinkles called air / water wrinkles may occur on the surface of the plated steel plate. It was. This air-water wrinkle is considered to be because the steel plate contracts in the plate width direction due to overcooling and buckling occurs. In particular, when passing a difficult-to-alloy material having a large cooling load, air-water wrinkles were likely to occur.

そこで前段及び後段の気水水量を抑制することにより気水シワの発生を防止する工夫がなされているが、冷却不足になると後段の気水冷却手段の出口における鋼板温度が高くなりすぎ、合金化できなかった亜鉛粉によるチカチカ疵と呼ばれる不良が発生する。このため従来は気水水量を抑制するとともに通板速度を落とすことにより、後段の気水冷却手段の出口における板温を気水シワもチカチカ疵も発生しない温度に制御していたが、通板速度を落とすと生産性を低下させることはいうまでもない。なお、めっき鋼板が冷却手段を通過する間に必要なトータル抜熱量は通板速度に応じて決定されるため、単に気水冷却手段の出口板温のみを制御することは不可能である。
特開平11−43758号公報
Therefore, a device has been devised to prevent the occurrence of air and water wrinkles by suppressing the amount of air and water in the upstream and downstream stages, but if the cooling is insufficient, the steel plate temperature at the outlet of the downstream air and water cooling means becomes too high and alloying occurs. A defect called flickering due to zinc powder that could not be generated occurs. Therefore, in the past, the plate temperature at the outlet of the subsequent stage water-cooling means was controlled to a temperature at which neither air-water wrinkles nor flickering occurred by suppressing the amount of air-water and reducing the plate-passing speed. Needless to say, reducing the speed reduces productivity. In addition, since the total heat removal amount required while the plated steel plate passes through the cooling means is determined according to the plate passing speed, it is impossible to simply control only the outlet plate temperature of the steam-water cooling means.
Japanese Patent Laid-Open No. 11-43758

本発明は上記した従来の問題点を解決して、通板速度を低下させることなく必要なトータル抜熱量を確保しながら、気水冷却手段の出口における過冷による気水シワの発生を防止し、また冷却不足による亜鉛粉によるチカチカ疵の発生をも防止し、品質の良好な合金化亜鉛めっき鋼板を得ることができる合金化炉出側気水冷却方法を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems and prevents generation of air-wrinkle due to overcooling at the outlet of the air-water cooling means while ensuring the necessary total heat removal amount without reducing the plate passing speed. The purpose of the present invention is to provide an alloying furnace exit side air-water cooling method that can prevent the occurrence of flickering due to zinc powder due to insufficient cooling and obtain a high quality alloyed galvanized steel sheet. is there.

上記の課題を解決するためになされた本発明は、溶融亜鉛めっき処理及び合金化処理された470〜520℃の鋼板を、合金化炉出側に配置された複数段の気水冷却手段により冷却する方法であって、前段の気水水量を後段の気水水量よりも増加させることにより、前段の気水冷却速度を30〜35℃/秒、後段の気水冷却速度を20〜25℃/秒として、過冷による気水シワの発生及び冷却不足によるチカチカ疵の発生を防止することを特徴とするものである。 The present invention was made to solve the above problems by cooling a hot-dip galvanized and alloyed 470-520 ° C. steel plate by a plurality of stages of air-water cooling means disposed on the alloying furnace outlet side. In this method, the front-stage air-water cooling rate is increased from the subsequent-stage air-water water amount so that the front-stage air-water cooling rate is 30 to 35 ° C./second, and the rear-stage air-water cooling rate is 20 to 25 ° C./second. It is characterized by preventing generation of air-water wrinkles due to overcooling and generation of flickering due to insufficient cooling.

本発明の合金化炉出側気水冷却方法によれば、後段の冷却を前段の冷却よりも緩冷却にする。このためには前段の冷却速度を従来よりも高め、トータル抜熱量を確保することが必要であり、具体的には例えば前段の冷却速度を30〜35℃/秒、後段の冷却速度を20〜25℃/秒とする。このように後段の冷却を緩冷却とすることによって後段の気水冷却手段の気水水量を減少させ、タレ水による過冷を防止することができる。このため過冷による気水シワの発生を防止することができる。また前段の冷却速度を従来よりも高め、後段の冷却を緩冷却とすることによって、後段の気水冷却手段の出口における鋼板温度をめっき鋼板の品種に応じて正確に制御することができ、通板速度を低下させることなく、気水シワのみならずチカチカ疵の発生をも防止して、品質の良好な合金化亜鉛めっき鋼板を得ることができる。   According to the alloying furnace outlet side air-water cooling method of the present invention, the latter stage cooling is made slower than the former stage cooling. For this purpose, it is necessary to increase the cooling rate of the former stage as compared with the prior art, and to secure a total heat removal amount. 25 ° C./second. In this way, by making the latter stage cooling moderately, the amount of steam water in the latter stage steam cooling means can be reduced, and overcooling due to the sauce water can be prevented. For this reason, generation | occurrence | production of the air-and-water wrinkle by overcooling can be prevented. In addition, by increasing the cooling rate of the front stage compared to the conventional method and making the rear stage cooling more gradual, the steel plate temperature at the outlet of the rear stage water-cooling means can be accurately controlled according to the type of plated steel sheet. Without reducing the plate speed, it is possible to prevent generation of not only air and water wrinkles but also flickering wrinkles, and to obtain an alloyed galvanized steel sheet with good quality.

図1は本発明の好ましい実施形態を示すもので、図示しない合金化炉の出側に、上下2段の気水冷却手段1,2が直列に設けられている。下方の亜鉛浴から垂直に引き上げられた鋼板3を合金化炉に通して必要な合金化処理を行ったうえ、これらの気水冷却手段1,2に通して急速冷却を行っている。鋼板3は上向きに通板されるため下段の気水冷却手段1を前段、上段の気水冷却手段2を後段と呼ぶ。なお合金化炉出口における板温は鋼種により決定されており、一般的なめっき鋼板では470〜520℃である。   FIG. 1 shows a preferred embodiment of the present invention, and two upper and lower air-water cooling means 1 and 2 are provided in series on the exit side of an alloying furnace (not shown). The steel plate 3 pulled up vertically from the lower zinc bath is passed through an alloying furnace to perform a necessary alloying treatment, and then passed through these air-water cooling means 1 and 2 for rapid cooling. Since the steel plate 3 is passed upward, the lower air-water cooling means 1 is referred to as the front stage, and the upper air-water cooling means 2 is referred to as the rear stage. The plate temperature at the outlet of the alloying furnace is determined by the steel type, and is 470 to 520 ° C. for a general plated steel plate.

各気水冷却手段1,2にはそれぞれ多段に気水ヘッダー4,5が配置されており、冷却水を空気噴出ノズルによりミストとして鋼板3の表面に吹きつけ、冷却している。各気水ヘッダー4,5に供給される冷却水流量及び空気流量は、制御装置6により自動制御されている。この間の冷却速度を適切に制御することによって好ましい鉄−亜鉛合金相(δ相)を生成させることができる。気水冷却手段2の上方にはトップロール7が配置されており、めっき鋼板は後工程へ送られる。   The air-water cooling means 1 and 2 are provided with air-water headers 4 and 5 in multiple stages, respectively, and the cooling water is sprayed onto the surface of the steel plate 3 as mist by an air jet nozzle to cool it. The cooling water flow rate and the air flow rate supplied to the air-water headers 4 and 5 are automatically controlled by the control device 6. A suitable iron-zinc alloy phase (δ phase) can be generated by appropriately controlling the cooling rate during this period. A top roll 7 is disposed above the air-water cooling means 2 and the plated steel sheet is sent to a subsequent process.

本発明では、後段の気水冷却手段2の気水水量を前段の気水冷却手段1の気水水量よりも減少させることにより、図2のグラフに示すように、後段における冷却曲線の勾配を従来よりも小さくする。これによりタレ水が減少し、後段の気水冷却手段2の出口における過冷がなくなるため、気水シワの発生を防止することができる。   In the present invention, the amount of air / water in the latter-stage air / water cooling means 2 is made smaller than the amount of air / water in the former-stage air / water cooling means 1, so that the gradient of the cooling curve in the latter stage is reduced as shown in the graph of FIG. Make it smaller than before. As a result, the amount of dripping water is reduced, and supercooling at the outlet of the latter-stage air-water cooling means 2 is eliminated, so that the occurrence of air-water wrinkles can be prevented.

図3は、横軸を(後段の気水水量/前段の気水水量)、縦軸を(後段の冷却速度/前段の冷却速度)としたグラフである。従来法は横軸の(後段の気水水量/前段の気水水量)=1/1であり、気水シワ発生傾向にある。これに対して本発明のように横軸の値を1未満とすると縦軸の冷却速度比も小さくなる。図3中に(後段の気水水量/前段の気水水量)=2/3の点と、(後段の気水水量/前段の気水水量)=1/2の点を示した。縦軸の冷却速度比があまり低下すると気水冷却能力が減少するため、実際には前段の冷却速度を30〜35℃/秒、後段の冷却速度を20〜25℃/秒とした範囲が適当である。   FIG. 3 is a graph in which the horizontal axis represents (the latter-stage air / water amount / front-stage air / water amount), and the vertical axis represents (the latter-stage cooling rate / first-stage cooling rate). In the conventional method, (horizontal air / water volume / front air / water volume) = 1/1 on the horizontal axis, and there is a tendency to generate air and water wrinkles. On the other hand, when the value on the horizontal axis is less than 1 as in the present invention, the cooling rate ratio on the vertical axis also decreases. In FIG. 3, the point of (second-stage air / water amount / front-stage air / water amount) = 2/3 and (second-stage air / water amount / first-stage air / water amount) = 1/2 are shown. If the cooling rate ratio on the vertical axis decreases too much, the air / water cooling capacity will decrease, so in practice the range where the cooling rate of the former stage is 30 to 35 ° C / second and the cooling rate of the latter stage is 20 to 25 ° C / second is appropriate. It is.

また図4は横軸をトータル気水水量(後段の気水水量+前段の気水水量)、縦軸を板幅方向の板温差としたグラフである。縦軸の値が105℃を越えると気水シワの危険領域に入る。(後段の気水水量/前段の気水水量)=1/1である従来法では、トータル気水水量を増加させて行くと気水シワの危険領域に入るが、(後段の気水水量/前段の気水水量)=2/3とした本発明では気水シワの危険領域に入るトータル気水水量が増加している。   Further, FIG. 4 is a graph in which the horizontal axis represents the total amount of water and water (the amount of water and water in the rear stage + the amount of water in the front stage), and the vertical axis represents the plate temperature difference in the plate width direction. If the value on the vertical axis exceeds 105 ° C, it enters the danger area of air and water wrinkles. In the conventional method in which (the latter-stage air / water amount / first-stage air / water amount) = 1/1, if the total air-water amount is increased, it enters into the danger area of air-wrinkle, but (the latter-stage air / water amount / In the present invention in which the amount of air and water in the previous stage) = 2/3, the total amount of water and water entering the danger area of air and water wrinkles is increased.

すなわち、本発明によれば気水シワを発生させることなくトータル気水水量を従来よりも増加させることができ、トータル抜熱量を増加させることができる。これは本発明によれば、同一設備における通板速度の上昇が可能であることを意味しており、生産能力の向上を図ることができる。   That is, according to the present invention, it is possible to increase the total amount of water and water without generating air and water wrinkles, and to increase the total heat removal amount. This means that according to the present invention, it is possible to increase the plate passing speed in the same equipment, and the production capacity can be improved.

また、冷却速度が低下すると鉄−亜鉛合金層中に脆性相であるΓ相が成長し、めっき密着性が低下することとなるが、本発明方法を採用しても従来法による場合とめっき密着性のデータは全く変化しておらず、Γ相の成長が抑制されていることを確認した。   In addition, when the cooling rate is reduced, a Γ phase, which is a brittle phase, grows in the iron-zinc alloy layer and the plating adhesion is lowered. The sex data did not change at all, and it was confirmed that the growth of the Γ phase was suppressed.

なお、合金化炉の出口温度は鋼種により決まっているが、後段の気水冷却手段2の出口温度は鋼種によるのみならず、板厚によっても変化する。このため鋼種と板厚により後段の気水冷却手段2の出口温度を決定するテーブルを作成しておき、制御装置6に入力してトータル気水水量の自動制御を行えば、めっき鋼板の品種が変化した場合にも常に好ましい結果を得ることができる。   Although the outlet temperature of the alloying furnace is determined depending on the steel type, the outlet temperature of the latter-stage air / water cooling means 2 varies not only depending on the steel type but also on the plate thickness. For this reason, if a table for determining the outlet temperature of the latter-stage air / water cooling means 2 based on the steel type and the plate thickness is prepared and input to the control device 6 to automatically control the total amount of water / water, Even if it changes, a favorable result can always be obtained.

以上に説明したように、本発明によれば通板速度を低下させることなく、過冷による気水シワの発生を防止し、また冷却不足による亜鉛粉によるチカチカ疵の発生を防止し、品質の良好な合金化亜鉛めっき鋼板を得ることができる。以上の説明では気水冷却手段1,2を上下2段に設けたが、3段以上としてもよいことはいうまでもない。   As described above, according to the present invention, it is possible to prevent the occurrence of air-water wrinkles due to overcooling without reducing the sheet passing speed, and to prevent the occurrence of flickering due to zinc powder due to insufficient cooling. A good alloyed galvanized steel sheet can be obtained. In the above description, the air-water cooling means 1 and 2 are provided in two upper and lower stages.

本発明の実施形態を示す斜視図である。It is a perspective view which shows embodiment of this invention. 本発明の実施形態における冷却曲線を示すグラフである。It is a graph which shows the cooling curve in embodiment of this invention. 水量比率と冷速比率との関係を示すグラフである。It is a graph which shows the relationship between a water quantity ratio and a cold speed ratio. トータル気水水量と板幅方向の板温差との関係を示すグラフである。It is a graph which shows the relationship between the total amount of steam water and the board temperature difference of the board width direction.

符号の説明Explanation of symbols

1 前段の気水冷却手段
2 後段の気水冷却手段
3 鋼板
4 気水ヘッダー
5 気水ヘッダー
6 制御装置
7 トップロール
DESCRIPTION OF SYMBOLS 1 The front-stage air-water cooling means 2 The latter-stage air-water cooling means 3 Steel plate 4 Air-water header 5 Air-water header 6 Control apparatus 7 Top roll

Claims (1)

溶融亜鉛めっき処理及び合金化処理された470〜520℃の鋼板を、合金化炉出側に配置された複数段の気水冷却手段により冷却する方法であって、前段の気水水量を後段の気水水量よりも増加させることにより、前段の気水冷却速度を30〜35℃/秒、後段の気水冷却速度を20〜25℃/秒として、過冷による気水シワの発生及び冷却不足によるチカチカ疵の発生を防止することを特徴とする合金化炉出側気水冷却方法。 A method of cooling a hot-dip galvanized and alloyed steel plate of 470 to 520 ° C. by means of a plurality of stages of steam-water cooling means arranged on the outlet side of the alloying furnace. By increasing the amount of air / water more than the amount of air / water, the front air / water cooling rate is 30 to 35 ° C./second and the rear air / water cooling rate is 20 to 25 ° C./second. A method for cooling air and water on the outlet side of an alloying furnace , characterized by preventing the occurrence of flickering due to aging .
JP2004302413A 2004-10-18 2004-10-18 Alloying furnace outlet side water cooling method Expired - Fee Related JP4410653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302413A JP4410653B2 (en) 2004-10-18 2004-10-18 Alloying furnace outlet side water cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302413A JP4410653B2 (en) 2004-10-18 2004-10-18 Alloying furnace outlet side water cooling method

Publications (2)

Publication Number Publication Date
JP2006111945A JP2006111945A (en) 2006-04-27
JP4410653B2 true JP4410653B2 (en) 2010-02-03

Family

ID=36380704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302413A Expired - Fee Related JP4410653B2 (en) 2004-10-18 2004-10-18 Alloying furnace outlet side water cooling method

Country Status (1)

Country Link
JP (1) JP4410653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863012B1 (en) 2014-07-24 2018-05-30 신닛테츠스미킨 카부시키카이샤 Cooling method and cooling device for strip steel

Also Published As

Publication number Publication date
JP2006111945A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
KR101896857B1 (en) Method of manufacturing Zn-Al-Mg-based coated steel sheet and Zn-Al-Mg-based coated steel sheet
KR101011897B1 (en) Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
JP6350663B2 (en) Steel strip cooling method and cooling equipment
JP4064634B2 (en) Hot-dip Zn-based plated steel sheet with good gloss retention and method for producing the same
JP4410653B2 (en) Alloying furnace outlet side water cooling method
JPH01502915A (en) Method for controlling the thickness of the intermetallic compound layer formed on continuous steel products during the continuous hot-dip galvanizing process
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP5128797B2 (en) Method for cooling hot-rolled steel sheet
JP3814170B2 (en) Method and apparatus for cooling hot dipped steel sheet
JP6772930B2 (en) Manufacturing method of hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP3888784B2 (en) Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet
JP2008013799A (en) Manufacturing method of hot dip aluminized steel sheet
JP4109365B2 (en) Metal strip cooling method
JP3762722B2 (en) Cooling apparatus and cooling method for hot dipped steel sheet
JP6394578B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP2005290418A (en) HOT-DIP Al-Zn ALLOY PLATED STEEL SHEET SUPERIOR IN PRESS FORMABILITY, AND MANUFACTURING METHOD THEREFOR
JP7452945B2 (en) Manufacturing method and manufacturing equipment for chemical conversion coated steel sheets
JP2964905B2 (en) Method and apparatus for cooling hot-dip coated steel sheet
JP5690434B1 (en) Cooling device and cooling method in reflow processing equipment for electrotinned steel sheet
JP6439755B2 (en) Method for producing galvannealed steel sheet
JP3393750B2 (en) Method and apparatus for controlling alloy layer thickness of continuous galvanized steel sheet
JP4631176B2 (en) Method for producing hot-dip galvanized steel sheet
JP6635086B2 (en) Manufacturing method of hot-dip galvanized steel strip
JP2008150642A (en) Method and device for producing hot dip plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R151 Written notification of patent or utility model registration

Ref document number: 4410653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees