JP2015055002A - Steel sheet cooling device and steel sheet cooling method - Google Patents

Steel sheet cooling device and steel sheet cooling method Download PDF

Info

Publication number
JP2015055002A
JP2015055002A JP2013190287A JP2013190287A JP2015055002A JP 2015055002 A JP2015055002 A JP 2015055002A JP 2013190287 A JP2013190287 A JP 2013190287A JP 2013190287 A JP2013190287 A JP 2013190287A JP 2015055002 A JP2015055002 A JP 2015055002A
Authority
JP
Japan
Prior art keywords
steel plate
exhaust
steel sheet
pressure
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013190287A
Other languages
Japanese (ja)
Other versions
JP6079523B2 (en
Inventor
優 伊藤
Masaru Ito
優 伊藤
玄太郎 武田
Gentaro Takeda
玄太郎 武田
準 渡辺
Jun Watanabe
準 渡辺
高橋 秀行
Hideyuki Takahashi
秀行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013190287A priority Critical patent/JP6079523B2/en
Publication of JP2015055002A publication Critical patent/JP2015055002A/en
Application granted granted Critical
Publication of JP6079523B2 publication Critical patent/JP6079523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet cooling device and a steel sheet cooling method enabling the occurrence of defects such as a stretcher strain to be more effectively prevented than conventional ones upon hot dip galvanizing the steel sheet in hot dip galvanizing equipment.SOLUTION: The steel sheet cooling device includes: a box which has openings in upper and lower portions thereof respectively and inside which a steel sheet runs upward and downward; one or more exhaust part which is formed in a side face of the box and vents inside of the box; a nozzle header which is arranged between the exhaust part and the steel sheet and has a plurality of nozzles for spraying water mist to the running steel sheet and extends in a width direction of the steel sheet; a seal mechanism for preventing water leak from lower opening of the box; a pressure measurement part for measuring pressure in a plurality of measurement locations having different position in the width direction of the steel sheet in the box; and an exhaust amount controlling part for controlling exhaust amount from the exhaust part based on pressure measured by the pressure measurement part.

Description

本発明は、水ミストを用いた鋼板冷却装置及び鋼板冷却方法に関する。特に、本発明は、溶融亜鉛めっき鋼板の製造の際の、鋼板温度が300〜500℃の領域での冷却における、冷却状態を均一に制御することができる鋼板冷却装置及び鋼板冷却方法である。   The present invention relates to a steel plate cooling apparatus and a steel plate cooling method using water mist. In particular, the present invention is a steel plate cooling device and a steel plate cooling method capable of uniformly controlling the cooling state in cooling in the region where the steel plate temperature is 300 to 500 ° C. during the production of a hot dip galvanized steel plate.

連続式の溶融亜鉛めっき設備において、BH鋼板(焼付硬化型鋼板)等の降伏点伸びを有する鋼板をめっき原板として用い、溶融亜鉛めっき鋼板を製造する場合、ストレッチャーストレインや腰折れ等の欠陥が製品に発生する場合がある。   In continuous hot dip galvanizing equipment, when manufacturing hot dip galvanized steel sheet using a steel plate with yield point elongation such as BH steel sheet (baking hardening type steel sheet) as a plating base plate, there are defects such as stretcher strain and hip folding. May occur.

腰折れ防止技術として、特許文献1には、腰折れが発生する以前に予め歪を与える技術が示されている。その他、溶融亜鉛めっき鋼板を成形加工するときにストレッチャーストレインが発生することを防止する技術として、例えば、めっき後の調質圧延や、材質設計に関する技術が数多く公開されている。   As a technique for preventing hip breakage, Patent Document 1 discloses a technique for applying distortion in advance before hip breakage occurs. In addition, as techniques for preventing the occurrence of stretcher strain when forming a hot-dip galvanized steel sheet, for example, many techniques relating to temper rolling after plating and material design have been disclosed.

上記溶融亜鉛めっき設備では、鋼板は溶融亜鉛浴に浸漬された後に引き上げられ、ガスワイピングによって付着量を制御された後に、そのまま冷却されるか、或いは加熱合金化処理を行った後に冷却される。めっき後の冷却方法としては、一般的に、水ミスト冷却やガス冷却が用いられる。短い設備長で効率よく冷却するために、冷却能力の高い水ミスト冷却が選択される場合が多い。一般的に製造される溶融亜鉛めっき鋼板は、板幅が1000mmを超え、最大板幅は1900mmに迫ることもある。このような溶融亜鉛めっき鋼板には幅方向での品質均一性が必要とされる。通常、鋼板では、上記のような加熱・冷却等の温度変化により、材質・形状の変化が起こる場合が多くある。板幅方向での加熱・冷却の均一性は重要な要件であるが、その制御は容易ではない。特に、340BH鋼板のように、500℃以下で降伏点伸びが発生する鋼板では、溶融亜鉛めっき後の冷却過程でストレッチャーストレインが発生する可能性が高く、板幅方向での温度制御が特に重要である。   In the above hot dip galvanizing equipment, the steel sheet is pulled up after being immersed in a hot dip galvanizing bath, and after the amount of adhesion is controlled by gas wiping, it is cooled as it is or after it is heated and alloyed. As a cooling method after plating, water mist cooling or gas cooling is generally used. In order to efficiently cool with a short equipment length, water mist cooling with a high cooling capacity is often selected. Generally, the hot dip galvanized steel sheet manufactured has a plate width exceeding 1000 mm, and the maximum plate width may approach 1900 mm. Such a hot dip galvanized steel sheet is required to have quality uniformity in the width direction. Usually, in a steel plate, a change in material and shape often occurs due to a temperature change such as heating and cooling as described above. The uniformity of heating and cooling in the plate width direction is an important requirement, but its control is not easy. In particular, in steel sheets that yield at a yield point below 500 ° C, such as 340BH steel sheets, there is a high possibility that stretcher strain will occur in the cooling process after hot dip galvanizing, and temperature control in the sheet width direction is particularly important. It is.

特許文献2には、水量を多くして鋼板を均一に冷却する技術に関し、ミスト冷却ボックス下部からの水滴漏れ防止を目的として、ミスト冷却ボックスの最下部の給気パッドを、高圧と低圧の2種類を隣接させ、水受けパンを所定位置に配置し、給気パッドからの上昇気流の風速を20m/s以上とする冷却方法が開示されている。   Patent Document 2 relates to a technique for uniformly cooling a steel sheet by increasing the amount of water. For the purpose of preventing water droplet leakage from the lower part of the mist cooling box, the lowermost air supply pad of the mist cooling box is provided with a high pressure and a low pressure 2. A cooling method is disclosed in which the types are adjacent to each other, the water receiving pan is arranged at a predetermined position, and the wind speed of the rising air flow from the air supply pad is set to 20 m / s or more.

特開2004−107682号公報JP 2004-107682 A 特開2000−73125号公報JP 2000-73125 A

特許文献2等に開示されるような従来の技術では、溶融亜鉛めっき設備において、鋼板に溶融亜鉛めっきを施す際に生じる、めっき後の冷却過程でのストレッチャーストレインの発生を適切に防止できない場合がある。   In the conventional technology as disclosed in Patent Document 2 and the like, in the hot dip galvanizing facility, when the hot dip galvanizing is performed on the steel sheet, the occurrence of stretcher strain in the cooling process after plating cannot be prevented appropriately There is.

本発明は上記課題を解決するためになされたものであり、その目的は、溶融亜鉛めっき設備において、鋼板を溶融亜鉛めっきする場合に、従来よりも効果的にストレッチャーストレイン等の欠陥の発生を防止することができる鋼板冷却装置及び鋼板冷却方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems. The purpose of the present invention is to more effectively generate defects such as stretcher strain when hot-dip galvanized steel sheets are used in hot-dip galvanizing equipment. It is providing the steel plate cooling device and steel plate cooling method which can be prevented.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、特許文献2等の従来の方法では、ノズルヘッダの裏に設置している排気部から一様に排気しているために、水ミストが凝集してなる液滴が鋼板中央部に付着して、局所的な過冷却が発生することがわかった。そして、本発明者らは、この過冷却がストレッチャーストレイン等の欠陥の発生原因であることを見出し、さらに、鋼板冷却装置内の内圧を調整すれば、上記過冷却による問題が解消することを見出すことで、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, in the conventional method disclosed in Patent Document 2 and the like, since the liquid is uniformly exhausted from the exhaust part installed on the back of the nozzle header, droplets formed by aggregation of water mist adhere to the central part of the steel plate. It was found that local supercooling occurred. And the present inventors have found that this supercooling is the cause of the occurrence of defects such as stretcher strain, and further, if the internal pressure in the steel sheet cooling device is adjusted, the above problem due to supercooling will be solved. As a result, the present invention has been completed. More specifically, the present invention provides the following.

(1)上下に開口を有し、内部を鋼板が上向き又は下向きに走行するボックスと、前記ボックスにおいて、鋼板表面に対向する面に形成され、前記ボックス内の排気を行うための1つ以上の排気部と、前記排気部と前記鋼板の間に設置され、走行する前記鋼板に水ミストを噴射するノズルを複数有し、前記鋼板幅方向に延びるノズルヘッダと、前記ボックスの下側開口からの水漏れを防止するシール機構と、前記ボックス内において、前記鋼板幅方向の位置が異なる複数の測定箇所で圧力測定を行う圧力測定部と、前記圧力測定部が測定した複数の圧力値に基づいて、前記排気部からの排気量を制御する排気量制御部と、を備えることを特徴とする鋼板冷却装置。   (1) A box having an opening at the top and bottom, in which the steel plate runs upward or downward, and in the box, the box is formed on a surface facing the surface of the steel plate, and one or more for exhausting in the box An exhaust section, a nozzle header installed between the exhaust section and the steel plate and having a plurality of nozzles for injecting water mist onto the traveling steel plate, extending from the steel plate width direction, and from the lower opening of the box Based on a seal mechanism that prevents water leakage, a pressure measurement unit that performs pressure measurement at a plurality of measurement locations having different positions in the steel plate width direction, and a plurality of pressure values measured by the pressure measurement unit in the box. A steel plate cooling apparatus comprising: an exhaust amount control unit that controls an exhaust amount from the exhaust unit.

(2)前記1つ以上の排気部は、前記鋼板幅方向に並ぶ3つ以上の排気部であることを特徴とする(1)に記載の鋼板冷却装置。   (2) The steel sheet cooling device according to (1), wherein the one or more exhaust parts are three or more exhaust parts arranged in the width direction of the steel sheet.

(3)前記排気量制御部は、前記圧力測定部が測定した複数の圧力値から算出される圧力偏差が40%以下になるように、前記排気部からの排気量を制御することを特徴とする(1)又は(2)に記載の鋼板冷却装置。   (3) The exhaust amount control unit controls the exhaust amount from the exhaust unit so that a pressure deviation calculated from a plurality of pressure values measured by the pressure measurement unit is 40% or less. The steel plate cooling device according to (1) or (2).

(4)前記1つ以上の排気部は、前記鋼板の長手方向に並ぶ2つ以上の排気部を有することを特徴とする(1)〜(3)のいずれか1項に記載の鋼板冷却装置。   (4) The steel sheet cooling device according to any one of (1) to (3), wherein the one or more exhaust parts include two or more exhaust parts arranged in a longitudinal direction of the steel plate. .

(5)冷却装置内の排気を行いながら、走行する鋼板に水ミストを噴射して鋼板を冷却する鋼板冷却方法であって、前記鋼板幅方向の位置が異なる複数の測定箇所での圧力測定を行い、測定結果をもとに圧力偏差が小さくなるように、前記排気の排気量を調整しながら鋼板を冷却することを特徴とする鋼板冷却方法。   (5) A steel plate cooling method for cooling a steel plate by injecting water mist onto a traveling steel plate while exhausting the cooling device, and measuring pressures at a plurality of measurement points at different positions in the steel plate width direction. And cooling the steel sheet while adjusting the displacement of the exhaust gas so that the pressure deviation is reduced based on the measurement result.

(6)前記圧力偏差が40%以下になるように前記排気量を調整することを特徴とする(5)に記載の鋼板冷却方法。   (6) The steel sheet cooling method according to (5), wherein the displacement is adjusted so that the pressure deviation is 40% or less.

本発明によれば、連続溶融亜鉛めっき設備において、鋼板を溶融亜鉛めっきする場合に、従来よりも効果的にストレッチャーストレインの発生を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a stretcher strain can be prevented more effectively than before, when hot-dip galvanizing a steel plate in a continuous hot-dip galvanization equipment.

溶融亜鉛めっき設備における、鋼板冷却装置周辺を模式的に示す図である。It is a figure which shows typically the steel plate cooling device periphery in hot dip galvanization equipment. 本発明の鋼板冷却装置の内部を模式的に示す図である。It is a figure which shows typically the inside of the steel plate cooling device of this invention. 本発明の鋼板冷却装置を模式的に示す断面図(AA断面)である。It is sectional drawing (AA cross section) which shows the steel plate cooling device of this invention typically. 水ミストが鋼板を冷却する様子を模式的に示す図である。It is a figure which shows typically a mode that water mist cools a steel plate. 従来の鋼板冷却装置の内部を模式的に示す図である。It is a figure which shows typically the inside of the conventional steel plate cooling device. 水ミストの冷却特性を、鋼板温度と冷却能力との関係で示す図である。It is a figure which shows the cooling characteristic of water mist by the relationship between steel plate temperature and cooling capacity. 鋼板冷却装置を出た後の鋼板の幅方向の温度ムラを示す図である。It is a figure which shows the temperature nonuniformity of the width direction of the steel plate after leaving a steel plate cooling device. 幅方向圧力偏差と鋼板幅方向温度差との関係の一例を示す図である。It is a figure which shows an example of the relationship between the width direction pressure deviation and a steel plate width direction temperature difference. 実施例におけるノズル噴射孔の配置を示す図である。It is a figure which shows arrangement | positioning of the nozzle injection hole in an Example.

以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

先ず、本発明の鋼板冷却装置を好ましく適用できる溶融亜鉛めっき設備について説明する。図1は、溶融亜鉛めっき設備における、鋼板冷却装置周辺を模式的に示す図である。溶融亜鉛めっき設備1は、鋼板冷却装置周辺に、鋼板冷却装置10と、溶融亜鉛めっき浴11と、シンクロール12と、合金化処理帯13と、ガスワイピングノズル14と、浴中サポートロール15と、浴上サポートロール16と、走査型放射温度計17を有する。   First, a hot dip galvanizing facility to which the steel sheet cooling device of the present invention can be preferably applied will be described. FIG. 1 is a diagram schematically showing the periphery of a steel sheet cooling device in a hot dip galvanizing facility. The hot dip galvanizing equipment 1 includes a steel plate cooling device 10, a hot dip galvanizing bath 11, a sink roll 12, an alloying treatment zone 13, a gas wiping nozzle 14, and a support roll 15 in the bath around the steel plate cooling device. And a support roll 16 on the bath and a scanning radiation thermometer 17.

鋼板冷却装置周辺での、溶融亜鉛めっき設備1の動作は次の通りである。焼鈍炉(図示せず)から出た鋼板Sは、溶融亜鉛めっき浴11内を進行し、シンクロール12によって、その進行方向が上方になる。溶融亜鉛めっき浴11内を上方に進行する鋼板Sは、浴中サポートロール15のロール間を通るため、大きく振動等することなく走行できる。浴中サポートロール15を通った鋼板Sは、さらに上方に進行し、溶融亜鉛めっき浴11から出る。溶融亜鉛めっき浴11から出た鋼板Sの表面には、溶融亜鉛めっき液が付着している。その後、溶融亜鉛めっき浴11から出た鋼板Sは、さらに上方に進行して、ガスワイピングノズル14を通り、鋼板Sの表面に付着した溶融亜鉛めっき液の付着量が調整される。上記付着量が調整された後、鋼板Sは、さらに上方に進行する。この際、鋼板Sは浴上サポートロール16のロール間を通るため、大きく振動等することなくスムーズに走行できる。浴上サポートロール16を通った鋼板Sは、さらに上方に進行し、合金化処理帯13を通り、合金化処理される。合金化処理された鋼板Sは、合金化処理帯13から出て、さらに上方に進行し、鋼板冷却装置10内で冷却される。   The operation of the hot dip galvanizing equipment 1 around the steel plate cooling device is as follows. The steel sheet S exiting from the annealing furnace (not shown) travels in the hot dip galvanizing bath 11 and is moved upward by the sink roll 12. The steel sheet S traveling upward in the hot dip galvanizing bath 11 passes between the rolls of the support roll 15 in the bath, and therefore can travel without greatly vibrating. The steel plate S that has passed through the support roll 15 in the bath travels further upward and exits the hot dip galvanizing bath 11. A hot dip galvanizing solution adheres to the surface of the steel sheet S coming out of the hot dip galvanizing bath 11. Thereafter, the steel sheet S coming out of the hot dip galvanizing bath 11 travels further upward, passes through the gas wiping nozzle 14, and the amount of hot dip galvanizing solution adhering to the surface of the steel sheet S is adjusted. After the adhesion amount is adjusted, the steel sheet S further moves upward. At this time, since the steel sheet S passes between the rolls of the on-bath support roll 16, it can run smoothly without greatly vibrating. The steel plate S that has passed through the bath support roll 16 travels further upward, passes through the alloying zone 13 and is alloyed. The alloyed steel plate S exits from the alloying zone 13, travels further upward, and is cooled in the steel plate cooling device 10.

また、本発明の鋼板冷却装置10を上記溶融亜鉛めっき設備1に適用する場合には、鋼板冷却装置10を出た鋼板Sの表面の温度を、走査型放射温度計17等の温度測定部によって測定できることが好ましい。   Moreover, when applying the steel plate cooling device 10 of the present invention to the hot dip galvanizing equipment 1, the temperature of the surface of the steel plate S exiting the steel plate cooling device 10 is measured by a temperature measuring unit such as a scanning radiation thermometer 17. It is preferable that it can be measured.

上記溶融亜鉛めっき設備において、鋼板Sがスムーズに走行できる場合には。浴中サポートロール15、浴上サポートロール16はなくてもよい。また、合金化処理を行わない場合には、合金化処理帯13はなくてもよい。   When the steel sheet S can run smoothly in the hot dip galvanizing facility. The support roll 15 in the bath and the support roll 16 on the bath may be omitted. Further, when the alloying treatment is not performed, the alloying treatment zone 13 may not be provided.

本発明の鋼板冷却装置は、溶融亜鉛めっき設備内に上記のように配置される。図2は、本発明の鋼板冷却装置の内部を模式的に示す図である。図3は、本発明の鋼板冷却装置を模式的に示す断面図(AA断面)である。以下、図2、3を用いて、本発明の鋼板冷却装置を説明する。   The steel plate cooling device of the present invention is disposed in the hot dip galvanizing facility as described above. FIG. 2 is a diagram schematically showing the inside of the steel sheet cooling device of the present invention. FIG. 3 is a sectional view (AA section) schematically showing the steel sheet cooling device of the present invention. Hereinafter, the steel sheet cooling device of the present invention will be described with reference to FIGS.

図2、3に記載の通り、本発明の鋼板冷却装置10は、ボックス100と、排気部101と、ノズルヘッダ102と、シール機構103と、圧力測定部104と、排気量制御部105と、排気ファン106と、排気部間仕切り板107を有する(図2、3は左右対称のため、排気部101、圧力測定部104、排気量制御部105等に関しては、左半分を省略)。   As shown in FIGS. 2 and 3, the steel sheet cooling device 10 of the present invention includes a box 100, an exhaust unit 101, a nozzle header 102, a seal mechanism 103, a pressure measurement unit 104, an exhaust amount control unit 105, It has an exhaust fan 106 and an exhaust part partition plate 107 (FIGS. 2 and 3 are symmetrical, so the left half of the exhaust part 101, pressure measuring part 104, exhaust amount control part 105, etc. is omitted).

ボックス100は、上下に開口を有し、鋼板冷却装置10の外形を形成する。ボックス100の配置方法は特に限定されないが、通常、鋼板Sが下側の開口から進入し上側の開口から出るように、鋼板冷却装置10は溶融亜鉛めっき設備に配置される。   The box 100 has openings at the top and bottom, and forms the outer shape of the steel sheet cooling device 10. Although the arrangement | positioning method of the box 100 is not specifically limited, Usually, the steel plate cooling apparatus 10 is arrange | positioned at a hot dip galvanization installation so that the steel plate S may approach from a lower opening, and may come out from an upper opening.

排気部101は、上記ボックス100内の排気を行う。排気部101は、排気を行えるものであればよく、例えば、図2、3に示す鋼板冷却装置10では、排気部101は排気口であり、各排気口は配管等の連結部を介して排気ファン106に接続されている。なお、排気部101の排気量は、後述する排気量制御部105で調整可能である。   The exhaust unit 101 exhausts the inside of the box 100. The exhaust unit 101 only needs to be capable of exhausting. For example, in the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, the exhaust unit 101 is an exhaust port, and each exhaust port is exhausted via a connecting unit such as a pipe. It is connected to the fan 106. The exhaust amount of the exhaust unit 101 can be adjusted by an exhaust amount control unit 105 described later.

本発明において、排気部101の位置や数は特に限定されないが、図2及び3に示す鋼板冷却装置10では、鋼板Sの一の面と対向するボックス100の側面に排気部101が複数形成される。図示しないが鋼板Sの他の面と対向するボックス100の側面にも同様に排気部101が形成されている。   In the present invention, the position and number of the exhaust portions 101 are not particularly limited, but in the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, a plurality of exhaust portions 101 are formed on the side surface of the box 100 facing one surface of the steel plate S. The Although not shown, the exhaust portion 101 is also formed on the side surface of the box 100 facing the other surface of the steel plate S.

また、図2及び3に示す鋼板冷却装置10では、排気部101は、鋼板Sの幅方向及び長手方向に並ぶように複数設けられる。特に、図2及び3に示す鋼板冷却装置10では、鋼板Sの幅方向において、排気部101は、鋼板幅方向中央と対向する位置、鋼板幅方向の一端に対向する位置、鋼板幅方向の他端に対向する位置に3箇所並んで設けられる。そして、鋼板の長手方向において、鋼板幅方向に並ぶ3つの排気部101が、上下に並ぶように複数形成されている。   Moreover, in the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, a plurality of exhaust portions 101 are provided so as to be aligned in the width direction and the longitudinal direction of the steel plate S. In particular, in the steel sheet cooling apparatus 10 shown in FIGS. 2 and 3, in the width direction of the steel sheet S, the exhaust portion 101 is positioned opposite the center of the steel sheet width direction, positioned opposite one end in the steel sheet width direction, and other positions in the steel plate width direction. Three are arranged side by side at positions facing the ends. In the longitudinal direction of the steel plate, a plurality of three exhaust parts 101 arranged in the steel plate width direction are formed so as to be arranged vertically.

ノズルヘッダ102は、上記鋼板Sと排気部101との間に設置される。図2、3に示す鋼板冷却装置10では、鋼板幅方向に延びるノズルヘッダ102が、上下方向(鋼板走行方向)に並ぶように複数設けられる。上下方向に並ぶノズルヘッダ102の間隔は50〜300mmである。   The nozzle header 102 is installed between the steel plate S and the exhaust part 101. In the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, a plurality of nozzle headers 102 extending in the steel plate width direction are provided so as to be aligned in the vertical direction (steel plate traveling direction). The interval between the nozzle headers 102 arranged in the vertical direction is 50 to 300 mm.

ノズルヘッダ102は、水ミストを噴射するノズル1020を有する。ノズル1020は、ノズルヘッダ102上に、鋼板幅方向に並んで複数個設けられている。ノズル1020の噴射口は鋼板Sの表面に対向している。   The nozzle header 102 has a nozzle 1020 that ejects water mist. A plurality of nozzles 1020 are provided on the nozzle header 102 side by side in the steel plate width direction. The injection port of the nozzle 1020 faces the surface of the steel sheet S.

シール機構103は、ボックス100の下側開口に設けられ、水漏れを防止する。シール機構103としては従来公知のものを利用できる。例えば、鋼板表面に圧力溜まりを形成する静圧パッド、鋼板近傍で上昇流を形成するガスノズル等が挙げられる。また、水受けパン(図示せず)もボックス100の下側開口に設け、ボックス100の内壁等に付着して下方に流下する液滴を回収してもよい。   The seal mechanism 103 is provided in the lower opening of the box 100 and prevents water leakage. A conventionally known seal mechanism 103 can be used. For example, a static pressure pad that forms a pressure pool on the surface of the steel plate, a gas nozzle that forms an upward flow near the steel plate, and the like can be used. Further, a water pan (not shown) may be provided at the lower opening of the box 100 to collect the droplets that adhere to the inner wall of the box 100 and flow downward.

圧力測定部104は、鋼板幅方向の位置が異なる複数の測定箇所で圧力を測定する。複数の圧力測定箇所で測定ができ、複数の圧力測定箇所の少なくとも2つが、鋼板幅方向の位置が異なる測定箇所であればよい。なお、複数とは2箇所以上であればよい。   The pressure measurement unit 104 measures the pressure at a plurality of measurement points at different positions in the steel plate width direction. Measurement can be performed at a plurality of pressure measurement locations, and at least two of the plurality of pressure measurement locations may be measurement locations having different positions in the steel plate width direction. In addition, what is necessary is just to be two or more places.

また、圧力測定部104は、上記測定箇所の圧力を測定できるものであればよく、例えば、図2に示すように、圧力孔1040と圧力計1041から構成される。図2に示す鋼板冷却装置10では、圧力孔1040に圧力測定用の管等を通して、二重丸(◎)で表す測定箇所の圧力を圧力計1041で測定する。   Moreover, the pressure measurement part 104 should just be a thing which can measure the pressure of the said measurement location, for example, is comprised from the pressure hole 1040 and the pressure gauge 1041 as shown in FIG. In the steel plate cooling apparatus 10 shown in FIG. 2, a pressure gauge 1041 measures the pressure at a measurement location represented by a double circle (◎) through a pressure measurement tube or the like through the pressure hole 1040.

図2及び3に示す鋼板冷却装置10では、圧力測定部104は、鋼板の幅方向及び長手方向に並ぶように、複数設けられる。特に、図2及び3に示す鋼板冷却装置10では、鋼板の幅方向において、圧力測定部104は鋼板幅方向中央と対向する位置、鋼板の一端に対向する位置、鋼板の他端に対向する位置に3箇所設けられる。そして、鋼板幅方向に並ぶ上記圧力測定部104の3つが、鋼板長手方向において、上下に並ぶように形成される。   In the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, a plurality of pressure measuring units 104 are provided so as to be aligned in the width direction and the longitudinal direction of the steel plate. In particular, in the steel sheet cooling apparatus 10 shown in FIGS. 2 and 3, in the width direction of the steel sheet, the pressure measuring unit 104 is opposed to the center in the width direction of the steel sheet, is opposed to one end of the steel sheet, and is opposed to the other end of the steel sheet. Are provided in three places. Then, the three pressure measuring units 104 arranged in the steel plate width direction are formed so as to be arranged vertically in the steel plate longitudinal direction.

また、図2及び3に示す鋼板冷却装置10では、鋼板長手方向における、圧力測定部104の位置は、上下に並ぶ2つのノズルヘッダ102の間である。   Moreover, in the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, the position of the pressure measuring unit 104 in the longitudinal direction of the steel plate is between two nozzle headers 102 arranged vertically.

排気量制御部105は、上記圧力測定部104が測定した圧力値に基づいて、排気部101での排気量を制御する。例えば、圧力測定部104で測定した圧力値を、排気量制御部105が受信して、鋼板冷却装置10内での圧力ムラが小さくなるように、排気量制御部105が、各排気部101での排気量を制御する。鋼板冷却装置10内での圧力ムラを小さくできる排気量の制御は、実験やシミュレーションで得られた情報をもとに行えばよい。   The exhaust amount control unit 105 controls the exhaust amount in the exhaust unit 101 based on the pressure value measured by the pressure measuring unit 104. For example, the exhaust amount control unit 105 receives the pressure value measured by the pressure measuring unit 104 so that the pressure unevenness in the steel plate cooling device 10 is reduced. Control the amount of exhaust. Control of the exhaust amount that can reduce the pressure unevenness in the steel plate cooling device 10 may be performed based on information obtained through experiments and simulations.

本発明では、排気量制御部105は、鋼板の幅方向中央と端の圧力偏差を小さくするように、排気量を制御できることが好ましい。また、排気量制御部105は、鋼板冷却装置10内の圧力ムラに対して、圧力の高い箇所をより低い圧力にするように制御することが好ましい。また、排気量制御部105は、鋼板の長手方向下側(鋼板Sが入る側)と上側(鋼板Sが出る側)とで、それぞれに応じて、排気量を制御できることが好ましい。   In the present invention, it is preferable that the displacement control unit 105 can control the displacement so as to reduce the pressure deviation between the center and the end of the steel sheet in the width direction. Moreover, it is preferable that the exhaust amount control unit 105 performs control so that the high pressure portion is set to a lower pressure with respect to the pressure unevenness in the steel plate cooling device 10. Further, it is preferable that the exhaust amount control unit 105 can control the exhaust amount on the lower side in the longitudinal direction of the steel plate (the side on which the steel plate S enters) and on the upper side (the side on which the steel plate S exits).

また、図2に示す鋼板冷却装置10は、各排気部101と排気ファン106との間にダンパ1050、中間ダンパ1051を有し、これらを用いて各排気部101での排気量を調整する。具体的には、ダンパ1050を用いて、各排気部101での排気量を制御し、中間ダンパ1051を用いて、各中間ダンパ1051と連結する複数のダンパ1050毎に割り当てられる、総排気量に対する排気量割合を調整する。なお、排気部101が、複数の排気口と各排気口に設けられた排気ファンとから構成される場合には、各排気ファンの動作を、圧力値に基づいて制御する方法で調整してもよい。   2 has a damper 1050 and an intermediate damper 1051 between each exhaust part 101 and the exhaust fan 106, and adjusts the exhaust amount in each exhaust part 101 using these. Specifically, the exhaust amount at each exhaust unit 101 is controlled using the damper 1050, and the total exhaust amount assigned to each of the plurality of dampers 1050 connected to each intermediate damper 1051 using the intermediate damper 1051. Adjust the displacement rate. When the exhaust unit 101 includes a plurality of exhaust ports and exhaust fans provided at the respective exhaust ports, the operation of each exhaust fan may be adjusted by a method of controlling based on the pressure value. Good.

また、排気量制御部105で排気量を調整するにあたっては、ミスト液滴の排出性を向上させるために、ノズルから噴出する空気量に対して十分な排気量(1.5倍以上)にすることが望ましい。しかし、排気量を必要以上に上げると、ミスト液滴及びガスの抜けは向上するが、冷却能力が低下するので設備長が長くなるという弊害がある。このため、設備長が長くなり過ぎないように排気量を決める必要がある。   Further, when adjusting the exhaust amount by the exhaust amount control unit 105, the exhaust amount is set to a sufficient exhaust amount (1.5 times or more) with respect to the air amount ejected from the nozzle in order to improve the discharge property of the mist droplets. It is desirable. However, if the exhaust amount is increased more than necessary, the mist droplets and gas escape are improved, but the cooling capacity is lowered, so that the equipment length is increased. For this reason, it is necessary to determine the displacement so that the equipment length does not become too long.

排気部間仕切り板107は、図3に示す通り、鋼板幅方向に並ぶ排気部101間に設けられる板である。排気部仕切り板107は鋼板長手方向に延び、排気部仕切り板107の幅方向は鋼板幅方向に対して略垂直な方向である(図3では垂直方向)。そして、鋼板長手方向に並ぶノズルヘッダ102と、排気部101が形成されたボックス100の側面との間の空間を仕切るように、排気部仕切り板107は鋼板冷却装置10内に配置される。図2には排気部仕切り板107を示していないが、鋼板長手方向に並ぶ全ての排気部101が鋼板幅方向に隣り合う排気部101と、排気仕切り板107によって仕切られていることが好ましい。   The exhaust part partition plate 107 is a plate provided between the exhaust parts 101 arranged in the steel plate width direction as shown in FIG. The exhaust part partition plate 107 extends in the longitudinal direction of the steel plate, and the width direction of the exhaust part partition plate 107 is substantially perpendicular to the steel plate width direction (vertical direction in FIG. 3). And the exhaust part partition plate 107 is arrange | positioned in the steel plate cooling device 10 so that the space between the nozzle header 102 arranged in a steel plate longitudinal direction and the side surface of the box 100 in which the exhaust part 101 was formed may be partitioned. Although the exhaust part partition plate 107 is not shown in FIG. 2, it is preferable that all the exhaust parts 101 arranged in the longitudinal direction of the steel plate are partitioned by the exhaust part 101 adjacent in the steel plate width direction and the exhaust partition plate 107.

次いで、本発明の鋼板冷却装置の動作及び効果について説明する。   Next, the operation and effect of the steel sheet cooling device of the present invention will be described.

本発明の鋼板冷却装置10の動作は以下の通りである。先ず、鋼板Sが、ボックス100の下側の開口から鋼板冷却装置10内に入り、上向きに走行する。走行する鋼板Sは、ノズル1020から噴射される水ミストと接触することで、冷却される。具体的には、以下のようにして、水ミストが鋼板Sを冷却する。   The operation of the steel sheet cooling device 10 of the present invention is as follows. First, the steel plate S enters the steel plate cooling device 10 from the lower opening of the box 100 and travels upward. The traveling steel sheet S is cooled by being in contact with water mist sprayed from the nozzle 1020. Specifically, the water mist cools the steel sheet S as follows.

水ミストは、鋼板Sの表面に向けて、ノズル1020から噴射される。ノズル1020は鋼板幅方向に並んで複数個設けられているため、水ミストは、鋼板S全体とムラ無く接触する。この接触により、鋼板Sと接触した水ミストは、鋼板Sの有する熱を吸収して蒸発するか又は鋼板Sの熱を吸収した後蒸発せずに跳ね返る(図4の破線矢印)。このようにして、水ミストは鋼板Sを冷却する。また、跳ね返った水ミストは、ボックス100内の気体とともに、排気部101からボックス100外へ排出される。このとき、各排気部101からの排気量は、圧力測定部104が測定した圧力の値に基づいて調整されている。   Water mist is sprayed from the nozzle 1020 toward the surface of the steel sheet S. Since a plurality of nozzles 1020 are provided side by side in the steel plate width direction, the water mist contacts the entire steel plate S without unevenness. By this contact, the water mist that has contacted the steel sheet S absorbs the heat of the steel sheet S and evaporates, or absorbs the heat of the steel sheet S and bounces without evaporating (broken arrows in FIG. 4). In this way, the water mist cools the steel sheet S. The bounced water mist is discharged from the exhaust unit 101 to the outside of the box 100 together with the gas in the box 100. At this time, the exhaust amount from each exhaust unit 101 is adjusted based on the pressure value measured by the pressure measuring unit 104.

本発明の効果を説明する前に、従来の鋼板冷却装置の問題点について説明する。図5は、従来の鋼板冷却装置の内部を模式的に示す図である。図5に示す装置は、圧力測定部や排気量制御部を備えない点で本発明の鋼板冷却装置と異なる。また、図5に示す装置は、排気部101の数が図2及び3に示す鋼板冷却装置とは異なる。図5に示す装置では、鋼板Sを挟んで対向する2つの排気部101が排気を行う。その他の構成は、図2及び3に示す装置と同様であるため説明を省略する。従来の鋼板冷却装置10では、鋼板冷却装置10内の圧力を考慮することなく、排気部101から排気を行う。従来の鋼板冷却装置には以下の問題がある。   Before describing the effects of the present invention, problems of the conventional steel sheet cooling apparatus will be described. FIG. 5 is a diagram schematically showing the inside of a conventional steel plate cooling apparatus. The apparatus shown in FIG. 5 is different from the steel sheet cooling apparatus of the present invention in that it does not include a pressure measurement unit or an exhaust amount control unit. Moreover, the apparatus shown in FIG. 5 differs from the steel plate cooling apparatus shown in FIGS. In the apparatus shown in FIG. 5, the two exhaust parts 101 facing each other with the steel plate S interposed therebetween exhausts air. Other configurations are the same as those of the apparatus shown in FIGS. In the conventional steel plate cooling device 10, exhaust is performed from the exhaust unit 101 without considering the pressure in the steel plate cooling device 10. Conventional steel plate cooling devices have the following problems.

水ミスト冷却の冷却特性として、図6に示すような水の沸騰現象が関係する(図6は水ミストの冷却特性を、鋼板温度と冷却能力との関係で示す図である)。図6に示すように、水ミスト冷却は膜沸騰領域内であれば、鋼板温度に関わらずほぼ一定の冷却能力になる。しかし、鋼板温度が低下して遷移沸騰領域になると、鋼板温度が低温であるほど冷却能力が大きくなる発散型の冷却形態となり、板幅方向温度差が拡大しやすくなる。特に冷却前の鋼板に加熱ムラがあると、冷却前の板幅方向温度偏差が冷却後は数倍にも拡大することになる。したがって、水ミスト冷却は膜沸騰領域内で行うことが望ましい。遷移沸騰に移行する遷移温度は水量によって変化する。水ミストの場合、遷移温度は200〜500℃であり、この温度域は、冷却対象となる鋼板の温度の温度域と重複する。このため、水ミストによる冷却では水量制御が非常に重要になる。具体的には、ノズルから噴射されている水量の割合(各ノズルの設定水量を100%としたときの割合)を鋼板幅方向で±10%以内にすればよいとされている。このように、幅方向の水量の割合を±10%以内にコントロールして温度ムラをなくすことで、水量のばらつきにより生じる温度ムラが原因で発生するストレッチャーストレインと呼ばれる欠陥を抑制しようとしている。   The water boiling phenomenon as shown in FIG. 6 is related as the cooling characteristic of water mist cooling (FIG. 6 is a diagram showing the cooling characteristic of water mist in relation to the steel sheet temperature and the cooling capacity). As shown in FIG. 6, if the water mist cooling is within the film boiling region, the cooling ability is almost constant regardless of the steel plate temperature. However, when the steel plate temperature is lowered to the transition boiling region, the cooling capability is increased as the steel plate temperature is lower, and the temperature difference in the plate width direction is easily increased. In particular, if there is uneven heating in the steel plate before cooling, the temperature deviation in the plate width direction before cooling will increase several times after cooling. Therefore, it is desirable to perform water mist cooling within the film boiling region. The transition temperature at which transition boiling transitions varies with the amount of water. In the case of water mist, the transition temperature is 200 to 500 ° C., and this temperature range overlaps the temperature range of the temperature of the steel plate to be cooled. For this reason, water quantity control becomes very important in cooling with water mist. Specifically, the ratio of the amount of water sprayed from the nozzles (the ratio when the set water amount of each nozzle is 100%) should be within ± 10% in the steel plate width direction. In this way, by controlling the ratio of the amount of water in the width direction to within ± 10% to eliminate temperature unevenness, it is intended to suppress defects called stretcher strains that are caused by temperature unevenness caused by variations in the amount of water.

従来、水量の調整を行えば、ストレッチャーストレイン等の品質欠陥を生じないと考えられていた。しかし、ノズル1020から噴射される水の水量が鋼板幅方向で±10%以内の範囲で調整できているにもかかわらず、鋼板冷却装置を出た後の鋼板の幅方向の温度ムラを放射温度計で監視すると、図7に示すような幅方向に不均一(概ね温度差50℃以上)が発生する。この温度ムラはストレッチャーストレイン等の品質欠陥を発生させる場合がある。   Conventionally, it was thought that quality adjustments such as stretcher strain would not occur if the amount of water was adjusted. However, even though the amount of water sprayed from the nozzle 1020 can be adjusted within a range of ± 10% in the width direction of the steel plate, the temperature unevenness in the width direction of the steel plate after leaving the steel plate cooling device is radiated temperature. When monitored by a meter, non-uniformity (approximately a temperature difference of 50 ° C. or more) occurs in the width direction as shown in FIG. This temperature unevenness may cause quality defects such as stretcher strain.

幅方向温度偏差発生原因(上記温度ムラの原因)について鋭意検討が重ねた結果、この原因は、ノズルから噴射された液滴が速やかに排出されずにボックス内に留まり、一部が凝集することで水量が増加したような状態となり、遷移沸騰となって局部的な過冷却が発生する点にあることが見出された。さらに水滴が溜まりやすい箇所について調査を進めると、ノズルヘッダと鋼板の間の内圧と、過冷却位置に相関があることが判明した(図7の幅方向中央の70Pa、中央より端側の21Pa)。   As a result of intensive studies on the cause of temperature deviation in the width direction (cause of the above-mentioned temperature unevenness), the cause of this is that the droplets ejected from the nozzles do not quickly discharge but stay in the box and partly aggregate. It was found that the amount of water increased, and transitional boiling occurred and local supercooling occurred. Further investigation of the location where water droplets are likely to accumulate reveals that there is a correlation between the internal pressure between the nozzle header and the steel sheet and the supercooling position (70 Pa at the center in the width direction in FIG. 7 and 21 Pa at the end from the center). .

上下に配置されるノズルヘッダ間の間隔が非常に狭いと(本発明のようなタイプの鋼板冷却装置においては、上下に並ぶノズルヘッダ間の間隔は非常に狭い)、ノズルから噴出したミスト及びガスがノズルヘッダ間から排出されにくくなり、その結果内圧が増加すると考えられる。特に幅方向の端より中央の方が、圧力値が高くなる傾向にある。ノズルヘッダの中央部にあるノズルから出た水ミストは、その周囲のノズルから出た水ミストによって囲まれており、ノズルヘッダの間以外に抜け道がないためと考えられる。このように、鋼板冷却装置内の内圧のムラが品質欠陥の発生原因になり、この内圧のムラを小さくすればストレッチャーストレイン等の欠陥発生を抑えられることが見出された。   When the interval between the nozzle headers arranged above and below is very narrow (in the type of steel sheet cooling apparatus of the present invention, the interval between the nozzle headers arranged vertically is very narrow), mist and gas ejected from the nozzles Is unlikely to be discharged from between the nozzle headers, resulting in an increase in internal pressure. In particular, the pressure value tends to be higher at the center than at the end in the width direction. This is probably because the water mist from the nozzles in the center of the nozzle header is surrounded by the water mist from the surrounding nozzles, and there is no escape path other than between the nozzle headers. As described above, it has been found that the unevenness of the internal pressure in the steel sheet cooling apparatus causes the generation of quality defects, and the occurrence of defects such as stretcher strain can be suppressed by reducing the unevenness of the internal pressure.

ここで、圧力ムラを小さくするとは、例えば、以下の方法で、「小さくする」の程度を決定できる。圧力の高い箇所の圧力値と圧力の低い箇所の圧力値の差を、幅方向の圧力の平均値を100%としたときの割合(幅方向圧力偏差)で表し、この割合を横軸、鋼板幅方向温度差(鋼板の幅方向での最高温度−鋼板の幅方向での最低温度)を縦軸とするグラフを作成し、幅方向の温度差が急激に上昇しない範囲になるように圧力ムラを小さくすればよい。ノズルヘッダ間の間隔が一般的な鋼板冷却装置を、通常の鋼板温度の条件で用いる場合、図8のようになる。図8のような場合には、圧力偏差が40%以下になることが好ましい。   Here, reducing the pressure unevenness can determine the degree of “reducing” by the following method, for example. The difference between the pressure value at the high pressure location and the pressure value at the low pressure location is expressed as a ratio (width direction pressure deviation) when the average value of the pressure in the width direction is 100%. Create a graph with the temperature difference in the width direction (maximum temperature in the width direction of the steel sheet-minimum temperature in the width direction of the steel sheet) as the vertical axis, and pressure unevenness so that the temperature difference in the width direction does not rise rapidly Should be reduced. When the steel plate cooling device having a general interval between the nozzle headers is used under the condition of a normal steel plate temperature, it is as shown in FIG. In the case as shown in FIG. 8, the pressure deviation is preferably 40% or less.

以上の知見をもとに完成された本発明は、以下の効果を奏する。   The present invention completed based on the above knowledge has the following effects.

本発明の鋼板冷却装置10は、圧力測定部104及び排気量制御部105を有する。圧力測定部104は、鋼板幅方向の位置が異なる複数の測定箇所で圧力を測定できる。そして、排気量制御部105を用いれば、圧力測定部104が測定した圧力値に応じて、鋼板冷却装置内の圧力ムラを小さくするように排気部101からの排気量を調整できる。このため、上記のような調整を行えば、鋼板Sの冷却中でも鋼板冷却装置内の内圧ムラが小さくなり、ストレッチャー外レイン性等の品質欠陥が起こりにくくなる。   The steel sheet cooling device 10 of the present invention includes a pressure measurement unit 104 and an exhaust amount control unit 105. The pressure measurement unit 104 can measure the pressure at a plurality of measurement points having different positions in the steel plate width direction. If the exhaust amount control unit 105 is used, the exhaust amount from the exhaust unit 101 can be adjusted in accordance with the pressure value measured by the pressure measuring unit 104 so as to reduce the pressure unevenness in the steel sheet cooling device. For this reason, if adjustment as described above is performed, unevenness of the internal pressure in the steel sheet cooling device is reduced even during the cooling of the steel sheet S, and quality defects such as a rain property outside the stretcher are less likely to occur.

また、本発明の鋼板冷却装置10において、排気部101が複数形成されることで、複数の位置で排気量の調整ができるようになり、鋼板冷却装置10内の複数個所での圧力調整が容易になる。その結果、鋼板冷却装置10内の圧力ムラを生じにくいように調整することが容易となる。特に、鋼板Sの一の面と対抗するボックス100の側面、鋼板Sの他の面と対向するボックス100の側面にそれぞれ排気部101を複数設ければ、上記圧力ムラを特に小さくしやすい。   Moreover, in the steel plate cooling apparatus 10 according to the present invention, the plurality of exhaust portions 101 are formed, so that the exhaust amount can be adjusted at a plurality of positions, and pressure adjustment at a plurality of locations in the steel plate cooling apparatus 10 is easy. become. As a result, it becomes easy to adjust so that the pressure non-uniformity in the steel plate cooling device 10 does not easily occur. In particular, if a plurality of exhaust portions 101 are provided on the side surface of the box 100 facing one surface of the steel plate S and the side surface of the box 100 facing the other surface of the steel plate S, the pressure unevenness is particularly easily reduced.

本発明では、排気部101は鋼板の幅方向に複数並んで設けられることが好ましい。図7に示す通り、鋼板の幅方向で特に圧力ムラが生じやすい。排気部101が鋼板の幅方向に複数設けられることで、圧力が高い箇所、低い箇所での排気量調整が容易になり、この圧力ムラをより解消しやすい。特に、図2及び3に示すように、鋼板Sの幅方向において、排気部101は、鋼板幅方向中央と対向する位置、鋼板幅方向の一端に対向する位置、鋼板幅方向の他端に対向する位置に3箇所設けられることが、上記の効果を高める上で特に好ましい。また、鋼板幅方向に並ぶのみならず、長手方向にも並ぶことで、鋼板冷却装置10内の圧力を細かく調整しやすくなり、鋼板冷却装置10内の圧力ムラをより小さくできる。   In the present invention, it is preferable that a plurality of exhaust portions 101 are provided side by side in the width direction of the steel plate. As shown in FIG. 7, pressure unevenness is particularly likely to occur in the width direction of the steel sheet. By providing a plurality of the exhaust portions 101 in the width direction of the steel sheet, it is easy to adjust the exhaust amount at a location where the pressure is high and a location where the pressure is low, and it is easier to eliminate this pressure unevenness. In particular, as shown in FIGS. 2 and 3, in the width direction of the steel plate S, the exhaust portion 101 faces the center in the steel plate width direction, the position facing one end in the steel plate width direction, and the other end in the steel plate width direction. It is particularly preferable that three positions are provided at the positions where the above effects are to be achieved. Further, by arranging not only in the width direction of the steel sheet but also in the longitudinal direction, it becomes easy to finely adjust the pressure in the steel sheet cooling apparatus 10 and the pressure unevenness in the steel sheet cooling apparatus 10 can be further reduced.

図2及び3に示す鋼板冷却装置10では、圧力測定部104は、鋼板の幅方向及び長手方向に並ぶように、複数設けられる。圧力の測定箇所が多ければ、鋼板冷却装置内の圧力の状態をより正確に把握できるため好ましい。また、図2及び3に示す鋼板冷却装置10では、圧力測定部104のそれぞれは、上記排気部101のそれぞれとほぼ並んで設けられているため、圧力測定部104が測定した測定箇所近傍での圧力調整が容易になる。測定箇所の圧力を直接的に制御できることで、鋼板冷却装置10内の圧力ムラを小さくする調整を行いやすい。   In the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, a plurality of pressure measuring units 104 are provided so as to be aligned in the width direction and the longitudinal direction of the steel plate. A large number of pressure measurement points is preferable because the state of pressure in the steel sheet cooling device can be grasped more accurately. Further, in the steel plate cooling apparatus 10 shown in FIGS. 2 and 3, each of the pressure measuring units 104 is provided substantially in parallel with each of the exhaust units 101, and therefore, in the vicinity of the measurement location measured by the pressure measuring unit 104. Pressure adjustment is easy. Since the pressure at the measurement location can be directly controlled, it is easy to perform adjustment to reduce the pressure unevenness in the steel plate cooling device 10.

本発明では、上記の通り、鋼板の幅方向で圧力ムラが生じやすく、この圧力ムラがストレッチャーストレイン等の欠陥発生に影響を与える。排気量制御部105が鋼板の幅方向中央と端の圧力偏差を小さくするように、排気量を制御できることで、鋼板幅方向に生じる圧力ムラも容易に抑えられる。   In the present invention, as described above, pressure unevenness is likely to occur in the width direction of the steel sheet, and this pressure unevenness affects the occurrence of defects such as stretcher strain. Since the displacement control unit 105 can control the displacement so that the pressure deviation between the center and the end of the steel sheet in the width direction is reduced, the pressure unevenness generated in the width direction of the steel sheet can be easily suppressed.

また、圧力ムラにおいて、圧力の高い状態が欠陥等の問題につながる場合が多い。排気量制御部105が、鋼板冷却装置10内の圧力ムラに対して、圧力の高い箇所をより低い圧力に調整できることで、圧力の高い部分で生じる問題も容易に抑えられる。   Further, in pressure unevenness, a high pressure state often leads to problems such as defects. Since the displacement control unit 105 can adjust the high pressure portion to a lower pressure with respect to the pressure unevenness in the steel sheet cooling device 10, problems caused in the high pressure portion can be easily suppressed.

また、本発明の完成過程において、鋼板の長手方向上側から排出した水滴径と下側から排出した水滴径では後者の方が大きいことが見出された。これは排気口で排出されなかった水滴が落下し凝集してしまったためと考えられる。凝集した水滴は冷却ムラ発生の原因となるため、速やかに排出する必要がある。排気量制御部105が、鋼板の長手方向下側(鋼板Sが入る側)と上側(鋼板Sが出る側)とで、それぞれに応じて、排気量を制御できれば、鋼板長手方向における上記冷却ムラの問題も容易に抑えられる。   Further, in the completion process of the present invention, it has been found that the latter is larger in the water droplet diameter discharged from the upper side in the longitudinal direction of the steel sheet and the water droplet diameter discharged from the lower side. This is thought to be because water droplets that were not discharged at the exhaust port dropped and aggregated. Aggregated water droplets cause cooling unevenness and need to be discharged quickly. If the displacement control unit 105 can control the displacement according to the lower side in the longitudinal direction of the steel plate (the side where the steel plate S enters) and the upper side (the side where the steel plate S exits), the above-described cooling unevenness in the longitudinal direction of the steel plate. This problem can be easily suppressed.

また、鋼板冷却装置10が排気部仕切り板107を有する場合には、鋼板幅方向に並ぶ排気部101間が仕切られているため、より高い精度で排気量制を制御できるので好ましい。特に、鋼板長手方向に並ぶ全ての排気部101が鋼板幅方向に隣り合う排気部101と、排気部仕切り板107によって仕切られていれば、排気量制御の精度がさらに高まるので好ましい。   Moreover, when the steel plate cooling device 10 has the exhaust part partition plate 107, since the exhaust parts 101 arranged in the steel plate width direction are partitioned, it is preferable because the exhaust amount control can be controlled with higher accuracy. In particular, it is preferable that all the exhaust portions 101 arranged in the longitudinal direction of the steel plate are partitioned by the exhaust portions 101 adjacent to each other in the steel plate width direction and the exhaust portion partition plate 107, since the accuracy of exhaust amount control is further increased.

本発明の鋼板冷却装置10が、走査型放射温度計17を備える溶融亜鉛めっき設備1に適用されれば、鋼板Sの温度ムラを評価でき、この温度ムラから鋼板冷却装置10内の圧力ムラを確認できる。したがって、走査型放射温度計等を用いて、鋼板冷却装置10内の圧力ムラを確認しながら溶融亜鉛めっき鋼板の製造を行うことで、より好ましい製造条件(鋼板冷却装置10内の圧力ムラが小さい条件)に調整しやすい。   If the steel sheet cooling device 10 of the present invention is applied to a hot dip galvanizing facility 1 equipped with a scanning radiation thermometer 17, the temperature unevenness of the steel sheet S can be evaluated, and the pressure unevenness in the steel sheet cooling device 10 can be determined from this temperature unevenness. I can confirm. Therefore, by manufacturing a hot-dip galvanized steel sheet while confirming the pressure unevenness in the steel sheet cooling device 10 using a scanning radiation thermometer or the like, more preferable manufacturing conditions (the pressure unevenness in the steel sheet cooling device 10 is small). Easy to adjust).

なお、生産される鋼板サイズとしては、幅2m以下の範囲で、本発明の上記効果を十分に奏する。また、鋼板温度が300〜500℃の領域での冷却でも、本発明を好ましく利用することができる。   In addition, as said steel plate size produced, the said effect of this invention is fully show | played in the range of width 2m or less. Further, the present invention can be preferably used even in the cooling in the region where the steel plate temperature is 300 to 500 ° C.

C:0.0008〜0.0040質量%、Si:0.2質量%以下、Mn:2.0質量%以下、P:0.070質量%以下、S:0.020質量%以下、残部Fe及び不可避不純物からなる成分組成を有し、板厚0.65mmで引張強さTSが340MPaの鋼板を素材鋼板とし、図1に示すような連続式溶融亜鉛めっき設備で、図2及び3に示すような鋼板冷却装置を用いて、溶融亜鉛めっき鋼板を製造した。連続式溶融亜鉛めっき設備では、鋼板を連続焼鈍した後、浴温470℃の溶融亜鉛めっき浴に浸漬し、ガスワイピングで亜鉛付着量を45g/mとなるように調整した後、520℃まで加熱して合金化処理し、その後水ミスト冷却帯で300℃まで冷却した。オフライン冷却実験では、遷移沸騰は発生しない水量条件としてある。 C: 0.0008-0.0040 mass%, Si: 0.2 mass% or less, Mn: 2.0 mass% or less, P: 0.070 mass% or less, S: 0.020 mass% or less, balance Fe 2 and 3 is a continuous hot dip galvanizing facility as shown in FIG. 1, which is made of a steel plate having a component composition consisting of inevitable impurities and a plate thickness of 0.65 mm and a tensile strength TS of 340 MPa. A hot-dip galvanized steel sheet was manufactured using such a steel sheet cooling apparatus. In continuous hot dip galvanizing equipment, steel plates are continuously annealed, then immersed in a hot dip galvanizing bath at a bath temperature of 470 ° C., and adjusted to a zinc adhesion amount of 45 g / m 2 by gas wiping, up to 520 ° C. It heated and alloyed and then cooled to 300 ° C. in a water mist cooling zone. In the off-line cooling experiment, the amount of water is such that no transition boiling occurs.

排気設備は幅方向に3分割した排気口を設け、さらに各排気口に圧力測定孔及び圧力計を設け、各排気口に設置したダンパの開度を圧力値に応じて変更できるようにした。また、中間ダンパについては冷却帯出側の温度偏差に応じて、手動でダンパ開度を調整した。なお、排気ファンはダンパの連結部に一台設け、風量は3600m/hrの一定出力で運転した。 The exhaust facility is provided with an exhaust port divided into three in the width direction, and further provided with a pressure measurement hole and a pressure gauge at each exhaust port, so that the opening degree of the damper installed at each exhaust port can be changed according to the pressure value. For the intermediate damper, the damper opening was manually adjusted according to the temperature deviation on the cooling zone exit side. One exhaust fan was provided at the connecting portion of the damper, and the air flow was operated at a constant output of 3600 m 3 / hr.

本発明例では、鋼板冷却装置の出側位置に赤外線サーモグラフィーを設置した。また、冷媒として水と空気を混合させた水ミストを用い、フラットスプレー型ノズルを鋼板幅方向に200mm間隔で9箇所に設け、各冷媒噴射ノズルからの水ミスト噴射量を冷却水流量調整弁による冷却水量の調整によって制御できるようにした。一方、水ミスト用の冷却エアは常時一定圧力(各配管ヘッダ部分で200kPa)で噴射するようにした。なお、ノズルは鋼板進行方向に200mm間隔で40列、隣接する冷媒噴射ノズルが幅方向で50mmずつずれるように、鋼板からノズル噴射口までは200mmで配置されている。より具体的には図9に示す通りである(図9では幅方向に間隔200mmで並ぶ9個のノズルのうち4個分を示す)。   In the example of this invention, the infrared thermography was installed in the exit position of the steel plate cooling device. Further, water mist mixed with water and air is used as a refrigerant, flat spray nozzles are provided at nine locations at intervals of 200 mm in the width direction of the steel sheet, and the amount of water mist injection from each refrigerant injection nozzle is determined by a cooling water flow rate adjustment valve. It can be controlled by adjusting the amount of cooling water. On the other hand, the cooling air for water mist was always injected at a constant pressure (200 kPa at each pipe header). The nozzles are arranged in 40 rows at intervals of 200 mm in the steel plate traveling direction, and 200 mm from the steel plate to the nozzle injection ports so that the adjacent refrigerant injection nozzles are shifted by 50 mm in the width direction. More specifically, it is as shown in FIG. 9 (in FIG. 9, four of nine nozzles arranged at intervals of 200 mm in the width direction are shown).

なお、個々の冷媒噴射ノズルに流量計を設置するのが困難な場合は、冷媒噴射ノズル群を鋼板進行方向で複数列単位の複数ゾーンに分けてゾーン毎の冷却水量を測定し、個別のノズルについては、冷媒噴射ノズル直前の流量と流量調整弁開度、配管圧力の関係を予め把握しておき、流量調整弁開度と配管圧力を常時監視することで、適正条件に管理することができる。ノズルヘッダ配置や、排気口の分割数、ダンパ開度などの条件については、表1及び表2に記載する。表1は排気口を幅方向分割した場合、表2は排気口を幅方向及び長手方向に分割した場合を示す。   If it is difficult to install a flow meter for each refrigerant injection nozzle, measure the amount of cooling water for each zone by dividing the refrigerant injection nozzle group into multiple zones in multiple rows in the direction of travel of the steel sheet. Can be managed under appropriate conditions by preliminarily grasping the relationship between the flow rate immediately before the refrigerant injection nozzle, the flow rate adjustment valve opening degree, and the pipe pressure, and constantly monitoring the flow rate adjustment valve opening degree and the pipe pressure. . Tables 1 and 2 describe the conditions such as the nozzle header arrangement, the number of divisions of the exhaust port, and the damper opening degree. Table 1 shows the case where the exhaust port is divided in the width direction, and Table 2 shows the case where the exhaust port is divided in the width direction and the longitudinal direction.

Figure 2015055002
Figure 2015055002

Figure 2015055002
Figure 2015055002

比較例では、従来の装置の効果を確認するために、排気量制御部を用いない条件で鋼板冷却装置を使用した。比較例では、ミスト液滴の排出が悪いために局所的な過冷却が発生し、その後のプレス加工時にストレッチャーストレインが発生したのに対して、本発明例では、ほぼ均一な温度分布が実現し、ストレッチャーストレインが発生しない鋼板を製造可能となった。   In the comparative example, in order to confirm the effect of the conventional apparatus, the steel sheet cooling apparatus was used under the condition that the displacement control unit was not used. In the comparative example, local supercooling occurred due to poor discharge of mist droplets, and stretcher strain occurred during the subsequent press processing, whereas in the present example, an almost uniform temperature distribution was realized. As a result, it is possible to produce a steel plate that does not generate stretcher strain.

1 溶融亜鉛めっき設備
10 鋼板冷却装置
100 ボックス
101 排気部
102 ノズルヘッダ
1020 ノズル
103 シール機構
104 圧力測定部
1040 圧力孔
1041 圧力計
105 排気量制御部
1050 ダンパ
1051 中間ダンパ
106 排気ファン
11 溶融亜鉛めっき浴
12 シンクロール
13 合金化処理帯
14 ガスワイピングノズル
15 浴中サポートロール
16 浴上サポートロール
17 走査型放射温度計
DESCRIPTION OF SYMBOLS 1 Hot dip galvanization equipment 10 Steel plate cooling device 100 Box 101 Exhaust part 102 Nozzle header 1020 Nozzle 103 Seal mechanism 104 Pressure measuring part 1040 Pressure hole 1041 Pressure gauge 105 Exhaust amount control part 1050 Damper 1051 Intermediate damper 106 Exhaust fan 11 Hot dip galvanizing bath 12 Sink Roll 13 Alloying Zone 14 Gas Wiping Nozzle 15 Support Roll in Bath 16 Support Roll on Bath 17 Scanning Radiation Thermometer

Claims (6)

上下に開口を有し、内部を鋼板が上向き又は下向きに走行するボックスと、
前記ボックスにおいて、鋼板表面に対向する面に形成され、前記ボックス内の排気を行うための1つ以上の排気部と、
前記排気部と前記鋼板の間に設置され、走行する前記鋼板に水ミストを噴射するノズルを複数有し、前記鋼板幅方向に延びるノズルヘッダと、
前記ボックスの下側開口からの水漏れを防止するシール機構と、
前記ボックス内において、前記鋼板幅方向の位置が異なる複数の測定箇所で圧力測定を行う圧力測定部と、
前記圧力測定部が測定した圧力値に基づいて、前記排気部からの排気量を制御する排気量制御部と、を備えることを特徴とする鋼板冷却装置。
A box having upper and lower openings, and a steel plate traveling upward or downward inside,
In the box, formed on a surface facing the steel plate surface, and one or more exhaust parts for exhausting the box,
A nozzle header installed between the exhaust part and the steel plate and having a plurality of nozzles for spraying water mist on the traveling steel plate, and extending in the steel plate width direction;
A sealing mechanism for preventing water leakage from the lower opening of the box;
In the box, a pressure measurement unit that performs pressure measurement at a plurality of measurement points at different positions in the steel plate width direction, and
A steel plate cooling apparatus comprising: an exhaust amount control unit that controls an exhaust amount from the exhaust unit based on a pressure value measured by the pressure measuring unit.
前記1つ以上の排気部は、前記鋼板幅方向に並ぶ3つ以上の排気部であることを特徴とする請求項1に記載の鋼板冷却装置。   The steel plate cooling device according to claim 1, wherein the one or more exhaust parts are three or more exhaust parts arranged in the steel plate width direction. 前記排気量制御部は、前記圧力測定部が測定した複数の圧力値から算出される圧力偏差が40%以下になるように、前記排気部からの排気量を制御することを特徴とする請求項1又は2に記載の鋼板冷却装置。   The exhaust amount control unit controls an exhaust amount from the exhaust unit so that a pressure deviation calculated from a plurality of pressure values measured by the pressure measurement unit is 40% or less. The steel plate cooling apparatus according to 1 or 2. 前記1つ以上の排気部は、前記鋼板の長手方向に並ぶ2つ以上の排気部を有することを特徴とする請求項1〜3のいずれか1項に記載の鋼板冷却装置。   The steel sheet cooling device according to any one of claims 1 to 3, wherein the one or more exhaust parts include two or more exhaust parts arranged in a longitudinal direction of the steel sheet. 冷却装置内の排気を行いながら、走行する鋼板に水ミストを噴射して鋼板を冷却する鋼板冷却方法であって、
前記鋼板幅方向の位置が異なる複数の測定箇所での圧力測定を行い、測定結果をもとに圧力偏差が小さくなるように、前記排気の排気量を調整しながら鋼板を冷却することを特徴とする鋼板冷却方法。
A steel plate cooling method for cooling a steel plate by injecting water mist onto a traveling steel plate while exhausting the cooling device,
The pressure measurement is performed at a plurality of measurement points having different positions in the steel plate width direction, and the steel plate is cooled while adjusting the exhaust amount of the exhaust gas so that the pressure deviation becomes small based on the measurement result. Steel plate cooling method to do.
前記圧力偏差が40%以下になるように前記排気量を調整することを特徴とする請求項5に記載の鋼板冷却方法。   The steel sheet cooling method according to claim 5, wherein the displacement is adjusted so that the pressure deviation is 40% or less.
JP2013190287A 2013-09-13 2013-09-13 Steel plate cooling device and steel plate cooling method Expired - Fee Related JP6079523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190287A JP6079523B2 (en) 2013-09-13 2013-09-13 Steel plate cooling device and steel plate cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190287A JP6079523B2 (en) 2013-09-13 2013-09-13 Steel plate cooling device and steel plate cooling method

Publications (2)

Publication Number Publication Date
JP2015055002A true JP2015055002A (en) 2015-03-23
JP6079523B2 JP6079523B2 (en) 2017-02-15

Family

ID=52819617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190287A Expired - Fee Related JP6079523B2 (en) 2013-09-13 2013-09-13 Steel plate cooling device and steel plate cooling method

Country Status (1)

Country Link
JP (1) JP6079523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222900A (en) * 2016-06-15 2017-12-21 Jfeスチール株式会社 Production method of alloyed galvanized steel plate
FR3101888A1 (en) * 2019-10-14 2021-04-16 Fives Stein Rapid cooling of high elastic limit steel sheets
CN114411079A (en) * 2022-01-10 2022-04-29 山东恩光新材料有限公司 Air-cooled cooling device with stable board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681634A (en) * 1979-12-06 1981-07-03 Nippon Steel Corp Gas-water cooling apparatus for metallic strip
JPH05339650A (en) * 1992-06-04 1993-12-21 Nippon Steel Corp Cooler for continuous heat treatment equipment for strip
JPH11351719A (en) * 1998-06-05 1999-12-24 Mitsubishi Heavy Ind Ltd Cooling device
JP2007105792A (en) * 2005-09-16 2007-04-26 Nippon Steel Corp Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
JP2012514694A (en) * 2009-01-09 2012-06-28 フイブ・スタン Method and section for cooling a moving metal belt by spraying liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681634A (en) * 1979-12-06 1981-07-03 Nippon Steel Corp Gas-water cooling apparatus for metallic strip
JPH05339650A (en) * 1992-06-04 1993-12-21 Nippon Steel Corp Cooler for continuous heat treatment equipment for strip
JPH11351719A (en) * 1998-06-05 1999-12-24 Mitsubishi Heavy Ind Ltd Cooling device
JP2007105792A (en) * 2005-09-16 2007-04-26 Nippon Steel Corp Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
JP2012514694A (en) * 2009-01-09 2012-06-28 フイブ・スタン Method and section for cooling a moving metal belt by spraying liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222900A (en) * 2016-06-15 2017-12-21 Jfeスチール株式会社 Production method of alloyed galvanized steel plate
FR3101888A1 (en) * 2019-10-14 2021-04-16 Fives Stein Rapid cooling of high elastic limit steel sheets
WO2021074500A1 (en) * 2019-10-14 2021-04-22 Fives Stein Rapid cooling of high yield strength sheet steel
CN114411079A (en) * 2022-01-10 2022-04-29 山东恩光新材料有限公司 Air-cooled cooling device with stable board
CN114411079B (en) * 2022-01-10 2023-01-24 山东恩光新材料有限公司 Air cooling device

Also Published As

Publication number Publication date
JP6079523B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
US10195656B2 (en) Cooling method for hot press forming and hot press forming apparatus
US10974316B2 (en) Secondary cooling method and secondary cooling device for casting product in continuous casting
EP3156512B1 (en) Method for cooling steel strip and cooling installation
JP6079523B2 (en) Steel plate cooling device and steel plate cooling method
US8197746B2 (en) Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP6079522B2 (en) Steel plate cooling device and steel plate cooling method
EP3730633A1 (en) Cooling device and cooling method for thick steel sheet, and production equipment and production method for thick steel sheet
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
EP2929949A1 (en) Device for cooling hot-rolled steel sheet
JP5100327B2 (en) Cold rolled steel sheet manufacturing method
JP2017222923A (en) Production method of molten metal plated steel strip, and continuous molten metal plating facility
JP5962209B2 (en) Method for producing hot-dip galvanized steel sheet
JP5245746B2 (en) Metal strip cooling device and metal strip cooling method
JP6436309B2 (en) Temperature control device and temperature control method for metal strip in continuous annealing equipment
JP2007105792A (en) Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
CN102747213B (en) Cooling method for continuous heat treatment of high-strength steel
CN202081147U (en) Strip steel water quench cooling device
JP4901276B2 (en) Steel strip cooling device
JP6760002B2 (en) Steel plate cooling method
JP6756295B2 (en) Sealing device
JPH08257623A (en) Method for cooling thick steel plate
JP2003034818A (en) Method of cooling metal strip
JPH1190521A (en) Method for cooling high-temperature steel sheet
TWM527795U (en) Cooling spray device for reducing temperature difference of the spring steel circle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees