JP2017222590A - 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法 - Google Patents

糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法 Download PDF

Info

Publication number
JP2017222590A
JP2017222590A JP2016118055A JP2016118055A JP2017222590A JP 2017222590 A JP2017222590 A JP 2017222590A JP 2016118055 A JP2016118055 A JP 2016118055A JP 2016118055 A JP2016118055 A JP 2016118055A JP 2017222590 A JP2017222590 A JP 2017222590A
Authority
JP
Japan
Prior art keywords
group
engase
following formula
represented
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118055A
Other languages
English (en)
Other versions
JP6798085B2 (ja
Inventor
松尾 一郎
Ichiro Matsuo
一郎 松尾
弥生 吉村
Yayoi Yoshimura
弥生 吉村
希実 石井
Nozomi Ishii
希実 石井
千恵 須永
Chie Sunaga
千恵 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2016118055A priority Critical patent/JP6798085B2/ja
Publication of JP2017222590A publication Critical patent/JP2017222590A/ja
Application granted granted Critical
Publication of JP6798085B2 publication Critical patent/JP6798085B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Saccharide Compounds (AREA)

Abstract

【課題】エンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性の検出に利用することができる新規な化合物やENGase活性阻害剤の開発に役立つスクリーニング方法を提供することを目的とする。
【解決手段】蛍光共鳴エネルギー移動(FRET)が生じる蛍光基と消光基を特定の五糖構造に導入した下記式(I)で表される化合物が、ENGase活性の検出に有効である。

【選択図】なし

Description

本発明は、糖化合物に関し、より詳しくはエンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性の検出に利用することができる糖化合物に関する。
「ペプチドN−グリカナーゼ(PNGase)」や「エンド−β−N−アセチルグルコサミニダーゼ(ENGase)」は、真核細胞の細胞質に広く存在する糖鎖脱離酵素であり、小胞体における糖タンパク質の品質管理機構において重要な役割を担っていることが知られている。近年、PNGase遺伝子(Ngly1)の変異に基づいた遺伝子疾患「Ngly1欠損症」の存在も明らかになり(非特許文献1参照)、生育遅延、四肢の筋力低下、不随意運動、肝機能異常、脳波異常等の重篤な症状を呈することも明らかになっている。また、PNGaseの非存在下において、ENGaseがN−アセチルグルコサミン(GlcNAc)を1つだけ残した「N−GlcNAcタンパク質」を生成して、これが凝集体として蓄積する現象が確認されており(非特許文献2参照)、この現象がNgly1欠損症の病態発現に関与しているものと考えられている。一方で、PNGaseとENGaseの両方を欠いた細胞において、モデルタンパク質が正常に分解したことも報告されており、Ngly1欠損症においてはENGase活性を阻害することでその病態を改善できるのではないかと期待されている。
Need, A. C., et al., J. Med. Genet. 2012, 49, 353-361. Chengcheng Huang, et al., "Endo-beta-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells", PNAS. 2015, 112, 1398-1403.
前述のようにNgly1欠損症に対して、ENGase活性を阻害することでその病態を改善できるものと期待されており、ENGase活性を簡易的に検出することができれば、ENGase活性阻害剤等の開発に役立つ有効な手段になり得る。
本発明は、ENGase活性の検出に利用することができる新規な化合物やENGase活性阻害剤の開発に役立つスクリーニング方法を提供することを目的とする。
本発明者らは、前記の課題を解決すべく鋭意検討を重ねた結果、蛍光共鳴エネルギー移動(FRET)が生じる蛍光基と消光基を特定の五糖構造に導入した糖化合物が、ENGase活性の検出に有効であることを見出し、本発明を完成させた。
即ち、本発明は、以下の通りである。
<1> 下記式(I)で表される糖化合物。

(式(I)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
<2> 前記蛍光基と前記消光基の組合せが、下記(i)〜(iv)の何れかである、請求項1に記載の糖化合物。
(i)下記式(d−1)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−1)中、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
(ii)下記式(d−2)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−2)中、Rは水素原子又はヒドロキシル基の保護基を表す。)
(iii)下記式(d−3)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
(iv)下記式(d−4)で表される蛍光基と下記式(a−2)で表される消光基の組合せ

(式(d−4)及び(a−2)中、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
<3> <1>又は<2>に記載の糖化合物を含むエンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性検出用組成物。
<4> 糖転移活性を有する酵素の存在下、下記式(II)で表される化合物と下記式(III)で表される化合物を反応させて下記式(I−1)で表される化合物を生成する糖転移反応工程を含む、糖化合物の製造方法。

(式(II)、(III)、及び(I−1)中、Rはそれぞれ独立して水素原子又はヒド
ロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
<5> 被検化合物をエンド−β−N−アセチルグルコサミニダーゼ(ENGase)に接触させる接触工程、及び前記被検化合物を接触させたエンド−β−N−アセチルグルコサミニダーゼ(ENGase)に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程を含む、エンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性阻害剤のスクリーニング方法。

(式(I)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
本発明によれば、ENGase活性を簡易的に検出することができ、ENGase活性阻害剤等を効率的にスクリーニングすることができる。
実施例1で得られたMANT−ManGN−DNPのHNMRのチャートである。 実施例1で得られたMANT−ManGN−DNPのESIMSのスペクトルである。 実施例2で行った反応混合液のHPLCクロマトグラムである。 実施例2で行った酵素反応をマイクロプレートリーダーにより追跡した結果である。
本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<糖化合物>
本発明の一態様である糖化合物(以下、「本発明の糖化合物」と略す場合がある。)は、下記式(I)で表される化合物である。

(式(I)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
本発明者らは、下記式で表される反応のように、ENGaseが式(I)中の五糖構造に対して、特定の位置を選択的に切断する特異性があることを見出しており、切断によって分離される位置に蛍光共鳴エネルギー移動(FRET)が生じる蛍光基(ドナー)と消光基(アクセプター)を配置した糖化合物を合成して、これがFRETプローブとして実際に利用できることを確認したのである。例えば、下記式で表される反応中の糖化合物は、式(I)のZの位置に蛍光基としてN−メチルアントラニル基を、式(I)のZの位置に消光基として2,4−ジニトロフェニル基を有しており、ENGaseによって糖鎖が切断されると、蛍光基と消光基の距離が離れて蛍光基の蛍光発光の強度変化等が生じるため、ENGase活性が検出できることになるのである。

なお、「蛍光共鳴エネルギー移動(FRET)が生じる蛍光基」と「蛍光基に対応する消光基」とは、蛍光基と消光基が蛍光共鳴エネルギー移動(FRET)が生じる任意の組合せであることを意味する。
本発明の糖化合物は、下記式(I)で表される化合物であるが、式(I)に該当するものであれば具体的種類は特に限定されず、使用目的等にあわせて適宜選択することができる。

式(I)中のRは、それぞれ独立して「水素原子」又は「ヒドロキシル基の保護基」を表しているが、ヒドロキシル基の保護基としては、メチル基、ベンジル基、p−メトキシベンジル基、tert−ブチル基等のエーテル系保護基;アセチル基、ピバロイル基、ベンゾイル基等のアシル系保護基;トリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基、トリイソプロピルシリル基、tert−ブチルジフェニルシリル基等のシリルエーテル系保護基等が挙げられる。
式(I)中のR’は、それぞれ独立して「水素原子」、「炭素原子数1〜6の炭化水素基」、又は「アミノ基の保護基」を表しているが、「炭化水素基」とは直鎖状の飽和炭化水素基に限られず、炭素−炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよい炭素原子及び水素原子のみからなる基を意味するものとする。
炭化水素基としては、メチル基(−CH、−Me)、エチル基(−C、−Et)、n−プロピル基(−、−Pr)、i−プロピル基(−、−Pr)、n−ブチル基(−、−Bu)、t−ブチル基(−、−
Bu)、n−ペンチル基(−11)、n−ヘキシル基(−13,−Hex)、シクロヘキシル基(−11,−Cy)、フェニル基(−C,−Ph)等が挙げられる。
アミノ基の保護基としては、t−ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、9−フルオレニルメチルオキシカルボニル基(Fmoc)、2,2,2−トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)等のアルコキシカルボニル系保護基;アセチル基、トリフルオロアセチル基(Tfa)等のアシル系保護基;p−トルエンスルホニル基(Ts)、2−ニトロベンゼンスルホニル基(Ns)等のアルキル(アリール)スルホニル基等が挙げられる。
式(I)中のR”は、それぞれ独立して「単結合」、「第二級若しくは第三級アミノ基(−NR’−)」、「アミド基(−NR’CO−)」、「オキシ基(−O−)」、「カルボニル基(−CO−)」、「オキシカルボニル基(−OCO−)」、又は「第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基」を表しているが、「単結合」とは、下記式で表される構造のように後述するZやZが糖の六員環に直接結合していることを意味する。

「第二級若しくは第三級アミノ基(−NR’−)」、「アミド基(−NR’CO−)」、「オキシ基(−O−)」、「カルボニル基(−CO−)」、「オキシカルボニル基(−OCO−)」とは、下記式で表される構造のように後述するZやZがこれらの基を介して糖の六員環に結合していることを意味する。

「2価の炭化水素基」とは、2つの結合位置を有する炭化水素基を意味し、直鎖状の飽和炭化水素基に限られず、炭素−炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよいことを意味する。また、「第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい」とは、下記式で表される構造のように、炭化水素基の炭素骨格の内部及び/又は末端にこれらの基を含んでもよいことを意味する。
及びZは「何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基」を、「もう一方が前記蛍光基に対応する消光基」を表しているが、蛍光基と消光基の組合せは、Bachem社等の「FRET SUBSTRATES」やAngew. Chem. Int. Ed. 2006,45,4562-4588.に記載されている構造等が挙げられる。この中でも、蛍光基と消光基の組合せとしては、下記(i)〜(iv)のものが好ましい。
(i)下記式(d−1)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−1)中、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
(ii)下記式(d−2)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−2)中、Rは水素原子又はヒドロキシル基の保護基を表す。)
(iii)下記式(d−3)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

(式(d−3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
(iv)下記式(d−4)で表される蛍光基と下記式(a−2)で表される消光基の組合せ

(式(d−4)及び(a−2)中、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
なお、式(d−1)〜(d−4)及び式(a−1)及び(a−2)中のRとR’としては、前述のものと同様のものが挙げられる。
本発明の糖化合物としては、下記式で表されるものが挙げられる。
<糖化合物の製造方法>
本発明の糖化合物の製造方法は、特に限定されず、公知の有機合成反応、化学酵素法等を組み合せて製造してもよいが、糖転移活性を有する酵素の存在下、下記式(II)で表される化合物と下記式(III)で表される化合物を反応させて下記式(I−1)で表される化合物を生成する糖転移反応工程(以下、「糖転移反応工程」と略す場合がある。)を含む方法によって製造することが好ましい。なお、糖転移反応工程を含む糖化合物の製造方法も本発明の一態様である。

(式(II)、(III)、及び(I−1)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
糖転移反応工程は、糖転移活性を有する酵素の存在下で行われる工程であるが、具体的な酵素は、特に限定されず、糖転移活性を有するものとして公知のものを適宜採用することができる。具体的な酵素としては、糖転移活性を有する糖加水分解酵素が好ましく、エンド−β−N−アセチルグルコサミニダーゼ(ENGase)やその変異体が特に好ましい。ENGaseとしては、Endo−A、Endo−M、Endo−D、Endo−S、Endo−CC、Endo−Om、Endo−CE、Endo−HS等、ENGaseの変異体としては、Endo−A(N171A,E173Q,E173H)、Endo−M(N175A,E175Q)、Endo−D(N322A,E322Q)、Endo−S(N233A,E233Q)、Endo−CC(N180H,E180Q)等が挙げられる。
糖転移反応工程における糖転移活性を有する酵素の使用量は、式(II)で表される化合物に対して物質量換算で、通常0.001mol%以上、好ましくは0.003mol%以上であり、通常0.007mol%以下、好ましくは0.005mol%以下である。
糖転移反応工程は、通常溶媒中で行われるものであるが、溶媒としては、リン酸緩衝液等の緩衝液(pH5〜7)、30%以下のジメチルスルホキシド(DMSO)水溶液、30%以下のメタノール水溶液、30%以下のアセトン水溶液等が挙げられる。
糖転移反応工程に使用する式(II)で表される化合物の調製方法は、特に限定されないが、下記式で表される反応経路を辿る方法が挙げられる。

上記式で表される反応経路は、ラクトサミン誘導体のガラクトース残基のC−3位とC−6位にマンノース残基を、C−4位にアジド基を経由してアミノ基を導入し、アミノ基に蛍光基としてN−メチルアントラニル基を導入して、還元末端基部分をオキサゾリン化することで式(II)で表される化合物を調製している。
糖転移反応工程に使用する式(III)で表される化合物の調製方法は、それぞれ特に限定されないが、式(III)で表される化合物の調製方法としては、下記式で表される反応経路を辿る方法が挙げられる。
<エンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性検出用組成物>
前述のようにENGaseには、式(I)中の五糖構造に対して、特定の位置を選択的
に切断する特異性があり、ENGaseによって糖鎖が切断されると、蛍光発光の強度変化等が生じるため、ENGase活性が検出できることになる。本発明の糖化合物の用途は、特に限定されないが、このようにENGase活性の検出に利用することが挙げられる。なお、本発明の糖化合物を含むENGase活性検出用組成物(以下、「本発明の組成物」と略す場合がある。)も本発明の一態様である。
本発明の組成物の式(I)で表される糖化合物の含有量は、対象となるENGaseに対して物質量換算で、通常500%以上、好ましくは2000%以上であり、通常40000%以下、好ましくは4000%以下となる量である。
本発明の組成物が対象とするENGaseとしては、Glycobiology vol. 23 no. 6 pp.
736-744, 2013に記載のものが挙げられ、具体的にはEndo−M、Endo−A、Endo−D、Endo−CC、ヒトENGase、マウスENGase、酵母ENGase、担子菌類ENGase等が挙げられる。
<エンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性阻害剤のスクリーニング方法>
前述のようにNgly1欠損症においては、ENGaseが病態発現に関与しているものと考えられており、ENGase活性を阻害することでNgly1欠損症の病態を改善できるものと考えられている。本発明の糖化合物は、ENGase活性を簡易的に検出することができるため、被検化合物に接触させたENGaseを本発明の糖化合物と接触させて、本発明の糖化合物の分解活性を確認することで、ENGase活性阻害剤を効率的にスクリーニングすることができるのである。なお、被検化合物をENGaseに接触させる接触工程(以下、「接触工程」と略場合がある。)、及び被検化合物を接触させたENGaseに式(I)で表される糖化合物を接触させて、糖化合物の分解活性を確認する活性確認工程(以下、「活性確認工程」と略す場合がある。)を含むENGase活性阻害剤のスクリーニング方法(以下、「本発明のスクリーニング方法」と略す場合がある。)も本発明の一態様である。
接触工程は、被検化合物をENGaseに接触させる工程であるが、接触させる被検化合物の質量は、ENGaseの1ngに対して、通常7.5μg以上、好ましくは15μg以上であり、通常150μg以下、好ましくは75μg以下である。
活性確認工程は、被検化合物を接触させたENGaseに式(I)で表される糖化合物を接触させて、糖化合物の分解活性を確認する工程であるが、接触させる式(I)で表される糖化合物の質量は、ENGaseの1ngに対して、通常3μg以上、好ましくは30μg以上であり、通常500μg以下、好ましくは300μg以下である。
活性確認工程における式(I)で表される糖化合物の分解活性の確認方法は、特に限定されないが、式(I)で表される糖化合物の蛍光基に基づいた蛍光発光の強度変化を観測する方法、式(I)で表される糖化合物の消光基に基づいた紫外線(UV)の吸収波長等を観測する方法が挙げられる。例えば、被検化合物を接触させていないENGaseの糖化合物の分解活性と、被検化合物を接触させたENGaseの糖化合物の分解活性を比較し、被検化合物を接触させたENGaseの方が糖化合物の分解活性が劣っていた場合に、被検化合物はENGase活性の阻害作用がある(ENGase活性阻害剤である。)と判断することができる。
本発明のスクリーニング方法が対象とするENGaseとしては、Glycobiology vol. 23 no. 6 pp. 736-744, 2013に記載のものが挙げられ、具体的にはEndo−M、Endo−A、Endo−D、Endo−CC、ヒトENGase、マウスENGase、酵母ENGase、担子菌類ENGase等が挙げられる。
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1:式(I)で表される糖化合物の製造>
(Benzyl 4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-pivaroyl-α-
D-mannopyranosyl-(1-3)-[4,6-O-benzylidene-2-O-tert-butyldimethylsilyl
-3-O-pivaroyl-α-D-mannopyranosyl-(1-6)]-β-D-galactopyranosyl
-(1-4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (3)の合成)

モレキュラーシーブズ4A(7.8g)とN−ヨードスクシンイミド(NIS,936mg,4.16mmol)存在下、化合物1(940mg,1.26mmol)と化合物2(1.55g,2.77mmol)のジクロロメタン溶液(16mL)を加えた。−78℃にてトリフルオロメタンスルホン酸(122μL,1.39mmol)を加え2日間撹拌した。トリエチルアミン(290μL)を加え、反応を停止した後、反応混合物を酢酸エチルで希釈、不溶物をセライトで濾過し、有機層をチオ硫酸ナトリウム水溶液、飽和食塩水、1M塩酸溶液、飽和食塩水、飽和重曹水、飽和食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=96/4〜60/40)にて精製し、化合物3(1.00g,48%)を得た。Rf=0.29(ヘキサン/酢酸エチル=3/1)。
(Benzyl 4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-3-O-pivaroyl-α-
D-mannopyranosyl-(1-3)-[4,6-O-benzylidene-2-O-tert-butyldimethylsilyl
-3-O-pivaroyl-α-D-mannopyranosyl-(1-6)]-2-O-acetyl-4-azide-4-deoxy-β-D-
mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-
D-glucopyranoside (4)の合成)

化合物3(456mg,0.278mmol)をジクロロメタン(6mL)に溶かし、0℃にてピリジン(672μL,8.34mmol)、トリフルオロメタンスルホン酸無水物(468μL,2.78mmol)を加えた。室温で2.5時間攪拌後、反応液を酢酸エチルにて希釈、有機層を飽和重曹水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムにて乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=100/0〜83/17)にて精製し、2,4−ジトリフルオロメタンスルホニル化合物(417mg,79%)を得た。得られた化合物をトルエンにて共沸、真空乾燥した後に、トルエン(9mL)に溶かし、0℃にてテトラブチルアンモニウムアジド(78mg,0.263mmol)を加え、室温にて1.5時間撹拌した。反応液を酢酸エチルにて希釈、有機層を飽和食塩水、飽和重曹水、飽和食塩水で順次洗浄した。有機層を硫酸マグネシウムにて乾燥後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=100/0〜83/17)にて精製し、4−位がアジド化された化合物(384mg,97%)を得た。得られた化合物をトルエン共沸、真空乾燥した後にトルエン(9mL)に溶かし、酢酸セシウム(410mg,2.13mmol)、18−クラウン−6(562mg,2.13mmol)を加え、一晩超音波処理をおこなった。反応液を酢酸エチルで希釈後、有機層を順次、飽和食塩水、飽和重曹水、飽和食塩水で洗浄した。有機層を硫酸マグネシウムにて乾燥、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=97/3〜82/18)にて精製し、化合物4(290mg,61% in 3 steps)を得た。Rf=0.35(トルエン/酢酸エチル=5/1)。
(α-D-mannopyranosyl-(1-3)-[α-D-mannopyranosyl-(1-6)]
-4-amino-4-deoxy-β-D-mannopyranosyl-(1-4)-2-acetamido-2-deoxy-D-glucopyranose (5)の合成)

化合物4(82.5mg,48.4μmol)をTHF(1.4mL)に溶解させ、0℃にて1M TBAF/THF溶液(144μL,0.145mmol)を加え、室温にて一晩反応させた。反応液を減圧濃縮後、残渣にn−ブタノール(2mL)、エチレンジ
アミン(200μL)を加え、アルゴンガス雰囲気下、90℃にて一晩攪拌した。反応液を減圧濃縮後、残渣をピリジン(2mL)に溶かし、氷浴中、無水酢酸(500μL)を加え、アルゴン雰囲気下、40℃にて一晩攪拌した。メタノール(1mL)を加え反応を停止し、反応液を減圧濃縮した。残渣を酢酸エチルにて希釈し、有機層を飽和重曹水、食塩水にて順次洗浄した。有機層を硫酸マグネシウムにて乾燥し、減圧濃縮した。残渣をテトラヒドロフラン(1mL)に溶かし、氷浴中1M ナトリウムメトキシド/メタノール(500μL)を加え、アルゴンガス雰囲気下、40℃で一晩攪拌した。反応液をアンバーリスト(オルガノ株式会社製,登録商標)にて中和後、アンバーリストを濾別し、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0〜93/7)にて精製し、脱保護中間体(44mg,77%)を得た。得られた中間体(58mg,49.2μmol)をテトラヒドロフラン(5mL)に溶かし、水(5mL)を加えた。反応容器をアルゴンガスにて置換し、水酸化パラジウム(50mg)を加え、再び反応容器をアルゴンガスで置換した。ついで反応容器を水素ガスで置換後、40℃にて一晩攪拌した。セライト濾過にて水酸化パラジウムを除去した後、反応液を凍結乾燥した。残渣をISOLUT 18C(バイオタージ社製,登録商標,水100%)にて精製後、凍結乾燥し、化合物5(32mg,93%)を得た。Rf=0.17(アセトニトリル/水=2/1)。
(α-D-mannopyranosyl-(1-3)-[α-D-mannopyranosyl-(1-6)]
-4-deoxy-4-N-methylanthraniloylamido-β-D-mannopyranosyl-(1-4)-
2-acetamido 2-deoxy-β-D-glucopyranose (6)の合成)

化合物5(4.0mg,5.7μmol)をジメチルスルホキシド(370μL)に溶解し、ジメチルアミノピリジン(1.4mg,11μmol)、N−メチルアントラニル酸(1.0mg,8.4μmol)、O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロりん酸塩(HATU,4.13mg,10μmol)を加え、室温にて5時間反応させた。反応液を水にて希釈、水層をジエチルエーテルにて洗浄後、水層を凍結乾燥した。得られた残渣をISOLUTE
C18(水〜メタノール)にて精製した。その後、HPLC(Imtakt Unison US−C18,5μm,20×250mm,水/アセトニトリル=97/3,0.1%TFA溶液)により精製し、化合物6(3.5mg,74%)を得た。Rf=0.5(アセトニトリル/水=3/1)。
(2-Methyl-[α-D-mannopyranosyl-(1-3)-[α-D-mannopyranosyl
-(1-6)]-4-deoxy-4-N-methylanthraniloylamido-β-D-mannopyranosyl-(1-4)
-1,2-dideoxy-α-D-glucopyrano]-[2,1-d]-oxazoline (7)の合成)

化合物6(1mg,1.2μmol)と炭酸カリウム(6.2mg,44.6μmol)を重水(60μL)に溶かし、0℃にて2−クロロ−1,3−ジメチル−1H−ベンズイミダゾール−3−イウム塩化物(CDMBI,3.9mg,17.8μmol)を加え、2時間反応させた。反応液(5μL)を分注し、重水にて希釈後NMRを測定し、反応の終了を確認した。反応混合物から不溶性の塩を遠心ろ過により除去し、化合物7溶液(20mM,55μL)を得た。
(3-N-benzyl-3-(N-benzyloxycarbonyl)aminopropyl
4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (10)の合成)

モレキュラーシーブズ4A(0.9g)とN−ヨードスクシンイミド(64mg,285μmol)存在下、化合物8(53mg,177μmol)と化合物9(119mg,190μmol)のジクロロメタン溶液(5mL)を加えた。−78℃にてトリフルオロメタンスルホン酸(17μL,190μmol)を加え、−20℃にて1時間撹拌した。反応混合物にトリエチルアミン(50μL)を加え、反応を停止した後,酢酸エチルで希釈、不溶物をセライトで濾過した。得られたろ液をチオ硫酸ナトリウム水溶液、飽和食塩水、1M塩酸溶液、飽和食塩水、飽和重曹水、飽和食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=75/25)にて精製し、化合物10(93mg,63%)を得た。Rf=0.45(ヘキサン/酢酸エチル=2/1)。
(3-Aminopropyl 2-acetamido-2-deoxy-β-D-glucopyranoside (11)の合成)

化合物10(66.0mg,79.6μmol)にn−ブタノール(1mL)、エチレ
ンジアミン(100μL)を加え、アルゴンガス雰囲気下、80℃にて一晩攪拌した。反応液を減圧濃縮後、残渣をピリジン(1mL)に溶かし、氷浴中、無水酢酸(500μL)を加え、アルゴン雰囲気下40℃にて一晩攪拌した。メタノール(1mL)を加え反応を停止し、反応液を減圧濃縮した。残渣を酢酸エチルにて希釈し、有機層を飽和重曹水、食塩水にて洗浄した。有機層を硫酸マグネシウムにて乾燥し、減圧濃縮した。残渣をテトラヒドロフラン(1mL)に溶かし、氷浴中1Mナトリウムメトキシド/メタノール(500μL)を加え、アルゴンガス雰囲気下、40℃で一晩攪拌した。反応液をアンバーリストにて中和後、アンバーリストを濾別し、溶液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0〜90/10)にて精製し、脱保護中間体(40mg,72% in 3 steps)を得た。得られた中間体(40mg,57.2μmol)をテトラヒドロフラン(2mL)に溶かし、水(2mL)を加えた。反応容器をアルゴンガスにて置換後、水酸化パラジウム(20mg)を加えた。反応容器を水素ガスで置換後、室温にて一晩攪拌した。反応液に再度、水酸化パラジウム(20mg)、水(2mL)を加え、一晩撹拌した。セライト濾過にて水酸化パラジウムを除去後、得られたろ液を凍結乾燥した。残渣をISOLUT 18C(水100%)にて精製後、凍結乾燥し、化合物11(11.8mg,74%)を得た。Rf=0.18(2−プロパノール/水=2/1)。
(3-N-2,4-di-nitrophenyl-3-aminopropyl 2-acetamido-2-deoxy-β-D-glucopyranoside (12)の合成)

化合物11(8.7mg,31.4μmol)を飽和重曹水(200μL)に溶解し、2,4−ジニトロフェニルフルオリド(8.9mg,47.1μmol)のメタノール溶液(100μL)を加えた。1時間反応させた後、2,4−ジニトロフェニルフルオリド(8.9mg,47.1μmol)のメタノール溶液(100μL)を再度加えた。1時間反応させた後、反応混合物を水で希釈し、ジエチルエーテルにて洗浄した。水層を凍結乾燥し、得られた残渣をISOLUTE C18(水〜メタノール)にて精製し、化合物12(3.19mg,23%)を得た。Rf=0.62(アセトニトリル/水=5/1)。
(3-N-2,4-di-nitrophenyl-3-aminopropyl
α-D-mannopyranosyl-(1-3)-[α-D-mannopyranosyl-(1-6)]
-4-deoxy- 4-N-methylanthraniloylamido-β-D-mannopyranosyl
-(1-4)-2-acetamido-2-deoxy-β-D-glucopyranoside (MANT−ManGN−DNP)の合成)

20mMの糖供与体溶液7を50μL、40mMの糖受容体溶液12を50μL、水92μL、1Mリン酸バッファー(pH7)を50μL、Endo−M−N175Q(4mU,東京化成工業株式会社)を8μLを加えた(終濃度200mMリン酸バッファー(pH7)、全量250μLに調製)。37℃で2時間インキュベーションした後、アセトニトリルを100μL加え、反応を停止した。反応混合液を凍結乾燥し、得られた残渣をISOLUTE C18にて精製(水〜60%メタノール溶液)、生成物を含む画分を凍結乾燥した。得られた残渣をHPLC(Imtakt Unison US−C18,5μm,20×250mm,水/アセトニトリル=73/27,0.1%TFA溶液)にて精製し、MANT−ManGN−DNP(0.2mg,16%)を得た。得られたMANT−ManGN−DNPのHNMRの測定結果(NMRチャート)を図1に、ESIMSの測定結果(スペクトル)を図2に示す。
1H NMR (600 MHz, D2O) δ 9.12 (d, 1H, J = 2.4 Hz, Ar-H), 8.30 (m, 1H, Ar-H), 7.53 (m, 2H, Ar-H), 7.11 (d, 1H, J = 9.6 Hz, Ar-H), 7.04 (d, 1H, J = 7.9 Hz, Ar-H),
6.97 (t, J = 7.4 Hz, 1H), 4.95 (s, 1H, H-1), 4.85 (s, 1H, H-1), 4.60 (d, 1H, J = 7.6 Hz, H-1), 4.51 (d, 1H, J = 8.2 Hz, H-1), 4.43-4.39 (m, 1H), 4.31 (d, 1H, J
= 2.7 Hz), 4.03 (m, 1H), 3.96-3.48 (m, 33H), 2.88 (s, 3H, -NHCH3), 2.07 (s, 3H,
-COCH3), 1.99 (m, 2H, -CH2CH2CH2-), 1.91 (s, 3H, -COCH3). ESI-MS: m/z: calcd for : C51H75N7NaO30: 1288.4455; found 1288.4434 [M+Na]+.
<実施例2:エンド−β−N−アセチルグルコサミニダーゼ(ENGase)の活性検出>
(方法1:HPLCを用いた加水分解反応の活性検出)
MANT−ManGN−DNPプローブ溶液(5mM)を2μLと、DMSOを2μL、リン酸ナトリウムバッファー(250mM,pH6)を4μLの混合溶液に酵素液を2μL(Endo−M,0.1mU,東京化成工業株式会社)加え、10μLの反応混合液(終濃度1mM MANT−ManGN−DNP,20%DMSO,100mMリン酸バッファー)を37℃で2時間インキュベートした。反応は、15、30、60、120分ごとに反応液を2μLずつ分注し、8μLのアセトニトリルに加え、反応を停止した。反応混合液を30μLの水で希釈し、HPLC(TOSOH TSK−gel ODS−100V,5μm,4.6mm×15cm,水/アセトニトリル=97/3〜60/40,0.1%TFA溶液,流速1mL/min,15分間、島津超高速液体クロマトグラフ Nexera)にて分析した。反応混合液のHPLCクロマトグラムの結果を図3に示す。
(方法2:マイクロプレートリーダーを用いた加水分解反応の活性検出)
MANT−ManGN−DNPプローブ溶液(25μM)を20μLとDMSOを20μL、リン酸ナトリウムバッファー(250mM,pH6)を40μLの混合溶液に酵素液を20μL(Endo−M,0.01、0.02、0.05、0.1mU,東京化成工業)加え、100μLの反応混合液(終濃度5μM MANT−ManGN−DNP,20% DMSO 100mM リン酸バッファー)を37℃で2時間インキュベートした。反応は、マイクロプレートリーダー(TECAN Infinite(登録商標
) M200 PRO)を使用し、励起波長340nm、蛍光波長440nmにて追跡した。マイクロプレートリーダーにより反応混合液の蛍光強度変化を追跡した結果を図4に示す。酵素反応の進行に伴い、蛍光強度が上昇していることから,基質の切断を確認することができる。
本発明の糖化合物は、Ngly1欠損症の治療に役立つと考えられるENGase活性阻害剤等をスクリーニングするために利用することができる。

Claims (5)

  1. 下記式(I)で表される糖化合物。

    (式(I)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
  2. 前記蛍光基と前記消光基の組合せが、下記(i)〜(iv)の何れかである、請求項1に記載の糖化合物。
    (i)下記式(d−1)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

    (式(d−1)中、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
    (ii)下記式(d−2)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

    (式(d−2)中、Rは水素原子又はヒドロキシル基の保護基を表す。)
    (iii)下記式(d−3)で表される蛍光基と下記式(a−1)で表される消光基の組合せ

    (式(d−3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
    (iv)下記式(d−4)で表される蛍光基と下記式(a−2)で表される消光基の組合せ

    (式(d−4)及び(a−2)中、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を表す。)
  3. 請求項1又は2に記載の糖化合物を含むエンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性検出用組成物。
  4. 糖転移活性を有する酵素の存在下、下記式(II)で表される化合物と下記式(III)で表される化合物を反応させて下記式(I−1)で表される化合物を生成する糖転移反応工程を含む、糖化合物の製造方法。

    (式(II)、(III)、及び(I−1)中、Rはそれぞれ独立して水素原子又はヒド
    ロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
  5. 被検化合物をエンド−β−N−アセチルグルコサミニダーゼ(ENGase)に接触させる接触工程、及び前記被検化合物を接触させたエンド−β−N−アセチルグルコサミニダーゼ(ENGase)に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程を含む、エンド−β−N−アセチルグルコサミニダーゼ(ENGase)活性阻害剤のスクリーニング方法。

    (式(I)中、Rはそれぞれ独立して水素原子又はヒドロキシル基の保護基を、R’はそれぞれ独立して水素原子、炭素原子数1〜6の炭化水素基、又はアミノ基の保護基を、R”はそれぞれ独立して単結合、第二級若しくは第三級アミノ基(−NR’−)、アミド基(−NR’CO−)、オキシ基(−O−)、カルボニル基(−CO−)、オキシカルボニル基(−OCO−)、又は第二級若しくは第三級アミノ基(−NR’−)、オキシ基(−O−)、及びカルボニル基(−CO−)からなる群より選択される少なくとも1種の基を含んでいてもよい炭素原子数1〜6の2価の炭化水素基を、Z及びZは何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を、もう一方が前記蛍光基に対応する消光基を表す。)
JP2016118055A 2016-06-14 2016-06-14 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法 Active JP6798085B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118055A JP6798085B2 (ja) 2016-06-14 2016-06-14 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118055A JP6798085B2 (ja) 2016-06-14 2016-06-14 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法

Publications (2)

Publication Number Publication Date
JP2017222590A true JP2017222590A (ja) 2017-12-21
JP6798085B2 JP6798085B2 (ja) 2020-12-09

Family

ID=60687627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118055A Active JP6798085B2 (ja) 2016-06-14 2016-06-14 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法

Country Status (1)

Country Link
JP (1) JP6798085B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005547A (ja) * 2018-07-05 2020-01-16 株式会社伏見製薬所 エンドグリコシダーゼ阻害剤
JP2020055786A (ja) * 2018-10-03 2020-04-09 国立大学法人群馬大学 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、新規ENGaseのスクリーニング方法、及びENGase活性阻害剤のスクリーニング方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005547A (ja) * 2018-07-05 2020-01-16 株式会社伏見製薬所 エンドグリコシダーゼ阻害剤
JP7237327B2 (ja) 2018-07-05 2023-03-13 株式会社伏見製薬所 エンド-β-N-アセチルグルコサミニダーゼ阻害剤
JP2020055786A (ja) * 2018-10-03 2020-04-09 国立大学法人群馬大学 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、新規ENGaseのスクリーニング方法、及びENGase活性阻害剤のスクリーニング方法
JP7198482B2 (ja) 2018-10-03 2023-01-04 国立大学法人群馬大学 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、新規ENGaseのスクリーニング方法、及びENGase活性阻害剤のスクリーニング方法

Also Published As

Publication number Publication date
JP6798085B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
EP2949665B1 (en) Glycosylation atrial natriuretic peptide
EP3097080A1 (en) Process for the cycloaddition of a halogenated 1,3-dipole compound with a (hetero)cycloalkyne
Kawasaki et al. Synthesis of diaminopimelic acid containing peptidoglycan fragments and tracheal cytotoxin (TCT) and investigation of their biological functions
CN110546154B (zh) 糖苷酶的荧光底物及其相关检测方法
CN1681833A (zh) Sir2产物及活性
Calveras et al. New chemo-enzymatic route toward N-acetylneuraminic acid derivatives with alkyl groups at C-7 hydroxyl group
US20150024443A1 (en) Process for the preparation of ingenol-3-angelate
Christina et al. Multigram-scale synthesis of an orthogonally protected 2-acetamido-4-amino-2, 4, 6-trideoxy-D-galactose (AAT) building block
JP6798085B2 (ja) 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、及びENGase活性阻害剤のスクリーニング方法
Johannes et al. Synthesis of fluorinated Thomsen–Friedenreich antigens: direct deoxyfluorination of αGalNAc-threonine tert-butyl esters
Ishiwata et al. Mechanism-based inhibition of GH127/146 cysteine glycosidases by stereospecifically functionalized L-arabinofuranosides
US20170233426A1 (en) Method for 2-sulfation of glycosides
Tomabechi et al. Acceptor specificity in the transglycosylation reaction using Endo-M
Ishii et al. A fluorogenic probe for core-fucosylated glycan-preferred ENGase
ES2846884T3 (es) Un método para marcar específicamente bacterias vivas que comprende el uso de compuestos monosacáridos no endógenos modificados
JP7198482B2 (ja) 糖化合物、糖化合物の製造方法、ENGase活性検出用組成物、新規ENGaseのスクリーニング方法、及びENGase活性阻害剤のスクリーニング方法
Hanashima et al. Synthesis of a bisubstrate-type inhibitor of N-acetylglucosaminyltransferases
Allen et al. Syntheses of novel azasugar-containing mimics of heparan sulfate fragments as potential heparanase inhibitors
Jaiswal et al. Synthesis and evaluation of N α, N ε-diacetyl-l-lysine-inositol conjugates as cancer-selective probes for metabolic engineering of GPIs and GPI-anchored proteins
Papi et al. Synthesis of an STnThr analogue, structurally based on a TnThr antigen mimetic
Amin et al. Synthesis of asparagine-linked bacillosamine
Blanchard et al. Short synthetic sequence for 2-sulfation of α-l-iduronate glycosides
Rejzek et al. Chemical synthesis of UDP-Glc-2, 3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa
Bernardi et al. Complete tetraglycosylation of a calix [4] arene by a chemo-enzymatic approach
EP2100965A1 (en) Mutants of glycoside hydrolases and uses thereof for synthesizing complex oligosaccharides and disaccharide intermediates

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6798085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250