JP2017218527A - Isocyanate curable coating composition and coating method using the same - Google Patents

Isocyanate curable coating composition and coating method using the same Download PDF

Info

Publication number
JP2017218527A
JP2017218527A JP2016115141A JP2016115141A JP2017218527A JP 2017218527 A JP2017218527 A JP 2017218527A JP 2016115141 A JP2016115141 A JP 2016115141A JP 2016115141 A JP2016115141 A JP 2016115141A JP 2017218527 A JP2017218527 A JP 2017218527A
Authority
JP
Japan
Prior art keywords
isocyanate
paint
coating
layer
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016115141A
Other languages
Japanese (ja)
Inventor
周二 四方
Shuji Yomo
周二 四方
舘 和幸
Kazuyuki Tachi
和幸 舘
真子 長谷
Masako Hase
真子 長谷
啓司 安保
Keiji Anpo
啓司 安保
義則 成田
Yoshinori Narita
義則 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2016115141A priority Critical patent/JP2017218527A/en
Publication of JP2017218527A publication Critical patent/JP2017218527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an isocyanate curable coating composition capable of obtaining a laminated coating film in which occurrence of unevenness of a surface of an upper layer is sufficiently suppressed, even when two or more kinds of coating materials are laminated according to wet-on-wet method and are baked at the same time to cure each layer.SOLUTION: An isocyanate curable coating composition contains a thermosetting resin, an isocyanate-based curing agent and a flow stop retarder capable of bonded to an isocyanate group in an attachable/detachable manner.SELECTED DRAWING: None

Description

本発明は、2種類以上の塗料をウェットオンウェットで積層して同時に焼付ける塗装方法及びそれに用いるイソシアネート硬化型塗料組成物に関する。   The present invention relates to a coating method in which two or more kinds of paints are laminated on a wet on wet basis and fired at the same time, and an isocyanate curable paint composition used therefor.

2種類以上の塗料をウェットオンウェットで積層した後、焼き付ける塗装方法により積層塗膜を形成する場合において、従来から、すべての塗料を積層した後に積層塗膜を構成するすべての層が焼付けにより硬化するように各層を形成する熱硬化型塗料を選択し、積層塗膜全体を硬化させる方法が用いられていた。しかしながら、従来の塗装方法では、下層を焼き付けてから上層を形成する塗料を積層して焼付けた場合に比べて、積層塗膜の肌及び光沢が劣るという問題があった。このため、積層塗膜の肌及び光沢を向上させるために種々の方法が提案されている。   When two or more types of paints are laminated by wet-on-wet and then a multilayer coating film is formed by a baking method, all layers constituting the multilayer coating film are cured by baking after all the paints are laminated. Thus, a method of selecting a thermosetting coating material for forming each layer and curing the entire laminated coating film has been used. However, the conventional coating method has a problem that the skin and gloss of the laminated coating film are inferior as compared to the case where the lower layer is baked and then the upper layer forming coating is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.

例えば、特開2004−275966号公報(特許文献1)には、中塗り塗料、ベース塗料及びクリア塗料を順次ウェットオンウェットで塗装する工程と、低温加熱段階(硬化温度の25〜80%の温度で硬化時間の5〜30%の時間加熱)及び高温加熱段階(硬化温度の80%を超え、120%以下の温度で硬化時間の30〜130%の時間加熱)の2段階の加熱工程を含む塗膜形成方法が開示されており、これによって塗膜の鮮映性を確実に確保できることも開示されている。   For example, Japanese Patent Application Laid-Open No. 2004-275966 (Patent Document 1) discloses a process in which an intermediate coating, a base coating, and a clear coating are sequentially applied by wet-on-wet, and a low-temperature heating step (temperature of 25 to 80% of the curing temperature). And a high-temperature heating stage (over 80% of the curing temperature and 30-130% of the curing time at a temperature of 120% or less). A method for forming a coating film is disclosed, and it is also disclosed that the sharpness of the coating film can be reliably ensured.

また、特開2005−177680号公報(特許文献2)には、少なくとも下塗り塗料、中塗り塗料及び上塗り塗料の3つの塗料を被塗物に塗布する塗装方法であって、前記下塗り塗料を前記被塗物に塗布して下塗り塗膜を形成した後に、前記下塗り塗膜に前記中塗り塗料を塗布して中塗り塗膜を形成し、未硬化の前記中塗り塗膜に前記上塗り塗料を塗布して上塗り塗膜を形成し、塗膜硬化手段により前記中塗り塗膜を前記上塗り塗膜より先に硬化する塗装方法が開示されており、これによって鮮映性が良好な塗膜が形成されることも開示されている。さらに、特許文献2には、水酸基とカルボキシル基とを有する基体樹脂と架橋剤としてブロックイソシアネートを含む塗料を中塗り塗料として用いる場合に、ブロックイソシアネートをブロックするアルコール系ブロック剤として、短いアルキル基を有するアルコール系ブロック剤を用いることによってブロック剤の解離温度が下降し、中塗り塗料の反応温度を低温化できることが記載されている。   Japanese Patent Application Laid-Open No. 2005-177680 (Patent Document 2) discloses a coating method in which at least three paints of an undercoat, an intermediate coat, and a top coat are applied to an object to be coated. After forming an undercoat film by coating on a coating, the intermediate coat film is formed by applying the intermediate coat paint to the undercoat film, and the top coat paint is applied to the uncured intermediate coat film. A coating method is disclosed in which a top coating film is formed, and the intermediate coating film is cured before the top coating film by a coating film curing means, whereby a coating film with good sharpness is formed. It is also disclosed. Further, in Patent Document 2, when a base resin having a hydroxyl group and a carboxyl group and a coating containing blocked isocyanate as a crosslinking agent is used as an intermediate coating, a short alkyl group is used as an alcohol-based blocking agent for blocking blocked isocyanate. It is described that the dissociation temperature of the blocking agent is lowered by using the alcohol-based blocking agent, and the reaction temperature of the intermediate coating can be lowered.

特開2004−275966号公報JP 2004-275966 A 特開2005−177680号公報JP 2005-177680 A

しかしながら、従来の塗装技術においては、ウェットオンウェットで積層した塗膜の肌(平滑性)や光沢等の外観品質に大きく影響を及ぼす積層塗膜の層間の界面凹凸は着目されていなかったため、肌や光沢等の外観品質を自動車等の所望の外観品質に要求されるレベルまで向上させることが困難であった。特に、イソシアネート系硬化剤を含有する塗料は焼付け時の硬化反応が速く、このような塗料を上層用塗料として使用すると、下層用塗料が硬化する前に、上層が流動性を失うため、従来のイソシアネート系硬化剤を含有する塗料を用いたウェットオンウェットによる塗装においては、上層の硬化後に、下層と上層との界面に存在する凹凸が上層表面に転写されることによって、外観品質が損なわれ、肌及び光沢を所望の外観品質に要求されるレベルまで向上させることが困難であった。   However, the conventional coating technology has not paid attention to the interfacial irregularities between the layers of the laminated coating film, which greatly affects the appearance quality such as skin (smoothness) and gloss of the coating film laminated wet-on-wet. It has been difficult to improve the appearance quality such as brightness and gloss to the level required for the desired appearance quality of automobiles and the like. In particular, a coating containing an isocyanate curing agent has a fast curing reaction at the time of baking, and when such a coating is used as an upper layer coating, the upper layer loses fluidity before the lower layer coating is cured. In the coating by wet-on-wet using a coating containing an isocyanate curing agent, after curing the upper layer, the unevenness present at the interface between the lower layer and the upper layer is transferred to the upper layer surface, the appearance quality is impaired, It has been difficult to improve skin and gloss to the level required for desired appearance quality.

本発明は、このような状況下において、上記従来技術の有する課題に鑑みてなされたものであり、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることができる塗装方法、及びそれに用いられるイソシアネート硬化型塗料組成物を提供することを目的とする。   Under such circumstances, the present invention has been made in view of the above-described problems of the prior art, and even if two or more types of paints are laminated on a wet on wet basis and simultaneously baked to cure each layer, the upper layer It is an object of the present invention to provide a coating method capable of obtaining a laminated coating film in which the occurrence of unevenness on the surface is sufficiently suppressed, and an isocyanate curable coating composition used therefor.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、2種類以上の塗料をウェットオンウェットで積層して同時に焼付け塗装をする際に、下層(積層塗膜が2層の場合には最下層、3層以上の場合には最下層と少なくとも1層の中間層の2層以上。以下同様。)を形成するための下層用塗料(積層塗膜が2層の場合には最下層用塗料、3層以上の場合には最下層用塗料と少なくとも1種の中間層用塗料の2種以上の塗料。以下同様。)として熱硬化型塗料を使用し、上層を形成するための上層用塗料としてイソシアネート硬化型塗料組成物を使用する場合において、前記イソシアネート硬化型塗料組成物としてイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有するものを用いることによって、上層用塗料の流動停止時間が長くなり、上層が硬化して流動性が著しく低下した後における、各層間の界面凹凸(特に、上層とそれに隣接する下層(以下、この下層を「第一隣接層」といい、積層塗膜が2層の場合には最下層であり、3層以上の場合には中間層である。)との間の界面凹凸)の上層への転写量を少なくすることができ、2種類以上の塗料をウェットオンウェットで積層した後に同時に焼付けを実施しても外観品質により高度に優れた積層塗膜が得られることを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the inventors of the present invention, when laminating two or more kinds of paints by wet-on-wet and simultaneously baking them, In the case of three or more lowermost layers, two or more lowermost layers and at least one intermediate layer. The same shall apply hereinafter. In order to form an upper layer, a thermosetting paint is used as a lower layer paint, in the case of three or more layers, two or more kinds of paints of the lowermost layer and at least one intermediate layer paint. When an isocyanate curable coating composition is used as the upper layer coating, the isocyanate curable coating composition contains a flow stop retarder that can be detachably attached to an isocyanate group. For upper layer The flow stoppage time of the material becomes long, the upper layer is cured, and the fluidity is remarkably lowered. Yes, it is the lowest layer in the case of two layers, and it is an intermediate layer in the case of three or more layers.) The amount of transfer to the upper layer) can be reduced, Even when two or more kinds of paints are laminated by wet-on-wet and then baked at the same time, it has been found that a highly excellent laminated coating film can be obtained by appearance quality, and the present invention has been completed.

すなわち、本発明のイソシアネート硬化型塗料組成物は、熱硬化性樹脂、イソシアネート系硬化剤、及びイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有することを特徴とするものである。   That is, the isocyanate-curable coating composition of the present invention contains a thermosetting resin, an isocyanate-based curing agent, and a flow stop retarder that can be detachably bonded to an isocyanate group. Is.

本発明のイソシアネート硬化型塗料組成物において、前記流動停止遅延剤としては、フェノール性水酸基、ラクタム環、エーテル結合、チオール基、尿素結合、カルバメート基、イミノ基、亜硫酸基、ピラゾール環、イミダゾール環、オキシム基、アミノ基、及び活性メチレン基からなる群から選択される少なくとも1種の構造を有する化合物が好ましく、フェノール化合物、ラクタム化合物、エーテル化合物、メルカプタン化合物、尿素化合物、カルバミン酸エステル化合物、イミン化合物、亜硫酸塩、ピラゾール化合物、イミダゾール化合物、オキシム化合物、アミン化合物、及び活性メチレン化合物からなる群から選択される少なくとも1つの化合物がより好ましい。   In the isocyanate curable coating composition of the present invention, the flow stop retarder includes phenolic hydroxyl group, lactam ring, ether bond, thiol group, urea bond, carbamate group, imino group, sulfite group, pyrazole ring, imidazole ring, A compound having at least one structure selected from the group consisting of an oxime group, an amino group, and an active methylene group is preferable. A phenol compound, a lactam compound, an ether compound, a mercaptan compound, a urea compound, a carbamate ester compound, and an imine compound More preferred is at least one compound selected from the group consisting of sulfites, sulfites, pyrazole compounds, imidazole compounds, oxime compounds, amine compounds, and active methylene compounds.

また、本発明のイソシアネート硬化型塗料組成物においては、前記流動停止遅延剤を含む場合の流動停止時間tが前記流動停止遅延剤を含まない場合の流動停止時間tc0に対して1.1倍以上であることが好ましく、また、前記流動停止遅延剤を含む場合の流動停止時間tと前記流動停止遅延剤を含まない場合の流動停止時間tc0との差(t−tc0)が20秒以上であることが好ましい。 In the isocyanate curable coating composition of the present invention, the flow stop time t c when the flow stop retarder is included is 1.1 relative to the flow stop time t c0 when the flow stop retarder is not included. The flow stop time t c when the flow stop retarder is included and the flow stop time t c0 when the flow stop retarder is not included (t c −t c0 ) Is preferably 20 seconds or longer.

本発明の塗装方法は、基材上に形成された少なくとも1層の下層と該下層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として前記本発明のイソシアネート硬化型塗料組成物を準備する準備工程と、
前記基材上に前記下層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料及び前記上層用塗料を同時に硬化させる焼付工程と、
を含むことを特徴とするものである。
The coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an upper layer formed on the lower layer,
Preparing a thermosetting paint as a lower layer paint for forming the lower layer, and preparing the isocyanate curable paint composition of the present invention as an upper layer paint for forming the upper layer;
A forming step of laminating the lower layer coating material and the upper layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film,
A baking step of subjecting the uncured laminated coating film to a baking treatment to simultaneously cure the lower layer coating material and the upper layer coating material,
It is characterized by including.

前記準備工程においては、前記熱硬化性樹脂と前記流動停止遅延剤とを混合した後、得られた混合物に前記イソシアネート系硬化剤を混合して前記イソシアネート硬化型塗料組成物を準備することが好ましい。   In the preparation step, it is preferable to prepare the isocyanate-curable coating composition by mixing the thermosetting resin and the flow stop retarder and then mixing the isocyanate-based curing agent into the obtained mixture. .

なお、本発明において「上層用塗料の流動停止時間」とは、上層用塗料により形成された塗膜を標準昇温速度で加熱した場合に、塗膜が変形しなくなるまでの時間であり、以下の方法により測定されるものである。すなわち、ステンレス鋼板(40mm×50mm×0.5mm)上に焼付け後の膜厚が100μmとなるように上層用塗料を塗布し、室温で10分間放置した後、試料を電場ピックアップ粘度計にセットする。なお、電場ピックアップ粘度計は、電極となる針を試料表面の近傍に保持し、一定時間毎にオン/オフを繰返して直流電圧を印加してマックスウェル応力による試料表面の変形を非接触で測定できる装置である。針−試料表面間距離:100μm、電圧:5V、電圧オン時間:1.0秒間、電圧オフ時間:1.0秒間の測定条件で直流電圧のオンとオフを切替えながら、試料を室温から上層用塗料の標準焼付け温度まで上層用塗料の標準昇温速度で加熱する。この間の試料表面の変形を、レーザー光を照射して試料表面で反射されるレーザー光の強度を検出電圧として0.01秒間の測定ピッチで測定する。図1は、このとき得られる時間−電圧波形の一例である。   In the present invention, the “flow stoppage time of the upper layer coating material” is the time until the coating film is not deformed when the coating film formed by the upper layer coating material is heated at the standard temperature rising rate, It is measured by the method. That is, an upper layer coating material is applied onto a stainless steel plate (40 mm × 50 mm × 0.5 mm) so that the film thickness after baking becomes 100 μm, and left at room temperature for 10 minutes, and then the sample is set in an electric field pickup viscometer. . The electric field pickup viscometer measures the deformation of the sample surface due to Maxwell stress in a non-contact manner by holding a needle as an electrode near the sample surface and applying a DC voltage by repeating on / off at regular intervals. It is a device that can. Needle-sample surface distance: 100 μm, voltage: 5 V, voltage on time: 1.0 sec, voltage off time: 1.0 sec. Heat to the standard baking temperature of the paint at the standard temperature rise rate of the upper layer paint. During this time, the deformation of the sample surface is measured at a measurement pitch of 0.01 seconds using the intensity of the laser beam irradiated with the laser beam and reflected from the sample surface as a detection voltage. FIG. 1 is an example of a time-voltage waveform obtained at this time.

図1に示すように、得られた時間−電圧波形においては、m+1秒間にm個の検出電圧の振れが観察される。検出電圧の振れ幅が大きいほど電場による試料表面の変化が大きいことを示している。これらm個の検出電圧の振れの中で、振れ幅が最大(amax)となる時間をtmaxとし、tmax以降の時間範囲において、振れ幅がamaxの5%まで小さくなった時間を上層用塗料の流動停止時間tcU(tcU>tmax)とする。 As shown in FIG. 1, in the obtained time-voltage waveform, fluctuations of m detection voltages are observed in m + 1 seconds. It shows that the change in the sample surface due to the electric field is larger as the fluctuation width of the detection voltage is larger. Among these m detection voltage fluctuations, the time when the fluctuation width becomes the maximum (a max ) is defined as t max, and the time when the fluctuation width decreases to 5% of the a max in the time range after t max. Let it be the flow stop time t cU (t cU > t max ) of the upper layer coating material .

また、本発明において「塗料の収縮率」とは、硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因するものであり、以下の方法により測定されるものである。すなわち、秤量したステンレス箔(150mm×30mm×0.5mm)に、塗料を熱処理後の膜厚が積層塗膜での目標膜厚となるようにエアスプレー塗装し、塗料の標準焼付け温度で塗膜の焼付けを開始する。その後、前記上層用塗料の流動停止時間tcUまで塗膜を焼付け(焼付け時間:tcU)、試料(ステンレス箔+塗膜)を秤量する。さらに、焼付け開始からの総焼付け時間が塗料の標準焼付け時間tとなるように、塗料の標準焼付け温度で塗膜を焼付け(後段の焼付け時間:t−tcU)、試料(ステンレス箔+塗膜)を秤量する。 In the present invention, the “coating shrinkage” is caused by volatilization of a volatile product of a curing reaction and a residual solvent such as a high-boiling solvent, and is measured by the following method. In other words, weighed stainless steel foil (150mm x 30mm x 0.5mm) by air spray coating so that the film thickness after heat treatment becomes the target film thickness in the laminated coating film, and the coating film at the standard baking temperature of the paint Start baking. Thereafter, the coating film is baked (baking time: t cU ) until the flow stop time t cU of the upper layer coating material, and the sample (stainless steel foil + coating film) is weighed. Furthermore, the coating film is baked at the standard baking temperature of the paint (the latter baking time: t b -t cU ), and the sample (stainless steel foil +) so that the total baking time from the start of baking becomes the standard baking time t b of the paint Weigh the coating film.

上層用塗料の収縮率ω、最下層用塗料の収縮率ω、及び中間層用塗料の収縮率ω(積層塗膜が3層以上の場合)は、下記式(1):
ω=100(Y−Z)/(Z−X) (1)
(式中、ωは硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因する塗料の収縮率、Xはステンレス箔の質量(g)を表し、Yは塗料の標準焼付け温度で前記流動停止時間tcUまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、Zは塗料の標準焼付け温度で塗料の標準焼付け時間まで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、iはU(上層用塗料)、L(最下層用塗料)又はI(中間層用塗料)である。)
により算出される。
The shrinkage rate ω U of the upper layer coating material, the shrinkage rate ω L of the lowermost layer coating material, and the shrinkage rate ω I of the intermediate layer coating material (when there are three or more layers) are expressed by the following formula (1):
ω i = 100 (Y i −Z i ) / (Z i −X) (1)
(Where ω i represents the shrinkage of the paint resulting from volatilization of the volatile product of the curing reaction and the residual solvent such as the high boiling point solvent, X represents the mass (g) of the stainless steel foil, and Y i represents the standard of the paint. This represents the mass (g) of the sample (stainless steel foil + coating film) after baking at the baking temperature up to the flow stop time t cU , and Z i is the sample after baking up to the standard baking time of the paint at the standard baking temperature of the paint. (It represents the mass (g) of (stainless steel foil + coating film), and i is U (upper layer coating material), L (lowermost layer coating material) or I (intermediate layer coating material).)
Is calculated by

また、第一隣接層に用いられる塗料(以下、「第一隣接層用塗料」といい、積層塗膜が2層の場合には最下層用塗料であり、3層以上の場合には中間層用塗料である。)の収縮率ωA1と前記上層用塗料の収縮率ωとの差の絶対値(|Δω|)、並びに、第k−1番目の隣接層に隣接する第k番目の隣接層用塗料の収縮率ωA(k)と前記第k−1番目の隣接層用塗料の収縮率ωA(k−1)との差の絶対値(|Δω|)は、下記式(2−1)及び(2−2):
|Δω|=|ωA1−ω| (2−1)
|Δω|=|ωA(k)−ωA(k−1)| (2−2)
(式中、kは1以上の整数である。)
により算出される。
The paint used for the first adjacent layer (hereinafter referred to as “first adjacent layer paint”) is a paint for the lowermost layer when the laminated coating film is two layers, and an intermediate layer when there are three or more layers. The absolute value (| Δω 1 |) of the difference between the shrinkage rate ω A1 of the paint for the upper layer and the shrinkage rate ω U of the upper layer paint, and the k-th adjacent layer to the k−1th adjacent layer The absolute value (| Δω k |) of the difference between the shrinkage rate ω A (k) of the adjacent layer coating material and the shrinkage rate ω A (k-1) of the k−1th coating material for the adjacent layer is Formulas (2-1) and (2-2):
| Δω 1 | = | ω A1 −ω U | (2-1)
| Δω k | = | ω A (k) −ω A (k−1) | (2-2)
(In the formula, k is an integer of 1 or more.)
Is calculated by

また、本発明の塗装方法によって、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、上層を含めすべての層で熱硬化型塗料が用いられ、各層を同じ加熱温度で同時に硬化させたり、下層から順に硬化を開始するように設計されているため、上層を形成する熱硬化型塗料を加熱処理(焼付け処理)により硬化させる際には、その下層においては熱硬化型塗料の硬化が進行して既に流動性を失った状態となっている。このような積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により生成した揮発性生成物が、残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は上層が十分に流動性を有している間はその流動等により緩和されるが、上層の流動性が硬化により著しく低下した場合には、基材表面や各層間の界面凹凸が上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。   In addition, even when two or more kinds of paints are laminated by wet-on-wet and baked at the same time to cure each layer by the coating method of the present invention, it is not always clear why the surface irregularities are sufficiently suppressed. However, the present inventors infer as follows. That is, in the conventional multilayer coating formed by wet-on-wet, thermosetting paint is used in all layers including the upper layer, and each layer is cured at the same heating temperature at the same time, or curing is started in order from the lower layer. Because it is designed, when the thermosetting paint forming the upper layer is cured by heat treatment (baking process), the lower layer has already lost its fluidity due to the progress of curing of the thermosetting paint. It has become. In each layer of such a laminated coating film, the thermosetting paint is cured by an addition reaction after a condensation reaction or a deblocking reaction of a curing agent, so that volatile products generated by this condensation reaction or deblocking reaction remain. It volatilizes with the solvent to be formed, the laminated coating film shrinks, and irregularities are formed on the coating film surface. The unevenness on the surface of the coating film is alleviated by the flow while the upper layer has sufficient fluidity, but when the fluidity of the upper layer is remarkably lowered by curing, the surface of the substrate or between each layer It is presumed that the unevenness of the interface is transferred to the surface of the upper layer, and the skin and gloss of the laminated coating film deteriorate.

また、硬化剤としてイソシアネート化合物やイソシアネート樹脂を含有する熱硬化型塗料を上層用塗料として用いた場合等においては、基体樹脂中の架橋性官能基と硬化剤中のイソシアネート基との反応性が非常に高く、上層用塗料の硬化速度が速いため、下層が硬化する前に上層が流動性を失うことが多い。この場合、上層が硬化した後に下層の硬化が進行するが、従来のウェットオンウェット塗装に用いられていた下層用塗料は、流動性に乏しく、下層の硬化の進行に伴う収縮により形成された凹凸が十分に緩和されず、基材表面や各層間の界面凹凸が上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。   In addition, when a thermosetting coating containing an isocyanate compound or isocyanate resin as a curing agent is used as an upper layer coating, the reactivity between the crosslinkable functional group in the base resin and the isocyanate group in the curing agent is extremely high. In other words, the upper layer often loses its fluidity before the lower layer is cured because the upper layer paint is fast. In this case, the lower layer cures after the upper layer is cured, but the lower layer coating material used in conventional wet-on-wet coating has poor fluidity, and unevenness formed by shrinkage as the lower layer cures. Is not sufficiently relaxed, and it is surmised that the interfacial irregularities between the substrate surface and each layer are transferred to the upper layer surface, and the skin and gloss of the laminated coating film deteriorate.

そこで、本発明者らは、先ず、上記目的を達成するために、積層塗膜の肌(平滑性)や光沢等の外観品質は上層表面の凹凸が少ないほどよいことに着目した。そして、肌となる凹凸は、スプレー時に基材面上に塗着する塗料量及び乾燥工程(焼付工程も含む)における塗膜の収縮量が面方向に不均一なことに起因し、光沢を左右する凹凸(肌の場合よりも短波長)は乾燥工程における塗膜の収縮量が面方向に不均一なことに起因することを見出した。また、上記二つの原因で形成される凹凸のうち、スプレー時に基材面上に塗着する塗料量が面方向に不均一なことに起因する凹凸は、塗料の微粒化を向上させることによって抑制できるが、塗料の有効利用率である塗着効率の低下を招くので、塗料の微粒化を必要以上に向上させることはコスト等の点で得策でない。このため、肌(平滑性)や光沢等の外観品質を向上させるには、乾燥工程での塗膜の収縮量が面方向に不均一なことに起因する凹凸を減少させることが有利であることを見出した。さらに、本発明者らは、基材上に少なくとも1層の下層を形成する少なくとも1種の塗料及び上層を形成する塗料をウェットオンウェットで積層した後に、同時に焼付けして積層塗膜を形成する場合、上記の凹凸は主として、下層用塗料と上層用塗料をウェットオンウェットで積層したときに形成される各層間の界面凹凸(特に、上層と第一隣接層との間の界面凹凸)が、乾燥工程で上層の流動性が著しく低下した後、各層の収縮によって上層表面に転写されることによって形成され、上層用塗料の流動停止時間後から各塗料の標準焼付け時間終了時までの間における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が小さければ、界面凹凸の上層表面への転写量は小さくなることを見出した。   Accordingly, the present inventors first focused on the fact that the appearance quality such as skin (smoothness) and gloss of the laminated coating film is better as the surface roughness of the upper layer is smaller in order to achieve the above object. And the unevenness that becomes the skin is caused by the amount of paint applied on the substrate surface during spraying and the shrinkage of the coating film in the drying process (including the baking process) being uneven in the surface direction. It was found that the unevenness (wavelength shorter than that in the case of skin) is caused by the amount of shrinkage of the coating film in the drying process being non-uniform in the surface direction. In addition, among the unevenness formed due to the above two causes, unevenness caused by uneven coating amount on the substrate surface during spraying is suppressed by improving the atomization of the paint. However, since the coating efficiency, which is the effective utilization rate of the paint, is reduced, it is not advantageous in terms of cost to improve the atomization of the paint more than necessary. For this reason, in order to improve the appearance quality such as skin (smoothness) and gloss, it is advantageous to reduce unevenness caused by unevenness of the shrinkage amount of the coating film in the drying process in the surface direction. I found. Furthermore, the present inventors laminated at least one kind of coating material forming at least one lower layer and a coating material forming an upper layer on a substrate by wet-on-wet, and then baked simultaneously to form a laminated coating film. In this case, the above unevenness is mainly an interface unevenness between the layers formed when the lower layer paint and the upper layer paint are laminated by wet-on-wet (particularly, the interface unevenness between the upper layer and the first adjacent layer), After the fluidity of the upper layer is significantly reduced in the drying process, each layer is transferred to the surface of the upper layer by contraction of each layer.Each time between the time when the upper layer paint stops flowing and the end of the standard baking time of each paint It has been found that if the absolute value of the difference in shrinkage between the layers (particularly between the upper layer and the first adjacent layer) is small, the amount of transfer to the upper layer surface of the interface irregularities becomes small.

そして、本発明者らは、2種類以上の熱硬化型塗料をウェットオンウェットで積層して同時に焼付け塗装をする際に、下層を形成するための下層用塗料として熱硬化型塗料を使用し、上層を形成するための上層用塗料としてイソシアネート硬化型塗料組成物を使用する場合において、このイソシアネート硬化型塗料組成物としてイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有するものを用いることによって、上層用塗料の流動停止時間が長くなり、上層の流動が停止した後における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が小さくなり、これにより、上層が硬化して流動性が著しく低下した後における各層間の界面凹凸(特に、上層と第一隣接層との間の界面凹凸)の上層への転写量を少なくすることができ、2種類以上の塗料をウェットオンウェットで積層した後に同時に焼付けを実施しても外観品質により高度に優れた積層塗膜が得られるものと推察している。   And when the present inventors laminate two or more kinds of thermosetting paints by wet-on-wet and perform baking coating at the same time, the thermosetting paint is used as a lower layer paint for forming the lower layer, When an isocyanate curable coating composition is used as an upper layer coating material for forming the upper layer, the isocyanate curable coating composition contains a flow stop retarder capable of being detachably bonded to an isocyanate group. By using this, the flow stop time of the upper layer paint becomes longer, and the absolute value of the shrinkage rate difference between each layer (particularly between the upper layer and the first adjacent layer) after the upper layer flow stops is small. Therefore, the amount of transfer to the upper layer of the interfacial irregularities between each layer (particularly, the interfacial irregularities between the upper layer and the first adjacent layer) after the upper layer is cured and the fluidity is remarkably lowered. Can be reduced, and speculated that a highly superior multilayer coatings are obtained two or more kinds of coating materials by appearance quality be carried out baked simultaneously after laminating a wet-on-wet.

さらに、イソシアネート硬化型塗料組成物として、イソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有するものを用いることによって、上層用塗料(イソシアネート硬化型塗料組成物)の流動停止時間が長くなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のイソシアネート硬化型塗料組成物は、基体樹脂中の水酸基等の架橋性官能基と硬化剤中のイソシアネート基との反応性が非常に高いため、従来のイソシアネート硬化型塗料組成物により形成された塗膜においては、加熱処理等により架橋反応が進行し、流動性が徐々に失われ、ある時間で停止する。一方、本発明に用いられるイソシアネート硬化型塗料組成物には、イソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤が配合されており、この流動停止遅延剤が硬化剤中のイソシアネート基と結合して基体樹脂中の水酸基等の架橋性官能基と硬化剤中のイソシアネート基との反応をブロックするため、架橋反応が進行せず、塗膜の流動性が維持されると推察される。そして、このような流動停止遅延剤とイソシアネート基との結合は、塗膜の乾燥工程や焼付工程における加熱処理等によって切断されるため、前記結合が切断された後の塗膜においては、架橋反応が進行し、流動性が徐々に失われ、ある時間で停止すると推察される。すなわち、本発明に用いられるイソシアネート硬化型塗料組成物においては、乾燥工程や焼付工程における加熱処理等によって、基体樹脂中の架橋性官能基と硬化剤中のイソシアネート基との反応とともに、流動停止遅延剤と硬化剤中のイソシアネート基との着脱反応も同時に進行するため、架橋反応が遅延し、流動性が停止するまでの時間(流動停止時間)が長くなると推察される。   Furthermore, the flow of the upper layer coating material (isocyanate curable coating composition) can be obtained by using an isocyanate curable coating composition containing a flow stop retarder that can be detachably bonded to the isocyanate group. The reason why the stop time becomes long is not necessarily clear, but the present inventors infer as follows. That is, the conventional isocyanate curable coating composition is formed from the conventional isocyanate curable coating composition because the reactivity between the crosslinkable functional group such as a hydroxyl group in the base resin and the isocyanate group in the curing agent is very high. In the coated film, the crosslinking reaction proceeds by heat treatment or the like, the fluidity is gradually lost, and it stops at a certain time. On the other hand, the isocyanate-curable coating composition used in the present invention is blended with a flow stop retarder that can be detachably attached to the isocyanate group, and this flow stop retarder is contained in the curing agent. It is assumed that the crosslinkable reaction does not proceed and the fluidity of the coating film is maintained because the reaction with the isocyanate group in the curing agent and the crosslinkable functional group such as a hydroxyl group in the base resin is blocked by bonding with the isocyanate group. Is done. And since the bond between the flow stop retarder and the isocyanate group is cut by a heat treatment or the like in the drying process or baking process of the coating film, in the coating film after the bond is cut, a crosslinking reaction It is presumed that the fluidity gradually disappears and stops at a certain time. That is, in the isocyanate curable coating composition used in the present invention, the flow stop delay is caused along with the reaction between the crosslinkable functional group in the base resin and the isocyanate group in the curing agent by heat treatment in the drying process or baking process. Since the attachment / detachment reaction between the agent and the isocyanate group in the curing agent also proceeds at the same time, it is assumed that the crosslinking reaction is delayed and the time until fluidity stops (flow stoppage time) becomes longer.

本発明によれば、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。   According to the present invention, it is possible to obtain a laminated coating film in which the occurrence of irregularities on the upper layer surface is sufficiently suppressed even when two or more kinds of paints are laminated on a wet-on-wet basis and simultaneously baked to cure each layer. Further, it is possible to obtain a coated body having a high appearance quality such as skin (surface smoothness) and gloss.

上層用塗料の流動停止時間tcUを算出する際に塗膜表面の変形を表す時間−電圧波形である。It is a time-voltage waveform showing a deformation | transformation of the coating-film surface when calculating the flow stop time tcU of the coating material for upper layers.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

<イソシアネート硬化型塗料組成物>
先ず、本発明のイソシアネート硬化型塗料組成物について説明する。本発明のイソシアネート硬化型塗料組成物は、熱硬化性樹脂、イソシアネート系硬化剤、及びイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有するものである。このような流動停止遅延剤を含有するイソシアネート硬化型塗料組成物は、流動停止時間が長くなり、例えば、上層用塗料として使用した場合に、上層の流動が停止した後における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が小さくなり、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。
<Isocyanate curable coating composition>
First, the isocyanate curable coating composition of the present invention will be described. The isocyanate-curable coating composition of the present invention contains a thermosetting resin, an isocyanate-based curing agent, and a flow stop retarder that can be detachably attached to an isocyanate group. The isocyanate curable coating composition containing such a flow stop retarder has a long flow stop time. For example, when used as an upper layer paint, each layer (especially the upper layer) after the upper layer stops flowing is used. The absolute value of the difference in shrinkage ratio between the first layer and the first adjacent layer becomes small, and even if two or more types of paints are laminated on a wet-on-wet and baked simultaneously to cure each layer, irregularities on the surface of the upper layer are generated. A sufficiently suppressed laminated coating film can be obtained, and a coated body with excellent appearance quality such as skin (surface smoothness) and gloss can be obtained.

前記熱硬化性樹脂としては、イソシアネート系硬化剤の作用によって硬化して塗膜を形成することが可能なものであれば特に制限はなく、例えば、水酸基、グリシジル基、カルボキシル基、シラノール基のうちの少なくとも1種の架橋性官能基を含有する、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、エポキシ樹脂、ウレタン樹脂、シリコン含有樹脂等が挙げられる。これらの熱硬化性樹脂は1種を単独で使用しても2種以上を併用してもよい。これらの熱硬化性樹脂のうち、塗膜性能を十分に確保するという観点から、前記架橋性官能基を含有する、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂が好ましい。また、このような熱硬化性樹脂の含有量としては、塗膜性能を十分に確保するという観点から、塗料組成物全体に対して、10〜80質量%が好ましく、20〜70質量%がより好ましい。   The thermosetting resin is not particularly limited as long as it can be cured by the action of an isocyanate curing agent to form a coating film, and examples thereof include a hydroxyl group, a glycidyl group, a carboxyl group, and a silanol group. An acrylic resin, a polyester resin, an alkyd resin, a fluororesin, an epoxy resin, a urethane resin, a silicon-containing resin and the like containing at least one kind of crosslinkable functional group. These thermosetting resins may be used alone or in combination of two or more. Of these thermosetting resins, acrylic resin, polyester resin, and urethane resin containing the crosslinkable functional group are preferable from the viewpoint of sufficiently ensuring the coating film performance. Moreover, as content of such a thermosetting resin, 10-80 mass% is preferable with respect to the whole coating composition from a viewpoint of ensuring sufficient coating-film performance, and 20-70 mass% is more. preferable.

前記イソシアネート系硬化剤としては、前記熱硬化性樹脂の架橋性官能基と反応し得るものであれば特に制限はなく、例えば、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂、ブロックイソシアネート樹脂等が挙げられる。これらのイソシアネート系硬化剤は1種を単独で使用しても2種以上を併用してもよい。これらのイソシアネート系硬化剤のうち、塗膜性能を十分に確保するという観点から、イソシアネート化合物が好ましい。また、このようなイソシアネート系硬化剤の含有量としては、塗膜性能を十分に確保するという観点から、塗料組成物全体に対して、1〜40質量%が好ましく、5〜30質量%がより好ましい。   The isocyanate curing agent is not particularly limited as long as it can react with the crosslinkable functional group of the thermosetting resin, and examples thereof include an isocyanate compound, a blocked isocyanate compound, an isocyanate resin, and a blocked isocyanate resin. . These isocyanate curing agents may be used alone or in combination of two or more. Of these isocyanate curing agents, an isocyanate compound is preferable from the viewpoint of sufficiently ensuring the coating film performance. Moreover, as content of such an isocyanate type hardening | curing agent, 1-40 mass% is preferable with respect to the whole coating composition from a viewpoint of ensuring coating-film performance fully, and 5-30 mass% is more. preferable.

前記流動停止遅延剤としては、イソシアネート基に着脱可能な状態で結合することが可能なもの、すなわち、イソシアネート硬化型塗料組成物の調製時に前記イソシアネート系硬化剤のイソシアネート基と結合し、塗膜の乾燥時や焼付時に加熱処理等によって前記結合が切断されるものであれば特に制限はなく、例えば、フェノール性水酸基、ラクタム環、エーテル結合、チオール基、尿素結合、カルバメート基、イミノ基、亜硫酸基、ピラゾール環、イミダゾール環、オキシム基、アミノ基、及び活性メチレン基からなる群から選択される少なくとも1種のイソシアネート基に着脱可能な構造を有する化合物が挙げられる。このような化合物として、具体的には、フェノール化合物、ラクタム化合物、エーテル化合物、メルカプタン化合物、尿素化合物、カルバミン酸エステル化合物、イミン化合物、亜硫酸塩、ピラゾール化合物、イミダゾール化合物、オキシム化合物、アミン化合物、活性メチレン化合物が挙げられる。これらの化合物は1種を単独で使用しても2種以上を併用してもよい。このような化合物のうち、塗膜性能を十分に確保するという観点から、ラクタム化合物、ピラゾール化合物、イミダゾール化合物、オキシム化合物、活性メチレン化合物が好ましく、ピラゾール化合物、オキシム化合物がより好ましい。また、このような流動停止遅延剤の含有量としては、塗膜性能を十分に確保するという観点から、塗料組成物全体に対して、1〜20質量%が好ましく、2〜10質量%がより好ましい。   The flow stop retarder is one that can be detachably attached to an isocyanate group, that is, it binds to the isocyanate group of the isocyanate curing agent during the preparation of the isocyanate curable coating composition, There is no particular limitation as long as the bond is cleaved by heat treatment during drying or baking, for example, phenolic hydroxyl group, lactam ring, ether bond, thiol group, urea bond, carbamate group, imino group, sulfite group. , A compound having a detachable structure to at least one isocyanate group selected from the group consisting of a pyrazole ring, an imidazole ring, an oxime group, an amino group, and an active methylene group. Specific examples of such compounds include phenol compounds, lactam compounds, ether compounds, mercaptan compounds, urea compounds, carbamate compounds, imine compounds, sulfites, pyrazole compounds, imidazole compounds, oxime compounds, amine compounds, and activities. A methylene compound is mentioned. These compounds may be used individually by 1 type, or may use 2 or more types together. Of these compounds, lactam compounds, pyrazole compounds, imidazole compounds, oxime compounds, and active methylene compounds are preferable, and pyrazole compounds and oxime compounds are more preferable from the viewpoint of sufficiently ensuring the coating film performance. Moreover, as content of such a flow stop retarder, 1-20 mass% is preferable with respect to the whole coating composition from a viewpoint of ensuring sufficient coating-film performance, and 2-10 mass% is more. preferable.

また、本発明のイソシアネート硬化型塗料組成物においては、必要に応じて、従来公知の着色顔料や光輝性顔料等が従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤等の各種添加剤を従来公知の範囲で配合してもよい。   Moreover, in the isocyanate curable coating composition of the present invention, conventionally known color pigments, glitter pigments, and the like may be included in a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.

このような本発明のイソシアネート硬化型塗料組成物においては、前記流動停止遅延剤を含む場合の流動停止時間tが前記流動停止遅延剤を含まない場合の流動停止時間tc0に対して1.1倍以上であることが好ましく、1.15倍以上であることがより好ましく、1.18倍以上であることが特に好ましい。前記流動停止遅延剤を含まない場合の流動停止時間tc0に対する前記流動停止遅延剤を含む場合の流動停止時間tの割合(t/tc0)が前記下限未満になると、例えば、上層用塗料として使用した場合に、上層の流動が停止した後における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が大きくなり、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させた場合に、上層表面の凹凸の発生を十分に抑制することができず、得られる積層塗膜の外観品質が低下する傾向にある。なお、前記流動停止遅延剤を含まない場合の流動停止時間tに対する前記流動停止遅延剤を含む場合の流動停止時間tの割合(t/tc0)の上限としては2倍以下が好ましく、1.5倍以下がより好ましい。 In such an isocyanate curable coating composition of the present invention, the flow stop time t c when the flow stop retarder is included is 1. with respect to the flow stop time t c0 when the flow stop retarder is not included. It is preferably 1 or more times, more preferably 1.15 times or more, and particularly preferably 1.18 times or more. When the ratio (t c / t c0 ) of the flow stop time t c when the flow stop delay agent is included to the flow stop time t c0 when the flow stop delay agent is not included is less than the lower limit, for example, for the upper layer When used as a paint, the absolute value of the difference in shrinkage between each layer (especially between the upper layer and the first adjacent layer) after the flow of the upper layer stops increases, and two or more kinds of paints are wet-on-wet. When the layers are laminated and simultaneously baked to cure each layer, the occurrence of irregularities on the surface of the upper layer cannot be sufficiently suppressed, and the appearance quality of the resulting laminated coating film tends to deteriorate. Incidentally, preferably 2 times or less the upper limit of the ratio of the flow stop time t c when including the flow stop retarder to flow stoppage time t c when not including the flow stop retarder (t c / t c0) 1.5 times or less is more preferable.

また、本発明のイソシアネート硬化型塗料組成物においては、前記流動停止遅延剤を含む場合の流動停止時間tと前記流動停止遅延剤を含まない場合の流動停止時間tc0との差(t−tc0)が20秒以上であることが好ましく、30秒以上であることがより好ましく、40秒以上であることが特に好ましい。t−tc0が前記下限未満になると、例えば、上層用塗料として使用した場合に、上層の流動が停止した後における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が大きくなり、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させた場合に、上層表面の凹凸の発生を十分に抑制することができず、得られる積層塗膜の外観品質が低下する傾向にある。なお、t−tc0の上限としては200秒以下が好ましく、150秒以下がより好ましい。 In the isocyanate-curable coating composition of the present invention, the difference between the flow stop time t c0 with and without flow stopping time t c when including flow stop retarder the flow stop retarder (t c -T c0 ) is preferably 20 seconds or longer, more preferably 30 seconds or longer, and particularly preferably 40 seconds or longer. When t c -t c0 is less than the lower limit, for example, when used as an upper layer paint, the difference in shrinkage between each layer (particularly between the upper layer and the first adjacent layer) after the upper layer stops flowing. The absolute value of becomes large, and when two or more kinds of paints are laminated on wet and wet and simultaneously baked to cure each layer, it is not possible to sufficiently suppress the occurrence of irregularities on the surface of the upper layer, resulting in lamination The appearance quality of the coating film tends to deteriorate. The upper limit of t c -t c0 is preferably 200 seconds or less, and more preferably 150 seconds or less.

さらに、本発明のイソシアネート硬化型塗料組成物においては、流動停止時間t後から標準焼付け時間t終了時までの間の収縮率ωが、0〜40%であることが好ましく、0〜30%であることがより好ましく、0〜20%であることが更に好ましく、0〜10%であることが特に好ましい。これにより、表面に凹凸が少ない塗膜を形成することが可能となり、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。 Furthermore, in the isocyanate curable coating composition of the present invention, the shrinkage ratio ω after the flow stop time t c to the end of the standard baking time t b is preferably 0 to 40%, and 0 to 30 % Is more preferable, 0 to 20% is further preferable, and 0 to 10% is particularly preferable. Thereby, it becomes possible to form a coating film with less unevenness on the surface, and it is possible to obtain a coated body with excellent appearance quality such as skin (surface smoothness) and gloss.

本発明のイソシアネート硬化型塗料組成物において、前記熱硬化性樹脂と前記イソシアネート系硬化剤との組み合わせとしては特に制限はないが、加熱処理による硬化反応において揮発性生成物が生成せず、加熱処理による塗膜の収縮を最小限にすることが可能となるという観点、また、上層用塗料として使用した場合に、上層の流動が停止した後における各層間(特に、上層と第一隣接層との間)の収縮率差の絶対値が小さくなるという観点から、水酸基含有アクリル樹脂とイソシアネート化合物との組み合わせ、水酸基含有アクリル樹脂とイソシアネート樹脂との組み合わせが好ましい。   In the isocyanate curable coating composition of the present invention, the combination of the thermosetting resin and the isocyanate curing agent is not particularly limited, but a volatile product is not generated in the curing reaction by the heat treatment, and the heat treatment is performed. It is possible to minimize shrinkage of the coating film due to, and when used as an upper layer coating, each layer after the flow of the upper layer stops (particularly between the upper layer and the first adjacent layer). From the viewpoint of reducing the absolute value of the difference in shrinkage ratio between (b) and (b), a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound, or a combination of a hydroxyl group-containing acrylic resin and an isocyanate resin is preferable.

また、本発明のイソシアネート硬化型塗料組成物の形態としては、溶剤型、水性、紛体のいずれでもよい。さらに、本発明のイソシアネート硬化型塗料組成物の標準焼付け温度としては特に制限はなく、通常40〜200℃であり、80〜160℃であることが好ましい。また、本発明のイソシアネート硬化型塗料組成物においては、加熱処理による塗膜の収縮を最小限にすることが可能となるという観点から、前記標準焼付け温度における重量減少率が0〜20質量%であることが好ましく、0〜10質量%であることがより好ましい。   Further, the form of the isocyanate curable coating composition of the present invention may be any of solvent type, aqueous type and powder. Furthermore, there is no restriction | limiting in particular as standard baking temperature of the isocyanate curable coating composition of this invention, Usually, it is 40-200 degreeC, and it is preferable that it is 80-160 degreeC. Further, in the isocyanate curable coating composition of the present invention, the weight reduction rate at the standard baking temperature is 0 to 20% by mass from the viewpoint that the shrinkage of the coating film due to heat treatment can be minimized. It is preferable that it is 0 to 10% by mass.

なお、本発明において、塗料の標準焼付け温度とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために焼付け時間等の硬化条件との関係で最も効率よく焼付けできる温度をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準焼付け温度としてカタログ値を採用することができる。また、本発明において、塗料の標準焼付け時間とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために標準焼付け温度等の硬化条件との関係で最も効率よく焼付けできる時間をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準焼付け時間としてカタログ値を採用することができる。さらに、本発明において、塗料の標準昇温速度とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために標準焼付け温度及び標準焼付け時間等の硬化条件との関係で最も効率よく焼付けできる塗膜の昇温速度をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準昇温速度としてカタログ値を採用することができる。   In the present invention, the standard baking temperature of the paint means that the target paint is applied on the base material, subjected to a heat treatment to cure the coating film, and is cured such as a baking time for fixing on the base material. The temperature that can be baked most efficiently in relation to the conditions, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard baking temperature. Further, in the present invention, the standard baking time of the paint refers to a standard baking temperature or the like for coating the target paint on the base material, applying a heat treatment to cure the coating film, and fixing it on the base material. It refers to the time that can be baked most efficiently in relation to the curing conditions, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard baking time. Furthermore, in the present invention, the standard temperature increase rate of the paint refers to the standard baking temperature and the coating temperature for the purpose of coating the target paint on the substrate, applying the heat treatment to cure the coating film, and fixing it on the substrate. The rate of temperature rise of the coating film that can be baked most efficiently in relation to curing conditions such as standard baking time, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard temperature increase rate.

本発明のイソシアネート硬化型塗料組成物の製造方法としては特に制限はないが、前記熱硬化性樹脂と前記流動停止遅延剤とを混合した後、得られた混合物に前記イソシアネート系硬化剤を混合することが好ましい。このような順序で、前記熱硬化性樹脂、前記流動停止遅延剤、及び前記イソシアネート系硬化剤を混合することによって、流動停止時間が長くなる傾向にある。他方、前記熱硬化性樹脂、前記流動停止遅延剤、及び前記イソシアネート系硬化剤を一度に混合すると、流動停止時間が短くなる傾向にある。   Although there is no restriction | limiting in particular as a manufacturing method of the isocyanate curable coating composition of this invention, After mixing the said thermosetting resin and the said flow stop retarder, the said isocyanate type hardening | curing agent is mixed with the obtained mixture. It is preferable. By mixing the thermosetting resin, the flow stopping retarder, and the isocyanate curing agent in this order, the flow stopping time tends to be longer. On the other hand, when the thermosetting resin, the flow stopping retarder, and the isocyanate curing agent are mixed at once, the flow stopping time tends to be shortened.

<塗装方法>
次に、本発明の塗装方法について説明する。本発明の塗装方法は、基材上に形成された少なくとも1層の下層と該下層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として前記本発明のイソシアネート硬化型塗料組成物を準備する準備工程(原料塗料準備工程)と、
前記基材上に前記下層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程(塗装工程)と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料及び前記上層用塗料を同時に硬化させる焼付工程(焼付工程)と、
を含んでいる。
<Coating method>
Next, the coating method of the present invention will be described. The coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an upper layer formed on the lower layer,
A preparation step (raw material paint) for preparing a thermosetting paint as a lower layer paint for forming the lower layer and for preparing the isocyanate curable paint composition of the present invention as an upper layer paint for forming the upper layer Preparation process), and
A forming step (coating step) for laminating the lower layer coating material and the upper layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
A baking process (baking process) in which the uncured laminated coating film is baked to simultaneously cure the lower layer paint and the upper layer paint,
Is included.

(原料塗料準備工程)
本発明の塗装方法においては、先ず、下層を形成するための下層用塗料として熱硬化型塗料、及び、上層を形成するための上層用塗料として前記本発明のイソシアネート硬化型塗料組成物を準備する。なお、積層塗膜が2層の場合には、前記下層は最下層の1層のみであり、下層用塗料としては1種類の最下層用塗料を準備する。一方、積層塗膜が3層以上の場合には、前記下層は最下層と少なくとも1層の中間層の2層以上からなり、下層用塗料としては1種類の最下層用塗料と少なくとも1種類の中間層用塗料の2種以上の塗料を準備する。
(Raw material preparation process)
In the coating method of the present invention, first, a thermosetting paint as a lower layer paint for forming a lower layer and an isocyanate curable paint composition of the present invention as an upper layer paint for forming an upper layer are prepared. . In addition, when a laminated coating film is two layers, the said lower layer is only one layer of the lowest layer, and prepares one kind of paint for the lowest layer as a paint for lower layers. On the other hand, when there are three or more laminated coating films, the lower layer is composed of two or more layers of the lowermost layer and at least one intermediate layer, and as the lower layer coating material, one type of the lowermost layer coating material and at least one type of coating material are used. Prepare two or more kinds of paints for the intermediate layer.

本発明にかかる上層用塗料としては、前記本発明のイソシアネート硬化型塗料組成物を使用する。本発明においては、このイソシアネート硬化型塗料組成物に前記流動停止遅延剤が含まれているため、上層用塗料の流動停止時間が長くなり、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間における、前記第一隣接層用塗料の収縮率と前記上層用塗料の収縮率との差の絶対値が小さくなり(好ましくは6.0%以下、より好ましくは5.0%以下)、また、最下層用塗料の収縮率も小さくなるため、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。 As the upper layer coating material according to the present invention, the isocyanate curable coating composition of the present invention is used. In the present invention, since the flow stop retarder is contained in this isocyanate curable coating composition, the flow stop time of the upper layer paint becomes longer, and after the flow stop time t cU of the upper layer paint, between until the standard baking time t b ends, the absolute value of a difference between the first adjacent layer coating shrinkage and the shrinkage of the layer-coating material is reduced (preferably 6.0% or less, more preferably 5.0% or less), and the shrinkage rate of the paint for the lowermost layer is also small. Even if two or more kinds of paints are laminated by wet-on-wet and simultaneously baked to cure each layer, unevenness on the surface of the upper layer It becomes possible to obtain a multilayer coating film in which the generation is sufficiently suppressed, and a coated body having a high appearance quality such as skin (surface smoothness) and gloss can be obtained.

なお、本発明においては、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間における前記第一隣接層用塗料の収縮率と前記上層用塗料の収縮率との差の絶対値が小さくなるように(好ましくは6.0%以下、より好ましくは5.0%以下)、前記熱硬化性樹脂と前記イソシアネート系硬化剤との組み合わせを適宜選択して前記上層用塗料(前記イソシアネート硬化型塗料組成物)を調製する。このような熱硬化性樹脂とイソシアネート系硬化剤との組合せとしては、水酸基を含有するアクリル樹脂とイソシアネート化合物との組み合わせ、水酸基を含有するアクリル樹脂とイソシアネート樹脂との組み合わせが好ましい。 In the present invention, shrinkage of the layer-coating material and the first adjacent layer coating of shrinkage during the after flow stop time t cU of layer-coating material until the standard baking time t b the end of each paint The combination of the thermosetting resin and the isocyanate-based curing agent is appropriately selected so that the absolute value of the difference between the thermosetting resin and the isocyanate-based curing agent is appropriately selected (preferably 6.0% or less, more preferably 5.0% or less). An upper layer coating material (the isocyanate curable coating composition) is prepared. As a combination of such a thermosetting resin and an isocyanate curing agent, a combination of an acrylic resin containing a hydroxyl group and an isocyanate compound, or a combination of an acrylic resin containing a hydroxyl group and an isocyanate resin is preferable.

さらに、このような上層用塗料(イソシアネート硬化型塗料組成物)としては、自動車用塗料及び塗装で用いられるクリア塗膜(クリア層)を形成するいわゆる「クリア塗料」であることが好ましい。例えば、透明な塗膜を形成可能な、熱硬化性樹脂とイソシアネート系硬化剤と前記流動停止遅延剤と有機溶剤と、必要に応じて紫外線吸収剤等が含有されているものが挙げられる。前記熱硬化性樹脂としては、例えば、水酸基、カルボキシル基、シラノール基、グリシジル基等の架橋性官能基を有する、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、ウレタン樹脂、シリコン含有樹脂等が挙げられ、前記イソシアネート系硬化剤としては、例えば、ポリイソシアネート、ブロックポリイソシアネート等が挙げられる。   Furthermore, the upper layer coating material (isocyanate curable coating composition) is preferably a so-called “clear coating” that forms a clear coating film (clear layer) used in automotive coatings and painting. For example, the thermosetting resin which can form a transparent coating film, an isocyanate type hardening | curing agent, the said flow stop retarder, the organic solvent, and the ultraviolet absorber etc. as needed are mentioned. Examples of the thermosetting resin include acrylic resins, polyester resins, alkyd resins, fluororesins, urethane resins, and silicon-containing resins having a crosslinkable functional group such as a hydroxyl group, a carboxyl group, a silanol group, and a glycidyl group. Examples of the isocyanate curing agent include polyisocyanate and block polyisocyanate.

本発明にかかる下層用塗料としては、熱硬化型塗料を使用する。このような下層用塗料に用いられる熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂及び硬化剤を含むものであればよく、通常の焼付塗装の下層用塗料として使用される熱硬化型塗料が挙げられる。このような下層用熱硬化型塗料の形態は、溶剤型、水性、粉体のいずれでもよい。下層用熱硬化型塗料の標準焼付け温度は、特に限定されるものではなく、通常40〜200℃、好ましくは80〜160℃である。   As the lower layer coating material according to the present invention, a thermosetting coating material is used. As the thermosetting paint used for such a lower layer coating material, any thermosetting resin that can form a coating film and a curing agent may be used, and thermosetting used as a lower layer coating material for ordinary baking coating. Mold paints. The form of the thermosetting paint for the lower layer may be any of solvent type, aqueous type, and powder. The standard baking temperature of the thermosetting paint for the lower layer is not particularly limited, and is usually 40 to 200 ° C, preferably 80 to 160 ° C.

このような下層用塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられるが、これらに限定されるものではない。硬化剤としては、アミノ化合物、アミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂等が挙げられるが、これらに限定されるものではない。また、このような熱硬化性樹脂及び硬化剤は、それぞれ1種を単独で使用しても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film contained in the lower layer coating material include, but are not limited to, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, and a urethane resin. Examples of the curing agent include, but are not limited to, amino compounds, amino resins, isocyanate compounds, blocked isocyanate compounds, isocyanate resins and the like. Moreover, such a thermosetting resin and a hardening | curing agent may each be used individually by 1 type, or may use 2 or more types together.

なお、本発明においては、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間における、前記第一隣接層用塗料の収縮率と前記上層用塗料の収縮率との差の絶対値、並びに、互いに隣接する下層用塗料同士の収縮率の差(中間層用塗料同士の収縮率の差及び最下層用塗料と中間層用塗料との収縮率の差。以下同様。)の絶対値が小さくなるように(好ましくは6.0%以下、より好ましくは5.0%以下)、熱硬化性樹脂と硬化剤との組み合わせを適宜選択して前記下層用塗料を調製する。さらに、本発明においては、上層用塗料の流動停止時間tcU後から最下層用塗料の標準焼付け時間t終了時までの間における、最下層用塗料の収縮率が小さくなるように、最下層用塗料を調製することが好ましい。このような熱硬化性樹脂と硬化剤との組み合わせとしては、アクリル樹脂とメラミン樹脂の組み合わせ、ポリエステル樹脂とメラミン樹脂の組み合わせ、アクリル樹脂と(ブロック)イソシアネート化合物の組み合わせ、ポリエステル樹脂と(ブロック)イソシアネート化合物の組み合わせが好ましい。 In the present invention, the shrinkage ratio of the first adjacent layer paint and the shrinkage of the upper layer paint from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value of the difference from the rate, and the difference in shrinkage between the adjacent lower layer paints (the difference in shrinkage between the intermediate layer paints and the difference in shrinkage between the lowermost layer paint and the intermediate layer paint. The same applies hereinafter.) (Preferably 6.0% or less, more preferably 5.0% or less), and a combination of a thermosetting resin and a curing agent is appropriately selected to form the lower layer coating material. To prepare. Further, in the present invention, during the period from after the flow stop time t cU of layer-coating material until the standard baking time t b the end of the lowermost layer-coating material, as shrinkage of the lowermost layer-coating material is reduced, the bottom layer It is preferable to prepare a coating material for use. Such combinations of thermosetting resin and curing agent include acrylic resin and melamine resin combination, polyester resin and melamine resin combination, acrylic resin and (block) isocyanate compound, polyester resin and (block) isocyanate. A combination of compounds is preferred.

さらに、このような下層用塗料としては、自動車用塗料及び塗装で用いられるベース塗膜(ベース層)を形成するいわゆる「ベース用塗料」や中塗り塗膜(中塗り層)を形成するいわゆる「中塗り塗料」であることが好ましい。例えば、ベース用塗料としては、既知の溶剤系着色ベース塗料や水性着色ベース塗料が好適に用いられる。また、中塗り塗料としては、基体樹脂と架橋剤とからなる熱硬化性樹脂組成物が好適に用いられる。   Furthermore, as such a lower layer coating material, a so-called “base coating material” for forming a base coating film (base layer) used in automobile coating materials and painting, and a so-called “base coating film” (intermediate coating layer) are formed. An “intermediate paint” is preferred. For example, as the base paint, known solvent-based colored base paints and aqueous colored base paints are preferably used. As the intermediate coating, a thermosetting resin composition comprising a base resin and a crosslinking agent is preferably used.

前記水性着色ベース塗料としては、例えば、顔料と、水に溶解又は分散可能な樹脂と、必要に応じて架橋剤と、溶媒である水とを含有するものが挙げられる。水に溶解又は分散可能な樹脂としては、例えば、1分子中にカルボキシル基等の親水基と水酸基等の架橋性官能基とを含有する樹脂であって、具体的には、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。また、架橋剤としては、例えば、疎水性又は親水性のアルキルエーテルメラミン樹脂、ブロックイソシアネート化合物等が挙げられる。一方、溶剤系着色ベース塗料としては、例えば、顔料と、上記同様の樹脂と、必要に応じて架橋剤と、溶剤とを含有するものが挙げられる。   Examples of the water-based coloring base paint include a pigment, a resin that can be dissolved or dispersed in water, a crosslinking agent as necessary, and water as a solvent. Examples of the resin that can be dissolved or dispersed in water include a resin containing a hydrophilic group such as a carboxyl group and a crosslinkable functional group such as a hydroxyl group in one molecule, and specifically, an acrylic resin or a polyester resin. And polyurethane resin. Moreover, as a crosslinking agent, hydrophobic or hydrophilic alkyl ether melamine resin, a block isocyanate compound, etc. are mentioned, for example. On the other hand, examples of the solvent-based coloring base paint include those containing a pigment, a resin similar to the above, and a crosslinking agent and a solvent as necessary.

また、前記中塗り塗料に用いられる基体樹脂としては、例えば、水酸基、グリシジル基、イソシアネート基、カルボキシル基等の架橋性官能基を1分子中に2個以上有する、アクリル樹脂、ポリエステル樹脂、アルキド樹脂等が挙げられ、また、架橋剤としては、例えば、メラミン樹脂、尿素樹脂等のようなアミノ樹脂、ブロックされていてもよいポリイソシアネート化合物、カルボキシル基含有化合物等が挙げられる。   Examples of the base resin used in the intermediate coating material include acrylic resins, polyester resins, and alkyd resins having two or more crosslinkable functional groups such as hydroxyl group, glycidyl group, isocyanate group, and carboxyl group in one molecule. In addition, examples of the crosslinking agent include amino resins such as melamine resins and urea resins, polyisocyanate compounds which may be blocked, carboxyl group-containing compounds, and the like.

さらに、本発明にかかる下層用塗料においては、必要に応じて従来公知の着色顔料や光輝性顔料等が従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤等の各種添加剤を従来公知の範囲で配合してもよい。   Furthermore, in the lower layer coating material according to the present invention, conventionally known color pigments, glitter pigments, and the like may be included in a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.

なお、本発明の原料塗料準備工程においては、前記上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間における前記第一隣接層用塗料(上層に隣接する最下層用塗料(積層塗膜が2層の場合)又は上層に隣接する中間層用塗料(積層塗膜が3層以上の場合))の収縮率と前記上層用塗料の収縮率との差の絶対値が6.0%以下(より好ましくは5.0%以下)となるように、前記上層用塗料及び前記第一隣接層用塗料を選択することが好ましい。これにより、2種類以上の塗料をウェットオンウェットで積層して焼付けて各層を硬化させても上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質により高度に優れた塗装体を得ることができる。 Note that in the raw material paint preparation step of the present invention, adjacent to the first adjacent layer coating (upper layer during the period from after the flow stop time t cU of the layer-coating material until the standard baking time t b the end of each paint The difference between the shrinkage rate of the lowermost layer paint (when the laminated coating is two layers) or the intermediate layer coating material adjacent to the upper layer (when the laminated coating is three or more layers) and the shrinkage rate of the upper layer coating The upper layer coating material and the first adjacent layer coating material are preferably selected so that the absolute value is 6.0% or less (more preferably 5.0% or less). As a result, it is possible to obtain a multilayer coating film in which the occurrence of irregularities on the upper layer surface is sufficiently suppressed even if two or more types of paints are laminated on a wet-on-wet and baked to cure each layer. A highly superior coated body can be obtained due to the appearance quality such as property) and gloss.

また、積層塗膜が3層以上の場合には、前記上層用塗料の流動停止時間tcU後から各下層用塗料の標準焼付け時間t終了時までの間における互いに隣接する下層用塗料同士の収縮率の差の絶対値が6.0%以下(より好ましくは5.0%以下)となるように、下層用塗料を選択することが好ましい。これにより、3種類以上の塗料をウェットオンウェットで積層して焼付けて各層を硬化させても上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質により高度に優れた塗装体を得ることができる。 In the case where there are three or more layers, the lower layer paints adjacent to each other between the flow stop time t cU of the upper layer paint and the end of the standard baking time t b of each lower layer paint are used. It is preferable to select the coating material for the lower layer so that the absolute value of the difference in shrinkage rate is 6.0% or less (more preferably 5.0% or less). As a result, it is possible to obtain a laminated coating film in which the occurrence of irregularities on the upper layer surface is sufficiently suppressed even when three or more types of coatings are laminated and baked by wet-on-wet to cure each layer. A highly superior coated body can be obtained due to the appearance quality such as property) and gloss.

また、このような下層用塗料においては、前記上層用塗料の流動停止時間tcU後から標準焼付け時間t終了時までの間の収縮率ωが、0〜40%であることが好ましく、0〜30%であることがより好ましく、0〜20%であることが更に好ましく、0〜10%であることが特に好ましい。これにより、上層表面の凹凸が少ない積層塗膜を得ることが可能となり、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。このような下層用塗料としては、メラミン硬化型塗料、イソシアネート硬化型塗料が好ましい。 Further, in such a lower layer coating material, it is preferable that the shrinkage rate ω after the flow stop time t cU of the upper layer coating material reaches the end of the standard baking time t b is 0 to 40%. More preferably, it is -30%, It is further more preferable that it is 0-20%, It is especially preferable that it is 0-10%. Thereby, it becomes possible to obtain a laminated coating film with less irregularities on the surface of the upper layer, and it is possible to obtain a coated body with excellent appearance quality such as skin (surface smoothness) and gloss. As such a lower layer coating material, a melamine curable coating material and an isocyanate curable coating material are preferable.

(塗装工程)
次に、本発明の塗装方法においては、前記原料塗料準備工程で準備した少なくとも1種の下層用塗料及び上層用塗料を、基材上にウェットオンウェットで積層して未硬化積層塗膜を形成する。
(Painting process)
Next, in the coating method of the present invention, at least one lower layer coating material and upper layer coating material prepared in the raw material coating material preparation step are laminated on a substrate by wet-on-wet to form an uncured laminated coating film. To do.

本発明にかかる基材としては、特に限定されるものではなく、例えば、鉄、アルミニウム、真鍮、銅、錫、亜鉛、ステンレス鋼、ブリキ、亜鉛メッキ鋼、合金化亜鉛(Zn−Al、Zn−Ni、Zn−Fe等)メッキ鋼等の金属材料、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂等の樹脂や各種のFRP等のプラスチック材料、ガラス、セメント、コンクリート等の無機材料、木材、繊維材料(紙、布等)、発泡体等を挙げることができる。なかでも、金属材料及びプラスチック材料が好ましく、金属材料が特に好ましい。特に、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面には、予め電着塗装、又は電着塗装と中塗り塗装等の処理が施されていてもよい。   The substrate according to the present invention is not particularly limited. For example, iron, aluminum, brass, copper, tin, zinc, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn-Al, Zn- Ni, Zn-Fe, etc.) Metal materials such as plated steel, polyethylene resin, polypropylene resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, etc. Examples thereof include plastic materials such as resins and various FRPs, inorganic materials such as glass, cement, and concrete, wood, fiber materials (paper, cloth, etc.), and foams. Of these, metal materials and plastic materials are preferable, and metal materials are particularly preferable. In particular, the present invention is suitably applied to automotive steel sheets having high required characteristics for appearance quality. The surface of these base materials may be previously subjected to treatment such as electrodeposition coating or electrodeposition coating and intermediate coating.

本発明にかかる塗装工程においては、先ず、基材上に最下層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の最下層を形成する。次いで、この未硬化の最下層の上に、積層塗膜が2層の場合には上層用塗料(本発明のイソシアネート硬化型塗料組成物)を塗布し、積層塗膜が3層以上の場合には中間層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の上層又は中間層を形成する。この中間層は1層のみ形成しても2層以上形成してもよい。次に、積層塗膜が3層以上の場合には、この未硬化の中間層上に上層用塗料(本発明のイソシアネート硬化型塗料組成物)を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の上層を形成する。各塗料の塗布方法としては、エアスプレー塗装、エアー静電スプレー塗装、回転霧化式静電塗装等の従来公知の方法が挙げられる。   In the coating process according to the present invention, first, a lowermost layer coating is applied on a substrate, and if necessary, a solvent or the like is evaporated by drying or the like to form an uncured lowermost layer. Next, on the uncured lowermost layer, when the laminated coating film has two layers, the upper layer coating material (isocyanate curable coating composition of the present invention) is applied. When the laminated coating film has three or more layers, Applies an intermediate layer coating and, if necessary, evaporates the solvent by drying or the like to form an uncured upper layer or intermediate layer. This intermediate layer may be formed of only one layer or two or more layers. Next, when there are three or more laminated coating films, an upper layer coating material (isocyanate curable coating composition of the present invention) is applied onto the uncured intermediate layer, and a solvent or the like by drying or the like as necessary. Is evaporated to form an uncured upper layer. Examples of methods for applying each paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

なお、最下層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。最下層の膜厚が前記下限未満になると、均一な最下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると、積層された塗膜に含まれる溶媒等を多く吸収する傾向にあるとともに、最下層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   In addition, although the film thickness of a lowermost layer can be suitably set with a desired use, it is preferable that it is 5-50 micrometers by the film thickness after heat processing, for example, and it is more preferable that it is 10-40 micrometers. When the film thickness of the lowermost layer is less than the lower limit, it tends to be difficult to obtain a uniform film of the lowermost layer. On the other hand, when the upper limit is exceeded, the solvent tends to absorb a lot of solvents and the like contained in the laminated film. In addition, volatilization of the solvent contained in the lowermost layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

また、中間層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。中間層の膜厚が前記下限未満になると、均一な中間層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると、積層された塗膜に含まれる溶媒等を多く吸収する傾向にあるとともに、中間層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   Moreover, although the film thickness of an intermediate | middle layer can be suitably set with a desired use, it is preferable that it is 5-50 micrometers by the film thickness after heat processing, for example, and it is more preferable that it is 10-40 micrometers. When the film thickness of the intermediate layer is less than the lower limit, it tends to be difficult to obtain a uniform intermediate film. On the other hand, when the upper limit is exceeded, the solvent tends to absorb a large amount of the solvent contained in the laminated film. In addition, volatilization of the solvent contained in the intermediate layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

さらに、上層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。上層の膜厚が前記下限未満になると、流動性が不十分であり、積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると、流動性が過度に大きくなり、鉛直方向に塗装する場合にはタレ等の欠陥が発生する傾向にある。   Furthermore, the film thickness of the upper layer can be appropriately set depending on the desired application. For example, the film thickness after the heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. When the film thickness of the upper layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate. On the other hand, when the upper limit is exceeded, the fluidity becomes excessively large, and the vertical direction When coating on the surface, defects such as sagging tend to occur.

(焼付工程)
次に、本発明の塗装方法においては、前記塗装工程において得られた未硬化積層塗膜に焼付け処理(加熱処理)を施して前記下層用塗料及び前記上層用塗料を同時に硬化させる。本発明の塗装方法において、前記加熱処理は、少なくとも上層が硬化する温度以上、例えば、[前記上層用塗料の標準焼付け温度−20℃]以上の温度での加熱処理を含んでいることが好ましい。また、加熱時間は、前記上層用塗料の標準焼付け時間tbUの50%以上150%以下であることが好ましい。
(Baking process)
Next, in the coating method of the present invention, the uncured laminated coating film obtained in the coating step is subjected to a baking treatment (heat treatment) to simultaneously cure the lower layer coating material and the upper layer coating material. In the coating method of the present invention, it is preferable that the heat treatment includes a heat treatment at least at a temperature equal to or higher than a temperature at which the upper layer is cured, for example, [standard baking temperature of the upper layer paint −20 ° C.]. The heating time is preferably 50% or more and 150% or less of the standard baking time tbU of the upper layer coating material .

また、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化状態の塗膜を安定させるために、前記焼付け処理(加熱処理)前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。   Moreover, in the coating method of this invention, in order to stabilize the uncured coating film laminated | stacked by wet-on-wet, it is preferable to make it stand at room temperature (setting) before the said baking process (heat processing). The setting time is usually set to 1 to 20 minutes.

さらに、本発明において、より高級な外観を有する塗装体を得るためには、前記塗装方法により得られた塗装体の前記上層の上に更に1種以上の塗料を塗布して加熱処理を施し、表面層を形成することが好ましい。このような表面層用塗料としては、水酸基、グリシジル基、カルボキシル基等の架橋性官能基を有する、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、ウレタン樹脂、シリコン含有樹脂等の熱硬化性樹脂と、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂、ブロックイソシアネート樹脂、アミノ化合物、メラミン樹脂等の硬化剤とを含有する熱硬化型塗料が挙げられる。また、このような表面層用塗料は、加熱処理による硬化反応において、実質的に揮発性生成物を生成しない塗料であることが好ましい。このような表面層用塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装等の従来公知の方法が挙げられる。   Furthermore, in the present invention, in order to obtain a coated body having a higher-grade appearance, one or more kinds of paints are further applied on the upper layer of the coated body obtained by the coating method, and heat treatment is performed. It is preferable to form a surface layer. Such surface layer coating materials include thermosetting resins such as acrylic resins, polyester resins, alkyd resins, fluororesins, urethane resins, and silicon-containing resins having crosslinkable functional groups such as hydroxyl groups, glycidyl groups, and carboxyl groups. And a thermosetting paint containing a curing agent such as an isocyanate compound, a blocked isocyanate compound, an isocyanate resin, a blocked isocyanate resin, an amino compound, or a melamine resin. Such a surface layer coating material is preferably a coating material that does not substantially generate a volatile product in a curing reaction by heat treatment. Examples of the method for applying the surface layer coating material include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

このように本発明の塗装方法により製造された塗装体は、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも十分に少なく、外観品質が高度に優れている。また、基材上に下層を形成する塗料及び上層を形成する塗料をウェットオンウェットで積層した後に、同時に焼付けして積層塗膜を形成することにより、大幅なエネルギー削減、コスト低減及び工程短縮を実現することができる。さらに、主溶媒として水を用いた水性塗料を採用することにより、揮発性有機化合物(VOC)の排出を削減することができる。このような塗装体は、特に乗用車、トラック、バス、オートバイ等の自動車用車体やその部品として有用である。   Thus, the coating body manufactured by the coating method of the present invention has sufficiently less irregularities on the surface of the multilayer coating film than the conventional multilayer coating film manufactured by wet-on-wet, and the appearance quality is highly superior. In addition, by laminating the paint for forming the lower layer and the paint for forming the upper layer on the base material by wet-on-wet, and simultaneously baking to form a laminated coating film, significant energy reduction, cost reduction and process shortening are achieved. Can be realized. Furthermore, by adopting an aqueous paint using water as the main solvent, emission of volatile organic compounds (VOC) can be reduced. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、上層用塗料の流動停止時間tcU、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の各塗料の収縮率、及び各塗料の収縮率差の絶対値の算出は以下の方法により行なった。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. It should be noted that the upper layer paint flow stop time t cU , the upper layer paint flow stop time t cU and the end of the standard baking time t b of each paint, and the difference in contraction rate of each paint. The absolute value of was calculated by the following method.

<上層用塗料の流動停止時間tcUの算出>
ステンレス鋼板(40mm×50mm×0.5mm)上に焼付け後の膜厚が100μmとなるように上層用塗料をバーコータを用いて塗布し、室温で10分間放置した後、試料を電場ピックアップ粘度計(京都電子工業(株)製、型番RM−01T)にセットした。針−試料表面間距離:100μm、電圧:5V、電圧オン時間:1.0秒間、電圧オフ時間:1.0秒間の測定条件で直流電圧のオンとオフを切替えながら、試料を室温から上層用塗料の標準焼付け温度(140℃)まで上層用塗料の標準昇温速度(20℃/min)で加熱した。この間の試料表面の変形を、レーザー光を照射して試料表面で反射されるレーザー光の強度を検出電圧として0.01秒間の測定ピッチで測定した。図1は、このとき得られる時間−電圧波形の一例である。
<Calculation of Flow Stop Time t cU of Upper Layer Paint>
The upper layer paint was applied to a stainless steel plate (40 mm × 50 mm × 0.5 mm) using a bar coater so that the film thickness after baking was 100 μm, and allowed to stand at room temperature for 10 minutes. It was set in Kyoto Electronics Industry Co., Ltd. model number RM-01T. Needle-sample surface distance: 100 μm, voltage: 5 V, voltage on time: 1.0 sec, voltage off time: 1.0 sec. It heated at the standard temperature increase rate (20 degreeC / min) of the upper layer coating material to the standard baking temperature (140 degreeC) of the paint. During this time, the deformation of the sample surface was measured at a measurement pitch of 0.01 seconds using the intensity of the laser beam irradiated with the laser beam and reflected from the sample surface as a detection voltage. FIG. 1 is an example of a time-voltage waveform obtained at this time.

図1に示すように、得られた時間−電圧波形においては、m+1秒間にm個の検出電圧の振れが観察される。これらm個の検出電圧の振れの中で、振れ幅が最大(amax)となる時間をtmaxとし、tmax以降の時間範囲において、振れ幅がamaxの5%まで小さくなった時間を上層用塗料の流動停止時間tcU(tcU>tmax)とした。 As shown in FIG. 1, in the obtained time-voltage waveform, fluctuations of m detection voltages are observed in m + 1 seconds. Among these m detection voltage fluctuations, the time when the fluctuation width becomes the maximum (a max ) is defined as t max, and the time when the fluctuation width decreases to 5% of the a max in the time range after t max. The flow stop time t cU (t cU > t max ) of the upper layer coating material was used.

<各塗料の収縮率、収縮率差及びその和の算出>
秤量したステンレス箔(150mm×30mm×0.5mm)に、上層用塗料及び下層用塗料(積層塗膜が2層の場合には最下層用塗料、3層以上の場合には最下層用塗料と各中間層用塗料の2種以上の塗料)をそれぞれ熱処理後の膜厚が積層塗膜での目標膜厚となるようにエアスプレー塗装し、標準焼付け温度(140℃)で塗膜の焼付けを開始した。その後、前記上層用塗料の流動停止時間tcUまで塗膜を焼付け(焼付け時間:tcU)、試料(ステンレス箔+塗膜)を秤量した。さらに、焼付け開始からの総焼付け時間が塗料の標準焼付け時間t(30分)となるように、塗料の標準焼付け温度(140℃)で塗膜を焼付け(後段の焼付け時間:t−tcU)、試料(ステンレス箔+塗膜)を秤量した。
<Calculation of shrinkage rate, shrinkage rate difference and sum of paints>
To the weighed stainless steel foil (150 mm × 30 mm × 0.5 mm), the upper layer coating material and the lower layer coating material (when the laminated coating film is two layers, the lower layer coating material, when there are three or more layers, the lower layer coating material Air spray coating is applied so that the film thickness after heat treatment is equal to the target film thickness of the multilayer coating film, and the coating film is baked at the standard baking temperature (140 ° C). Started. Thereafter, the coating film was baked (baking time: t cU ) until the flow stop time t cU of the upper layer coating material, and the sample (stainless steel foil + coating film) was weighed. Further, the coating film is baked at the standard baking temperature (140 ° C.) of the paint so that the total baking time from the start of baking becomes the standard baking time t b (30 minutes) of the paint (the baking time at the subsequent stage: t b -t cU ) and a sample (stainless steel foil + coating film) were weighed.

上層用塗料、中間層用塗料及び最下層用塗料の収縮率ω、ω及びωは、下記式(1):
ω=100(Y−Z)/(Z−X) (1)
(式中、ωは硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因する塗料の収縮率、Xはステンレス箔の質量(g)を表し、Yは塗料の標準焼付け温度で前記流動停止時間tcUまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、Zは塗料の標準焼付け温度で塗料の標準焼付け時間tまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、iはU(上層用塗料)、I(中間層用塗料)又はL(最下層用塗料)である。)
により算出した。
The shrinkage rates ω U , ω I and ω L of the upper layer coating material, the intermediate layer coating material and the lowermost layer coating material are expressed by the following formula (1):
ω i = 100 (Y i −Z i ) / (Z i −X) (1)
(Where ω i represents the shrinkage of the paint resulting from volatilization of the volatile product of the curing reaction and the residual solvent such as the high boiling point solvent, X represents the mass (g) of the stainless steel foil, and Y i represents the standard of the paint. It represents the mass (g) of the sample (stainless steel foil + coating film) after baking at the baking temperature up to the flow stop time t cU , and Z i is after baking to the standard baking time t b of the paint at the standard baking temperature of the paint. (I) is U (upper layer coating material), I (intermediate layer coating material), or L (lowermost layer coating material).
Calculated by

また、上層に隣接する第一隣接層用塗料の収縮率ωA1と上層用塗料の収縮率ωとの差の絶対値(|Δω|)、及び前記第一隣接層に隣接する第二隣接層用塗料の収縮率ωA2と前記第一隣接層用塗料の収縮率ωA1との差の絶対値(|Δω|)は、下記式(2−1)及び(2−2):
|Δω|=|ωA1−ω| (2−1)
|Δω|=|ωA2−ωA2| (2−2)
により算出した(3層の場合には|Δω|及び|Δω|を算出。2層の場合には|Δω|のみを算出。)。
In addition, the absolute value (| Δω 1 |) of the difference between the shrinkage rate ω A1 of the first adjacent layer paint adjacent to the upper layer and the shrinkage rate ω U of the upper layer paint, and the second adjacent to the first adjacent layer. The absolute value (| Δω 2 |) of the difference between the shrinkage rate ω A2 of the adjacent layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material is expressed by the following equations (2-1) and (2-2):
| Δω 1 | = | ω A1 −ω U | (2-1)
| Δω 2 | = | ω A2 −ω A2 | (2-2)
(In the case of three layers, | Δω 1 | and | Δω 2 | are calculated. In the case of two layers, only | Δω 1 | is calculated.)

(合成例1)溶剤型クリア用アクリル樹脂R−1の調製
まず、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂製造用反応容器に、ソルベッソ100を260質量部仕込み、撹拌しながら130℃に昇温した。
(Synthesis Example 1) Preparation of Solvent-type Clear Acrylic Resin R-1 First, Solvesso 100 was added to a normal acrylic resin production reaction vessel equipped with a stirrer, thermometer, dropping funnel, reflux condenser, nitrogen inlet tube, and the like. Was heated to 130 ° C. while stirring.

次に、この反応容器に、メタクリル酸ブチル162.5質量部、アクリル酸4−ヒドロキシブチル149.5質量部、スチレン78質量部、アクリル酸イソボルニル260質量部、重合開始剤(日油社製、「パーキュアO」)52質量部の混合物を3時間かけて撹拌しながら滴下した。滴下終了後、130℃で1時間撹拌を継続して反応させた。その後、パーキュアOを13質量部添加し、さらに、130℃で2時間撹拌を継続して反応させた後、酢酸ブチル75質量部を添加し、室温まで冷却し、水酸基価90、不揮発分65質量%のアクリル樹脂R−1を得た。   Next, in this reaction vessel, 162.5 parts by mass of butyl methacrylate, 149.5 parts by mass of 4-hydroxybutyl acrylate, 78 parts by mass of styrene, 260 parts by mass of isobornyl acrylate, a polymerization initiator (manufactured by NOF Corporation, "Percure O") 52 parts by mass of the mixture was added dropwise with stirring over 3 hours. After completion of the dropwise addition, stirring was continued at 130 ° C. for 1 hour for reaction. Thereafter, 13 parts by mass of Percure O was added, and the mixture was further reacted by stirring at 130 ° C. for 2 hours. Then, 75 parts by mass of butyl acetate was added and cooled to room temperature, with a hydroxyl value of 90 and a nonvolatile content of 65 parts by mass. % Acrylic resin R-1 was obtained.

(合成例2)水性中塗り用アクリルエマルションR−2の調製
まず、アクリル酸2−エチルヘキシル31.5質量部、メタクリル酸ブチル78.8質量部、スチレン52.9質量部、アクリル酸4−ヒドロキシブチル72.5質量部、アクリル酸16.4質量部、メタクリル酸メチル63.0質量部、n−ドデシルメルカプタン3.2質量部、イオン交換水119質量部及びラテムル(PD−104)17.5質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis example 2) Preparation of acrylic emulsion R-2 for aqueous intermediate coating First, 31.5 parts by mass of 2-ethylhexyl acrylate, 78.8 parts by mass of butyl methacrylate, 52.9 parts by mass of styrene, 4-hydroxy acrylate 72.5 parts by weight of butyl, 16.4 parts by weight of acrylic acid, 63.0 parts by weight of methyl methacrylate, 3.2 parts by weight of n-dodecyl mercaptan, 119 parts by weight of ion-exchanged water, and lathemul (PD-104) 17.5 Mass parts were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion.

次に、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂エマルション製造用反応容器に、イオン交換水280質量部、ラテムルPD−104(花王ケミカル製)3.5質量部及びAPS水溶液(重合開始剤:過硫酸アンモニウム、APS(Aldrich製)0.7質量部と水7質量部を撹拌混合したもの)を仕込み、撹拌しながら80℃に昇温した。次いで、この反応容器に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分保持した。その後、残りのモノマープレエマルションを上記反応容器中に3時間かけて撹拌しながら滴下した。滴下終了後、さらに、80℃で1時間撹拌を継続して反応させた。その後、イオン交換水322質量部を添加し、室温まで冷却した。冷却後、50質量%ジメチルエタノールアミン水溶液40.5質量部を添加し、10分撹拌して、水酸基価86、不揮発分29質量%のアクリルエマルションR−2を得た。   Next, 280 parts by mass of ion-exchanged water, Latemul PD-104 (manufactured by Kao Chemical Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen introduction tube and the like. 3.5 parts by mass and an APS aqueous solution (polymerization initiator: ammonium persulfate, 0.7 part by mass of APS (manufactured by Aldrich) and 7 parts by mass of water) were charged and heated to 80 ° C. while stirring. Next, 5% by mass of the monomer pre-emulsion was added to the reaction vessel and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was dropped into the reaction vessel with stirring over 3 hours. After completion of the dropwise addition, the mixture was further reacted by stirring at 80 ° C. for 1 hour. Thereafter, 322 parts by mass of ion-exchanged water was added and cooled to room temperature. After cooling, 40.5 parts by mass of a 50 mass% dimethylethanolamine aqueous solution was added and stirred for 10 minutes to obtain an acrylic emulsion R-2 having a hydroxyl value of 86 and a nonvolatile content of 29 mass%.

(合成例3)水性ベース用アクリルエマルションR−3の調製
まず、アクリル酸2−エチルヘキシル31.5質量部、メタクリル酸ブチル78.8質量部、アクリル酸ブチル37.8質量部、メタクリル酸2−ヒドロキシエチル63.0質量部、アクリル酸16.4質量部、スチレン87.6質量部、n−ドデシルメルカプタン3.2質量部、イオン交換水119質量部及びラテムル(PD−104)17.5質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis example 3) Preparation of acrylic emulsion R-3 for aqueous base First, 31.5 parts by mass of 2-ethylhexyl acrylate, 78.8 parts by mass of butyl methacrylate, 37.8 parts by mass of butyl acrylate, 2-methacrylic acid 2- 63.0 parts by mass of hydroxyethyl, 16.4 parts by mass of acrylic acid, 87.6 parts by mass of styrene, 3.2 parts by mass of n-dodecyl mercaptan, 119 parts by mass of ion-exchanged water, and 17.5 parts of latem (PD-104) The parts were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion.

次に、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂エマルション製造用反応容器に、イオン交換水280質量部、ラテムルPD−104(花王ケミカル製)3.5質量部及びAPS水溶液(重合開始剤:過硫酸アンモニウム、APS(Aldrich製)0.7質量部と水7質量部を撹拌混合したもの)を仕込み、撹拌しながら80℃に昇温した。次いで、この反応容器に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分保持した。その後、残りのモノマープレエマルションを上記反応容器中に3時間かけて撹拌しながら滴下した。滴下終了後、さらに、80℃で1時間撹拌を継続して反応させた。その後、イオン交換水322質量部を添加し、室温まで冷却した。冷却後、50質量%ジメチルエタノールアミン水溶液40.5質量部を添加し、10分撹拌して、水酸基価86、不揮発分29質量%のアクリルエマルションR−3を得た。   Next, 280 parts by mass of ion-exchanged water, Latemul PD-104 (manufactured by Kao Chemical Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen introduction tube and the like. 3.5 parts by mass and an APS aqueous solution (polymerization initiator: ammonium persulfate, 0.7 part by mass of APS (manufactured by Aldrich) and 7 parts by mass of water) were charged and heated to 80 ° C. while stirring. Next, 5% by mass of the monomer pre-emulsion was added to the reaction vessel and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was dropped into the reaction vessel with stirring over 3 hours. After completion of the dropwise addition, the mixture was further reacted by stirring at 80 ° C. for 1 hour. Thereafter, 322 parts by mass of ion-exchanged water was added and cooled to room temperature. After cooling, 40.5 parts by mass of a 50 mass% dimethylethanolamine aqueous solution was added and stirred for 10 minutes to obtain an acrylic emulsion R-3 having a hydroxyl value of 86 and a nonvolatile content of 29 mass%.

(調製例1)溶剤型クリア塗料C−1の調製
容器に、熱硬化性樹脂として合成例1で得た溶剤型クリア用アクリル樹脂R−1を759.3質量部、流動停止遅延剤として3,5−ジメチルピラゾールを46質量部、酢酸ブチル197.4質量部、チヌビン123(BASF社製)9.9質量部、チヌビン384−2(BASF社製)9.9質量部を仕込んで撹拌した後、得られた混合物に撹拌しながらBYK−370(BYK−Chmie製)2.8質量部、BYK−306(BYK−Chmie製)5.1質量部、BYK−392(BYK−Chmie製)9.5質量部、ディスパロンNSH8430(楠本化成)4.9質量部、ディスパロンOX883(楠本化成製)1.2質量部、イソシアネート系硬化剤としてポリイソシアネート(旭化成ケミカル社製、「デュラネートTPA−100」)175質量部を添加して撹拌し、イソシアネート硬化型の溶剤型クリア塗料C−1を得た。この溶剤型クリア塗料C−1の流動停止時間tcUは370秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは4.0%であった。
(Preparation example 1) Preparation of solvent-type clear paint C-1 In a container, 759.3 parts by mass of solvent-type clear acrylic resin R-1 obtained in Synthesis Example 1 as a thermosetting resin, 3 as a flow stop retarder , 5-dimethylpyrazole, 46 parts by mass, 197.4 parts by mass of butyl acetate, 9.9 parts by mass of Tinuvin 123 (manufactured by BASF), and 9.9 parts by mass of Tinuvin 384-2 (manufactured by BASF) were stirred. Then, BYK-370 (manufactured by BYK-Chmie), 2.8 parts by mass, BYK-306 (manufactured by BYK-Chmie), 5.1 parts by mass, and BYK-392 (manufactured by BYK-Chmie) while stirring the resulting mixture. 9 .5 parts by mass, Disparon NSH8430 (Tsubakimoto Kasei) 4.9 parts by mass, Disparon OX883 (Tsubakimoto Kasei) 1.2 parts by weight, Polyisocyanate (isocyanate-based curing agent) 175 parts by mass of “Duranate TPA-100” manufactured by Asahi Kasei Chemical Co., Ltd. was added and stirred to obtain an isocyanate-curing solvent-type clear paint C-1. The solvent-clear coating C-1 of the flow stop time t cU is 370 seconds, shrinkage omega U between until the standard baking time t bU ends after flow stop time t cU was 4.0% .

(調製例2)溶剤型クリア塗料C−2の調製
流動停止遅延剤として2−ブタノンオキシム41質量部を用いた以外は調製例1と同様にして、イソシアネート硬化型の溶剤型クリア塗料C−2を得た。この溶剤型クリア塗料C−2の流動停止時間tcUは420秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは3.5%であった。
(Preparation Example 2) Preparation of solvent-type clear paint C-2 An isocyanate-curable solvent-type clear paint C-2 was prepared in the same manner as Preparation Example 1 except that 41 parts by mass of 2-butanone oxime was used as a flow stop retarder. Got. The solvent-clear coating C-2 of the flow stop time t cU is 420 seconds, shrinkage omega U between until the standard baking time t bU ends after flow stop time t cU was 3.5% .

(調製例3)溶剤型クリア塗料C−3の調製
流動停止遅延剤を用いなかった以外は調製例1と同様にして、イソシアネート硬化型の溶剤型クリア塗料C−3を得た。この溶剤型クリア塗料C−3の流動停止時間tcUは310秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは0.9%であった。
(Preparation example 3) Preparation of solvent-type clear paint C-3 An isocyanate-curing solvent-type clear paint C-3 was obtained in the same manner as in Preparation Example 1 except that the flow stop retarder was not used. The solvent-clear coating C-3 of the flow stop time t cU is 310 seconds, shrinkage omega U between until the standard baking time t bU ends after flow stop time t cU was 0.9% .

(調製例4)着色顔料ペーストの調製
容器に、イオン交換水450質量部、湿潤分散剤(Byk−Chemie社製、「Disperbyk−180」)50質量部、ルチル型酸化チタン(石原産業社製、「CR−90」)495質量部、カーボンブラック(三菱化学社製、「MA−100」)5質量部を仕込み、10分間予備混合した後、仕込み体積量と同じ体積量のガラスビーズ(粒径1.6mm)を投入し、卓上サンドミルで1時間分散した。グラインドゲージによる分散終了時の粒度は5μm以下であった。
(Preparation Example 4) Preparation of Colored Pigment Paste In a container, 450 parts by mass of ion-exchange water, 50 parts by mass of a wetting and dispersing agent (Byk-Chemie, “Disperbyk-180”), rutile titanium oxide (Ishihara Sangyo Co., Ltd., "CR-90") 495 parts by mass, carbon black (manufactured by Mitsubishi Chemical Co., Ltd., "MA-100") 5 parts by mass, and after premixing for 10 minutes, glass beads having the same volume as the charged volume (particle size 1.6 mm), and dispersed for 1 hour with a desktop sand mill. The particle size at the end of dispersion by a grind gauge was 5 μm or less.

(調製例5)水性中塗り塗料P−1の調製
容器に、合成例2で得た水性中塗り用アクリルエマルションR−2を185.7質量部仕込み、これに、撹拌しながらメチル化メラミン樹脂(オルネクスジャパン社製、「サイメル325」)30.0質量部、イオン交換水32質量部を加えて5分間攪拌した。さらに、アルカリ増粘剤(BASF社製、「Viscalex HV30」)3.2質量部、ジメチルエタノールアミン0.8質量部、BYK−346(BYK−Chmie製)2.5質量部、調製例4で得た着色顔料ペースト123.1質量部を加えて、不揮発分39.3質量%の水性中塗り塗料P−1を得た。この水性中塗り塗料P−1の収縮率ωは、流動停止時間tcUが310秒の場合には6.0%であり、tcUが370秒の場合には5.4%であり、tcUが420秒の場合には4.8%であった。
(Preparation example 5) Preparation of aqueous intermediate coating material P-1 A container is charged with 185.7 parts by mass of the acrylic emulsion R-2 for aqueous intermediate coating obtained in Synthesis Example 2, and this is a methylated melamine resin while stirring. (Ornex Japan, "Cymel 325") 30.0 parts by mass and 32 parts by mass of ion-exchanged water were added and stirred for 5 minutes. Furthermore, alkali thickener (BASF Corporation, “Viscalex HV30”) 3.2 parts by mass, dimethylethanolamine 0.8 parts by mass, BYK-346 (byKy-Chmie) 2.5 parts by mass, Preparation Example 4 123.1 parts by mass of the obtained colored pigment paste was added to obtain an aqueous intermediate coating material P-1 having a nonvolatile content of 39.3% by mass. The shrinkage ratio ω L of the waterborne intermediate coating P-1 is 6.0% when the flow stop time t cU is 310 seconds, and 5.4% when the t cU is 370 seconds, When t cU was 420 seconds, it was 4.8%.

(調製例6)水性ベース塗料B−1の調製
容器に、合成例3で得たアクリルエマルションR−3を69.6質量部仕込み、これに、撹拌しながらメチル化メラミン樹脂(オルネクスジャパン社製、「サイメル325」)11.3質量部、イオン交換水54質量部を加えて5分間攪拌した。さらに、Viscalex HV30を4.0質量部、ジメチルエタノールアミン1.2質量部を加えて、水性樹脂液を得た。
(Preparation Example 6) Preparation of water-based base coating material B-1 A container was charged with 69.6 parts by mass of the acrylic emulsion R-3 obtained in Synthesis Example 3, and this was stirred with methylated melamine resin (Ornex Japan Co., Ltd.). Manufactured, “Cymel 325”) 11.3 parts by mass and ion-exchanged water 54 parts by mass were added and stirred for 5 minutes. Furthermore, Viscalex HV30 4.0 mass part and dimethylethanolamine 1.2 mass part were added, and the aqueous resin liquid was obtained.

別の容器に、ブチルグリコール9.9質量部及びアルミペースト(Eckart社製、「Hydrolan2156」)9.9質量部を仕込み、さらに、1時間攪拌してアルミペースト溶液を得た。   In another container, 9.9 parts by mass of butyl glycol and 9.9 parts by mass of aluminum paste (Ekcart, “Hydrolan 2156”) were charged, and further stirred for 1 hour to obtain an aluminum paste solution.

次に、前記水性樹脂溶液148.3質量部に、このアルミペースト溶液19.8質量部を撹拌しながら添加し、さらに、1時間攪拌して、水性ベース塗料B−1を得た。この水性ベース塗料B−1の収縮率ωは、流動停止時間tcUが310秒の場合には9.1%であり、tcUが370秒の場合には8.2%であり、tcUが420秒の場合には7.2%であった。 Next, 19.8 parts by mass of this aluminum paste solution was added to 148.3 parts by mass of the aqueous resin solution while stirring, and the mixture was further stirred for 1 hour to obtain an aqueous base paint B-1. The shrinkage rate ω I of the water-based base coating material B-1 is 9.1% when the flow stop time t cU is 310 seconds, 8.2% when the t cU is 370 seconds, and t When cU was 420 seconds, it was 7.2%.

(実施例1)
電着塗装を施した鋼板(日本ルートサービス(株)製)の表面に、調製例5で得た水性中塗り塗料P−1(tcU=370秒の場合、ω=5.4%)を、焼付け後の膜厚が20μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次に、調製例6で得た水性ベース塗料B−1(tcU=370秒の場合、ω=8.2%)を、焼付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次いで、この水性ベース塗料B−1の層の上に、調製例1で得た溶剤型クリア塗料C−1(tcU=370秒、ω=4.0%)を焼付け後の膜厚が35μmになるように塗装し、水性中塗り塗料P−1と水性ベース塗料B−1と溶剤型クリア塗料C−1とをウェットオンウェットで積層した未硬化積層塗膜を得た。
Example 1
On the surface of the electrodeposited steel sheet (manufactured by Nippon Route Service Co., Ltd.), the water-based intermediate coating P-1 obtained in Preparation Example 5 (in the case of t cU = 370 seconds, ω L = 5.4%) Was coated so that the film thickness after baking was 20 μm, and heated at 80 ° C. for 3 minutes to volatilize water and organic solvent. Next, the aqueous base paint B-1 obtained in Preparation Example 6 (in the case of t cU = 370 seconds, ω I = 8.2%) was applied so that the film thickness after baking was 15 μm, and the temperature was 80 ° C. For 3 minutes to evaporate water and organic solvent. Next, the film thickness after baking the solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 370 seconds, ω U = 4.0%) on the layer of the aqueous base paint B-1 is as follows. The coating was applied to a thickness of 35 μm to obtain an uncured laminated coating film in which a water-based intermediate coating material P-1, a water-based base coating material B-1, and a solvent-type clear coating material C-1 were laminated by wet on wet.

この未硬化積層塗膜を室温で10分間静置(セッティング)した後、硬化反応をさせるために140℃で30分間の加熱処理(焼付け処理)を施して各層を硬化させ、積層塗膜を得た。   After leaving this uncured laminated coating film at room temperature for 10 minutes (setting), a heat treatment (baking process) is performed at 140 ° C. for 30 minutes to cure the layers, and a multilayer coating film is obtained. It was.

得られた積層塗膜について、ウェーブスキャン(BYK−Gardner社製「Wave−Scan Dual」)を用いてウェーブスキャン値〔Wa(波長0.1〜0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)、We(波長10〜30mm)〕を測定した。その結果を表1に示す。これらのウェーブスキャン値は、値が小さいほど上層表面における当該波長の凹凸が少ないことを示し、外観品質が優れることを意味する。ちなみに、Waが小さいほど光沢が優れ、WdやWeが小さいほど肌がよいことを意味する。   About the obtained laminated coating film, wave scan values [Wa (wavelength 0.1 to 0.3 mm), Wb (wavelength 0.3 to 1 mm) using wave scan (“Wave-Scan Dual” manufactured by BYK-Gardner). ), Wc (wavelength 1 to 3 mm), Wd (wavelength 3 to 10 mm), We (wavelength 10 to 30 mm)]. The results are shown in Table 1. These wave scan values indicate that the smaller the value, the fewer the irregularities of the wavelength on the surface of the upper layer, and the better the appearance quality. Incidentally, the smaller Wa is, the better the gloss is, and the smaller Wd and We are, the better the skin is.

また、得られた積層塗膜において、上層に隣接する第一隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一隣接層に隣接する第二隣接層は前記水性中塗り塗料P−1により形成された最下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.2%であり、水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は2.8%であった。また、前記上層用塗料の収縮率ωと前記第一隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一隣接層用塗料の収縮率ωA1と前記第二隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は7.0%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer is the aqueous layer. It is the lowest layer formed by the intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 4.2%, and the shrinkage rate ω of the water-based base paint B-1 (first adjacent layer paint) The absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of A1 and the water-based intermediate coating material P-1 (second adjacent layer coating material) was 2.8%. The absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, the shrinkage rate ω A1 of the first adjacent layer coating material, and the The sum (Δω 1 + Δω 2 ) with the absolute value | Δω 2 | of the difference from the shrinkage rate ω A2 of the second adjacent layer coating material was 7.0%.

(実施例2)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=420秒の場合、ω=4.8%)を用い、ベース塗料として、調製例6で得た水性ベース塗料B−1(tcU=420秒の場合、ω=7.2%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=420秒、ω=3.5%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 2)
As the intermediate coating material, the aqueous intermediate coating material P-1 obtained in Preparation Example 5 (in the case of t cU = 420 seconds, ω L = 4.8%) was used, and the aqueous coating material obtained in Preparation Example 6 was used as the base coating material. Using the paint B-1 (in the case of t cU = 420 seconds, ω I = 7.2%), as a clear paint, the solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 420 seconds, ω U = 3.5%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一隣接層に隣接する第二隣接層は前記水性中塗り塗料P−1により形成された最下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は3.7%であり、水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は2.4%であった。また、前記上層用塗料の収縮率ωと前記第一隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一隣接層用塗料の収縮率ωA1と前記第二隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は6.1%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer is the aqueous layer. It is the lowest layer formed by the intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 3.7%, and the shrinkage rate ω of the aqueous base paint B-1 (first adjacent layer paint) The absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of A1 and the water-based intermediate coating material P-1 (second adjacent layer coating material) was 2.4%. The absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, the shrinkage rate ω A1 of the first adjacent layer coating material, and the The sum (Δω 1 + Δω 2 ) with the absolute value | Δω 2 | of the difference from the shrinkage rate ω A2 of the second adjacent layer coating material was 6.1%.

(比較例1)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=310秒の場合、ω=6.0%)を用い、ベース塗料として、調製例6で得た水性ベース塗料B−1(tcU=310秒の場合、ω=9.1%)を用い、クリア塗料として、調製例3で得た溶剤型クリア塗料C−3(tcU=310秒、ω=0.9%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 1)
As the intermediate coating material, the water-based intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 6.0% when t cU = 310 seconds) was used, and the aqueous base material obtained in Preparation Example 6 was used as the base coating material. Using the paint B-1 (in the case of t cU = 310 seconds, ω I = 9.1%), as the clear paint, the solvent-type clear paint C-3 obtained in Preparation Example 3 (t cU = 310 seconds, ω U = 0.9%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一隣接層に隣接する第二隣接層は前記水性中塗り塗料P−1により形成された最下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−3(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は8.2%であり、水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は3.1%であった。また、前記上層用塗料の収縮率ωと前記第一隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一隣接層用塗料の収縮率ωA1と前記第二隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は11.3%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer is the aqueous layer. It is the lowest layer formed by the intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-3 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 8.2%, and the shrinkage rate ω of the aqueous base paint B-1 (first adjacent layer paint) The absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of A1 and the water-based intermediate coating material P-1 (second adjacent layer coating material) was 3.1%. The absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, the shrinkage rate ω A1 of the first adjacent layer coating material, and the The sum (Δω 1 + Δω 2 ) with the absolute value | Δω 2 | of the difference from the shrinkage rate ω A2 of the second adjacent layer coating material was 11.3%.

表1に示した結果から明らかなように、本発明のように、2つの下層(中間層及び最下層)の各層に熱硬化型塗料を使用し、上層にイソシアネート硬化型塗料を使用し、ウェットオンウェットにより積層して未硬化積層塗膜を得た後、焼付け処理を施す塗装方法において、熱硬化性樹脂とイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤とを混合した後、イソシアネート系硬化剤を混合して調製したイソシアネート硬化型塗料を上層用塗料として使用することによって、上層用塗料の流動停止時間tcUが長くなり、上層の流動が停止した後における上層とそれに隣接する中間層との間の収縮率差の絶対値、上層の流動が停止した後における中間層とそれに隣接する最下層との間の収縮率差の絶対値、並びに、上層の流動が停止した後における基材に隣接する最下層の収縮率をいずれも小さくすることができ、その結果、前記流動停止遅延剤を含有していないイソシアネート硬化型塗料を上層用塗料として使用して形成した従来の積層塗膜(比較例1)に比べて、Wa〜Weが小さい積層塗膜(実施例1〜2)が得られることがわかった。 As is clear from the results shown in Table 1, as in the present invention, a thermosetting paint is used for each of the two lower layers (intermediate layer and lowermost layer), an isocyanate curable paint is used for the upper layer, and wet. After obtaining an uncured laminated coating by laminating by on-wet, mixing a thermosetting resin and a flow stop retarder that can be detachably bonded to an isocyanate group in a coating method in which baking treatment is performed Then, by using an isocyanate curable paint prepared by mixing an isocyanate curing agent as the upper layer paint, the flow stop time t cU of the upper layer paint becomes longer, and the upper layer after the upper layer flow stops and The absolute value of the shrinkage difference between the adjacent middle layer, the absolute value of the shrinkage difference between the middle layer and the lowermost layer after the upper layer stops flowing, and the upper layer The shrinkage rate of the lowermost layer adjacent to the base material after the flow of the liquid is stopped can be reduced, and as a result, an isocyanate curable paint that does not contain the flow stop retarder is used as the upper layer paint. It was found that a laminated coating film (Examples 1 and 2) having a smaller Wa to We was obtained as compared to the conventional laminated coating film (Comparative Example 1) formed in this manner.

(実施例3)
電着塗装を施した鋼板(日本ルートサービス(株)製)の表面に、調製例6で得た水性ベース塗料B−1(tcU=370秒の場合、ω=8.2%)を、焼付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次いで、この水性ベース塗料B−1の層の上に、調製例1で得た溶剤型クリア塗料C−1(tcU=370秒、ω=4.0%)を焼付け後の膜厚が35μmになるように塗装し、水性ベース塗料B−1と溶剤型クリア塗料C−1とをウェットオンウェットで積層した未硬化積層塗膜を得た。
(Example 3)
On the surface of the electrodeposited steel sheet (manufactured by Nippon Route Service Co., Ltd.), the aqueous base paint B-1 obtained in Preparation Example 6 (in the case of t cU = 370 seconds, ω I = 8.2%) The film was baked to a film thickness of 15 μm and heated at 80 ° C. for 3 minutes to volatilize water and organic solvent. Next, the film thickness after baking the solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 370 seconds, ω U = 4.0%) on the layer of the aqueous base paint B-1 is as follows. An uncured laminated coating film was obtained by coating to 35 μm and laminating the aqueous base paint B-1 and the solvent-type clear paint C-1 by wet-on-wet.

この未硬化積層塗膜に、実施例1と同様にして、セッティング及び加熱処理(焼付け処理)を施し、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表2に示す。   This uncured laminated coating film was subjected to setting and heat treatment (baking treatment) in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 2.

また、得られた積層塗膜において、上層に隣接する第一隣接層は前記水性ベース塗料B−1により形成された最下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.2%であった。 Moreover, in the obtained laminated coating film, the 1st adjacent layer adjacent to an upper layer is the lowest layer formed with the said water-based base coating material B-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (the first adjacent layer coating material) was 4.2%.

(比較例2)
ベース塗料として、調製例6で得た水性ベース塗料B−1(tcU=310秒の場合、ω=9.1%)を用い、クリア塗料として、調製例3で得た溶剤型クリア塗料C−3(tcU=310秒、ω=0.9%)を用いた以外は実施例3と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表2に示す。
(Comparative Example 2)
As the base paint, the water-based base paint B-1 obtained in Preparation Example 6 (ω I = 9.1% in the case of t cU = 310 seconds) was used, and the solvent-type clear paint obtained in Preparation Example 3 was used as the clear paint. A laminated coating film was obtained in the same manner as in Example 3 except that C-3 (t cU = 310 seconds, ω U = 0.9%) was used. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 2.

また、得られた積層塗膜において、上層に隣接する第一隣接層は前記水性ベース塗料B−1により形成された最下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−3(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は8.2%であった。 Moreover, in the obtained laminated coating film, the 1st adjacent layer adjacent to an upper layer is the lowest layer formed with the said water-based base coating material B-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-3 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (the first adjacent layer coating material) was 8.2%.

表2に示した結果から明らかなように、本発明のように、最下層に熱硬化型塗料を使用し、上層にイソシアネート硬化型塗料を使用し、ウェットオンウェットにより積層して未硬化積層塗膜を得た後、焼付け処理を施す塗装方法において、熱硬化性樹脂とイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤とを混合した後、イソシアネート系硬化剤を混合して調製したイソシアネート硬化型塗料を上層用塗料として使用することによって、上層用塗料の流動停止時間tcUが長くなり、上層の流動が停止した後における上層とそれに隣接する最下層との間の収縮率差の絶対値、並びに、上層の流動が停止した後における基材に隣接する最下層の収縮率をいずれも小さくすることができ、その結果、前記流動停止遅延剤を含有していないイソシアネート硬化型塗料を上層用塗料として使用して形成した従来の積層塗膜(比較例2)に比べて、Wa〜Weが小さい積層塗膜(実施例3)が得られることがわかった。 As is clear from the results shown in Table 2, as in the present invention, a thermosetting paint is used for the lowermost layer, an isocyanate curable paint is used for the upper layer, and lamination is performed by wet-on-wet to form an uncured laminated coating. After obtaining the film, in the coating method in which baking treatment is performed, after mixing the thermosetting resin and the flow stop retarder that can be detachably bonded to the isocyanate group, the isocyanate curing agent is mixed. By using the isocyanate curable paint prepared in this way as the upper layer paint, the flow stop time t cU of the upper layer paint becomes longer, and the shrinkage between the upper layer and the adjacent lowermost layer after the upper layer flow stops Both the absolute value of the rate difference and the shrinkage rate of the lowermost layer adjacent to the base material after the flow of the upper layer is stopped can be reduced. As a result, the flow stop retarder Compared to a conventional multilayer coating film (Comparative Example 2) formed by using an isocyanate-curable coating material that does not contain bismuth as a coating material for the upper layer, a multilayer coating film (Example 3) having a smaller Wa to We is obtained. I understood.

以上の結果から、少なくとも1層の下層(積層塗膜が2層の場合には最下層、3層以上の場合には最下層と少なくとも1層の中間層の2層以上)に熱硬化型塗料を使用し、上層にイソシアネート硬化型塗料を使用し、ウェットオンウェットにより積層して未硬化積層塗膜を得た後、焼付け処理を施す塗装方法において、熱硬化性樹脂と前記流動停止遅延剤とを混合した後、イソシアネート系硬化剤を混合して調製したイソシアネート硬化型塗料を上層用塗料として使用することによって、外観品質が高度に優れた積層塗膜が得られることが確認された。   From the above results, the thermosetting paint is applied to at least one lower layer (the lowermost layer in the case of two laminated coatings, two or more layers in the lowermost layer and at least one intermediate layer in the case of three or more layers). In the coating method in which an isocyanate-curable coating material is used as an upper layer, and an uncured laminated coating film is obtained by laminating by wet-on-wet, and then subjected to baking treatment, a thermosetting resin and the flow stop retarder After mixing, it was confirmed that by using an isocyanate curable coating prepared by mixing an isocyanate curing agent as a coating for the upper layer, a laminated coating film having a high appearance quality can be obtained.

以上説明したように、本発明のイソシアネート硬化型塗料組成物を用いることによって、2種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。   As described above, by using the isocyanate curable coating composition of the present invention, even when two or more types of coatings are laminated on a wet on wet and simultaneously baked to cure each layer, unevenness on the surface of the upper layer is generated. A sufficiently suppressed laminated coating film can be obtained. Thereby, the coating body which was highly excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

また、本発明の塗装方法は、このようなイソシアネート硬化型塗料組成物を用いているため、2種類以上の塗料をウェットオンウェットで積層して同時に焼付ける場合においても外観品質が高度に優れた塗装体を得ることができる塗装方法として有用であり、特に、乗用車、トラック、バス、オートバイ等の自動車用車体やその部品の塗装方法として有用である。   In addition, since the coating method of the present invention uses such an isocyanate curable coating composition, the appearance quality is highly excellent even when two or more types of coatings are laminated by wet-on-wet and baked simultaneously. It is useful as a coating method for obtaining a painted body, and particularly useful as a method for coating automobile bodies such as passenger cars, trucks, buses, motorcycles, and parts thereof.

Claims (7)

熱硬化性樹脂、イソシアネート系硬化剤、及びイソシアネート基に着脱可能な状態で結合することが可能な流動停止遅延剤を含有することを特徴とするイソシアネート硬化型塗料組成物。   An isocyanate-curable coating composition comprising a thermosetting resin, an isocyanate-based curing agent, and a flow stop retarder capable of being detachably attached to an isocyanate group. 前記流動停止遅延剤が、フェノール性水酸基、ラクタム環、エーテル結合、チオール基、尿素結合、カルバメート基、イミノ基、亜硫酸基、ピラゾール環、イミダゾール環、オキシム基、アミノ基、及び活性メチレン基からなる群から選択される少なくとも1種の構造を有する化合物であることを特徴とする請求項1に記載のイソシアネート硬化型塗料組成物。   The flow stop retarder comprises a phenolic hydroxyl group, lactam ring, ether bond, thiol group, urea bond, carbamate group, imino group, sulfite group, pyrazole ring, imidazole ring, oxime group, amino group, and active methylene group. The isocyanate-curable coating composition according to claim 1, which is a compound having at least one structure selected from the group. 前記流動停止遅延剤が、フェノール化合物、ラクタム化合物、エーテル化合物、メルカプタン化合物、尿素化合物、カルバミン酸エステル化合物、イミン化合物、亜硫酸塩、ピラゾール化合物、イミダゾール化合物、オキシム化合物、アミン化合物、及び活性メチレン化合物からなる群から選択される少なくとも1つの化合物であることを特徴とする請求項1又は2に記載のイソシアネート硬化型塗料組成物。   The flow stop retardant is a phenol compound, a lactam compound, an ether compound, a mercaptan compound, a urea compound, a carbamate ester compound, an imine compound, a sulfite, a pyrazole compound, an imidazole compound, an oxime compound, an amine compound, and an active methylene compound. The isocyanate-curable coating composition according to claim 1 or 2, wherein the isocyanate-curable coating composition is at least one compound selected from the group consisting of: 前記流動停止遅延剤を含む場合の流動停止時間tが前記流動停止遅延剤を含まない場合の流動停止時間tc0に対して1.1倍以上であることを特徴とする請求項1〜3のうちのいずれか一項に記載のイソシアネート硬化型塗料組成物。 The flow stop time t c when the flow stop delay agent is included is 1.1 times or more than the flow stop time t c0 when the flow stop delay agent is not included. The isocyanate curable coating composition according to any one of the above. 前記流動停止遅延剤を含む場合の流動停止時間tと前記流動停止遅延剤を含まない場合の流動停止時間tc0との差(t−tc0)が20秒以上であることを特徴とする請求項1〜4のうちのいずれか一項に記載のイソシアネート硬化型塗料組成物。 The difference (t c −t c0 ) between the flow stop time t c when the flow stop delay agent is included and the flow stop time t c0 when the flow stop delay agent is not included is 20 seconds or more. The isocyanate curable coating composition according to any one of claims 1 to 4. 基材上に形成された少なくとも1層の下層と該下層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として請求項1〜5のうちのいずれか一項に記載のイソシアネート硬化型塗料組成物を準備する準備工程と、
前記基材上に前記下層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料及び前記上層用塗料を同時に硬化させる焼付工程と、
を含むことを特徴とする塗装方法。
A coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an upper layer formed on the lower layer,
The isocyanate curable type according to claim 1, wherein a thermosetting paint is prepared as a lower layer paint for forming the lower layer, and the upper layer paint for forming the upper layer. A preparation step of preparing a coating composition;
A forming step of laminating the lower layer coating material and the upper layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film,
A baking step of subjecting the uncured laminated coating film to a baking treatment to simultaneously cure the lower layer coating material and the upper layer coating material,
The coating method characterized by including.
前記準備工程において、前記熱硬化性樹脂と前記流動停止遅延剤とを混合した後、得られた混合物に前記イソシアネート系硬化剤を混合して前記イソシアネート硬化型塗料組成物を準備することを特徴とする請求項6に記載の塗装方法。   In the preparation step, after mixing the thermosetting resin and the flow stop retarder, the isocyanate curing agent is mixed with the obtained mixture to prepare the isocyanate curable coating composition. The coating method according to claim 6.
JP2016115141A 2016-06-09 2016-06-09 Isocyanate curable coating composition and coating method using the same Pending JP2017218527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016115141A JP2017218527A (en) 2016-06-09 2016-06-09 Isocyanate curable coating composition and coating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115141A JP2017218527A (en) 2016-06-09 2016-06-09 Isocyanate curable coating composition and coating method using the same

Publications (1)

Publication Number Publication Date
JP2017218527A true JP2017218527A (en) 2017-12-14

Family

ID=60658774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115141A Pending JP2017218527A (en) 2016-06-09 2016-06-09 Isocyanate curable coating composition and coating method using the same

Country Status (1)

Country Link
JP (1) JP2017218527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776616A (en) * 2019-10-26 2020-02-11 福建华夏蓝新材料科技有限公司 Efficient wetting water-based isocyanate curing agent
CN110964162A (en) * 2018-09-30 2020-04-07 中国科学院化学研究所 Pyrazole ureido-based polyureaurethane and preparation method and application thereof
CN111021614A (en) * 2019-12-19 2020-04-17 中国建筑第八工程局有限公司 Multi-layer large-span prestressed system and frame body quick-dismantling construction method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137500A (en) * 1976-05-14 1977-11-16 Hitachi Ltd Resin compositions
JPS63305163A (en) * 1987-06-05 1988-12-13 Toyota Motor Corp Coating composition
JPH111632A (en) * 1997-06-12 1999-01-06 Nissan Motor Co Ltd Method for forming coating film for automotive interior sheet
JP2000273438A (en) * 1999-03-24 2000-10-03 Hitachi Kasei Polymer Co Ltd Sealing material composition
JP2003508577A (en) * 1999-08-27 2003-03-04 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Solvent-containing coating material and its use
JP2013017940A (en) * 2011-07-09 2013-01-31 Kansai Paint Co Ltd Method of forming multi-layer coating film
JP2013091767A (en) * 2011-04-28 2013-05-16 Tosoh Corp Blocking agent dissociation catalyst containing quaternary ammonium salt and usage of the same
JP2013185004A (en) * 2012-03-06 2013-09-19 Shinto Paint Co Ltd Cationic electrodeposition coating composition
JP2013189524A (en) * 2012-03-13 2013-09-26 Shinto Paint Co Ltd Cationic electrocoating composition
JP2014084426A (en) * 2012-10-25 2014-05-12 Tosoh Corp Dissociation catalyst for block agent containing quaternary ammonium salt and its use
JP2014091742A (en) * 2012-10-31 2014-05-19 Shinto Paint Co Ltd Cationic electrodeposition coating composition
WO2015087932A1 (en) * 2013-12-11 2015-06-18 関西ペイント株式会社 Multilayer coating film forming method
JP2015139758A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body provided according to the same
JP2016060818A (en) * 2014-09-18 2016-04-25 菊水化学工業株式会社 Coating composition
JP2016222891A (en) * 2015-06-03 2016-12-28 東ソー株式会社 Low temperature dissociation type block polyisocyanate composition and coating composition containing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137500A (en) * 1976-05-14 1977-11-16 Hitachi Ltd Resin compositions
JPS63305163A (en) * 1987-06-05 1988-12-13 Toyota Motor Corp Coating composition
JPH111632A (en) * 1997-06-12 1999-01-06 Nissan Motor Co Ltd Method for forming coating film for automotive interior sheet
JP2000273438A (en) * 1999-03-24 2000-10-03 Hitachi Kasei Polymer Co Ltd Sealing material composition
JP2003508577A (en) * 1999-08-27 2003-03-04 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Solvent-containing coating material and its use
JP2013091767A (en) * 2011-04-28 2013-05-16 Tosoh Corp Blocking agent dissociation catalyst containing quaternary ammonium salt and usage of the same
JP2013017940A (en) * 2011-07-09 2013-01-31 Kansai Paint Co Ltd Method of forming multi-layer coating film
JP2013185004A (en) * 2012-03-06 2013-09-19 Shinto Paint Co Ltd Cationic electrodeposition coating composition
JP2013189524A (en) * 2012-03-13 2013-09-26 Shinto Paint Co Ltd Cationic electrocoating composition
JP2014084426A (en) * 2012-10-25 2014-05-12 Tosoh Corp Dissociation catalyst for block agent containing quaternary ammonium salt and its use
JP2014091742A (en) * 2012-10-31 2014-05-19 Shinto Paint Co Ltd Cationic electrodeposition coating composition
WO2015087932A1 (en) * 2013-12-11 2015-06-18 関西ペイント株式会社 Multilayer coating film forming method
JP2015139758A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Coating method and coated body provided according to the same
JP2016060818A (en) * 2014-09-18 2016-04-25 菊水化学工業株式会社 Coating composition
JP2016222891A (en) * 2015-06-03 2016-12-28 東ソー株式会社 Low temperature dissociation type block polyisocyanate composition and coating composition containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964162A (en) * 2018-09-30 2020-04-07 中国科学院化学研究所 Pyrazole ureido-based polyureaurethane and preparation method and application thereof
CN110964162B (en) * 2018-09-30 2021-03-16 中国科学院化学研究所 Pyrazole ureido-based polyureaurethane and preparation method and application thereof
CN110776616A (en) * 2019-10-26 2020-02-11 福建华夏蓝新材料科技有限公司 Efficient wetting water-based isocyanate curing agent
CN110776616B (en) * 2019-10-26 2021-06-22 福建华夏蓝新材料科技有限公司 Efficient wetting water-based isocyanate curing agent
CN111021614A (en) * 2019-12-19 2020-04-17 中国建筑第八工程局有限公司 Multi-layer large-span prestressed system and frame body quick-dismantling construction method thereof

Similar Documents

Publication Publication Date Title
JP5148480B2 (en) Method for forming glittering multilayer coating film
JP4648803B2 (en) Application method of water-based base coat paint
JP5116486B2 (en) Method for forming glittering multilayer coating film
JP2017218527A (en) Isocyanate curable coating composition and coating method using the same
JP6048840B2 (en) Coating method and coated body obtained thereby
JP6630332B2 (en) Coated metal plate
JP6021192B2 (en) Coating method and coated body obtained thereby
JP5513726B2 (en) Coating method and coated body obtained thereby
JP5261061B2 (en) Coating method and coated body obtained thereby
JP6499538B2 (en) Painting method
JP5260255B2 (en) Coating method and coated body obtained thereby
JP4641940B2 (en) Thermosetting liquid coating composition for aluminum wheel and method for coating aluminum wheel
JP6420733B2 (en) Painting method
JP5120952B2 (en) Coating method and coated body obtained thereby
JP5342457B2 (en) Multi-layer coating formation method
JP5280069B2 (en) Coating method and coated body obtained thereby
MX2014015787A (en) Dual-cure compositions useful for coating metal substrates and processes using the compositions.
JP4315001B2 (en) Method for coating overcoat clear coating composition and coated article
JP2018001060A (en) Coating method
JP2009034668A (en) Coating method, and coated object prepared by the same
KR20240045296A (en) Coating compositions, methods of using the same, and systems comprising the same
JP2001046965A (en) Formation of coating film
JPH04329894A (en) Painting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200714