JP2017219615A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2017219615A
JP2017219615A JP2016112712A JP2016112712A JP2017219615A JP 2017219615 A JP2017219615 A JP 2017219615A JP 2016112712 A JP2016112712 A JP 2016112712A JP 2016112712 A JP2016112712 A JP 2016112712A JP 2017219615 A JP2017219615 A JP 2017219615A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
common electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016112712A
Other languages
English (en)
Inventor
森本 政輝
Masateru Morimoto
政輝 森本
幸一 井桁
Koichi Iketa
幸一 井桁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2016112712A priority Critical patent/JP2017219615A/ja
Priority to US15/611,860 priority patent/US20170351129A1/en
Publication of JP2017219615A publication Critical patent/JP2017219615A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】IPS方式の液晶表示装置において、画面コーナー部における表示むらを対策する。【解決手段】第1の方向に延在し、第2の方向に配列した走査線10と、前記第2の方向に延在し、前記第1の方向に配列した映像信号線20との間に画素が形成され、各画素がTFTを有するTFT基板と、対向基板との間に液晶が挟持された液晶表示装置であって、前記映像信号線20の上方に絶縁膜108を介してコモン電極109が形成され、平面で視て、前記走査線10と前記コモン電極20の端部とは、オーバーラップしておらず、前記第1の方向において、間隔d1を有していることを特徴とする液晶表示装置。【選択図】図8

Description

本発明は表示装置に係り、特にイオン集積に起因する表示むらを対策したIPS方式の液晶表示装置に関する。
液晶表示装置では画素電極および薄膜トランジスタ(TFT)等を有する画素がマトリクス状に形成されたTFT基板と、TFT基板に対向して、対向基板が配置され、TFT基板と対向基板の間に液晶層が挟持されることで表示パネルを形成している。そして液晶分子によって光の透過率を画素毎に制御することによって画像を表示している。
液晶層中には、イオンが含まれており、このイオンが電界の影響で特定の場所に集積すると黒シミのような表示が現れ、表示むらを引き起こす場合がある。
特許文献1には、ゲートバスラインの一部から積層膜を除去して配向膜だけに覆われている部分を形成し、この部分においてイオンをトラップし、液晶層中に混入したイオン化した不純物を除去する構成が記載されている。
特開平3−167529号公報
液晶表示装置では視野角特性が問題であるが、IPS(In Plane Swiching)方式は、液晶分子をTFT基板の主面と平行方向に回転させるものであり、すぐれた視野角特性を有している。IPS方式では、コモン電極と画素電極が絶縁膜を挟んで重複して形成されている。すなわち、コモン電極もTFT基板に形成されていることが特徴である。
このような電極構造を有するIPS方式においては、コモン電極が表示パネル中に全面的に形成されていることにより、図2に示すように、液晶層中のイオンが特定のコーナーに集積し、黒シミのような表示として現れ、表示むらを引き起こす現象が生ずる。図2における矢印2はイオンの動きを示すものである。図2においては、イオンが表示領域1000の右上に集積して表示むら3を引き起こすことを模式的に示している。表示領域の面積を大きくするために、額縁1100の幅が小さくなると、表示パネルの周辺領域の画素を覆う額縁1100も狭くなるため、コーナー部に集積したイオンによる表示むら3が目立ちやすくなる。
本発明の課題は、図2のような、画面コーナーにおける表示むらを発生させない構成を提供することである。
本発明は上記課題を克服するものであり、代表的な手段は次のとおりである。
(1)複数の走査線と、前記第2の方向に延在し、複数の映像信号線と、各画素に形成された複数のスイッチング素子を有するTFT基板と、対向基板との間に液晶層が挟持された液晶表示装置であって、前記映像信号線の前記液晶層側に絶縁膜を介してコモン電極が形成され、当該コモン電極は、平面で視て、前記走査線の延在方向に沿って、複数の画素に渡って連続的に形成され、且つ、前記走査線と重畳する位置で間隙を有し、前記コモン電極の端部は前記走査線に対して、平面で視て、間隔d1を有して配置され、当該TFT基板の断面で視て、前記走査線形成層と、前記コモン電極形成層の距離をh1とした場合、前記走査線と前記コモン電極の端部の間隔d1は、前記h1よりも大きいことを特徴とする液晶表示装置。
(2)複数の走査線と、複数の映像信号線と、各画素に形成された複数のスイッチング素子を有するTFT基板と、対向基板との間に液晶層が挟持された液晶表示装置であって、前記映像信号線の前記液晶層側に第1の絶縁膜を介して第1の電極が形成され、前記第1の電極の上に第2の絶縁膜を挟んで第2の電極が形成され、前記第1の電極と前記第2の電極のいずれかがコモン電極であり、当該コモン電極は、平面で視て、前記走査線の延在方向に沿って、複数の画素に渡って連続的に形成され、且つ、前記走査線と重畳する位置で間隙を有し、前記コモン電極の端部は前記走査線に対して、平面で視て、間隔d1を有して配置され、前記間隙d1の位置では、前記第1の絶縁膜の厚さが薄い凹部領域を有することを特徴とする液晶表示装置。
本発明の作用を示す模式平面図である。 イオン集積に起因する表示むらを示す模式平面図である。 液晶表示装置の断面図である。 画素配置を示す平面図である。 本発明が適用される液晶表示装置の画素の平面図である。 図4のA−A断面図である。 液晶表示装置の駆動電圧の例である 液晶表示装置の駆動電圧の他の例である 実施例1の平面図である。 図8のB−B断面図である。 実施例1動作を示す断面図である。 比較例における液晶表示装置内の等電位線である。 実施例1における液晶表示装置内の等電位線である。 実施例1の第1の形態を示す平面図である。 実施例1の第2の形態を示す平面図である。 実施例2の動作を示す断面図である。 比較例における液晶表示装置内の等電位線である。 実施例2における液晶表示装置内の等電位線である。 実施例2の第1の形態を示す平面図である。 実施例2の第2の形態を示す平面図である。 実施例2の第3の形態を示す平面図である。
図3Aは液晶表示装置の模式断面図である。図3Aにおいて、TFTや画素電極が形成された画素がマトリクス状に形成されたTFT基板100に対向して対向基板200が配置し、TFT基板100と対向基板200の間に液晶層300が挟持されている。液晶層300は周辺のシール材160によって封止されている。TFT基板100と対向基板200の間隔は、対向基板200側に形成された柱状スペーサ60によって規定されている。TFT基板100は対向基板200よりも大きく形成されており、TFT基板100の対向基板200に対向していない領域は、ICドライバやフレキシブル配線基板を接続するための端子部170となっている。
図3Bは、TFT基板100および対向基板200に形成された画素70の配置を示す平面図である。画素は赤カラーフィルタに対応する赤画素R、緑カラーフィルタに対応する緑画素G、青カラーフィルタに対応する青画素Bからなり、この画素70が表示領域全面に配置されている。近年画面の高精細化が進み、画素70のサイズは小さくなっており、図3Bに示すx、yの値は非常に小さな値となっている。例えば、以下の実施例で説明するa−Si(amorphas−Silicon)を用いたTFTを有する液晶表示装置ではx=30μm、y=90μm程度となっており、LTPS(Low Temperature Poly−Silicon)を用いたTFTを有する液晶表示装置では、x=20μm、y=60μmとなっており、さらには、x=15μm、y=45μm程度にまで小さくなっている品種もある。
図1は本発明の作用を示す液晶表示装置の模式平面図である。図1において、TFT基板100と対向基板200の間に液晶が挟持されている。表示領域の周辺が額縁領域1100になっており、この部分に図3Aのシール材160が形成されている。表示領域1000において、矢印2はイオンの移動方向を示している。図1の点線で示す丸の箇所は、イオンの集積箇所1である。図1では、イオンの集積箇所1が多数形成されているので、各箇所において集積するイオンの量が少ないために表示むらを生じることはない。
本発明は、ゲート電圧が印加される走査線の電位を液晶層に作用させて、イオントラップとして利用するものである。そして、図1に示すように、イオンが集積される箇所を表示領域内に多数形成することによって、特定箇所にイオンが過剰に集積することを防止することにより、表示むらを防止するものである。以下に実施例を用いて本発明を詳細に説明する。
図4は本発明が適用されるIPS方式の液晶表示装置の画素構造を示す平面図である。IPS方式にも種々の画素構造が存在するが、コモン電極を平面状に形成し、その上に、絶縁膜を挟んで櫛歯状の画素電極を配置し、画素電極とコモン電極の間に発生する電界によって液晶分子を回転させる方式が、比較的透過率を大きくすることが出来るので、現在主流となっている。
図4において、走査線10が横方向に延在し、縦方向に所定の間隔で複数配列している。走査線10の縦方向の間隔が画素の縦方向の大きさとなっている。また、映像信号線20が縦方向に延在し、横方向に所定の間隔で複数配列している。映像信号線20の横方向の間隔が画素の横方向の大きさになっている。走査線10と映像信号線20の交点付近にTFT基板100と対向基板200の間隔を規定するための柱状スペーサ60が形成されている。
画素内には、ストライプ状の画素電極111が縦方向に延在している。図4では画素電極111は1本の線状となっているが、透過率を向上するために、画素間隔を広げたり、電極加工の精細度を向上させると、画素電極111はスリットを有する櫛歯状電極となる場合もある。
画素電極111には、映像信号線20からスルーホール及びTFTを介して映像信号が供給される。図4において、スルーホール120を介して映像信号線20は半導体層103と接続している。半導体層103は映像信号線20の下を延在して走査線10の下を通過し、屈曲して、再び走査線10の下を通過し、スルーホール140を介してコンタクト電極107と接続する。コンタクト電極107はスルーホール130を介して画素電極111と接続する。スルーホール130とホール電極1301の関係は図5で説明する。半導体層103が走査線10の下を通過するときにTFTが形成される。この場合、走査線10がゲート電極を兼ねる。したがって、図4では、映像信号線20から画素電極111まで2個のTFTが形成され、いわゆるダブルゲート方式となっている。
図4において、配向膜に形成される配向軸115の方向は、画素電極111の延在方向と角度θをなしている。角度θを形成する理由は、画素電極111に電界が印加されたときに、液晶分子の回転の方向を規定するためである。角度θは、5度から15度程度である。なお、配向軸115の方向を走査線20の延在方向と平行な方向とし、画素電極111の延在方向を角度θだけ傾ける場合もある。図4は、液晶分子の誘電率異方性が正の場合である。液晶の誘電率異方性が負の場合の配向軸の角度は、図1と90度回転した方向となる。
図4の構成においては、コモン電極はスルーホール130の周辺を除き、全面に形成されている。走査線10も大部分はコモン電極109によって覆われている。したがって、走査線10及び映像信号線20を流れる信号によって発生する電界が液晶層に漏れにくい形状となっている。本発明の特徴は、後で説明するように、走査線10付近において、コモン電極109を可能な限り除去することによって、走査線10及び映像信号線20を流れる信号によって発生する電界を液晶層中に浸透させ、この電界によって不純物をトラップするものである。
図5は図1のA−A断面図である。図5におけるTFTは、いわゆるトップゲートタイプのTFTであり、使用される半導体としては、LTPSが使用されている。一方、a−Si半導体を使用した場合は、いわゆるボトムゲート方式のTFTが多く用いられる。以後の説明では、トップゲート方式のTFTを用いた場合を例にして説明するが、ボトムゲート方式のTFTを用いた場合についても、本発明を適用することが出来る。
図5において、ガラス基板100の上にSiNからなる第1下地膜101およびSiOからなる第2下地膜102がCVD(Chemical Vapor Deposition)によって形成される。第1下地膜101および第2下地膜102の役割はガラス基板100からの不純物が半導体層103を汚染することを防止することである。
第2下地膜102の上には半導体層103が形成される。この半導体層103は、第2下地膜102の上にCVDによってa−Si膜を形成し、これをレーザアニールすることによってLTPSのpoly−Si膜に変換したものである。このpoly−Si膜をフォトリソグラフィによってパターニングする。
半導体膜103の上にはゲート絶縁膜104が形成される。このゲート絶縁膜104はTEOS(テトラエトキシシラン)によるSiO膜である。この膜もCVDによって形成される。その上にゲート電極105が形成される。ゲート電極105は走査線10が兼ねている。ゲート電極105は、例えば、MoW(モリブデン・タングステン)膜によって形成される。ゲート電極105あるいは走査線10の抵抗を小さくする必要があるときはAl(アルミ)合金が使用される。
その後、ゲート電極105を覆って層間絶縁膜106をSiOあるいはSiNによって形成する。層間絶縁膜106はゲート電極105と映像信号線20を絶縁するためである。半導体層103は、ゲート絶縁膜104および層間絶縁膜間106に形成されたスルーホール120を介して映像信号線20と接続している。また、層間絶縁膜106およびゲート絶縁膜104には、TFTのソース部Sをコンタクト電極107と接続するためのスルーホール140が形成される。層間絶縁膜106とゲート絶縁膜104に形成されるスルーホール120とスルーホール140は同時に形成される。
層間絶縁膜106の上にコンタクト電極107が形成される。半導体層103は、映像信号線20の下を延在し、図4、および図5に示すように、走査線10すなわちゲート電極105の下を2回通過する。この時、TFTが形成される。すなわち、平面で視て、ゲート電極105を挟んでTFTのソースSとドレインDが形成されている。コンタクト電極107は、層間絶縁膜106およびゲート絶縁膜104に形成されたスルーホール140を介して半導体層103と接続する。
コンタクト電極107および映像信号線20は、同層で、同時に形成される。コンタクト電極107および映像信号線20は、抵抗を小さくするために、例えば、Al−Si合金が使用される。Al−Si合金はヒロックを発生したり、Alが他の層に拡散したりするので、例えば、MoWによるバリア層、およびキャップ層によってAl−Si合金をサンドイッチする構造がとられている。
コンタクト電極107、映像信号線20、層間絶縁膜106を覆って有機パッシベーション膜108が形成される。有機パッシベーション膜108は感光性のアクリル樹脂で形成される。有機パッシベーション膜108は、アクリル樹脂の他、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂等でも形成することが出来る。有機パッシベーション膜108は平坦化膜としての役割を持っているので、厚く形成される。有機パッシベーション膜108の膜厚は1〜4μmであるが、多くの場合は2〜3μm程度である。
画素電極111とコンタクト電極107との導通を取るために、有機パッシベーション膜108にスルーホール130が形成される。有機パッシベーション膜108は感光性の樹脂を使用している。感光性の樹脂を塗付後、この樹脂を露光すると、光が当たった部分のみが特定の現像液に溶解する。すなわち、感光性樹脂を用いることによって、フォトレジストの形成を省略することが出来る。有機パッシベーション膜108にスルーホール130を形成したあと、230℃程度で焼成することによって有機パッシベーション膜108が完成する。
その後、コモン電極109となるITO(Indium Tin Oxide)をスパッタリングによって形成し、スルーホール130の周辺からITOを除去するようにパターニングする。コモン電極109は各画素共通に平面状に形成することが出来る。なお、コモン電極109として形成されるITOは、一部スルーホール130内に残し、画素電極111とコンタクト電極107を接続するホール電極1301として使用される。ホール電極1301はコンタクト電極107と接続しかつ、画素電極111と接続するが、コモン電極109とは接続しない。
次に、容量絶縁膜110となるSiNをCVDによって全面に形成する。その後、スルーホール130内において、ホール電極1301と画素電極111の導通をとるためのスルーホールを容量絶縁膜110に形成する。
その後、ITOをスパッタリングによって形成し、パターニングして画素電極111を形成する。図4に画素電極111の平面形状の例を示す。画素電極111の上に配向膜材料をフレキソ印刷あるいはインクジェット等によって塗布し、焼成して配向膜112を形成する。配向膜112の配向処理にはラビング法のほか偏光紫外線による光配向が用いられる。
画素電極111とコモン電極109の間に電圧が印加されると、図5の矢印で示すような電気力線が発生する。この電界によって液晶分子301を回転させ、液晶層300を通過する光の量を画素毎に制御することによって画像を形成する。
図5において、液晶層300を挟んで対向基板200が配置されている。対向基板200の内側には、カラーフィルタ201が形成されている。カラーフィルタ201は画素毎に、赤、緑、青のカラーフィルタが形成されており、これによってカラー画像が形成される。カラーフィルタ201とカラーフィルタ201の間にはブラックマトリクス202が形成され、画像のコントラストを向上させている。なお、ブラックマトリクス202はTFTの遮光膜としての役割も有し、TFTに光電流が流れることを防止している。
カラーフィルタ201およびブラックマトリクス202を覆ってオーバーコート膜203が形成されている。カラーフィルタ201およびブラックマトリクス202の表面は凹凸となっているために、オーバーコート膜203によって表面を平らにしている。オーバーコート膜203の上には、液晶の初期配向を決めるための配向膜112が形成される。配向膜112の配向処理はTFT基板100側の配向膜112と同様、ラビング法あるいは光配向法が用いられる。
図5において、TFT基板と対向基板の間隔を維持して、液晶層の厚さを一定に保つために、柱状スペーサ60が形成されている。柱状スペーサ60は、対向基板200のオーバーコート膜203の上に形成されているか、オーバーコート膜203と同時に形成される場合もある。柱状スペーサ60が形成された部分では、液晶分子の配向が乱れ、光漏れの原因となるため、対向基板200には対応する部分にブラックマトリクス202が形成されている。
なお、以上の構成は例であり、例えば、品種によってはTFT基板100において、コンタクト電極107あるいは映像信号線20との間にSiN等による無機パッシベーション膜が形成されている場合もある。
図6は、図4、5で示すような、半導体層にPoly−Si膜を用い、トップゲートタイプのTFTを形成した場合の各電極に印加される電圧の例である。図6においてGNDはグラウンド電位を示し、+SIGと−SIGは映像信号のプラス側最大値とマイナス側最大値を示す。映像信号は周期的に極性を変えて画素電極111に印加される。Vcomはコモン電極109に印加される電圧であり、通常は一定である。VGTはゲート電極105(走査線10)に印加されるゲート信号の電圧であり、通常は−8Vが印加され、TFTをONする時のみ、+9Vが印加される。
図7は、半導体層としてa−Siを用いたボトムゲートタイプのTFTを用いた液晶表示装置における各電極に印加される電圧の例を示すものである。図7においてGNDはグラウンド電位を示し、+SIGと−SIGは映像信号のプラス側最大値とマイナス側最大値を示す。映像信号は周期的に極性を変えて画素電極に印加される。Vcomはコモン電極に印加される電圧であり、通常は一定である。VGTはゲート電極(走査線)に印加されるゲート信号の電圧であり、通常は−13Vが印加され、TFTをONする時のみ、+16Vが印加される。
図6、7に示すように、各走査線(ゲート電極)に印加されるゲート信号の電圧は、走査線が選択される時以外は、常に大きな−の電位が印加されている。言い換えれば、殆どの時間はマイナス電位である。本発明は、このマイナス電位をイオンのトラップとして利用するものである。
図8は、本発明の特徴を示す液晶表示装置の画素部の平面図である。図8が図4と異なる点は、コモン電極109の形成範囲である。図8において、コモン電極109は、スルーホール130脇のコモン電極と同層で形成されたブリッジ電極によって上下が接続されている。上側のコモン電極109と下側のコモン電極109の接続は、画素毎である必要はなく、たとえば3画素に2か所の接続で良い。このため、全ての画素毎には、コモン電極109間のブリッジ電極が存在しないので、水平方向の画素ピッチを小さくすることが出来る。
図8の特徴は、平面で視て、走査線10を挟んで、コモン電極109が大きく開口している点である。図8において、走査線10の端部とコモン電極109の端部の距離はd1である。このように、平面で視て、走査線10からコモン電極109の端部を後退させることによって、大きなマイナス電位であるゲート電圧が液晶層300に浸透し、イオンをこの部分に集めることが出来る。本発明では、このような場所が走査線10に沿って一様に形成されているために、イオンが走査線10に沿ってトラップされる。イオンが過度に集積すると、この部分の液晶層の透過率が下がり、黒シミが発生するが、走査線10に沿った領域は、ブラックマトリクス202で覆われているため、表示に影響はなく、表示むらが発生することを防止することが出来る。
図9は、図8のB−B断面図である。図9が図5と異なる点は、ゲート電極105(走査線10)に対応する部分において、コモン電極109が存在していない点である。すなわち、コモン電極109が存在しないので、ゲート電圧が液晶層300に浸透し、イオンを集積することが出来る。図9において、左側のゲート電極105の上には、映像信号線20が存在しているが、これは、走査線10と映像信号線20がクロスしている部分であり、走査線10の大部分は映像信号線20とはオーバーラップしていない。したがって、ゲート電圧は液晶層300に浸透することが出来る。
図10は、本発明の原理を示す断面図である。図10では、説明をわかりやすくするために、一部の層は省略されている。図10において、TFT基板100の上にゲート電極105(走査線10)が形成され、これを覆って層間絶縁膜106が形成されている。層間絶縁膜106の上に有機パッシベーション膜108が形成され、有機パッシベーション膜108には、画素電極111とTFTと接続するコンタクト電極107との接続のためにスルーホール130が形成されている。
有機パッシベーション膜108の上にはコモン電極109が形成されているが、コモン電極109は、平面で視てゲート電極105(走査線10)付近では後退しており、開口となっている。このようにゲート電極105(走査線10)の上にコモン電極109が存在していないので、ゲート電極105(走査線10)からの電界が液晶層300に浸透し、イオン5をコモン電極109の開口部にある容量絶縁膜110上に集めることが出来る。
本発明の十分な効果を得るためには、ゲート電極105(走査線10)の端部からコモン電極109の端部までの距離d1が重要である。距離d1は3μm以上であることが望ましく、さらには、ゲート電極105(走査線10)の上端から、コモン電極109が形成されている層(図10では有機パッシベーション膜108)の上端までの距離h1よりも大きいことが望ましい。
図11および図12は、本発明の効果を示す電界シミュレーションの結果である。図11は、比較例であり、コモン電極109の開口が小さい場合である。図11の左側は、シミュレーションで用いた層構造である。図11において、TFT基板100の上にゲート電極105が形成され、これを覆って層間絶縁膜106が形成され、その上にコンタクト電極107が形成されている。コンタクト電極107を覆って有機パッシベーション膜108が形成され、その上にコモン電極109が形成され、これを覆って容量絶縁膜110が形成され、その上に画素電極111が形成されている。一番上の層は配向膜112であり、その上に液晶層300が形成され、液晶層300を挟んで、対向基板200側にはオーバーコート膜203が形成されている。
図11の右側は、左側の層構造において、ゲート電極105(走査線10)にTFTをONにするためのゲート信号を印加していない場合の等電位線を示すものである。図11において、等電位線V1の電位が最も低く、V2、V3、V4となるにしたがって、電位が高くなる。V1が最もゲート電圧に近い。すなわち、等電位線V1、V2等が液晶層に浸透すれば、顕著なイオントラップが期待できるが、比較例では、V1乃至V4はほとんど、液晶層には浸透せず、イオンをトラップする効果はほとんどない。
図12は、本発明によるイオントラップ効果を示すシミュレーションである。図12の左側の層構造は図11と同じであるが、図11と異なる点は、コモン電極109および画素電極111が左側に後退し、コモン電極109の開口が大きく形成されていることである。図12の右側は、左側の層構造において、ゲート電極105(走査線10)にTFTをONにするためのゲート信号を印加していない場合の等電位線を示すものである。
図12の右側の図において、等電位線V3、V4は、液晶層中に大きく浸透しており、等電位線V1、V2も液晶層中に浸透している。すなわち、液晶層300中のイオンをトラップする効果は、図11の場合に比べて極めて大きい。このように、本発明によれば、コモン電極109の範囲を変えるだけで、イオントラップの効果を大きく向上させることが出来る。
図13は、本発明の具体的な構成を示す平面図である。図13では、図をわかりやすくするために、画素電極、半導体層、スルーホール等は省略されている。一方、対向基板に形成されているブラックマトリクス(遮光膜)202の範囲は、ハッチングで示されている。
図13において、横方向に走査線10が延在し、縦方向に映像信号線20が延在し、走査線10と映像信号線20で囲まれた部分が画素になっている。走査線10付近には、TFT、スルーホール、柱状スペーサ等が形成されており、遮光される領域である反面、光漏れが発生しやすい領域でもあるため、この部分に対応して、対向基板側にブラックマトリクス202が形成されている。
柱状スペーサ60は全ての画素に形成されているわけではないが、柱状スペーサ60の付近では、圧力によって柱状スペーサ60が動いたり、液晶分子の配向が乱れたりするので、柱状スペーサ60の部分に対応したブラックマトリクス202の幅は大きくなっている。
図13の特徴は、平面で視て、コモン電極109が走査線10の端部よりも外側に離れて形成されていることである。これによって、走査線10の上側に開口部が広く形成され、走査線10によって形成される電界が液晶層中に浸透しやすくなっている。走査線10の端部からコモン電極109の端部までの平面での距離はd1であり、d1の値は、図10で説明したとおりである。
図13において、柱状スペーサ60の下側にはコモン電極109は形成されておらず、また、柱状スペーサ60の周辺にもコモン電極109は形成されていない。すなわち、柱状スペーサ60が形成されている部分では、ブラックマトリクス202の幅が大きくなっているので、コモン電極109の開口の幅を広げても、光漏れの問題はないからである。一方、柱状スペーサ60付近において、コモン電極109の開口を大きくしたことによって、この部分でのイオントラップの効果をさらに向上させることが出来る。
柱状スペーサ60は全ての画素に形成されているわけではない。一方、柱状スペーサ60が形成されている部分では、ブラックマトリクス202の幅が大きくなっているために、画素の透過率が小さくなる。これは、輝度むら、あるいは、色むら等を引き起こす可能性がある。これを防止するために、柱状スペーサ60が形成されていない画素において、ブラックマトリクス202の幅を大きくし、各画素の透過率のバランスをとる場合がある。
図14は、この構成の例を示す平面図である。図14において、柱状スペーサ60が形成されていない画素は、ブラックマトリクス202の幅がd2だけ大きくなっている。図14では、ブラックマトリクス202の幅が大きくなった分、走査線10の端部とコモン電極109の端部の間隔もd1から(d1+d2)のように大きくすることによって、ゲート信号の印加によって発生する電界の液晶層への浸透効果をより大きくしている。
このように、本発明によれば、コモン電極109の形成範囲を変化させるだけで、各画素におけるイオントラップの効果を上げることが出来、特定の場所における黒シミを防止することが出来る。また、この効果を得るための製造コストの増大もほとんど生じないという利点も有する。
図15は、本発明の実施例2の原理を示す断面図である。実施例2の特徴は、ゲート電極105の上方の有機パッシベーション膜108に凹部を形成し、この部分において、イオン5をトラップすることである。有機パッシベーション膜108において、層が薄くなった部分1081では、ゲート電圧の影響をより強くすることが出来るので、イオン5のトラップ効果を向上させることが出来る。
図15は、わかりやすくするために、一部の層は省略されている。図15において、TFT基板100の上にゲート電極105(走査線10)が形成され、これを覆って層間絶縁膜106が形成され、その上にコンタクト電極107が形成されている。コンタクト電極107を覆って有機パッシベーション膜108が形成され、その上にコモン電極109が形成され、これを覆って容量絶縁膜110が形成され、その上に画素電極111が形成されている。
本実施例でも、実施例1と同様、ゲート電極105の上には、コモン電極109の開口部が広く形成されている。これに加えて本実施例では、コモン電極109の開口部では、有機パッシベーション膜108が薄くなっている。有機パッシベーション膜が薄くなっている部分1081では、他の部分よりもゲート電極105から発生する電界の影響をより強く受ける。したがって、この部分にはイオン5が集積しやすい。すなわち、より効率的にイオン5をトラップすることが出来る。
図15において、本実施例の効果を十分に出すためには、有機パッシベーション膜1081の凹部1081の深さt2はある程度の値が必要である。t2は、好ましくは1μm以上である。また、有機パッシベーション膜1081の厚さをt1とした場合、t2≧(t1)/3、より好ましくは、t2≧(t1)/2である。図15では、画素電極111とコンタクト電極107との接続のためのスルーホール130と有機パッシベーション膜108の凹部1081がつながっているが、必ずしも、その必要はなく、有機パッシベーション膜108の凹部1081とスルーホール130が独立に形成されていてもよい。
図16および図17は、本実施例の効果を示す電界シミュレーションの結果である。図16は、コモン電極109には、ゲート電極105(走査線10)に対応する部分には広い開口部が形成されているが、有機パッシベーション膜108は平坦である。図16の左側は、シミュレーションで用いた層構造である。図16において、TFT基板100の上にゲート電極105(走査線10)が形成され、これを覆って層間絶縁膜106が形成され、これを覆って有機パッシベーション膜108が形成されている。
有機パッシベーション膜108の上にはコモン電極109が形成され、コモン電極109は、ゲート電極105(走査線10)の上方において、広い開口部が形成されている。コモン電極109の上には液晶層300が存在し、液晶層300を挟んで、対向基板200側にはオーバーコート膜203が形成されている。
図16の右側の図は、左側の図に示す層構造において、ゲート電極105(走査線10)にTFTをONにするためのゲート信号が印加されていない場合の等電位線を示すものである。図11において、等電位線V1の電位が最も低く、V2、V3、V4となるにしたがって、電位が高くなる。V1が最もTFTをONにするためのゲート信号が印加されていない場合のゲート電圧に近い。すなわち、等電位線V1、V2等が液晶層に浸透すれば、顕著なイオントラップが期待できる。
図16に示すシミュレーションでも、電位V3、V4が液晶層に浸透し、イオントラップに対してある程度の効果がある。ゲート電極105(走査線10)の上にコモン電極109の開口を大きく形成した効果である。
図17は、本実施例によるイオントラップ効果を示すシミュレーションである。図17の左側の層構造は図11と同じであるが、図11と異なる点は、有機パッシベーション膜108に凹部1081が形成されている点である。図17において、有機パッシベーション膜108の凹部1081の深さは、有機パッシベーション膜108の厚さの1/2である。
図17の右側の図は、図17の左側の層構造において、ゲート電極105にゲート信号が印加されていない場合の等電位線である。図17において、有機パッシベーション膜108の凹部1081には、電位V2が浸透しているのみでなく、最も低い電位であるV1も浸透している。すなわち、有機パッシベーション膜108の凹部1081は、非常に強いイオントラップ効果を有している。
図18は、本実施例の具体的な構成を示す平面図である。図18では、図をわかりやすくするために、画素電極、半導体層、スルーホール等は省略されている。一方、対向基板に形成されているブラックマトリクス(遮光膜)202の範囲は、ハッチングで示されている。図18は、点線で示す有機パッシベーション膜凹部1081が形成されている他は、図13と同じである。
図18において、平面で視て、走査線10、および、走査線の端部とコモン電極109の端部の間において、有機パッシベーション膜凹部1081が形成されている。有機パッシベーション膜凹部1081は、複数の画素にまたがって形成されている。これによって、走査線10の上方において、コモン電極109の開口が大きく形成されたことの効果に加えて、有機パッシベーション膜108の凹部1081における電位によって、イオンに対するトラップ効果を大幅に増すことが出来る。
図18において、有機パッシベーション膜凹部1081の幅wは3μm以上であることが望ましい。あるいは、走査線10の幅よりも大きいことが望ましい。なお、wは、図17に示すように、液晶層に近い側での値である。また、有機パッシベーション膜凹部1081の幅は、あまり大きいと液晶の配向に影響を与えるので、(走査線10の幅+走査線の端部と画素電極の端部の間隔d1)よりも小さいことが望ましい。
一方、有機パッシベーション膜108の凹部1081は、柱状スペーサ60が形成されている画素には形成しないほうが良い。有機パッシベーション膜凹部1081に柱状スペーサ60が落ち込むとTFT基板と対向基板の間隔の規定が困難になるからである。
図19は本実施例の他の形態を示す平面図である。図19が図18と異なる点は、有機パッシベーション膜凹部1081が画素毎に離散して形成されていることである。つまり、各画素に形成された凹部1081と凹部1081の間に有機パッシベーション膜108が残されている。凹部1081によって、液晶の配向が強い影響を受ける場合は、図19のような構成としてもよい。
図20は、本実施例のさらに他の形態を示す平面図である。図20が図18と異なる点は、画素に形成されているスルーホール130と有機パッシベーション膜凹部1081を連続して形成することである。すなわち、図15に示す断面図と同様な態様となる。
有機パッシベーション膜108は厚いので、スルーホール130の径は大きくなる。スルーホール130と有機パッシベーション膜108の凹部1081を別々に作ると、画素としての透過率を大きくすることが出来なくなる。そこで、本実施形態のように、スルーホール130と有機パッシベーション膜凹部1081を連結すれば、隔絶のために土手を形成する必要がなくなるので、画素の透過率を向上させることが出来る。
このように、本実施例によれば、イオントラップ効果をさらに向上させることが出来るで、イオンの集積による黒シミを防止することが出来る。また、本実施例における有機パッシベーション膜凹部1081も有機パッシベーション膜108にスルーホール130を形成する時に同時に形成することが出来るので、製造コストの上昇はほとんどない。
以上の説明では、主として、TFTがトップゲートの場合について説明したが、TFTがボトムゲートの場合にも同様に適用することが出来る。また、以上の説明では、IPSはコモン電極が下側で画素電極が上側の場合について説明したが、これとは逆に、画素電極が下側で、コモン電極が上側の場合のIPSについても適用することが出来る。さらに、以上の説明ではIPS方式の液晶表示装置について説明したが、本発明は、IPS以外の液晶表示装置についても適用することが出来る。
1…イオンの集積箇所、 2…イオンの移動方向、 3…表示むら、 5…イオン、 10…走査線、 20…映像信号線、 60…柱状スペーサ、 70…画素、 100…TFT基板、 101…第1下地膜、 102…第2下地膜、 103…半導体層、 104…ゲート絶縁膜、 105…ゲート電極、 106…層間絶縁膜、 107…コンタクト電極膜、 108…有機パッシベーション膜、 109…コモン電極、 110…容量絶縁膜、 111…画素電極、 112…配向膜、 120…スルーホール、 130…スルーホール、 140…スルーホール、 160…シール材、 170…端子部、 200…対向基板、 201…ブラックマトリクス、 300…液晶層、 301…液晶分子、 1000…表示領域、 1100…額縁領域、 1301…ホール電極、 1081…有機パッシベーション膜凹部、 R…赤画素、 G…緑画素、 B…青画素

Claims (16)

  1. 複数の走査線と、前記第2の方向に延在し、複数の映像信号線と、各画素に形成された複数のスイッチング素子を有するTFT基板と、対向基板との間に液晶層が挟持された液晶表示装置であって、
    前記映像信号線の前記液晶層側に絶縁膜を介してコモン電極が形成され、
    当該コモン電極は、平面で視て、前記走査線の延在方向に沿って、複数の画素に渡って連続的に形成され、且つ、前記走査線と重畳する位置で間隙を有し、
    前記コモン電極の端部は前記走査線に対して、平面で視て、間隔d1を有して配置され、当該TFT基板の断面で視て、前記走査線形成層と、前記コモン電極形成層の距離をh1とした場合、前記走査線と前記コモン電極の端部の間隔d1は、前記h1よりも大きいことを特徴とする液晶表示装置。
  2. 前記走査線と前記コモン電極の端部の間隔d1は、3μm以上であることを特徴とする請求項1に記載の液晶表示装置。
  3. 前記絶縁膜は、有機絶縁膜であることを特徴とする請求項1に記載の液晶表示装置。
  4. 第1の画素と第2の画素の間には、前記TFT基板と前記対向基板の間隔を規定する柱状スペーサが形成され、前記柱状スペーサは前記コモン電極と重畳していないことを特徴とする請求項1に記載の液晶表示装置。
  5. 前記走査線と前記コモン電極の端部の間隔は、前記柱状スペーサが形成されている部分において、前記柱状スペーサが形成されていない部分よりも大きいことを特徴とする請求項1に記載の液晶表示装置。
  6. 複数の走査線と、複数の映像信号線と、各画素に形成された複数のスイッチング素子を有するTFT基板と、対向基板との間に液晶層が挟持された液晶表示装置であって、
    前記映像信号線の前記液晶層側に第1の絶縁膜を介して第1の電極が形成され、
    前記第1の電極の上に第2の絶縁膜を挟んで第2の電極が形成され、
    前記第1の電極と前記第2の電極のいずれかがコモン電極であり、
    当該コモン電極は、平面で視て、前記走査線の延在方向に沿って、複数の画素に渡って連続的に形成され、且つ、前記走査線と重畳する位置で間隙を有し、
    前記コモン電極の端部は前記走査線に対して、平面で視て、間隔d1を有して配置され、
    前記間隙d1の位置では、前記第1の絶縁膜の厚さが薄い凹部領域を有することを特徴とする液晶表示装置。
  7. 前記第1の絶縁膜の凹部領域の深さは、1μm以上であることを特徴とする請求項6に記載の液晶表示装置。
  8. 前記第1の絶縁膜の凹部領域の深さは、前記第1の絶縁膜の厚さの1/3以上であることを特徴とする請求項6に記載の液晶表示装置。
  9. 前記間隔d1は3μm以上であることを特徴とする請求項6に記載の液晶表示装置。
  10. 第1の画素と第2の画素の間には、前記TFT基板と前記対向基板の間隔を規定する柱状スペーサが形成され、前記柱状スペーサは前記コモン電極と重畳していないことを特徴とする請求項6に記載の液晶表示装置。
  11. 前記走査線と前記コモン電極の端部の間隔d1は、前記柱状スペーサが形成されている部分において、他の部分よりも大きいことを特徴とする請求項6に記載の液晶表示装置。
  12. 前記第1の絶縁膜の凹部領域は、前記第1の画素と前記第2の画素には形成されていないことを特徴とする請求項10に記載の液晶表示装置。
  13. 前記第1の絶縁膜には、前記コモン電極ではない前記第1又は第2の電極と前記スイッチング素子を接続するスルーホールが形成され、前記スルーホールと前記第1の絶縁膜の凹部領域は連続して形成されていることを特徴とする請求項6に記載の液晶表示装置。
  14. 前記第1の絶縁膜の凹部領域は、隣り合う画素間で連続して形成されていることを特徴とする請求項6に記載の液晶表示装置。
  15. 前記第1の絶縁膜は、有機絶縁膜であることを特徴とする請求項6に記載の液晶表示装置。
  16. 前記液晶表示装置はIPS方式であることを特徴とする請求項1乃至15のいずれか1項に記載の液晶表示装置。
JP2016112712A 2016-06-06 2016-06-06 液晶表示装置 Pending JP2017219615A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016112712A JP2017219615A (ja) 2016-06-06 2016-06-06 液晶表示装置
US15/611,860 US20170351129A1 (en) 2016-06-06 2017-06-02 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112712A JP2017219615A (ja) 2016-06-06 2016-06-06 液晶表示装置

Publications (1)

Publication Number Publication Date
JP2017219615A true JP2017219615A (ja) 2017-12-14

Family

ID=60482207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112712A Pending JP2017219615A (ja) 2016-06-06 2016-06-06 液晶表示装置

Country Status (2)

Country Link
US (1) US20170351129A1 (ja)
JP (1) JP2017219615A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808335B2 (ja) * 2016-03-11 2021-01-06 株式会社ジャパンディスプレイ 液晶表示装置
US11009756B2 (en) * 2018-11-05 2021-05-18 Sharp Kabushiki Kaisha Display device
CN109375440A (zh) * 2018-12-21 2019-02-22 惠科股份有限公司 一种显示面板
CN109671726B (zh) * 2019-01-04 2021-01-26 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板、显示装置
JP7391736B2 (ja) * 2020-03-18 2023-12-05 株式会社ジャパンディスプレイ 表示装置及び半導体基板
CN114137771B (zh) * 2021-12-08 2023-08-01 Tcl华星光电技术有限公司 阵列基板及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392670B2 (ja) * 2008-12-01 2014-01-22 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
JP5947650B2 (ja) * 2012-07-27 2016-07-06 株式会社ジャパンディスプレイ 液晶表示装置および電子機器
KR102040812B1 (ko) * 2013-02-12 2019-11-06 삼성디스플레이 주식회사 액정 표시 장치
KR102007833B1 (ko) * 2013-04-30 2019-08-06 엘지디스플레이 주식회사 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판
WO2014181494A1 (ja) * 2013-05-09 2014-11-13 パナソニック液晶ディスプレイ株式会社 液晶表示装置及びその製造方法
KR20150029177A (ko) * 2013-09-09 2015-03-18 삼성디스플레이 주식회사 액정 표시 장치
KR102307142B1 (ko) * 2013-09-13 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102256312B1 (ko) * 2014-02-12 2021-05-27 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이를 갖는 액정 표시 패널 및 이의 제조방법

Also Published As

Publication number Publication date
US20170351129A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US20210181591A1 (en) Liquid crystal display device
JP6621284B2 (ja) 表示装置
JP2017219615A (ja) 液晶表示装置
US11126043B2 (en) Liquid crystal display device
JP6649788B2 (ja) 液晶表示装置
US10288942B2 (en) Liquid crystal display device
JP2016148807A (ja) 液晶表示装置
JP2016080797A (ja) 液晶表示装置
US10133132B2 (en) Liquid crystal display device
JP2016014779A (ja) 液晶表示装置
JP2016015404A (ja) 液晶表示装置
JP2017187530A (ja) 液晶表示装置
JP6415856B2 (ja) 液晶表示装置
JP2018077387A (ja) 液晶表示装置
JP6960002B2 (ja) 液晶表示装置
JP6980730B2 (ja) 液晶表示装置
JP7201777B2 (ja) 液晶表示装置
JP6918090B2 (ja) 液晶表示装置
WO2019159552A1 (ja) 液晶表示装置
JP2017076058A (ja) 液晶表示装置