JP2007105792A - Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip - Google Patents

Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip Download PDF

Info

Publication number
JP2007105792A
JP2007105792A JP2006247282A JP2006247282A JP2007105792A JP 2007105792 A JP2007105792 A JP 2007105792A JP 2006247282 A JP2006247282 A JP 2006247282A JP 2006247282 A JP2006247282 A JP 2006247282A JP 2007105792 A JP2007105792 A JP 2007105792A
Authority
JP
Japan
Prior art keywords
cooling
spray
plate
nozzle
spray nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247282A
Other languages
Japanese (ja)
Other versions
JP4256885B2 (en
Inventor
Ryuji Yamamoto
龍司 山本
Yoshihiro Serizawa
良洋 芹澤
Shigeru Ogawa
茂 小川
Hironori Ueno
博則 上野
Masahiro Toki
正弘 土岐
Kazuhiro Nishiyama
和宏 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006247282A priority Critical patent/JP4256885B2/en
Publication of JP2007105792A publication Critical patent/JP2007105792A/en
Priority to US12/224,410 priority patent/US8012406B2/en
Priority to DE602007006618T priority patent/DE602007006618D1/en
Priority to BRPI0702829-6A priority patent/BRPI0702829B1/en
Priority to TW096117317A priority patent/TW200812719A/en
Priority to EP07743742A priority patent/EP1944098B1/en
Priority to PCT/JP2007/060308 priority patent/WO2008032473A1/en
Priority to RU2008135341/02A priority patent/RU2403110C2/en
Priority to KR1020087021173A priority patent/KR101000262B1/en
Priority to CN2007800074569A priority patent/CN101394947B/en
Application granted granted Critical
Publication of JP4256885B2 publication Critical patent/JP4256885B2/en
Priority to US13/134,243 priority patent/US8197746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for setting an arrangement of spray nozzles for spray cooling equipment having a wide range of water volume control using two or more kinds of nozzles different in water volume and spraying area, which method is capable of uniform cooling in a direction orthogonal to the travel of a steel strip, wherein the cooling equipment is applied to obtain a steel material excellent and uniform in shape characteristics by controlled-cooling of the heated steel strip obtained by hot rolling while being restrained and passed by restraining rolls. <P>SOLUTION: The spray nozzles are arranged such that the value obtained by integrating the n-th power of the impingement pressure of sprayed cooling water to a surface to be cooled in the direction of the travel of the steel strip between each pair of restraining rolls is within minus 20% from the maximum value in the direction orthogonal to the travel of the steel strip on condition of 0.05≤n≤0.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱間圧延して得られた熱鋼板を拘束ロールで拘束通板しながら制御冷却する方法に関し、より詳しくは、形状特性が良好で均一な鋼材を得るために適用される熱鋼板の冷却装置に関するものである。   TECHNICAL FIELD The present invention relates to a method for controlled cooling of a hot steel sheet obtained by hot rolling while restraining it with a restraining roll, and more specifically, a hot steel sheet applied to obtain a uniform steel material having good shape characteristics. The present invention relates to a cooling device.

鋼材の機械的性質、加工性、溶接性を向上させるために、例えば熱間圧延された直後の高温状態の鋼材を圧延ライン上で通板させながら加速冷却し、鋼材に所定の冷却履歴を与えることは一般的に行われている。しかし、鋼材を冷却する際に生じる冷却むらは、鋼材の形状不良や加工歪みの原因となり、益々の向上を要求されている鋼材品質に対して早急な改善が要望されている。   In order to improve the mechanical properties, workability, and weldability of steel materials, for example, high-temperature steel materials immediately after being hot-rolled are accelerated and cooled while passing on a rolling line, giving a predetermined cooling history to the steel materials. Things are generally done. However, the uneven cooling that occurs when the steel material is cooled causes a shape defect of the steel material and processing distortion, and an urgent improvement is required for the steel material quality that is required to be further improved.

これらの問題点を解決するために、上下の複数対の拘束ロールにより、鋼材を拘束して熱変形を防ぐ方法がある。しかし、このような方法では、良好な形状の鋼材が得られるが、鋼材内部の残留応力が客先加工時の変形として現れる場合があり、根本的な解決とはならない。したがって、鋼材を均一に冷却することが最良の解決手段となる。   In order to solve these problems, there is a method of preventing thermal deformation by restraining a steel material with a plurality of pairs of upper and lower restraint rolls. However, with such a method, a steel material having a good shape can be obtained, but the residual stress inside the steel material may appear as deformation during customer processing, and is not a fundamental solution. Therefore, cooling the steel material uniformly is the best solution.

均一冷却を達成する冷却方法として、従来のスプレーノズルによって冷却媒体である水を鋼材に噴射する冷却方法では、鋼材の幅方向に水量が均一に噴射されるよう設備が設計されてきた。図1に従来の山形水量分布フラットスプレーによる鋼材冷却装置のノズル配置を示す。各スプレーノズル1は通板直交方向全域の水量分布が均一になるよう適正なノズルピッチS0で通板直行方向に直列に配置されている。鋼材通板方向に関しては、互いに隣接するスプレー噴射域が干渉しないように配置されている。   As a cooling method for achieving uniform cooling, in a cooling method in which water as a cooling medium is sprayed onto a steel material by a conventional spray nozzle, equipment has been designed so that the amount of water is uniformly sprayed in the width direction of the steel material. Fig. 1 shows the nozzle arrangement of a conventional steel cooling device using an angle water distribution flat spray. The spray nozzles 1 are arranged in series in the direction orthogonal to the passing plate at an appropriate nozzle pitch S0 so that the water amount distribution in the entire direction perpendicular to the passing plate is uniform. Regarding the steel plate passing direction, the spray spray areas adjacent to each other are arranged so as not to interfere with each other.

しかしながらこのようなノズル配置の冷却装置では、ノズル噴射範囲(スプレー噴射域2)の中心で冷却能力が周辺と比較して高くなるため、鋼材通板直交方向に均一な冷却能力分布が得られず、冷却むらが発生することがある。   However, in the cooling device with such a nozzle arrangement, the cooling capacity is higher in the center of the nozzle injection range (spray injection area 2) than in the periphery, so a uniform cooling capacity distribution in the direction perpendicular to the steel plate cannot be obtained. Uneven cooling may occur.

スプレーノズルを用いて均一に冷却する方法として特許文献1に1つのスプレー噴射範囲の冷却水衝突圧力ばらつきを±20%以内とする方法が示されている。また、特許文献2にスプレーノズルの噴射干渉域が形成されるように配置する方法が提案されている。さらに、特許文献3では被冷却面の幅方向全ての点が冷媒噴流衝突域を2回以上通過することで均一冷却が達成可能であるとされている。 As a method for uniformly cooling using a spray nozzle, Patent Document 1 discloses a method in which variation in cooling water collision pressure within one spray injection range is within ± 20%. Patent Document 2 proposes a method of arranging the spray interference area of the spray nozzle. Further, in Patent Document 3, it is said that uniform cooling can be achieved when all the points in the width direction of the surface to be cooled pass through the refrigerant jet collision area twice or more.

特開平6-238320号公報JP-A-63-338320 特開平8-238518号公報JP-A-8-238518 特開2004-306064号公報Japanese Patent Laid-Open No. 2004-306064

特許文献1の方法では、通板方向および通板直交方向に複数列備えたスプレー冷却範囲全体の冷却能力を均一にする方法については提案されていない。また、特許文献2の方法では、ノズルの噴射干渉域以外ではノズル噴射範囲中心の冷却能力が高くなるため、特許文献2の冷却方法を用いても均一な冷却能力分布とならない。さらに、特許文献3の方法では、冷媒衝突域内に冷却能力分布が存在するスプレーノズルを通板方向に一直線に配置配置した場合は、冷媒噴流衝突域を2回以上通過するにもかかわらず、衝突域中心と衝突域端部で冷却能力差が生じ、均一な冷却能力分布は得られない。   In the method of Patent Document 1, a method for making the cooling capacity of the entire spray cooling range provided in a plurality of rows in the plate passing direction and the plate passing orthogonal direction uniform is not proposed. Further, in the method of Patent Document 2, the cooling capacity at the center of the nozzle injection range is high outside the nozzle injection interference area, so even if the cooling method of Patent Document 2 is used, a uniform cooling capacity distribution is not obtained. Furthermore, in the method of Patent Document 3, when spray nozzles having a cooling capacity distribution in the refrigerant collision area are arranged in a straight line in the plate direction, the collision occurs even though the refrigerant jet collision area passes twice or more. A cooling capacity difference occurs between the center of the zone and the end of the collision zone, and a uniform cooling capacity distribution cannot be obtained.

本発明は、前述のような問題点を解消するためのもので、その目的は、通板直交方向に均一な冷却が可能であるスプレー冷却装置のスプレーノズル配置設定方法を提供し、かつ、水量および噴射域の異なる2種類以上のノズルを用いて広い水量調整範囲を有するスプレー冷却装置のスプレーノズル配置設定方法を提供するものである。   The present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a spray nozzle arrangement setting method for a spray cooling device capable of uniform cooling in the direction perpendicular to the plate passing through, and the amount of water. The present invention also provides a spray nozzle arrangement setting method for a spray cooling device having a wide water amount adjustment range using two or more types of nozzles having different spray areas.

本発明のスプレーノズル配置設定方法は熱鋼板の通板直交方向の均一冷却を達成するために、以下の(1)〜(4)の構成を要旨とする。
(1)熱鋼板を拘束通板させる複数対の拘束ロールを備え、各拘束ロール対間に冷却水噴射量制御可能なスプレーノズルを通板方向および/または通板直交方向に複数列備えた通板冷却装置のスプレーノズルの配置設定方法において、冷却水の冷却面への衝突圧力のn乗を拘束ロール対間で通板方向に積分した値が、通板直交方向で最大値より-20%以内となるようにスプレーノズルを配置することを特徴とするスプレーノズルの配置設定方法。
但し、0.05≦n≦0.2
(2)各拘束ロール対間のノズル列ごとに、水量もしくは冷却水の噴射域が異なる複数種のノズルを用いることを特徴とする前記(1)に記載のスプレーノズル配置設定方法。
(3)スプレーノズルが、水と空気を混合噴射可能な構造を有することを特徴とする前記(1)又は(2)に記載のスプレーノズル配置設定方法。
(4)スプレーノズルの配置を(1)〜(3)のいずれかに記載の方法を用いて設定した熱鋼板冷却装置。
The spray nozzle arrangement setting method of the present invention is summarized as the following configurations (1) to (4) in order to achieve uniform cooling of the hot steel plate in the direction perpendicular to the plate passing direction.
(1) Provided with a plurality of pairs of restraining rolls for restraining the hot steel plate to pass through, and a plurality of rows of spray nozzles capable of controlling the amount of cooling water injected between each pair of restraining rolls in the plate direction and / or in the direction perpendicular to the plate. In the spray nozzle arrangement setting method of the plate cooling device, the value obtained by integrating the nth power of the impinging pressure on the cooling surface of the cooling water in the plate passing direction between the pair of restraining rolls is -20% higher than the maximum value in the plate passing direction. Spray nozzle arrangement setting method, wherein spray nozzles are arranged so as to be within the range.
However, 0.05 ≦ n ≦ 0.2
(2) The spray nozzle arrangement setting method according to (1), wherein a plurality of types of nozzles having different water amounts or cooling water injection areas are used for each nozzle row between each pair of constraining rolls.
(3) The spray nozzle arrangement setting method according to (1) or (2), wherein the spray nozzle has a structure capable of mixing and jetting water and air.
(4) A hot steel sheet cooling apparatus in which the arrangement of spray nozzles is set using the method according to any one of (1) to (3).

本発明によれば、スプレーノズルを用いる冷却装置において、従来検討されていなかった冷却水衝突圧力という冷却因子を規定したノズル種類およびノズル配置を採用することにより、通板直交方向に高い冷却均一性を有する冷却装置を製作することができる。   According to the present invention, in a cooling device using a spray nozzle, by adopting a nozzle type and nozzle arrangement that define a cooling factor called a cooling water collision pressure, which has not been studied in the past, high cooling uniformity in the direction perpendicular to the through-plate. Can be manufactured.

すなわち、冷却水衝突圧力という冷却因子で冷却能力を整理できるので、実験的にノズル配置を設定する場合に、実際に熱片を用いて冷却実験を実施しなくても、衝突圧力をn乗して通板方向に積分した値の幅方向分布を実験的に得ることによって、通板直交方向に高い冷却均一性を有するノズル配置を見出すことができる。また、使用するノズルについて衝突面での圧力分布がわかれば、衝突圧力をn乗して通板方向に積分した値の幅方向分布を算出することによって、通板直交方向に高い冷却均一性を有するノズル配置を見出すことができる。   In other words, since the cooling capacity can be arranged by the cooling factor called the cooling water collision pressure, when the nozzle arrangement is set experimentally, the collision pressure is increased to the nth power without actually performing the cooling experiment using the heat pieces. By experimentally obtaining a width direction distribution of values integrated in the plate passing direction, it is possible to find a nozzle arrangement having high cooling uniformity in the plate passing direction. In addition, if the pressure distribution at the collision surface is known for the nozzle to be used, high cooling uniformity is obtained in the direction perpendicular to the plate by calculating the width direction distribution of the value obtained by integrating the collision pressure to the nth power in the plate direction. A nozzle arrangement can be found.

また、本発明のスプレーノズルの配置設定方法によれば水量および噴射域の異なる2種類以上のノズルを用いても、通板直交方向に同様な冷却均一性を達成するため、通板直交方向に均一な冷却能力をもち、かつ、広い水量調整範囲を有するスプレー冷却装置を実現することができる。   In addition, according to the spray nozzle arrangement setting method of the present invention, even when two or more types of nozzles having different water amounts and injection areas are used, the same cooling uniformity is achieved in the direction perpendicular to the passage plate. A spray cooling device having a uniform cooling capacity and a wide water amount adjustment range can be realized.

さらに、本発明は水と空気を混合噴射可能な構造を有するスプレーノズルにおいても同様な冷却均一性を達成可能なスプレーノズル配置設定方法である。   Furthermore, the present invention is a spray nozzle arrangement setting method capable of achieving the same cooling uniformity even in a spray nozzle having a structure capable of mixing and jetting water and air.

本発明者らは、スプレー冷却において冷却に寄与する因子を調査、研究した研究開発実験結果を図に従って説明する。   The present inventors will explain the results of research and development experiments conducted by investigating and studying factors contributing to cooling in spray cooling according to the drawings.

静止中の被冷却媒体を単一ノズルによって冷却する場合において、図2(c)に示すように、冷却面との間隔Lが150mmとなる位置に配置した流量100リットル/min、ヘッダー圧力0.3MPaのオーバルノズル(スプレーノズル1)から冷却水を300mm×40mmの範囲(スプレー噴射域2)に噴射したものを20mm×20mmの範囲M1、M2、M3で水量および冷却能力の平均値を測定し、測定値の最大値(範囲M1の冷却能力)で除して無次元化(正規化)した。範囲M1
はスプレーノズル1の真正面に位置する20mm×20mmの範囲であり、範囲M2 は、範囲M1 に隣接する20mm×20mmの範囲であり、範囲M3は、範囲M2に隣接する20mm×20mmの範囲である。これら範囲M1、M2、M3、はスプレー噴射域2の長手方向に沿って直列に配置されている。なお冷却能力については、被冷却体として900℃に加熱された板厚20mmの一般構造用圧延鋼材(SS400)を用いて冷却試験を行い、鋼材表面温度300℃の時に測定された熱伝達率を冷却能力として評価に用いた。
When cooling the stationary medium to be cooled by a single nozzle, as shown in FIG. 2 (c), the flow rate is 100 liters / min and the header pressure is 0.3MPa arranged at a position where the distance L from the cooling surface is 150mm. The average value of the amount of water and the cooling capacity is measured in the range M1, M2, M3 of 20 mm x 20 mm of the water injected from the oval nozzle (spray nozzle 1) in the range of 300 mm x 40 mm (spray spray area 2) It was made dimensionless (normalized) by dividing by the maximum value of the measured value (cooling capacity of range M1). Range M1
Is a 20mm x 20mm range located directly in front of spray nozzle 1, range M2 is a 20mm x 20mm range adjacent to range M1, and range M3 is a 20mm x 20mm range adjacent to range M2 . These ranges M1, M2, M3 are arranged in series along the longitudinal direction of the spray injection region 2. Regarding the cooling capacity, a cooling test was conducted using a rolled steel for general structure (SS400) with a thickness of 20 mm heated to 900 ° C as the object to be cooled, and the heat transfer coefficient measured when the steel surface temperature was 300 ° C. It used for evaluation as a cooling capacity.

スプレー噴射域2内の冷却能力分布について、範囲M1、M2、M3の冷却能力を比較して調査すると、図2(a)に示すように単一ノズル噴射内の水量がほぼ同一である位置においても、冷却能力に差が発生していることが判明した。つまり、スプレー冷却の場合において、冷却に寄与する因子は水量のみではなく、液滴速度、液滴径、被冷却体への液滴衝突角度など、さまざまな因子が複雑に作用しているものと思われる。   When the cooling capacity distribution in the spray injection area 2 is examined by comparing the cooling capacity in the ranges M1, M2, and M3, as shown in FIG. 2 (a), the water quantity in the single nozzle injection is almost the same. However, it was found that there was a difference in cooling capacity. In other words, in the case of spray cooling, the factors that contribute to cooling are not only the amount of water, but also various factors such as the droplet velocity, droplet diameter, and droplet collision angle with the object to be cooled are intricately acting. Seem.

本発明者らは、これらの水量を含めたさまざまな冷却因子を包括的に表すことが可能な冷却因子が、冷却水の衝突圧力であることを見出した。   The present inventors have found that a cooling factor that can comprehensively represent various cooling factors including these amounts of water is a collision pressure of cooling water.

前述の図2(a)に用いたものと同一のノズル、同一の配置において、20mm×20mmの範囲M1、M2、M3で平均した冷却水の衝突圧力分布を測定し、冷却能力分布と併記したものを図2(b)に示す。このように冷却水の衝突圧力の0.1乗と冷却能力は非常に良い一致を示す。   The collision pressure distribution of cooling water averaged over the range M1, M2, and M3 of 20 mm x 20 mm was measured with the same nozzle and the same arrangement as those used in Fig. 2 (a) above, and was written together with the cooling capacity distribution. This is shown in FIG. In this way, the cooling power impinges on the 0.1th power and the cooling capacity agrees very well.

さらに本発明者らは図3に示す水量、ヘッダー圧力および噴射域の異なる8種類のノズルを用いて、ノズル直下の冷却水衝突圧力と冷却能力の関係について調査した。なお,図4(a)に示すスプレーノズル1はスプレー噴射域2が一方向に長い長円形になるオーバルノズルであり,図4(b)に示すスプレーノズル1は,スプレー噴射域2が円形になるフルコーンノズルである。その結果図5に示すようにノズルの種類、仕様、噴射域にかかわらず同一の関係式で表すことが可能であり、下記(1)式に冷却水衝突圧力P[MPa]を代入することにより、熱伝達率h[W/(m2・K)]を求めることができる。
h=33300×P0.1 (1)
Furthermore, the present inventors investigated the relationship between the cooling water collision pressure immediately below the nozzle and the cooling capacity using eight types of nozzles having different water amounts, header pressures, and injection areas as shown in FIG. The spray nozzle 1 shown in FIG. 4 (a) is an oval nozzle in which the spray injection area 2 is elongated in one direction, and the spray nozzle 1 shown in FIG. It is a full cone nozzle. As a result, as shown in Fig. 5, it can be expressed by the same relational expression regardless of the type, specification and injection area of the nozzle. By substituting the cooling water collision pressure P [MPa] into the following expression (1) The heat transfer coefficient h [W / (m 2 · K)] can be obtained.
h = 33300 × P 0.1 (1)

本試験では熱伝達率は冷却水衝突圧力の0.1乗に比例するという結果になったが、測定誤差等を考慮すると、熱伝達率は冷却水衝突圧力のn乗に比例すると考えられ、nの値は0.05〜0.2の範囲内であると考えられる。   In this test, the heat transfer coefficient was proportional to the 0.1th power of the cooling water collision pressure. However, considering the measurement error, the heat transfer coefficient is considered to be proportional to the nth power of the cooling water collision pressure. Values are considered to be in the range of 0.05 to 0.2.

このことは本発明がノズル種類、仕様によらないことを示しており、ノズル種類、仕様の異なる2種類以上のノズルを用いた冷却装置に対しても有効であることを示している。   This indicates that the present invention does not depend on the nozzle type and specification, and it is also effective for a cooling device using two or more types of nozzles having different nozzle types and specifications.

また、本発明者らは移動中の被冷却媒体を複数のノズルを用いて冷却する場合において、通板直交方向冷却均一性と冷却水衝突圧力の関係について調査を行った。   Further, the present inventors have investigated the relationship between the cooling uniformity in the direction perpendicular to the plate passing and the cooling water collision pressure when the medium to be cooled is cooled using a plurality of nozzles.

図6(a)および図6(b)に冷却試験概要を示す。図6(a)に示すように、発明者らは、被冷却体3としての鋼板を搬送する前後の通板ローラー5、5間において、スプレー噴射域2がオーバル形状のオーバルノズル(スプレーノズル1)を3個上向きに、ノズル間隔S0が150mmとなるよう通板直交方向に並べて配置し、ノズル先端と被冷却体3の間隔Lが150mmの間隔となるように被冷却体3を設置し、1m/secのスピードで被冷却体3を移動させて冷却試験を行った。また、図6(b)に示すようにオーバルノズル(スプレーノズル1)を5個上向きに、ノズル間隔S0が150mm、通板方向の間隔S1が200mmとなるよう千鳥状に配置し、同様の冷却試験を行った。なお冷却能力については図2の場合と同様に、被冷却体3として900℃に加熱された板厚20mmの一般構造用圧延鋼材(SS400)を用いて冷却試験を行い、鋼材表面温度300℃の時に測定された熱伝達率を冷却能力として評価に用いた。なお、各スプレーノズル1にはヘッダー4を介して冷却水を供給した。   6 (a) and 6 (b) show an outline of the cooling test. As shown in FIG. 6 (a), the inventors have developed an oval nozzle (spray nozzle 1) in which the spray spraying area 2 is between oval plate rollers 5 and 5 before and after conveying a steel plate as the cooled object 3. ) Three upwards, arranged in the direction perpendicular to the through-plate so that the nozzle interval S0 is 150 mm, and the object to be cooled 3 is installed so that the distance L between the nozzle tip and the object to be cooled 3 is 150 mm, A cooling test was performed by moving the object 3 to be cooled at a speed of 1 m / sec. In addition, as shown in FIG. 6B, five oval nozzles (spray nozzles 1) are arranged upward, the nozzle interval S0 is 150 mm, and the sheet passing direction interval S1 is 200 mm. A test was conducted. As in the case of FIG. 2, a cooling test was conducted using a general structural rolled steel (SS400) with a thickness of 20 mm heated to 900 ° C. as the object 3 to be cooled, and the steel surface temperature was 300 ° C. Occasionally measured heat transfer coefficient was used for evaluation as cooling capacity. Note that cooling water was supplied to each spray nozzle 1 via a header 4.

冷却水衝突圧力測定は図6(a)および図6(b)のノズル配置において、加熱しない被冷却体3の冷却水衝突面に圧力センサを通板直交方向に並べて20mmの間隔で配置し、1m/secのスピードで被冷却体3を移動させながら冷却水衝突圧力を0.01secの間隔で連続測定し、通板ローラー5、5間で測定された冷却水衝突圧力の加算した値を導いた。さらにこれを用いて最大の冷却水衝突圧力の加算した値で除して無次元化(正規化)し、通板直交方向の冷却水衝突圧力分布を求めた。   6A and 6B, the cooling water collision pressure measurement is performed by arranging pressure sensors on the cooling water collision surface of the object 3 to be cooled that are not heated and arranged in the direction perpendicular to the plate at intervals of 20 mm. The cooling water collision pressure was continuously measured at an interval of 0.01 sec while moving the object 3 to be cooled at a speed of 1 m / sec, and the value obtained by adding the cooling water collision pressure measured between the passing plate rollers 5 and 5 was derived. . Furthermore, using this, it divided by the value which added the largest cooling water collision pressure, made dimensionless (normalization), and calculated | required the cooling water collision pressure distribution of the plate orthogonal direction.

図6(a)のノズル配置における通板直交方向の冷却能力分布および冷却水衝突圧力分布を図7(a)に示す。また、図6(b)のノズル配置における通板直交方向の冷却能力分布および冷却水衝突圧力分布を図7(b)に示す。これらの図の縦軸には、冷却能力の値を最大の冷却能力の値で除して無次元化(正規化)した値と、冷却水衝突圧力の値を最大の冷却能力の値で除して無次元化(正規化)してさらに0.1乗した値を用いている。図7(a)よりノズル直上となる0mm付近が冷却水衝突圧力、冷却能力ともに最大となり、ノズル間となる±50〜75mm付近で冷却水衝突圧力、冷却能力ともに最小となっている。これらは程度が多少異なるものの図7(b)でも同様な傾向を示すことから、通板直交方向冷却能力分布と冷却水衝突圧力の0.1乗値の分布は良く一致することがわかる。   FIG. 7 (a) shows the cooling capacity distribution and the cooling water collision pressure distribution in the direction perpendicular to the passage plate in the nozzle arrangement of FIG. 6 (a). In addition, FIG. 7B shows the cooling capacity distribution and the cooling water collision pressure distribution in the direction perpendicular to the through plate in the nozzle arrangement of FIG. 6B. The vertical axis of these figures divides the cooling capacity value by the maximum cooling capacity value to make it dimensionless (normalized) and the cooling water collision pressure value by the maximum cooling capacity value. Then, a value obtained by making it dimensionless (normalizing) and further raising it to the power of 0.1 is used. As shown in FIG. 7 (a), the cooling water collision pressure and cooling capacity are maximum near 0 mm immediately above the nozzle, and the cooling water collision pressure and cooling capacity are minimum near ± 50 to 75 mm between the nozzles. Although these are somewhat different, the same tendency is shown in FIG. 7 (b), and it can be seen that the crossing plate orthogonal direction cooling capacity distribution agrees well with the 0.1th power distribution of the cooling water collision pressure.

本発明者らは前述の構成を用いて通板直交方向のノズル間隔S0を変化させ、鋼板直交方向冷却能力分布と通板方向に冷却水衝突圧力の0.1乗値を積分したものの通板直交方向分布の関係を調査し、鋼板直交方向均一冷却を実現するために必要な冷却水衝突圧力分布を求めた。その結果、図8に示すように、冷却水の冷却面への衝突圧力の0.1乗値を通板方向に積分した値が、通板直交方向で最大値より−20%以内となるように配置することで、冷却能力が少なくとも10%以内に収まり、通板直交方向に均一冷却が可能となることを見出した。   The present inventors changed the nozzle interval S0 in the direction orthogonal to the plate using the above-described configuration, and integrated the cooling capacity collision distribution in the plate orthogonal direction and the 0.1th power value of the cooling water collision pressure in the plate direction. The relationship between the orthogonal direction distributions was investigated, and the cooling water collision pressure distribution necessary to achieve uniform cooling in the direction orthogonal to the steel sheet was obtained. As a result, as shown in FIG. 8, the value obtained by integrating the 0.1th power value of the collision pressure on the cooling surface of the cooling water in the plate passing direction is within −20% from the maximum value in the plate passing direction. It was found that the cooling capacity is at least within 10%, and uniform cooling is possible in the direction perpendicular to the through plate.

この図8の検討において0.1乗を0.05乗および0.2乗で行ったが、積分した値が通板直交方向で最大値より−20%以内とすると、0.1乗のときとほぼ同様に通板直交方向に均一冷却が可能となる。このことから、冷却水の冷却面への衝突圧力の0.05〜0.2乗を積分した値の幅方向分布が鋼板直交方向均一冷却のための指標になることが言えた。   In the examination of FIG. 8, the 0.1th power was carried out with the 0.05th power and the 0.2th power. In a similar manner, uniform cooling can be performed in the direction perpendicular to the through plate. From this, it can be said that the width direction distribution of the value obtained by integrating the 0.05 to 0.2 power of the collision pressure on the cooling surface of the cooling water becomes an index for uniform cooling in the steel sheet orthogonal direction.

さらに、通板方向に積分することができる範囲について、通板方向のノズル間隔S1を変化させ調査したところ、通板速度が0.25m/sec以上2m/sec以下の場合で、かつ拘束ロール5、5間が2m以下の場合は、積分範囲を拘束ロール間全長とすることが望ましいことを見出した。   Furthermore, for the range that can be integrated in the plate passing direction, the nozzle interval S1 in the plate passing direction was changed and investigated, and when the plate passing speed was 0.25 m / sec or more and 2 m / sec or less, and the restraint roll 5, When the distance between 5 is 2 m or less, it has been found that the integration range is preferably the total length between the constraining rolls.

なお、図9に示すように通板直交方向のノズル間隔S0を変化させずに、ノズルねじり角θを変化させた場合でも、図10に示すように水量および噴射域の異なる2種類以上のノズルを組み合わせて用いた場合でも同様に、冷却水の冷却面への衝突圧力を通板方向に加算した値が、通板直交方向で最大値より-20%以内となるように配置することで、通板直交方向均一冷却を達成することが可能である。   Even when the nozzle torsion angle θ is changed without changing the nozzle interval S0 in the direction perpendicular to the plate as shown in FIG. 9, two or more types of nozzles having different water amounts and injection areas as shown in FIG. Similarly, even when used in combination, the value of adding the impact pressure to the cooling surface of the cooling water in the direction of the plate is arranged so that it is within -20% of the maximum value in the direction perpendicular to the plate, It is possible to achieve uniform cooling in the direction perpendicular to the through plate.

また、冷却水の干渉域が生じない場合は、配置する各ノズル種類および仕様についてそれぞれ単体の冷却水衝突圧力を測定または定式化しておき、仮想的にそれらのノズルを複数個配置した場合の冷却水衝突圧力分布を求めて、通板方向に加算または積分した値が、通板直交方向で最大値より-20%以内となるように配置を設定しても通板直交方向均一冷却を達成することが可能である。   If there is no cooling water interference zone, measure or formulate a single cooling water collision pressure for each nozzle type and specification to be placed, and then cool when multiple nozzles are virtually placed. Even if the arrangement is set so that the water collision pressure distribution is calculated and added or integrated in the plate passing direction is within -20% of the maximum value in the plate passing direction, uniform cooling in the plate passing direction is achieved. It is possible.

さらに、水と空気を混合噴射する場合においても、冷却面への衝突圧力を通板方向に加算した値が、通板直交方向で最大値より-20%以内となるように配置することで、冷却能力が10%程度以内に収まり、通板直交方向均一冷却を達成することが可能である。   In addition, even when water and air are mixed and injected, by placing the impact pressure on the cooling surface in the direction of the plate, so that the value is within -20% of the maximum value in the direction perpendicular to the plate, The cooling capacity is within about 10%, and it is possible to achieve uniform cooling in the direction perpendicular to the through plate.

図11に本発明の検討で用いる冷却試験装置でのスプレーノズル配置を示す。図11(a)は、従来のスプレーノズル配置設定方法で設定した、通板直交方向で冷却水量が同一となるようにフラットノズル1を配置した冷却装置を、図11(b)には、本発明のスプレーノズル配置設定方法で設定した、冷却水衝突圧力のn乗を通板方向に積分した値が、通板直交方向で最大値より-20%以内となるようにオーバルノズル(スプレーノズル1)を配置した冷却装置を、それぞれ示す。この実施例においてはn=0.1である。これらの冷却装置を用いてそれぞれ冷却試験を行い、比較対照した。これらはそれぞれ、同一ノズル配置(S0=75mm、L=150mm)、水量とし、厚さ20mm×幅300mm×長さ200mmの一般構造用圧延鋼材(SS400)を約900℃から約400℃まで約20秒間で冷却した。これらの水量比、冷却水衝突圧力の0.1乗値の比、冷却後の表面温度分布の比較を図12に示す。なお、冷却後の表面温度分布は放射温度計を用いて測定した。   FIG. 11 shows the arrangement of spray nozzles in the cooling test apparatus used in the study of the present invention. FIG. 11 (a) shows a cooling device in which flat nozzles 1 are arranged so as to have the same amount of cooling water in the direction perpendicular to the passage set by the conventional spray nozzle arrangement setting method, and FIG. The oval nozzle (spray nozzle 1) is set so that the nth power of the cooling water collision pressure set in the spray nozzle arrangement setting method of the invention is integrated within the plate direction in the direction perpendicular to the plate and is within -20% of the maximum value. ) Are shown respectively. In this embodiment, n = 0.1. Each of these cooling devices was subjected to a cooling test and compared. These are the same nozzle arrangement (S0 = 75mm, L = 150mm), water volume, 20mm thick x 300mm wide x 200mm long general structural rolled steel (SS400) about 900 ° C to about 400 ° C about 20 Cooled in seconds. FIG. 12 shows a comparison of the water amount ratio, the ratio of the cooling water collision pressure to the power of 0.1, and the surface temperature distribution after cooling. The surface temperature distribution after cooling was measured using a radiation thermometer.

図12で明らかなように、従来のスプレーノズル配置方法では本発明のスプレーノズル配置方法に比べて、通板直交方向の冷却水量分布は均一であるが、スプレーノズル間隔と同じピッチで温度むらが発生している。しかしながら、本発明の冷却水衝突圧力の0.1乗値を通板方向に積分した値が、通板直交方向で最大値より-20%以内となるスプレーノズル配置方法のほうが従来のスプレーノズル配置より表面温度分布が均一となっている。したがって、本発明のスプレーノズル設定方法でノズル配置を設定した冷却装置では通板直交方向に均一な冷却が可能である。   As apparent from FIG. 12, the conventional spray nozzle arrangement method has a more uniform distribution of cooling water in the direction perpendicular to the plate than the spray nozzle arrangement method of the present invention, but the temperature unevenness is at the same pitch as the spray nozzle interval. It has occurred. However, the spray nozzle arrangement method in which the value obtained by integrating the 0.1th power value of the cooling water collision pressure of the present invention in the plate direction is within -20% of the maximum value in the plate orthogonal direction is the conventional spray nozzle arrangement. The surface temperature distribution is more uniform. Therefore, in the cooling device in which the nozzle arrangement is set by the spray nozzle setting method of the present invention, uniform cooling can be performed in the direction perpendicular to the through plate.

従来の水量を通板直交方向で一定とするノズル配置図である。It is a nozzle arrangement diagram in which the conventional amount of water is constant in the direction perpendicular to the plate. 同一ノズル内において(a)は水量と冷却能力の関係を示すグラフ、(b)は冷却水衝突圧力と冷却能力の関係を示すグラフ、(c)はスプレーノズル1とスプレー噴射域2内の範囲M1、M2、M3との位置関係を示す側面図(左図)と正面図(右図)である。Within the same nozzle, (a) is a graph showing the relationship between the amount of water and the cooling capacity, (b) is a graph showing the relationship between the cooling water collision pressure and the cooling capacity, and (c) is a range within the spray nozzle 1 and the spray injection area 2. FIG. 4 is a side view (left view) and a front view (right view) showing a positional relationship with M1, M2, and M3. 8種類のノズルの水量、ノズル負荷圧力、噴射範囲及び冷却水衝突圧力を示す表である。It is a table | surface which shows the water quantity of 8 types of nozzles, nozzle load pressure, the injection range, and a cooling water collision pressure. (a)は、オーバルノズルの噴射領域を示す説明図であり、(b)はフルコーンノズルの噴射領域を示す説明図である。(a) is explanatory drawing which shows the injection area | region of an oval nozzle, (b) is explanatory drawing which shows the injection area | region of a full cone nozzle. 図3に示す水量、ヘッダー圧力および噴射域の異なる8種類のノズルについて冷却水衝突圧力と冷却能力の関係を示すグラフである。It is a graph which shows the relationship between a cooling water collision pressure and cooling capacity about 8 types of nozzles from which the water quantity, header pressure, and injection area which are shown in FIG. 3 differ. (a)は通板直行方向にノズルを1列配置した冷却試験配置を説明するための側面図(イ)と平面図(ロ)であり、(b)は通板直交方向にノズルを2列に千鳥状に配置した冷却試験配置を説明するための側面図(イ)と平面図(ロ)である。(a) is a side view (b) and a plan view (b) for explaining a cooling test arrangement in which one row of nozzles is arranged in the direction perpendicular to the through-plate, and (b) is two rows of nozzles in the direction orthogonal to the through-plate. FIG. 6 is a side view (b) and a plan view (b) for explaining a cooling test arrangement arranged in a zigzag pattern. (a)は図6(a)のノズル配置における通板直交方向冷却能力分布と冷却水衝突圧力分布を示すグラフ、(b)は図6(b)のノズル配置における通板直交方向冷却能力分布と冷却水衝突圧力分布を示すグラフである。(a) is a graph showing the cross-plate orthogonal direction cooling capacity distribution and cooling water collision pressure distribution in the nozzle arrangement of FIG. 6 (a), and (b) is the cross-plate orthogonal direction cooling capacity distribution in the nozzle arrangement of FIG. 6 (b). It is a graph which shows a cooling water collision pressure distribution. 冷却水の冷却面への衝突圧力を通板方向に加算した値の通板直交方向の最低値と通板直交方向の冷却能力最低値の関係を示すグラフである。It is a graph which shows the relationship between the minimum value of the crossing board orthogonal direction of the value which added the collision pressure to the cooling surface of a cooling water in the boarding direction, and the cooling capacity minimum value of the crossing board orthogonal direction. ねじれ角を有するノズルを1列配置した冷却試験配置を説明するための側面図(イ)と平面図(ロ)である。FIG. 4 is a side view (A) and a plan view (B) for explaining a cooling test arrangement in which nozzles having a twist angle are arranged in a row. 種類、仕様の異なるスプレーノズルを2列配置した冷却試験配置を説明するための側面図(イ)と平面図(ロ)である。They are a side view (A) and a plan view (B) for explaining a cooling test arrangement in which two rows of spray nozzles of different types and specifications are arranged. 本発明の検討に用いた冷却試験装置である。(a)は従来のスプレーノズル設定方法を用いた冷却試験装置を説明するための側面図(イ)と平面図(ロ)、(b)は本発明のスプレーノズル設定方法を用いた冷却試験装置を説明するための側面図(イ)と平面図(ロ)It is the cooling test apparatus used for examination of this invention. (a) is a side view (b) and a plan view (b) for explaining a cooling test apparatus using a conventional spray nozzle setting method, and (b) is a cooling test apparatus using the spray nozzle setting method of the present invention. Side view (a) and plan view (b) for explaining 鋼板直交方向の水量分布、冷却水衝突圧力分布、鋼材表面温度分布を本発明の冷却装置と従来の冷却装置とで比較したグラフである。It is the graph which compared the water amount distribution of a steel plate orthogonal direction, cooling water collision pressure distribution, and steel material surface temperature distribution with the cooling device of this invention, and the conventional cooling device.

符号の説明Explanation of symbols

1 スプレーノズル
2 スプレー噴射域
3 被冷却体
4 ヘッダー
5 通板ローラー
L ノズル先端から冷却面までの距離
S0 通板直交方向ノズル間隔
S1 通板方向ノズル間隔
θ ノズルねじれ角
DESCRIPTION OF SYMBOLS 1 Spray nozzle 2 Spray spray area 3 To-be-cooled body 4 Header 5 Through plate roller
L Distance from nozzle tip to cooling surface
S0 Through plate orthogonal nozzle spacing
S1 Feeding plate direction nozzle spacing θ Nozzle twist angle

Claims (4)

熱鋼板を拘束通板させる複数対の拘束ロールを備え、各拘束ロール対間に冷却水噴射量制御可能なスプレーノズルを通板方向および/または通板直交方向に複数列備えた通板冷却装置のスプレーノズルの配置設定方法において、冷却水の冷却面への衝突圧力のn乗を拘束ロール対間で通板方向に積分した値が、通板直交方向で最大値から-20%以内となるようにスプレーノズルを配置することを特徴とするスプレーノズルの配置設定方法。
但し、0.05≦n≦0.2
A through-plate cooling device comprising a plurality of pairs of restraining rolls for restraining and passing hot-steel plates, and a plurality of rows of spray nozzles that can control the amount of cooling water injected between each pair of restraining rolls. In the spray nozzle arrangement setting method, the value obtained by integrating the nth power of the impinging pressure on the cooling surface of the cooling water in the threading direction between the pair of restraining rolls is within -20% of the maximum value in the direction perpendicular to the threading plate A spray nozzle arrangement setting method, wherein the spray nozzle is arranged as described above.
However, 0.05 ≦ n ≦ 0.2
各拘束ロール対間のノズル列ごとに、水量もしくは冷却水の噴射域が異なる複数種のノズルを用いることを特徴とする請求項1のスプレーノズル配置設定方法。 2. The spray nozzle arrangement setting method according to claim 1, wherein a plurality of types of nozzles having different water amounts or cooling water injection areas are used for each nozzle row between each pair of constraining rolls. スプレーノズルが、水と空気を混合噴射可能な構造を有することを特徴とする請求項1〜2のいずれかに記載のスプレーノズル配置設定方法。 3. The spray nozzle arrangement setting method according to claim 1, wherein the spray nozzle has a structure capable of mixing and jetting water and air. スプレーノズルの配置を請求項1〜3のいずれかに記載の方法を用いて設定した熱鋼板冷却装置。 A hot steel sheet cooling apparatus in which the arrangement of spray nozzles is set using the method according to any one of claims 1 to 3.
JP2006247282A 2005-09-16 2006-09-12 Spray cooling nozzle arrangement setting method and hot steel sheet cooling device Active JP4256885B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2006247282A JP4256885B2 (en) 2005-09-16 2006-09-12 Spray cooling nozzle arrangement setting method and hot steel sheet cooling device
PCT/JP2007/060308 WO2008032473A1 (en) 2006-09-12 2007-05-15 Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
KR1020087021173A KR101000262B1 (en) 2006-09-12 2007-05-15 Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
BRPI0702829-6A BRPI0702829B1 (en) 2006-09-12 2007-05-15 METHOD OF INSTALLING AND CONFIGURING STEAMING COOLING NOZZLES AND HOT STEEL PLATE COOLING EQUIPMENT
TW096117317A TW200812719A (en) 2006-09-12 2007-05-15 Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
EP07743742A EP1944098B1 (en) 2006-09-12 2007-05-15 Method for setting arrangement of spray cooling nozzles
US12/224,410 US8012406B2 (en) 2006-09-12 2007-05-15 Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
RU2008135341/02A RU2403110C2 (en) 2006-09-12 2007-05-15 Method of arranging and mounting spray chilling nozzles and hot steel plate chiller
DE602007006618T DE602007006618D1 (en) 2006-09-12 2007-05-15 METHOD FOR ADJUSTING THE ARRANGEMENT OF SPRAY COOLING NOZZLES
CN2007800074569A CN101394947B (en) 2006-09-12 2007-05-15 Method for setting arrangement of spray cooling nozzle, and cooling equipment for heated steel strip
US13/134,243 US8197746B2 (en) 2006-09-12 2011-06-01 Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005270295 2005-09-16
JP2006247282A JP4256885B2 (en) 2005-09-16 2006-09-12 Spray cooling nozzle arrangement setting method and hot steel sheet cooling device

Publications (2)

Publication Number Publication Date
JP2007105792A true JP2007105792A (en) 2007-04-26
JP4256885B2 JP4256885B2 (en) 2009-04-22

Family

ID=38032053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247282A Active JP4256885B2 (en) 2005-09-16 2006-09-12 Spray cooling nozzle arrangement setting method and hot steel sheet cooling device

Country Status (1)

Country Link
JP (1) JP4256885B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016767A1 (en) 2007-07-30 2009-02-05 Nippon Steel Corporation Apparatus for cooling hot steel sheet, method of cooling hot steel sheet and program therefor
JP2013180341A (en) * 2012-03-05 2013-09-12 Hitachi Ltd Rolling control device, rolling control method, and rolling control program
JP2015055002A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
JP2015215871A (en) * 2014-04-24 2015-12-03 本田技研工業株式会社 Object recognition device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016767A1 (en) 2007-07-30 2009-02-05 Nippon Steel Corporation Apparatus for cooling hot steel sheet, method of cooling hot steel sheet and program therefor
EP2047921A1 (en) * 2007-07-30 2009-04-15 Nippon Steel Corporation Apparatus for cooling hot steel sheet, method of cooling hot steel sheet and program therefor
EP2047921A4 (en) * 2007-07-30 2010-02-17 Nippon Steel Corp Apparatus for cooling hot steel sheet, method of cooling hot steel sheet and program therefor
KR101039174B1 (en) 2007-07-30 2011-06-03 신닛뽄세이테쯔 카부시키카이샤 Cooling apparatus for heated steel plate, cooling method for heated steel plate and program
US7981358B2 (en) 2007-07-30 2011-07-19 Nippon Steel Corporation Cooling apparatus of hot steel plate, cooling method of hot steel plate, and program
CN101557886B (en) * 2007-07-30 2011-09-14 新日本制铁株式会社 Apparatus for cooling hot steel sheet, method of cooling hot steel sheet
JP2013180341A (en) * 2012-03-05 2013-09-12 Hitachi Ltd Rolling control device, rolling control method, and rolling control program
JP2015055002A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Steel sheet cooling device and steel sheet cooling method
JP2015215871A (en) * 2014-04-24 2015-12-03 本田技研工業株式会社 Object recognition device

Also Published As

Publication number Publication date
JP4256885B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
EP2450117B1 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
US8500927B2 (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot rolled steel sheet
JP4238260B2 (en) Steel plate cooling method
US8920708B2 (en) Cooling device of hot-rolled steel strip
KR101039174B1 (en) Cooling apparatus for heated steel plate, cooling method for heated steel plate and program
WO2006137187A1 (en) Cooling device for thick steel plate
KR101000262B1 (en) Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
JP4256885B2 (en) Spray cooling nozzle arrangement setting method and hot steel sheet cooling device
KR20200085880A (en) Cooling device and cooling method of thick steel plate and manufacturing equipment and manufacturing method of thick steel plate
JPH11347629A (en) Straightening and cooling device for high temperature steel plate and its straightening and cooling method
TWI322048B (en)
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
JP2000192146A (en) Method for cooling steel plate and device therefor
EP3363552B1 (en) Method and apparatus for cooling hot-rolled steel sheet
TWI445581B (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot-rolled steel sheet
JP5741165B2 (en) Thermal steel sheet bottom surface cooling device
TWI731415B (en) Cooling device for hot-rolled steel sheet and cooling method for hot-rolled steel sheet
JP6879429B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
EP4052815B1 (en) Secondary cooling method for continuous cast strand
JP2004001082A (en) Method and device for cooling thick steel plate
JP5428452B2 (en) Lower surface cooling method and lower surface cooling device for hot-rolled steel strip
JPH08257623A (en) Method for cooling thick steel plate
JP2021112745A (en) H-steel production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080508

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4256885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350