JP6420733B2 - Painting method - Google Patents

Painting method Download PDF

Info

Publication number
JP6420733B2
JP6420733B2 JP2015145177A JP2015145177A JP6420733B2 JP 6420733 B2 JP6420733 B2 JP 6420733B2 JP 2015145177 A JP2015145177 A JP 2015145177A JP 2015145177 A JP2015145177 A JP 2015145177A JP 6420733 B2 JP6420733 B2 JP 6420733B2
Authority
JP
Japan
Prior art keywords
paint
layer
coating material
adjacent
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015145177A
Other languages
Japanese (ja)
Other versions
JP2017023942A (en
Inventor
周二 四方
周二 四方
真子 長谷
真子 長谷
舘 和幸
和幸 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2015145177A priority Critical patent/JP6420733B2/en
Publication of JP2017023942A publication Critical patent/JP2017023942A/en
Application granted granted Critical
Publication of JP6420733B2 publication Critical patent/JP6420733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、3種類以上の塗料をウェットオンウェットで積層して同時に焼付ける塗装方法及びそれにより得られる塗装体に関する。   The present invention relates to a coating method in which three or more types of paints are laminated on a wet on wet basis and fired at the same time, and a coated body obtained thereby.

3種類以上の塗料をウェットオンウェットで積層した後、焼き付ける塗装方法により積層塗膜を形成する場合において、従来から、すべての塗料を積層した後に積層塗膜を構成するすべての層が焼付けにより硬化するように各層を形成する熱硬化型塗料を選択し、積層塗膜全体を硬化させる方法が用いられていた。しかしながら、従来の塗装方法では、下層を焼き付けてから中間層と上層を形成する塗料を積層して焼き付けた場合に比べて、積層塗膜の肌及び光沢が劣るという問題があった。このため、積層塗膜の肌及び光沢を向上させるために種々の方法が提案されている。   When laminating three or more types of paints by wet-on-wet and then forming a layered coating by baking, all the layers that make up the layered coating are cured by baking after all the coatings are laminated. Thus, a method of selecting a thermosetting coating material for forming each layer and curing the entire laminated coating film has been used. However, the conventional coating method has a problem that the skin and gloss of the laminated coating film are inferior compared to the case where the lower layer is baked and then the coating material forming the intermediate layer and the upper layer is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.

例えば、特開2004−275966号公報(特許文献1)には、中塗り塗料、ベース塗料及びクリア塗料を順次ウェットオンウェットで塗装する工程と、低温加熱段階(硬化温度の25〜80%の温度で硬化時間の5〜30%の時間加熱)及び高温加熱段階(硬化温度の80%を超え、120%以下の温度で硬化時間の30〜130%の時間加熱)の2段階の加熱工程を含む塗膜形成方法が開示されている。さらに、これによって塗膜の鮮映性を確実に確保できることも開示されている。   For example, Japanese Patent Application Laid-Open No. 2004-275966 (Patent Document 1) discloses a process in which an intermediate coating, a base coating, and a clear coating are sequentially applied by wet-on-wet, and a low-temperature heating step (temperature of 25 to 80% of the curing temperature). And a high-temperature heating stage (over 80% of the curing temperature and 30-130% of the curing time at a temperature of 120% or less). A method for forming a coating film is disclosed. Furthermore, it is also disclosed that the clearness of the coating film can be reliably ensured.

しかしながら、従来の塗装技術においては、積層塗膜の肌(平滑性)や光沢等の外観品質に大きく影響を及ぼす積層塗膜の層界面の凹凸は着目されていなかったため、肌や光沢等の外観品質を自動車の外観品質に要求されるレベルまで向上させることが困難であった。   However, the conventional coating technology has not paid attention to the unevenness of the layer interface of the multilayer coating film, which greatly affects the appearance quality such as skin (smoothness) and glossiness of the multilayer coating film. It has been difficult to improve the quality to the level required for the appearance quality of automobiles.

特開2004−275966号公報JP 2004-275966 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、3種類以上の塗料をウェットオンウェットで積層して同時に焼付けて高耐久性の確保などのために各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることができる塗装方法、及びそれにより得られる外観品質が高度に優れた塗装体を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. Even if three or more kinds of coatings are laminated on a wet on wet basis and simultaneously baked, each layer is cured to ensure high durability. An object of the present invention is to provide a coating method capable of obtaining a laminated coating film in which the occurrence of irregularities on the upper layer surface is sufficiently suppressed, and a coated body having a high appearance quality obtained thereby.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、3種類以上の熱硬化型塗料をウェットオンウェットで積層して同時に焼付け塗装をする場合において、下層を形成するための下層用塗料として熱硬化型塗料を使用し、中間層を形成するための中間層用塗料として熱硬化型塗料を使用し、上層を形成するための上層用塗料として熱硬化型塗料を使用し、前記上層に隣接する前記中間層を第一の隣接層とし、この第一の隣接層を形成するための前記中間層用塗料を第一の隣接層用塗料とし、前記第一の隣接層に隣接する前記中間層又は前記下層を第二の隣接層とし、この第二の隣接層を形成するための前記中間層用塗料又は前記下層用塗料を第二の隣接層用塗料とするとき、前記上層用塗料の流動停止時間後から各塗料の標準焼付け時間終了時までの間の前記上層用塗料の収縮率と前記第一の隣接層用塗料の収縮率との差の絶対値と、前記第一の隣接層用塗料の収縮率と前記第二の隣接層用塗料の収縮率との差の絶対値との和が特定の範囲となるように、前記上層用塗料、前記第一の隣接層用塗料及び前記第二の隣接層用塗料を選択することによって、上層が硬化して流動性が著しく低下した後において、上層と第一の隣接層の界面凹凸及び又は第一の隣接層と第二の隣接層の界面凹凸の上層への転写量をより小さくでき、3種類以上の塗料をウェットオンウェットで積層した後に同時に焼付けを実施しても外観品質により高度に優れた積層塗膜が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have formed a lower layer for forming a lower layer when three or more types of thermosetting paints are laminated by wet-on-wet and simultaneously baked. Using a thermosetting paint as a paint for a coating, using a thermosetting paint as a paint for an intermediate layer for forming an intermediate layer, and using a thermosetting paint as a paint for an upper layer for forming an upper layer, The intermediate layer adjacent to the upper layer is defined as a first adjacent layer, and the intermediate layer coating material for forming the first adjacent layer is defined as a first adjacent layer coating material, adjacent to the first adjacent layer. When the intermediate layer or the lower layer is a second adjacent layer, and the intermediate layer paint or the lower layer paint for forming the second adjacent layer is a second adjacent layer paint, the upper layer Standard baking of each paint after the paint stoppage time The absolute value of the difference between the shrinkage rate of the upper layer paint and the shrinkage rate of the first adjacent layer paint until the end of the interval, the shrinkage rate of the first adjacent layer paint and the second The upper layer coating material, the first adjacent layer coating material, and the second adjacent layer coating material are selected such that the sum of the absolute value of the difference from the shrinkage rate of the adjacent layer coating material falls within a specific range. After the upper layer is cured and the fluidity is remarkably lowered, the amount of transfer to the upper layer of the interface unevenness between the upper layer and the first adjacent layer and / or the interface unevenness between the first adjacent layer and the second adjacent layer is increased. It was found that even when three or more kinds of paints were laminated by wet-on-wet and then baked at the same time, a highly superior laminated coating film was obtained by appearance quality, and the present invention was completed.

すなわち、本発明の塗装方法は、基材上に形成された下層と該下層上に形成された少なくとも1層の中間層と該中間層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、前記中間層を形成するための中間層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として熱硬化型塗料を準備する準備工程と、
前記基材上に前記下層用塗料、前記中間層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料、前記中間層用塗料及び前記上層用塗料を同時に硬化させる焼付工程と、
を含んでおり、
前記準備工程において、前記上層に隣接する前記中間層を第一の隣接層とし、該第一の隣接層を形成するための前記中間層用塗料を第一の隣接層用塗料とし、前記第一の隣接層に隣接する前記中間層又は前記下層を第二の隣接層とし、該第二の隣接層を形成するための前記中間層用塗料又は前記下層用塗料を第二の隣接層用塗料とし、前記上層用塗料について電場ピックアップ粘度計を用いて標準焼付け温度140℃、標準昇温速度20℃/minの条件で測定されるオシロ波形において、振れ幅が最大振れ幅の5%まで小さくなった時間を前記上層用塗料の流動停止時間t cU とし、前記上層用塗料の流動停止時間tcU後から標準焼付け時間tbU終了時までの間の前記上層用塗料の収縮率をωとし、前記上層用塗料の流動停止時間tcU後から前記第一の隣接層用塗料の標準焼付け時間tbA1終了時までの間の前記第一の隣接層用塗料の収縮率をωA1とし、前記上層用塗料の流動停止時間tcU後から前記第二の隣接層用塗料の標準焼付け時間tbA2終了時までの間の前記第二の隣接層用塗料の収縮率をωA2とするとき、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値との和が8.0%以下となるように、前記上層用塗料、前記第一の隣接層用塗料及び前記第二の隣接層用塗料を選択する、
ことを特徴とする方法である。
That is, the coating method of the present invention forms a laminated coating film comprising a lower layer formed on a substrate, at least one intermediate layer formed on the lower layer, and an upper layer formed on the intermediate layer. Painting method,
A thermosetting paint is prepared as a lower layer paint for forming the lower layer, a thermosetting paint is prepared as an intermediate layer paint for forming the intermediate layer, and an upper layer for forming the upper layer A preparation process for preparing a thermosetting paint as a paint
A forming step of laminating the lower layer coating material, the intermediate layer coating material and the upper layer coating material on the base material by wet-on-wet to form an uncured laminated coating film,
A baking process in which the uncured laminated coating film is subjected to a baking treatment to simultaneously cure the lower layer coating material, the intermediate layer coating material and the upper layer coating material,
Contains
In the preparation step, the intermediate layer adjacent to the upper layer is a first adjacent layer, the intermediate layer coating material for forming the first adjacent layer is a first adjacent layer coating material, and the first The intermediate layer or the lower layer adjacent to the adjacent layer is the second adjacent layer, and the intermediate layer paint or the lower layer paint for forming the second adjacent layer is the second adjacent layer paint. In the oscilloscope waveform measured using the electric field pickup viscometer with the standard baking temperature of 140 ° C. and the standard heating rate of 20 ° C./min for the upper layer coating material, the amplitude was reduced to 5% of the maximum amplitude. The time is defined as the flow stop time t cU of the upper layer paint, and the contraction rate of the upper layer paint from after the flow stop time t cU of the upper layer paint to the end of the standard baking time t bU is defined as ω U , Flow stop time of upper layer paint The shrinkage rate of the first for the adjacent layer paint until the standard baking time t BA1 end of the first for the adjacent layer coating and omega A1 after cU, flow down time of the layer-coating material t cU after When the contraction rate of the second adjacent layer paint between the second adjacent layer paint and the end of the standard baking time t bA2 of the second adjacent layer is ω A2 , the shrinkage rate ω U of the upper layer paint and the the difference between the absolute value and the first of the contraction ratio omega A1 of paint adjacent layer a second for adjacent layer coating shrinkage omega A2 of the difference between the shrinkage omega A1 of the first for the adjacent layer coating The upper layer coating material, the first adjacent layer coating material and the second adjacent layer coating material are selected so that the sum of the absolute value and the absolute value is 8.0% or less.
It is the method characterized by this.

前記本発明の塗装方法においては、前記上層用塗料の収縮率ωが0〜40%の範囲にあり、前記第一の隣接層用塗料の収縮率ωA1が0〜40%の範囲にあり、前記第二の隣接層用塗料の収縮率ωA2が0〜40%の範囲にあることが好ましい。また、前記上層用塗料が、硬化剤としてメラミン樹脂を含まない塗料であることが好ましい。さらに、前記上層用塗料が、熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料であることが好ましい。 In the coating method of the present invention, the shrinkage rate ω U of the upper layer coating material is in the range of 0 to 40%, and the shrinkage rate ω A1 of the first adjacent layer coating material is in the range of 0 to 40%. The shrinkage rate ω A2 of the second adjacent layer coating material is preferably in the range of 0 to 40%. Moreover, it is preferable that the said upper layer coating material is a coating material which does not contain a melamine resin as a hardening | curing agent. Further, the upper layer coating material is preferably a thermosetting coating material that does not generate a volatile product in a curing reaction by heat treatment.

なお、本発明において「上層用塗料の流動停止時間」とは、上層用塗料により形成された塗膜を標準昇温速度で加熱した場合に、塗膜が変形しなくなるまでの時間であり、以下の方法により測定されるものである。すなわち、ステンレス鋼板(40mm×50mm×0.5mm)上に焼付け後の膜厚が100μmとなるように上層用塗料を塗布し、室温で10分間放置した後、試料を電場ピックアップ粘度計にセットする。なお、電場ピックアップ粘度計は、電極となる針を試料表面の近傍に保持し、一定時間毎にオン/オフを繰返して直流電圧を印加してマックスウェル応力による試料表面の変形を非接触で測定できる装置である。針−試料表面間距離:100μm、電圧:5V、電圧オン時間:1.0秒間、電圧オフ時間:1.0秒間の測定条件で直流電圧のオンとオフを切替えながら、試料を室温から上層用塗料の標準焼付け温度まで上層用塗料の標準昇温速度で加熱する。この間の試料表面の変形を、レーザー光を照射して試料表面で反射されるレーザー光の強度を検出電圧として0.01秒間の測定ピッチで測定する。図1は、このとき得られるオシロ波形の一例である。   In the present invention, the “flow stoppage time of the upper layer coating material” is the time until the coating film is not deformed when the coating film formed by the upper layer coating material is heated at the standard temperature rising rate, It is measured by the method. That is, an upper layer coating material is applied onto a stainless steel plate (40 mm × 50 mm × 0.5 mm) so that the film thickness after baking becomes 100 μm, and left at room temperature for 10 minutes, and then the sample is set in an electric field pickup viscometer. . The electric field pickup viscometer measures the deformation of the sample surface due to Maxwell stress in a non-contact manner by holding a needle as an electrode near the sample surface and applying a DC voltage by repeating on / off at regular intervals. It is a device that can. Needle-sample surface distance: 100 μm, voltage: 5 V, voltage on time: 1.0 sec, voltage off time: 1.0 sec. Heat to the standard baking temperature of the paint at the standard temperature rise rate of the upper layer paint. During this time, the deformation of the sample surface is measured at a measurement pitch of 0.01 seconds using the intensity of the laser beam irradiated with the laser beam and reflected from the sample surface as a detection voltage. FIG. 1 is an example of an oscilloscope waveform obtained at this time.

図1に示すように、得られたオシロ波形においては、m+1秒間にm個の検出電圧の振れが観察される。検出電圧の振れ幅が大きいほど電場による試料表面の変化が大きいことを示している。これらm個の検出電圧の振れの中で、振れ幅が最大(amax)となる時間をtmaxとし、tmax以降の時間範囲において、振れ幅がamaxの5%まで小さくなった時間を上層用塗料の流動停止時間tcU(tcU>tmax)とする。 As shown in FIG. 1, in the obtained oscilloscope waveform, fluctuations of m detection voltages are observed in m + 1 seconds. It shows that the change in the sample surface due to the electric field is larger as the fluctuation width of the detection voltage is larger. Among these m detection voltage fluctuations, the time when the fluctuation width becomes the maximum (a max ) is defined as t max, and the time when the fluctuation width decreases to 5% of the a max in the time range after t max. Let it be the flow stop time t cU (t cU > t max ) of the upper layer coating material .

また、本発明において「塗料の収縮率」とは、硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因するものであり、以下の方法により測定されるものである。すなわち、秤量したステンレス箔(150mm×30mm×0.5mm)に、塗料を熱処理後の膜厚が積層塗膜での目標膜厚となるようにエアスプレー塗装し、塗料の標準焼付け温度で塗膜の焼付けを開始する。その後、前記上層用塗料の流動停止時間tcUまで塗膜を焼付け(焼付け時間:tcU)、試料(ステンレス箔+塗膜)を秤量する。さらに、焼付け開始からの総焼付け時間が塗料の標準焼付け時間tとなるように、塗料の標準焼付け温度で塗膜を焼付け(後段の焼付け時間:t−tcU)、試料(ステンレス箔+塗膜)を秤量する。 In the present invention, the “coating shrinkage” is caused by volatilization of a volatile product of a curing reaction and a residual solvent such as a high-boiling solvent, and is measured by the following method. In other words, weighed stainless steel foil (150mm x 30mm x 0.5mm) by air spray coating so that the film thickness after heat treatment becomes the target film thickness in the laminated coating film, and the coating film at the standard baking temperature of the paint Start baking. Thereafter, the coating film is baked (baking time: t cU ) until the flow stop time t cU of the upper layer coating material, and the sample (stainless steel foil + coating film) is weighed. Furthermore, the coating film is baked at the standard baking temperature of the paint (the latter baking time: t b -t cU ), and the sample (stainless steel foil +) so that the total baking time from the start of baking becomes the standard baking time t b of the paint Weigh the coating film.

上層用塗料、中間層用塗料及び下層用塗料の収縮率ω、ω及びωは、下記式(1):
ω=100(Y−Z)/(Z−X) (1)
(式中、ωは硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因する塗料の収縮率、Xはステンレス箔の質量(g)を表し、Yは塗料の標準焼付け温度で前記流動停止時間tcUまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、Zは塗料の標準焼付け温度で塗料の標準焼付け時間まで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、iはU(上層用塗料)、I(中間層用塗料)又はL(下層用塗料)である。)
により算出される。
The shrinkage rates ω U , ω I and ω L of the upper layer coating material, the intermediate layer coating material and the lower layer coating material are expressed by the following formula (1):
ω i = 100 (Y i −Z i ) / (Z i −X) (1)
(Where ω i represents the shrinkage of the paint resulting from volatilization of the volatile product of the curing reaction and the residual solvent such as the high boiling point solvent, X represents the mass (g) of the stainless steel foil, and Y i represents the standard of the paint. This represents the mass (g) of the sample (stainless steel foil + coating film) after baking at the baking temperature up to the flow stop time t cU , and Z i is the sample after baking up to the standard baking time of the paint at the standard baking temperature of the paint. (It represents the mass (g) of (stainless foil + coating film), and i is U (coating for upper layer), I (coating for intermediate layer) or L (coating for lower layer).)
Is calculated by

また、前記第一の隣接層用塗料の収縮率ωA1と前記上層用塗料の収縮率ωとの差の絶対値(|Δω|)、並びに前記第二の隣接層用塗料の収縮率ωA2と前記第一の隣接層用塗料の収縮率ωA1との差の絶対値(|Δω|)は、下記式(2−1)及び(2−2):
|Δω|=|ωA1−ω| (2−1)
|Δω|=|ωA2ω A1 | (2−2)
により算出される。
Further, the absolute value (| Δω 1 |) of the difference between the shrinkage rate ω A1 of the first adjacent layer paint and the shrinkage rate ω U of the upper layer paint, and the shrinkage rate of the second adjacent layer paint The absolute value (| Δω 2 |) of the difference between ω A2 and the shrinkage ratio ω A1 of the first adjacent layer coating material is expressed by the following equations (2-1) and (2-2):
| Δω 1 | = | ω A1 −ω U | (2-1)
| Δω 2 | = | ω A2 −ω A1 | (2-2)
Is calculated by

また、本発明の塗装方法によって、3種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、上層を含めすべての層で熱硬化型塗料が用いられ、各層を同じ加熱温度で同時に硬化させたり、下層から順に硬化を開始するように設計されているため、上層を形成する熱硬化型塗料を加熱処理(焼付け処理)により硬化させる際には、その下層においても熱硬化型塗料の硬化が進行して既に流動性を失った状態となっている。このような積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により生成した揮発性生成物が、残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は上層が十分に流動性を有している間はその流動等により緩和されるが、上層の流動性が硬化により著しく低下した場合には、基材表面や各層の界面の凹凸が上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。   Further, even if three or more kinds of paints are laminated on the wet-on-wet and simultaneously baked to cure each layer by the coating method of the present invention, it is not always clear why the unevenness on the upper layer surface is sufficiently suppressed. However, the present inventors infer as follows. That is, in the conventional multilayer coating formed by wet-on-wet, thermosetting paint is used in all layers including the upper layer, and each layer is cured at the same heating temperature at the same time, or curing is started in order from the lower layer. Because it is designed, when the thermosetting paint that forms the upper layer is cured by heat treatment (baking treatment), the thermosetting paint is already cured in the lower layer and the fluidity has already been lost. It has become. In each layer of such a laminated coating film, the thermosetting paint is cured by an addition reaction after a condensation reaction or a deblocking reaction of a curing agent, so that volatile products generated by this condensation reaction or deblocking reaction remain. It volatilizes with the solvent to be formed, the laminated coating film shrinks, and irregularities are formed on the coating film surface. The unevenness on the surface of the coating film is relaxed by the flow while the upper layer has sufficient fluidity, but when the fluidity of the upper layer is significantly reduced by curing, the surface of the substrate and the interface of each layer It is presumed that the unevenness is transferred to the surface of the upper layer, and the skin and gloss of the laminated coating film deteriorate.

また、硬化剤としてイソシアネート化合物やイソシアネート樹脂を含有する熱硬化型塗料を上層用塗料として用いた場合等においては、上層用塗料の硬化速度が速いため、下層が硬化する前に上層が流動性を失うことが多い。この場合、上層が硬化した後に下層の硬化が進行するが、従来のウェットオンウェット塗装に用いられていた下層用塗料は、流動性に乏しく、下層の硬化の進行に伴う収縮により形成された凹凸が十分に緩和されず、基材表面や各層の界面の凹凸が上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。   In addition, when a thermosetting paint containing an isocyanate compound or an isocyanate resin as a curing agent is used as the upper layer paint, the upper layer has fluidity before the lower layer is cured because the upper layer paint has a fast curing speed. I often lose. In this case, the lower layer cures after the upper layer is cured, but the lower layer coating material used in conventional wet-on-wet coating has poor fluidity, and unevenness formed by shrinkage as the lower layer cures. Is not sufficiently relaxed, and it is assumed that the unevenness at the surface of the substrate and the interface of each layer is transferred to the surface of the upper layer, and the skin and gloss of the laminated coating film deteriorate.

本発明者らは、先ず、上記目的を達成するために、積層塗膜の肌(平滑性)や光沢等の外観品質は上層表面の凹凸が少ないほどよいことに着目した。そして、肌となる凹凸は、スプレー時に基材面上に塗着する塗料量及び乾燥工程(焼付工程も含む)における塗膜の収縮量が面方向に不均一なことに起因し、光沢を左右する凹凸(肌の場合よりも短波長)は乾燥工程における塗膜の収縮量が面方向に不均一なことに起因することを見出した。また、上記二つの原因で形成される凹凸のうち、スプレー時に基材面上に塗着する塗料量が面方向に不均一なことに起因する凹凸は、塗料の微粒化を向上させることによって抑制できるが、塗料の有効利用率である塗着効率の低下を招くので、塗料の微粒化を必要以上に向上させることはコスト等の点で得策でない。このため、肌(平滑性)や光沢等の外観品質を向上させるには、乾燥工程での塗膜の収縮量が面方向に不均一なことに起因する凹凸を減少させることが有利であることを見出した。そして、本発明者らは、基材上に下層を形成する塗料、少なくとも1層の中間層を形成する少なくとも1つの塗料、及び上層を形成する塗料をウェットオンウェットで積層した後に、同時に焼付けして積層塗膜を形成する場合、上記の凹凸は主として、下層用塗料と中間層用塗料と上層用塗料をウェットオンウェットで積層したときに形成される上層と前記第一の隣接層との界面凹凸及び前記第一の隣接層と前記第二の隣接層との界面凹凸が、乾燥工程で上層の流動性が著しく低下した後、各層の収縮によって上層表面に転写されることによって形成され、上層用塗料の流動停止時間後から各塗料の標準焼付け時間終了時までの間の上層と第一の隣接層との収縮率差の絶対値と、第一の隣接層と第二の隣接層との収縮率差の絶対値との和が小さければ界面凹凸の上層表面への転写量は小さくなることを見出した。   In order to achieve the above object, the present inventors first noticed that the appearance quality such as the skin (smoothness) and gloss of the laminated coating film is better as the surface roughness of the upper layer is smaller. And the unevenness that becomes the skin is caused by the amount of paint applied on the substrate surface during spraying and the shrinkage of the coating film in the drying process (including the baking process) being uneven in the surface direction. It was found that the unevenness (wavelength shorter than that in the case of skin) is caused by the amount of shrinkage of the coating film in the drying process being non-uniform in the surface direction. In addition, among the unevenness formed due to the above two causes, unevenness caused by uneven coating amount on the substrate surface during spraying is suppressed by improving the atomization of the paint. However, since the coating efficiency, which is the effective utilization rate of the paint, is reduced, it is not advantageous in terms of cost to improve the atomization of the paint more than necessary. For this reason, in order to improve the appearance quality such as skin (smoothness) and gloss, it is advantageous to reduce unevenness caused by unevenness of the shrinkage amount of the coating film in the drying process in the surface direction. I found. The present inventors then baked at the same time after laminating the paint for forming the lower layer on the substrate, at least one paint for forming at least one intermediate layer, and the paint for forming the upper layer by wet-on-wet. When the laminated coating film is formed, the above unevenness is mainly the interface between the upper layer and the first adjacent layer formed by laminating the lower layer coating material, the intermediate layer coating material, and the upper layer coating material by wet-on-wet. The unevenness and the unevenness of the interface between the first adjacent layer and the second adjacent layer are formed by being transferred to the surface of the upper layer by contraction of each layer after the fluidity of the upper layer is significantly reduced in the drying step. The absolute value of the shrinkage rate difference between the upper layer and the first adjacent layer from the time when the coating material flow stops until the end of the standard baking time of each paint, and the difference between the first adjacent layer and the second adjacent layer Small sum of absolute shrinkage difference Transfer amount to the upper surface of the interface roughness if Kere found that smaller.

そこで、本発明者らは、3種類以上の熱硬化型塗料をウェットオンウェットで積層して同時に焼付け塗装をする場合において、下層を形成するための下層用塗料として熱硬化型塗料を使用し、中間層を形成するための中間層用塗料として熱硬化型塗料を使用し、上層を形成するための上層用塗料として熱硬化型塗料を使用し、これら塗料として、前記上層用塗料の流動停止時間後から各塗料の標準焼付け時間終了時までの間の前記上層用塗料の収縮率と前記第一の隣接層用塗料の収縮率との差の絶対値と、前記第一の隣接層用塗料の収縮率と前記第二の隣接層用塗料の収縮率との差の絶対値との和が8.0以下となるものを選択することによって、上層と前記第一の隣接層との界面凹凸及び前記第一の隣接層と前記第二の隣接層との界面凹凸の上層への転写量を十分に小さくでき、3種類以上の塗料をウェットオンウェットで積層した後に同時に焼付けを実施しても外観品質により高度に優れた積層塗膜が得られるものと推察している。   Therefore, the present inventors use a thermosetting paint as a lower layer paint for forming a lower layer when laminating three or more kinds of thermosetting paints by wet-on-wet and simultaneously baking coating, The thermosetting paint is used as the intermediate layer paint for forming the intermediate layer, the thermosetting paint is used as the upper layer paint for forming the upper layer, and the flow stop time of the upper layer paint as these paints The absolute value of the difference between the shrinkage rate of the upper layer coating material and the shrinkage rate of the first adjacent layer coating material after the standard baking time of each coating material is reached, and the first adjacent layer coating material By selecting the sum of the shrinkage rate and the absolute value of the difference between the shrinkage rates of the second adjacent layer paints to be 8.0 or less, the interface unevenness between the upper layer and the first adjacent layer and Interfacial irregularities between the first adjacent layer and the second adjacent layer The amount of transfer to the upper layer can be made sufficiently small, and it is speculated that even if three or more types of paints are laminated by wet-on-wet and then baked at the same time, a highly superior laminated coating film can be obtained depending on the appearance quality .

本発明によれば、3種類以上の塗料をウェットオンウェットで積層して焼付けて高耐久性の確保などのために各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となる。これにより、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。   According to the present invention, even when three or more kinds of paints are laminated on and wet and wet and each layer is cured to ensure high durability, the occurrence of unevenness on the upper layer surface is sufficiently suppressed. A coating film can be obtained. Thereby, the coating body which was highly excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

上層用塗料の流動停止時間tcUを算出する際に塗膜表面の変形を表すオシロ波形である。It is an oscilloscope waveform showing a deformation | transformation of the coating-film surface when calculating the flow stop time tcU of the coating material for upper layers.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の塗装方法は、基材上に形成された下層と該下層上に形成された少なくとも1層の中間層と該中間層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、前記中間層を形成するための中間層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として熱硬化型塗料を準備する準備工程(原料塗料準備工程)と、
前記基材上に前記下層用塗料、前記中間層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程(塗装工程)と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料、前記中間層用塗料及び前記上層用塗料を同時に硬化させる焼付工程(焼付工程)と、
を含んでおり、
前記準備工程において、前記上層に隣接する前記中間層を第一の隣接層とし、該第一の隣接層を形成するための前記中間層用塗料を第一の隣接層用塗料とし、前記第一の隣接層に隣接する前記中間層又は前記下層を第二の隣接層とし、該第二の隣接層を形成するための前記中間層用塗料又は前記下層用塗料を第二の隣接層用塗料とし、前記上層用塗料の流動停止時間tcU後から標準焼付け時間tbU終了時までの間の前記上層用塗料の収縮率をωとし、前記上層用塗料の流動停止時間tcU後から前記第一の隣接層用塗料の標準焼付け時間tbA1終了時までの間の前記第一の隣接層用塗料の収縮率をωA1とし、前記上層用塗料の流動停止時間tcU後から前記第二の隣接層用塗料の標準焼付け時間tbA2終了時までの間の前記第二の隣接層用塗料の収縮率をωA2とするとき、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値との和が8.0%以下となるように、前記上層用塗料、前記第一の隣接層用塗料及び前記第二の隣接層用塗料を選択する、
ことを特徴とする方法である。
The coating method of the present invention is a coating method for forming a laminated coating film comprising a lower layer formed on a substrate, at least one intermediate layer formed on the lower layer, and an upper layer formed on the intermediate layer. Because
A thermosetting paint is prepared as a lower layer paint for forming the lower layer, a thermosetting paint is prepared as an intermediate layer paint for forming the intermediate layer, and an upper layer for forming the upper layer A preparation process (raw material paint preparation process) for preparing a thermosetting paint as a paint for coating,
A forming step (coating step) for laminating the lower layer coating material, the intermediate layer coating material and the upper layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
A baking process (baking process) in which the uncured laminated coating film is subjected to a baking treatment to simultaneously cure the lower layer coating material, the intermediate layer coating material and the upper layer coating material;
Contains
In the preparation step, the intermediate layer adjacent to the upper layer is a first adjacent layer, the intermediate layer coating material for forming the first adjacent layer is a first adjacent layer coating material, and the first The intermediate layer or the lower layer adjacent to the adjacent layer is the second adjacent layer, and the intermediate layer paint or the lower layer paint for forming the second adjacent layer is the second adjacent layer paint. The contraction rate of the upper layer paint from after the flow stop time t cU of the upper layer paint to the end of the standard baking time t bU is ω U, and after the flow stop time t cU of the upper layer paint, The shrinkage rate of the first adjacent layer coating material until the end of the standard baking time tbA1 of one adjacent layer coating material is ω A1, and after the flow stop time t cU of the upper layer coating material, the second wherein between until the standard baking time of coating adjacent layers t BA2 End When the shrinkage rate of the paint for a two adjacent layers and omega A2, the absolute value of the difference between the shrinkage omega A1 shrinkage omega U and the first for the adjacent layer coating of the layer-coating material, the first The upper layer coating material, the sum of the difference between the shrinkage rate ω A1 of the adjacent layer coating material and the absolute value of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material is 8.0% or less, Selecting the first adjacent layer coating and the second adjacent layer coating;
It is the method characterized by this.

本発明の塗装方法において、前記中間層が1層の場合には、この中間層が前記第一の隣接層であり、下層が前記第二の隣接層となる。一方、前記中間層が2層以上の場合には、前記上層に隣接する中間層が前記第一の隣接層であり、この第一の隣接層に隣接する中間層が前記第二の隣接層となる。   In the coating method of the present invention, when the intermediate layer is one layer, the intermediate layer is the first adjacent layer, and the lower layer is the second adjacent layer. On the other hand, when the intermediate layer has two or more layers, the intermediate layer adjacent to the upper layer is the first adjacent layer, and the intermediate layer adjacent to the first adjacent layer is the second adjacent layer. Become.

(原料塗料準備工程)
本発明の塗装方法においては、先ず、下層を形成するための下層用塗料、少なくとも1層の中間層を形成するための少なくとも1つの中間層用塗料、及び、上層を形成するための上層用塗料を準備する。
(Raw material preparation process)
In the coating method of the present invention, first, a lower layer paint for forming a lower layer, at least one intermediate layer paint for forming at least one intermediate layer, and an upper layer paint for forming an upper layer Prepare.

本発明にかかる上層用塗料としては、熱硬化型塗料を使用する。このような上層用塗料に用いられる熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂及び硬化剤を含むものであればよく、通常の焼付塗装の上層用塗料として使用される熱硬化型塗料が挙げられる。このような上層用熱硬化型塗料の形態は、溶剤型、水性、粉体のいずれでもよい。上層用熱硬化型塗料の標準焼付け温度は、特に限定されるものではなく、通常40〜200℃、好ましくは80〜160℃である。なお、このような上層用塗料としては、その標準焼付け温度における重量減少率が0〜20質量%の塗料を使用することが好ましい。このようにすることにより、加熱処理による塗膜の収縮を最小限にすることができる傾向にある。また、このような観点から、前記重量減少率が0〜10質量%の塗料を使用することが最も好ましい。   A thermosetting paint is used as the upper layer paint according to the present invention. As the thermosetting paint used for such an upper layer coating, any thermosetting resin that can form a coating film and a curing agent may be used, and thermosetting used as an upper layer coating for ordinary baking coating. Mold paints. The form of the upper layer thermosetting coating may be any of solvent type, aqueous type, and powder. The standard baking temperature of the upper layer thermosetting paint is not particularly limited, and is usually 40 to 200 ° C, preferably 80 to 160 ° C. In addition, as such an upper layer coating material, it is preferable to use a coating material whose weight reduction rate at the standard baking temperature is 0 to 20% by mass. By doing in this way, it exists in the tendency which can minimize shrinkage | contraction of the coating film by heat processing. From such a viewpoint, it is most preferable to use a paint having a weight reduction rate of 0 to 10% by mass.

なお、本発明において、塗料の標準焼付け温度とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために焼付け時間等の硬化条件との関係で最も効率よく焼付けできる温度をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準焼付け温度としてカタログ値を採用することができる。また、本発明において、塗料の標準焼付け時間とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために標準焼付け温度等の硬化条件との関係で最も効率よく焼付けできる時間をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準焼付け時間としてカタログ値を採用することができる。さらに、本発明において、塗料の標準昇温速度とは、対象とする塗料を基材上に塗装して加熱処理を施して塗膜を硬化せしめ、基材上に定着させるために標準焼付け温度及び標準焼付け時間等の硬化条件との関係で最も効率よく焼付けできる塗膜の昇温速度をいい、一般的には塗料毎に設定(設計)されているものである。本発明では、この標準昇温速度としてカタログ値を採用することができる。   In the present invention, the standard baking temperature of the paint means that the target paint is applied on the base material, subjected to a heat treatment to cure the coating film, and is cured such as a baking time for fixing on the base material. The temperature that can be baked most efficiently in relation to the conditions, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard baking temperature. Further, in the present invention, the standard baking time of the paint refers to a standard baking temperature or the like for coating the target paint on the base material, applying a heat treatment to cure the coating film, and fixing it on the base material. It refers to the time that can be baked most efficiently in relation to the curing conditions, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard baking time. Furthermore, in the present invention, the standard temperature increase rate of the paint refers to the standard baking temperature and the coating temperature for the purpose of coating the target paint on the substrate, applying the heat treatment to cure the coating film, and fixing it on the substrate. The rate of temperature rise of the coating film that can be baked most efficiently in relation to curing conditions such as standard baking time, and is generally set (designed) for each paint. In the present invention, a catalog value can be adopted as the standard temperature increase rate.

このような上層用塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、水酸基、グリシジル基、カルボキシル基を含有するアクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられるが、これらに限定されるものではない。好ましい硬化剤としては、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂、アミノ化合物、メラミン樹脂等が挙げられるが、これらに限定されるものではない。また、これらの熱硬化性樹脂及び硬化剤はそれぞれ1種を単独で用いても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film contained in such an upper layer coating material include acrylic resins, polyester resins, alkyd resins, epoxy resins, urethane resins containing hydroxyl groups, glycidyl groups, and carboxyl groups. However, it is not limited to these. Preferred curing agents include, but are not limited to, isocyanate compounds, blocked isocyanate compounds, isocyanate resins, amino compounds, melamine resins and the like. Moreover, these thermosetting resins and curing agents may be used alone or in combination of two or more.

なお、このような上層用塗料に含まれる硬化剤としては、メラミン樹脂を含まないものであることが好ましい。このようにすることにより、加熱処理による塗膜の収縮を最小限にすることができる傾向にある。   In addition, as a hardening | curing agent contained in such a coating material for upper layers, it is preferable that a melamine resin is not included. By doing in this way, it exists in the tendency which can minimize shrinkage | contraction of the coating film by heat processing.

また、このような上層用塗料としては、熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料であることが好ましい。このようにすることにより、加熱処理による塗膜の収縮を最小限にすることができる傾向にある。   Moreover, as such a coating material for upper layers, it is preferable that it is a thermosetting coating material which does not produce | generate a volatile product in the hardening reaction by heat processing. By doing in this way, it exists in the tendency which can minimize shrinkage | contraction of the coating film by heat processing.

さらに、このような熱処理による硬化反応において揮発性生成物を生成しない前記熱硬化性樹脂と前記硬化剤との組み合わせとしては、水酸基含有アクリル樹脂とイソシアネート化合物及び/又はイソシアネート樹脂との組み合わせ等が挙げられる。また、更に優れた高度な外観品質を得るために、本発明において、前記積層塗膜に熱処理を施し硬化させた積層塗膜の上層の上に、熱処理により硬化させる熱硬化型塗料を積層してもよい。この熱硬化型塗料は熱処理による硬化反応において、実質的に揮発性生成物を生成しない塗料であることがより好ましい。   Furthermore, examples of the combination of the thermosetting resin that does not generate a volatile product in the curing reaction by the heat treatment and the curing agent include a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin. It is done. In addition, in order to obtain an even higher level of appearance quality, in the present invention, a thermosetting paint cured by heat treatment is laminated on the upper layer of the laminated coating obtained by applying heat treatment to the laminated coating. Also good. The thermosetting paint is more preferably a paint that does not substantially generate a volatile product in a curing reaction by heat treatment.

なお、本発明においては、このような上層用塗料に含まれる熱硬化性樹脂と硬化剤とを、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の前記上層用塗料の収縮率と前記第一の隣接層用塗料の収縮率の差の絶対値と、前記第一の隣接層用塗料の収縮率と前記第二の隣接層用塗料の収縮率との差の絶対値との和が特定の範囲となるように組み合わせて上層用塗料を選択し調製する。前記熱硬化性樹脂と前記硬化剤との組合せとしては、水酸基を含有するアクリル樹脂とイソシアネート化合物の組合せ、水酸基を含有するアクリル樹脂とイソシアネート樹脂の組合せ、水酸基,グリジル基を含有するアクリル樹脂とカルボキシル基を含有するアクリル樹脂の組合せであることが好ましい。 In the present invention, during a such a thermosetting resin contained in the layer-coating material curing agent, after flowing down time t cU of layer-coating material until the standard baking time t b the end of each paint The absolute value of the difference between the shrinkage rate of the upper layer coating material and the shrinkage rate of the first adjacent layer coating material, the shrinkage rate of the first adjacent layer coating material and the shrinkage rate of the second adjacent layer coating material. The upper layer coating material is selected and prepared in combination so that the sum of the difference and the absolute value falls within a specific range. The combination of the thermosetting resin and the curing agent includes a combination of an acrylic resin containing a hydroxyl group and an isocyanate compound, a combination of an acrylic resin containing a hydroxyl group and an isocyanate resin, an acrylic resin containing a hydroxyl group and a glycidyl group, and a carboxyl. A combination of acrylic resins containing groups is preferred.

さらに、このような上層用塗料としては、自動車用塗料及び塗装で用いられるクリア塗膜(クリア層)を形成するいわゆる「クリア塗料」であることが好ましい。例えば、透明な塗膜を形成可能な、熱硬化性樹脂と有機溶剤と、必要に応じて紫外線吸収剤等が含有されているものが挙げられる。上記熱硬化性樹脂としては、例えば、水酸基、カルボキシル基、シラノール基、エポキシ基等の架橋性官能基を有するアクリル樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、ウレタン樹脂、シリコン含有樹脂等の樹脂と、これらの架橋性官能基に反応し得るメラミン樹脂、尿素樹脂、(ブロック)ポリイソシアネート化合物、エポキシ化合物又は樹脂、カルボキシル基含有化合物又は樹脂、酸無水物、アルコキシシラン基含有化合物又は樹脂等の架橋剤とからなるものが挙げられる。   Furthermore, the upper layer coating material is preferably a so-called “clear coating” that forms a clear coating film (clear layer) used in automotive coatings and painting. For example, the thing containing the thermosetting resin and organic solvent which can form a transparent coating film, and the ultraviolet absorber etc. as needed is mentioned. Examples of the thermosetting resin include acrylic resins having a crosslinkable functional group such as a hydroxyl group, a carboxyl group, a silanol group, and an epoxy group, polyester resins, alkyd resins, fluororesins, urethane resins, and silicon-containing resins. Crosslinks of melamine resins, urea resins, (block) polyisocyanate compounds, epoxy compounds or resins, carboxyl group-containing compounds or resins, acid anhydrides, alkoxysilane group-containing compounds or resins that can react with these crosslinkable functional groups What consists of an agent is mentioned.

また、本発明にかかる上層用塗料においては、必要に応じて従来公知の着色顔料や光輝性顔料等が従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤等の各種添加剤を従来公知の範囲で配合してもよい。   Moreover, in the upper layer coating material according to the present invention, conventionally known color pigments, glitter pigments, and the like may be included within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.

本発明にかかる中間層用塗料としては、熱硬化型塗料を使用する。このような中間層用塗料に用いられる熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂及び硬化剤を含むものであればよく、通常の焼付塗装の中間層用塗料として使用される熱硬化型塗料が挙げられる。このような中間層用熱硬化型塗料の形態は、溶剤型、水性、粉体のいずれでもよい。中間層用熱硬化型塗料の標準焼付け温度は、特に限定されるものではなく、通常40〜200℃、好ましくは80〜160℃である。   As the intermediate layer coating material according to the present invention, a thermosetting coating material is used. As the thermosetting paint used for such an intermediate layer coating material, any thermosetting resin that can form a coating film and a curing agent may be used, and it is used as an intermediate layer coating material for ordinary baking coating. A thermosetting paint is mentioned. The form of such a thermosetting coating for the intermediate layer may be any of solvent type, aqueous type, and powder. The standard baking temperature of the thermosetting paint for intermediate layers is not particularly limited, and is usually 40 to 200 ° C, preferably 80 to 160 ° C.

このような中間層用塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられるが、これらに限定されるものではない。硬化剤としては、アミノ化合物、アミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂等が挙げられるが、これらに限定されるものではない。また、このような熱硬化性樹脂及び硬化剤は、それぞれ1種を単独で使用しても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film contained in such an intermediate layer coating material include acrylic resins, polyester resins, alkyd resins, epoxy resins, and urethane resins, but are not limited thereto. . Examples of the curing agent include, but are not limited to, amino compounds, amino resins, isocyanate compounds, blocked isocyanate compounds, isocyanate resins and the like. Moreover, such a thermosetting resin and a hardening | curing agent may each be used individually by 1 type, or may use 2 or more types together.

なお、本発明においては、このような中間層用塗料に含まれる熱硬化性樹脂と硬化剤とを、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の前記上層用塗料の収縮率と前記第一の隣接層用塗料の収縮率の差の絶対値と、前記第一の隣接層用塗料の収縮率と前記第二の隣接層用塗料の収縮率との差の絶対値との和が特定の範囲となるように組み合わせて中間層用塗料を選択し調製する。前記熱硬化性樹脂と前記硬化剤との組合せとしては、アクリル樹脂とメラミン樹脂の組合せ、ポリエステル樹脂とメラミン樹脂の組合せ、アクリル樹脂と(ブロック)イソシアネート化合物の組合せ、ポリエステル樹脂と(ブロック)イソシアネート化合物の組合せであることが好ましい。 In the present invention, the thermosetting resin and the curing agent contained in such an intermediate layer paint are separated from the flow stop time t cU of the upper layer paint until the end of the standard baking time t b of each paint. The absolute value of the difference between the shrinkage ratio of the upper layer paint and the shrinkage ratio of the first adjacent layer paint, the shrinkage ratio of the first adjacent layer paint and the shrinkage of the second adjacent layer paint The intermediate layer paint is selected and prepared in combination so that the sum of the difference and the absolute value of the difference falls within a specific range. Examples of combinations of the thermosetting resin and the curing agent include a combination of an acrylic resin and a melamine resin, a combination of a polyester resin and a melamine resin, a combination of an acrylic resin and a (block) isocyanate compound, and a polyester resin and a (block) isocyanate compound. It is preferable that it is the combination of these.

さらに、このような中間層用塗料としては、自動車用塗料及び塗装で用いられるベース塗膜(ベース層)を形成するいわゆる「ベース用塗料」であることが好ましい。例えば、既知の溶剤系着色ベース塗料や水性着色ベース塗料が好適に用いられる。かかる水性着色ベース塗料としては、例えば、顔料と、水に溶解又は分散可能な樹脂と、必要に応じて架橋剤と、溶媒である水とを含有するものが挙げられる。水に溶解又は分散可能な樹脂としては、例えば、1分子中にカルボキシル基等の親水基と水酸基等の架橋性官能基とを含有する樹脂であって、具体的には、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。また、架橋剤としては、例えば、疎水性又は親水性のアルキルエーテルメラミン樹脂、ブロックイソシアネート化合物等が挙げられる。一方、溶剤系着色ベース塗料としては、例えば、顔料と、上記同様の樹脂と、必要に応じて架橋剤と、溶剤とを含有するものが挙げられる。   Furthermore, the intermediate layer coating material is preferably a so-called “base coating material” that forms a base coating film (base layer) used in automotive coating materials and painting. For example, known solvent-based colored base paints and aqueous colored base paints are preferably used. Examples of such an aqueous colored base coating material include a pigment, a resin that can be dissolved or dispersed in water, a crosslinking agent as necessary, and water as a solvent. Examples of the resin that can be dissolved or dispersed in water include a resin containing a hydrophilic group such as a carboxyl group and a crosslinkable functional group such as a hydroxyl group in one molecule, and specifically, an acrylic resin or a polyester resin. And polyurethane resin. Moreover, as a crosslinking agent, hydrophobic or hydrophilic alkyl ether melamine resin, a block isocyanate compound, etc. are mentioned, for example. On the other hand, examples of the solvent-based coloring base paint include those containing a pigment, a resin similar to the above, and a crosslinking agent and a solvent as necessary.

また、本発明にかかる中間層用塗料においては、必要に応じて従来公知の着色顔料や光輝性顔料等が従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤等の各種添加剤を従来公知の範囲で配合してもよい。   Moreover, in the coating material for intermediate | middle layers concerning this invention, the conventionally well-known coloring pigment, the luster pigment, etc. may be contained in the conventionally well-known range as needed. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.

本発明にかかる下層用塗料としては、熱硬化型塗料を使用する。このような下層用塗料に用いられる熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂及び硬化剤を含むものであればよく、通常の焼付塗装の下層用塗料として使用される熱硬化型塗料が挙げられる。このような下層用熱硬化型塗料の形態は、溶剤型、水性、粉体のいずれでもよい。下層用熱硬化型塗料の標準焼付け温度は、特に限定されるものではなく、通常40〜200℃、好ましくは80〜160℃である。   As the lower layer coating material according to the present invention, a thermosetting coating material is used. As the thermosetting paint used for such a lower layer coating material, any thermosetting resin that can form a coating film and a curing agent may be used, and thermosetting used as a lower layer coating material for ordinary baking coating. Mold paints. The form of the thermosetting paint for the lower layer may be any of solvent type, aqueous type, and powder. The standard baking temperature of the thermosetting paint for the lower layer is not particularly limited, and is usually 40 to 200 ° C, preferably 80 to 160 ° C.

このような下層用塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられるが、これらに限定されるものではない。硬化剤としては、アミノ化合物、アミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、イソシアネート樹脂等が挙げられるが、これらに限定されるものではない。また、このような熱硬化性樹脂及び硬化剤は、それぞれ1種を単独で使用しても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film contained in the lower layer coating material include, but are not limited to, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, and a urethane resin. Examples of the curing agent include, but are not limited to, amino compounds, amino resins, isocyanate compounds, blocked isocyanate compounds, isocyanate resins and the like. Moreover, such a thermosetting resin and a hardening | curing agent may each be used individually by 1 type, or may use 2 or more types together.

なお、本発明においては、このような下層用塗料に含まれる熱硬化性樹脂と硬化剤とを、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の前記上層用塗料の収縮率と前記第一の隣接層用塗料の収縮率の差の絶対値と、前記第一の隣接層用塗料の収縮率と前記第二の隣接層用塗料の収縮率との差の絶対値との和が特定の範囲となるように組み合わせて下層用塗料を選択し調製する。前記熱硬化性樹脂と前記硬化剤との組合せとしては、アクリル樹脂とメラミン樹脂の組合せ、ポリエステル樹脂とメラミン樹脂の組合せ、アクリル樹脂と(ブロック)イソシアネート化合物の組合せ、ポリエステル樹脂と(ブロック)イソシアネート化合物の組合せであることが好ましい。 In the present invention, the thermosetting resin and the curing agent contained in such a lower layer paint are mixed between the flow stop time t cU of the upper layer paint and the end of the standard baking time t b of each paint. The absolute value of the difference between the shrinkage rate of the upper layer coating material and the shrinkage rate of the first adjacent layer coating material, the shrinkage rate of the first adjacent layer coating material and the shrinkage rate of the second adjacent layer coating material. The lower layer coating material is selected and prepared in combination so that the sum of the difference and the absolute value falls within a specific range. Examples of combinations of the thermosetting resin and the curing agent include a combination of an acrylic resin and a melamine resin, a combination of a polyester resin and a melamine resin, a combination of an acrylic resin and a (block) isocyanate compound, and a polyester resin and a (block) isocyanate compound. It is preferable that it is the combination of these.

さらに、このような下層用塗料としては、自動車用塗料及び塗装で用いられる中塗り塗膜(中塗り層)を形成するいわゆる「中塗り塗料」であることが好ましい。例えば、基体樹脂と架橋剤とからなる熱硬化性樹脂組成物が好適に用いられる。かかる基体樹脂としては、例えば、水酸基、エポキシ基、イソシアネート基、カルボキシル基のような架橋性官能基を1分子中に2個以上有するアクリル樹脂、ポリエステル樹脂、アルキド樹脂などが挙げられ、また、架橋剤としては、例えば、メラミン樹脂、尿素樹脂などのようなアミノ樹脂、ブロックされていてもよいポリイソシアネート化合物、カルボキシル基含有化合物などが挙げられる。   Further, the lower layer coating material is preferably a so-called “intermediate coating material” which forms an intermediate coating film (intermediate coating layer) used in automotive coating materials and painting. For example, a thermosetting resin composition composed of a base resin and a crosslinking agent is preferably used. Examples of such base resins include acrylic resins, polyester resins, alkyd resins having two or more crosslinkable functional groups such as hydroxyl group, epoxy group, isocyanate group, and carboxyl group in one molecule, and crosslinking. Examples of the agent include amino resins such as melamine resins and urea resins, polyisocyanate compounds that may be blocked, carboxyl group-containing compounds, and the like.

また、本発明にかかる下層用塗料においては、必要に応じて従来公知の着色顔料や光輝性顔料等が従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤等の各種添加剤を従来公知の範囲で配合してもよい。   Moreover, in the lower layer coating material according to the present invention, conventionally known color pigments, glitter pigments, and the like may be included in a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.

なお、本発明の原料塗料準備工程においては、前記上層に隣接する前記中間層を第一の隣接層とし、該第一の隣接層を形成するための前記中間層用塗料を第一の隣接層用塗料とし、前記第一の隣接層に隣接する前記中間層又は前記下層を第二の隣接層とし、該第二の隣接層を形成するための前記中間層用塗料又は前記下層用塗料を第二の隣接層用塗料とし、前記上層用塗料の流動停止時間tcU後から標準焼付け時間tbU終了時までの間の前記上層用塗料の収縮率をωとし、前記上層用塗料の流動停止時間tcU後から前記第一の隣接層用塗料の標準焼付け時間tbA1終了時までの間の前記第一の隣接層用塗料の収縮率をωA1とし、前記上層用塗料の流動停止時間tcU後から前記第二の隣接層用塗料の標準焼付け時間tbA2終了時までの間の前記第二の隣接層用塗料の収縮率をωA2とするとき、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値との和が8.0%以下(好ましくは6.0%以下、より好ましくは4.0%以下)となるように、前記上層用塗料、前記第一の隣接層用塗料及び前記第二の隣接層用塗料を選択する必要がある。このようにすることにより、3種類以上の塗料をウェットオンウェットで積層して焼付けて各層を硬化させても上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることが可能となる。これにより、肌(表面平滑性)や光沢等の外観品質により高度に優れた塗装体を得ることができる。 In the raw material coating material preparation step of the present invention, the intermediate layer adjacent to the upper layer is used as a first adjacent layer, and the intermediate layer coating material for forming the first adjacent layer is used as the first adjacent layer. The intermediate layer or the lower layer adjacent to the first adjacent layer is the second adjacent layer, and the intermediate layer paint or the lower layer paint for forming the second adjacent layer is the first coating. The upper layer paint shrinkage rate is ω U from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t bU , and the flow stop of the upper layer paint. the shrinkage rate of the first for the adjacent layer coating between the later time t cU until the standard baking time t BA1 end of the first for the adjacent layer coating and omega A1, flow stop time t of the layer-coating material the later cU second standard baking time of coating adjacent layers t BA2 When the shrinkage rate of the second neighboring-layer paint until Ryoji and omega A2, the difference between the shrinkage omega A1 shrinkage of the layer-coating material omega U and the first for the adjacent layer coating of the absolute value, said first sum 8.0% and the absolute value of the difference between the shrinkage omega A1 of coating adjacent layer and the second for coatings adjacent layer shrinkage omega A2 or less (preferably It is necessary to select the upper layer coating material, the first adjacent layer coating material, and the second adjacent layer coating material so as to be 6.0% or less, more preferably 4.0% or less. By doing so, it is possible to obtain a laminated coating film in which the occurrence of unevenness on the surface of the upper layer is sufficiently suppressed even if each layer is cured by laminating and baking three or more kinds of paints wet-on-wet. . Thereby, the coating body highly excellent by external appearance quality, such as skin (surface smoothness) and glossiness, can be obtained.

このような上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料においては、前記上層用塗料の収縮率ωが0〜40%の範囲にあり、前記第一の隣接層用塗料の収縮率ωA1が0〜40%の範囲にあり、前記第二の隣接層用塗料の収縮率ωA2が0〜40%の範囲にあることが好ましい。このようにすることにより、上層表面の凹凸が少ない積層塗膜を得ることが可能となる傾向にあり、これにより肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる傾向にある。 In the upper layer coating material, the first adjacent layer coating material, and the second adjacent layer coating material, the upper layer coating material has a shrinkage ratio ω U in the range of 0 to 40%, and the first adjacent layer material It is preferable that the shrinkage ratio ω A1 of the paint for coating is in the range of 0 to 40%, and the shrinkage ratio ω A2 of the paint for the second adjacent layer is in the range of 0 to 40%. By doing in this way, it tends to be possible to obtain a laminated coating film with less irregularities on the surface of the upper layer, thereby obtaining a coated body with a high appearance quality such as skin (surface smoothness) and gloss. Tend to be able to.

このような上層用塗料、中間層用塗料及び下層用塗料としては、上層用塗料が酸エポキシ硬化系、イソシアネート硬化系、メラミン硬化系の塗料であり、中間層用塗料がメラミン硬化系、イソシアネート硬化系の塗料であり、下層用塗料がメラミン硬化系、イソシアネート硬化系の塗料であることが好ましい。   As such upper layer paint, intermediate layer paint and lower layer paint, the upper layer paint is an acid epoxy curing type, isocyanate curing type, melamine curing type paint, and the intermediate layer coating is a melamine curing type, isocyanate curing type. It is preferable that the lower layer coating is a melamine curing type or isocyanate curing type coating.

さらに、上層用塗料、中間層用塗料及び下層用塗料の組み合わせとしては、上層用塗料/中間層用塗料/下層用塗料が、酸エポキシ硬化系/メラミン硬化系/メラミン硬化系、酸エポキシ硬化系/メラミン硬化系/イソシアネート硬化系、酸エポキシ硬化系/イソシアネート硬化系/メラミン硬化系、酸エポキシ硬化系/イソシアネート硬化系/イソシアネート硬化系、イソシアネート硬化系/メラミン硬化系/メラミン硬化系、イソシアネート硬化系/メラミン硬化系/イソシアネート硬化系、イソシアネート硬化系/イソシアネート硬化系/メラミン硬化系、イソシアネート硬化系/イソシアネート硬化系/イソシアネート硬化系であることがより好ましい。   Furthermore, as a combination of the upper layer paint, the intermediate layer paint, and the lower layer paint, the upper layer paint / the intermediate layer paint / the lower layer paint is an acid epoxy curing system / melamine curing system / melamine curing system, acid epoxy curing system. / Melamine curing system / isocyanate curing system, acid epoxy curing system / isocyanate curing system / melamine curing system, acid epoxy curing system / isocyanate curing system / isocyanate curing system, isocyanate curing system / melamine curing system / melamine curing system, isocyanate curing system More preferred are: / melamine curing system / isocyanate curing system, isocyanate curing system / isocyanate curing system / melamine curing system, and isocyanate curing system / isocyanate curing system / isocyanate curing system.

(塗装工程)
次に、本発明の塗装方法においては、前記原料塗料準備工程で準備した下層用塗料、中間層用塗料及び上層用塗料を、基材上にウェットオンウェットで積層して未硬化積層塗膜を形成する。
(Painting process)
Next, in the coating method of the present invention, the lower layer coating material, the intermediate layer coating material and the upper layer coating material prepared in the raw material coating material preparation step are laminated on the base material in a wet-on-wet manner to form an uncured laminated coating film. Form.

本発明にかかる基材としては、特に限定されるものではなく、例えば、鉄、アルミニウム、真鍮、銅、錫、亜鉛、ステンレス鋼、ブリキ、亜鉛メッキ鋼、合金化亜鉛(Zn−Al、Zn−Ni、Zn−Fe等)メッキ鋼等の金属材料、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂等の樹脂や各種のFRP等のプラスチック材料、ガラス、セメント、コンクリート等の無機材料、木材、繊維材料(紙、布等)、発泡体等を挙げることができる。なかでも、金属材料及びプラスチック材料が好ましく、金属材料が特に好ましい。特に、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面には、予め電着塗装、又は電着塗装と中塗り塗装等の処理が施されていてもよい。   The substrate according to the present invention is not particularly limited. For example, iron, aluminum, brass, copper, tin, zinc, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn-Al, Zn- Ni, Zn-Fe, etc.) metal materials such as plated steel, polyethylene resin, polypropylene resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, etc. Examples thereof include plastic materials such as resins and various FRPs, inorganic materials such as glass, cement, and concrete, wood, fiber materials (paper, cloth, etc.), and foams. Of these, metal materials and plastic materials are preferable, and metal materials are particularly preferable. In particular, the present invention is suitably applied to automotive steel sheets having high required characteristics for appearance quality. The surface of these base materials may be previously subjected to treatment such as electrodeposition coating or electrodeposition coating and intermediate coating.

本発明にかかる塗装工程においては、先ず、基材上に下層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の下層を形成する。次いで、この未硬化の下層の上に中間層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の中間層を形成する。この中間層は1層のみ形成しても2層以上形成してもよい。次に、この未硬化の中間層上に上層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の上層を形成する。下層用塗料、中間層用塗料及び上層用塗料の塗布方法としては、エアスプレー塗装、エアー静電スプレー塗装、回転霧化式静電塗装等の従来公知の方法が挙げられる。   In the coating process according to the present invention, first, a lower layer coating material is applied on a substrate, and if necessary, a solvent or the like is evaporated by drying or the like to form an uncured lower layer. Next, an intermediate layer coating material is applied on the uncured lower layer, and if necessary, the solvent or the like is evaporated by drying or the like to form an uncured intermediate layer. This intermediate layer may be formed of only one layer or two or more layers. Next, an upper layer coating material is applied onto the uncured intermediate layer, and a solvent or the like is evaporated by drying or the like as necessary to form an uncured upper layer. Examples of methods for applying the lower layer coating material, the intermediate layer coating material, and the upper layer coating material include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

なお、下層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。下層の膜厚が前記下限未満では均一な下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると上層の塗膜に含まれる溶媒等を多く吸収する傾向にあるとともに下層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   In addition, although the film thickness of a lower layer can be suitably set with a desired use, it is preferable that it is 5-50 micrometers by the film thickness after heat processing, for example, and it is more preferable that it is 10-40 micrometers. If the film thickness of the lower layer is less than the lower limit, it tends to be difficult to obtain a uniform lower layer coating film.On the other hand, if it exceeds the upper limit, the lower layer itself tends to absorb much solvent contained in the upper layer coating film. Volatilization of the contained solvent is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

また、中間層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。中間層の膜厚が前記下限未満では均一な中間層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると上層の塗膜に含まれる溶媒等を多く吸収する傾向にあるとともに中間層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   Moreover, although the film thickness of an intermediate | middle layer can be suitably set with a desired use, it is preferable that it is 5-50 micrometers by the film thickness after heat processing, for example, and it is more preferable that it is 10-40 micrometers. If the film thickness of the intermediate layer is less than the lower limit, it tends to be difficult to obtain a uniform intermediate layer coating film. On the other hand, if it exceeds the upper limit, it tends to absorb a large amount of the solvent contained in the upper coating film and the intermediate layer. Volatilization of the solvent contained in the layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

さらに、上層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。上層の膜厚が前記下限未満では流動性が不十分であり積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると流動性が過度に大きくなり鉛直方向に塗装する場合にはタレ等の欠陥が発生する傾向にある。   Furthermore, the film thickness of the upper layer can be appropriately set depending on the desired application. For example, the film thickness after the heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. If the film thickness of the upper layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate.On the other hand, if the upper limit is exceeded, the fluidity becomes excessively large and the film is applied in the vertical direction. Tends to cause defects such as sagging.

(焼付工程)
次に、本発明の塗装方法においては、前記塗装工程において得られた未硬化積層塗膜に焼付け処理(加熱処理)を施して前記下層用塗料、前記中間層用塗料及び前記上層用塗料を同時に硬化させる。本発明の塗装方法において、前記加熱処理は、少なくとも上層が硬化する温度以上、例えば、[前記上層用塗料の標準焼付け温度−20℃]以上の温度での加熱処理を含んでいることが好ましい。また、加熱時間は、前記上層用塗料の標準焼付け時間tbUの50%以上150%以下であることが好ましい。
(Baking process)
Next, in the coating method of the present invention, the uncured laminated coating film obtained in the coating step is subjected to a baking treatment (heat treatment) to simultaneously apply the lower layer coating material, the intermediate layer coating material, and the upper layer coating material. Harden. In the coating method of the present invention, it is preferable that the heat treatment includes a heat treatment at least at a temperature equal to or higher than a temperature at which the upper layer is cured, for example, [standard baking temperature of the upper layer paint −20 ° C.]. The heating time is preferably 50% or more and 150% or less of the standard baking time tbU of the upper layer coating material .

また、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化状態の塗膜を安定させるために、前記焼付け処理(加熱処理)前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。   Moreover, in the coating method of this invention, in order to stabilize the uncured coating film laminated | stacked by wet-on-wet, it is preferable to make it stand at room temperature (setting) before the said baking process (heat processing). The setting time is usually set to 1 to 20 minutes.

さらに、本発明において、より高級な外観を有する塗装体を得るためには、前記塗装方法により得られた塗装体の前記上層の上に更に1種以上の塗料を塗布して加熱処理を施し、表面層を形成することが好ましい。前記塗料としては、前記上層用塗料として例示したものを使用することができる。また、前記塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装等の従来公知の方法が挙げられる。   Furthermore, in the present invention, in order to obtain a coated body having a higher-grade appearance, one or more kinds of paints are further applied on the upper layer of the coated body obtained by the coating method, and heat treatment is performed. It is preferable to form a surface layer. As the paint, those exemplified as the paint for the upper layer can be used. Examples of the method for applying the paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

本発明の塗装体は、前記本発明の塗装方法により製造されたものであり、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも十分に少なく、外観品質が高度に優れている。また、基材上に下層を形成する塗料、中間層を形成する塗料、上層を形成する塗料をウェットオンウェットで積層した後に、同時に焼付けして積層塗膜を形成することにより、大幅なエネルギー削減、コスト低減及び工程短縮を実現することができる。さらに、主溶媒として水を用いた水性塗料を採用することにより、揮発性有機化合物(VOC)の排出を削減することができる。このような塗装体は、特に乗用車、トラック、バス、オートバイ等の自動車用車体やその部品として有用である。   The coated body of the present invention is manufactured by the above-described coating method of the present invention, and the unevenness of the surface of the laminated coating film is sufficiently less than the conventional laminated coating film produced by wet-on-wet, and the appearance quality is high. Are better. In addition, the coating material that forms the lower layer, the coating material that forms the intermediate layer, and the coating material that forms the upper layer on the base material are laminated by wet-on-wet and then baked at the same time to form a multilayer coating film, resulting in significant energy savings. Cost reduction and process shortening can be realized. Furthermore, by adopting an aqueous paint using water as the main solvent, emission of volatile organic compounds (VOC) can be reduced. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、上層用塗料の流動停止時間tcU、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の各塗料の収縮率、及び各塗料の収縮率差の絶対値の算出は以下の方法により行なった。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. It should be noted that the upper layer paint flow stop time t cU , the upper layer paint flow stop time t cU and the end of the standard baking time t b of each paint, and the difference in contraction rate of each paint. The absolute value of was calculated by the following method.

<上層用塗料の流動停止時間tcUの算出>
ステンレス鋼板(40mm×50mm×0.5mm)上に焼付け後の膜厚が100μmとなるように上層用塗料をバーコータを用いて塗布し、室温で10分間放置した後、試料を電場ピックアップ粘度計(京都電子工業(株)製、型番RM−01T)にセットした。針−試料表面間距離:100μm、電圧:5V、電圧オン時間:1.0秒間、電圧オフ時間:1.0秒間の測定条件で直流電圧のオンとオフを切替えながら、試料を室温から上層用塗料の標準焼付け温度(140℃)まで上層用塗料の標準昇温速度(20℃/min)で加熱した。この間の試料表面の変形を、レーザー光を照射して試料表面で反射されるレーザー光の強度を検出電圧として0.01秒間の測定ピッチで測定した。図1は、このとき得られるオシロ波形の一例である。
<Calculation of Flow Stop Time t cU of Upper Layer Paint>
The upper layer paint was applied to a stainless steel plate (40 mm × 50 mm × 0.5 mm) using a bar coater so that the film thickness after baking was 100 μm, and allowed to stand at room temperature for 10 minutes. It was set in Kyoto Electronics Industry Co., Ltd. model number RM-01T. Needle-sample surface distance: 100 μm, voltage: 5 V, voltage on time: 1.0 sec, voltage off time: 1.0 sec. It heated at the standard temperature increase rate (20 degreeC / min) of the upper layer coating material to the standard baking temperature (140 degreeC) of the paint. During this time, the deformation of the sample surface was measured at a measurement pitch of 0.01 seconds using the intensity of the laser beam irradiated with the laser beam and reflected from the sample surface as a detection voltage. FIG. 1 is an example of an oscilloscope waveform obtained at this time.

図1に示すように、得られたオシロ波形においては、m+1秒間にm個の検出電圧の振れが観察される。これらm個の検出電圧の振れの中で、振れ幅が最大(amax)となる時間をtmaxとし、tmax以降の時間範囲において、振れ幅がamaxの5%まで小さくなった時間を上層用塗料の流動停止時間tcU(tcU>tmax)とした。 As shown in FIG. 1, in the obtained oscilloscope waveform, fluctuations of m detection voltages are observed in m + 1 seconds. Among these m detection voltage fluctuations, the time when the fluctuation width becomes the maximum (a max ) is defined as t max, and the time when the fluctuation width decreases to 5% of the a max in the time range after t max. The flow stop time t cU (t cU > t max ) of the upper layer coating material was used.

<各塗料の収縮率、収縮率差及びその和の算出>
秤量したステンレス箔(150mm×30mm×0.5mm)に、上層用塗料、中間層用塗料、又は下層用塗料をそれぞれ熱処理後の膜厚が積層塗膜での目標膜厚となるようにエアスプレー塗装し、標準焼付け温度(140℃)で塗膜の焼付けを開始した。その後、前記上層用塗料の流動停止時間tcUまで塗膜を焼付け(焼付け時間:tcU)、試料(ステンレス箔+塗膜)を秤量した。さらに、焼付け開始からの総焼付け時間が塗料の標準焼付け時間t(30分)となるように、塗料の標準焼付け温度(140℃)で塗膜を焼付け(後段の焼付け時間:t−tcU)、試料(ステンレス箔+塗膜)を秤量した。
<Calculation of shrinkage rate, shrinkage rate difference and sum of paints>
Air spray so that the film thickness after heat treatment of the upper layer paint, intermediate layer paint, or lower layer paint on the weighed stainless steel foil (150 mm x 30 mm x 0.5 mm) becomes the target film thickness in the laminated coating film. After coating, baking of the coating film was started at a standard baking temperature (140 ° C.). Thereafter, the coating film was baked (baking time: t cU ) until the flow stop time t cU of the upper layer coating material, and the sample (stainless steel foil + coating film) was weighed. Further, the coating film is baked at the standard baking temperature (140 ° C.) of the paint so that the total baking time from the start of baking becomes the standard baking time t b (30 minutes) of the paint (the baking time at the subsequent stage: t b -t cU ) and a sample (stainless steel foil + coating film) were weighed.

上層用塗料、中間層用塗料及び下層用塗料の収縮率ω、ω及びωは、下記式(1):
ω=100(Y−Z)/(Z−X) (1)
(式中、ωは硬化反応の揮発性生成物と高沸点溶媒等の残存溶媒の揮発に起因する塗料の収縮率、Xはステンレス箔の質量(g)を表し、Yは塗料の標準焼付け温度で前記流動停止時間tcUまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、Zは塗料の標準焼付け温度で塗料の標準焼付け時間tまで焼付けた後の試料(ステンレス箔+塗膜)の質量(g)を表し、iはU(上層用塗料)、I(中間層用塗料)又はL(下層用塗料)である。)
により算出した。
The shrinkage rates ω U , ω I and ω L of the upper layer coating material, the intermediate layer coating material and the lower layer coating material are expressed by the following formula (1):
ω i = 100 (Y i −Z i ) / (Z i −X) (1)
(Where ω i represents the shrinkage of the paint resulting from volatilization of the volatile product of the curing reaction and the residual solvent such as the high boiling point solvent, X represents the mass (g) of the stainless steel foil, and Y i represents the standard of the paint. It represents the mass (g) of the sample (stainless steel foil + coating film) after baking at the baking temperature up to the flow stop time t cU , and Z i is after baking to the standard baking time t b of the paint at the standard baking temperature of the paint. (I) is U (upper layer coating material), I (intermediate layer coating material), or L (lower layer coating material).
Calculated by

また、第一の隣接層用塗料の収縮率ωA1と上層用塗料の収縮率ωとの差の絶対値(|Δω|)、及び第二の隣接層用塗料の収縮率ωA2と第一の隣接層用塗料の収縮率ωA1との差の絶対値(|Δω|)は、下記式(2−1)及び(2−2):
|Δω|=|ωA1−ω| (2−1)
|Δω|=|ωA2ω A1 | (2−2)
により算出した。
Further, the absolute value (| Δω 1 |) of the difference between the shrinkage rate ω A1 of the first adjacent layer paint and the shrinkage rate ω U of the upper layer paint, and the shrinkage rate ω A2 of the second adjacent layer paint The absolute value (| Δω 2 |) of the difference from the shrinkage ratio ω A1 of the first adjacent layer coating is expressed by the following formulas (2-1) and (2-2):
| Δω 1 | = | ω A1 −ω U | (2-1)
| Δω 2 | = | ω A2 −ω A1 | (2-2)
Calculated by

(合成例1)溶剤型クリア用アクリル樹脂R−1の調製
まず、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂製造用反応容器に、ソルベッソ100を235質量部仕込み、撹拌しながら130℃に昇温した。
(Synthesis Example 1) Preparation of Solvent-type Clear Acrylic Resin R-1 First, Solvesso 100 was added to a normal acrylic resin production reaction vessel equipped with a stirrer, thermometer, dropping funnel, reflux condenser, nitrogen inlet tube, and the like. 235 parts by mass, and the temperature was raised to 130 ° C. with stirring.

次に、この反応容器に、アクリル酸2−エチルヘキシル95質量部、メタクリル酸2−ヒドロキシエチル120質量部、スチレン150質量部、メタクリル酸グリシジル135質量部、重合開始剤(日油(株)製、「パーキュアO」)40質量部の混合物を3時間かけて撹拌しながら滴下した。滴下終了後、130℃で1時間撹拌を継続して反応させた。その後、パーキュアOを10質量部添加し、更に130℃で2時間撹拌を継続して反応させた後、室温まで冷却し、水酸基価94、エポキシ価107、不揮発分70質量%のアクリル樹脂R−1を得た。   Next, in this reaction vessel, 95 parts by mass of 2-ethylhexyl acrylate, 120 parts by mass of 2-hydroxyethyl methacrylate, 150 parts by mass of styrene, 135 parts by mass of glycidyl methacrylate, a polymerization initiator (manufactured by NOF Corporation, "Percure O") 40 parts by mass of the mixture was added dropwise with stirring over 3 hours. After completion of the dropwise addition, stirring was continued at 130 ° C. for 1 hour for reaction. Thereafter, 10 parts by mass of Percure O was added, and stirring was continued at 130 ° C. for 2 hours, followed by reaction. After cooling to room temperature, an acrylic resin R- having a hydroxyl value of 94, an epoxy value of 107, and a nonvolatile content of 70% by mass. 1 was obtained.

(合成例2)溶剤型クリア用アクリル樹脂R−2の調製
まず、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂製造用反応容器に、ソルベッソ100を310質量部仕込み、撹拌しながら130℃に昇温した。
(Synthesis Example 2) Preparation of solvent-type clear acrylic resin R-2 First, Solvesso 100 was added to a normal acrylic resin production reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen inlet tube, and the like. Was heated to 130 ° C. while stirring.

次に、この反応容器に、メタクリル酸ブチルが125質量部、メタクリル酸2−エチルヘキシルが225質量部、無水マレイン酸が150質量部、ソルベッソ100が50質量部、重合開始剤(日油(株)製、「パーキュアO」)が100質量部の混合物を3時間かけて撹拌しながら滴下した。滴下終了後、130℃で1時間撹拌を継続して反応させた。その後、パーキュアOを10質量部添加し、更に130℃で2時間撹拌を継続して反応させた後、60℃まで冷却した。冷却後、トリエチルアミン4.6質量部、メタノール73.5質量部を添加し、60℃で12時間撹拌を継続して反応させた。その後、室温まで冷却し、酸価172、不揮発分61質量%のアクリル樹脂R−2を得た。   Next, in this reaction vessel, 125 parts by mass of butyl methacrylate, 225 parts by mass of 2-ethylhexyl methacrylate, 150 parts by mass of maleic anhydride, 50 parts by mass of Solvesso 100, a polymerization initiator (NOF Corporation) Manufactured, “Percure O”) was added dropwise over 3 hours with stirring over a period of 3 hours. After completion of the dropwise addition, stirring was continued at 130 ° C. for 1 hour for reaction. Thereafter, 10 parts by mass of Percure O was added, and stirring was continued for 2 hours at 130 ° C., followed by reaction, followed by cooling to 60 ° C. After cooling, 4.6 parts by mass of triethylamine and 73.5 parts by mass of methanol were added, and stirring was continued at 60 ° C. for 12 hours for reaction. Then, it cooled to room temperature and obtained acrylic resin R-2 with an acid value of 172 and 61 mass% of non volatile matters.

(合成例3)溶剤型クリア用アクリル樹脂R−3の調製
まず、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂製造用反応容器に、ソルベッソ100を195質量部、酢酸ブチル65質量部を仕込み、撹拌しながら130℃に昇温した。
(Synthesis Example 3) Preparation of solvent-type clear acrylic resin R-3 First, Solvesso 100 was added to a normal acrylic resin production reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen inlet tube, and the like. Was charged with 195 parts by mass and 65 parts by mass of butyl acetate, and the temperature was raised to 130 ° C. with stirring.

次に、この反応容器に、メタクリル酸ブチル162.5質量部、アクリル酸4−ヒドロキシブチル149.5質量部、スチレン78質量部、アクリル酸イソボルニル260質量部、重合開始剤(日油社製、「パーキュアO」)52質量部の混合物を3時間かけて撹拌しながら滴下した。滴下終了後、130℃で1時間撹拌を継続して反応させた。その後、パーキュアOを13質量部を添加し、更に130℃で2時間撹拌を継続して反応させた後、酢酸ブチル75質量部を添加し、室温まで冷却し、水酸基価90、不揮発分65質量%のアクリル樹脂R−3を得た。   Next, in this reaction vessel, 162.5 parts by mass of butyl methacrylate, 149.5 parts by mass of 4-hydroxybutyl acrylate, 78 parts by mass of styrene, 260 parts by mass of isobornyl acrylate, a polymerization initiator (manufactured by NOF Corporation, "Percure O") 52 parts by mass of the mixture was added dropwise with stirring over 3 hours. After completion of the dropwise addition, stirring was continued at 130 ° C. for 1 hour for reaction. Thereafter, 13 parts by mass of Percure O was added, and the mixture was further reacted by stirring at 130 ° C. for 2 hours. Then, 75 parts by mass of butyl acetate was added and cooled to room temperature, with a hydroxyl value of 90 and a nonvolatile content of 65 parts by mass. % Acrylic resin R-3 was obtained.

(合成例4)水性中塗り用アクリルエマルションR−4の調製
まず、アクリル酸2−エチルヘキシル31.5質量部、メタクリル酸ブチル78.8質量部、スチレン52.9質量部、アクリル酸4−ヒドロキシブチル72.5質量部、アクリル酸16.4質量部、メタクリル酸メチル63.0質量部、n−ドデシルメルカプタン3.2質量部、イオン交換水119質量部及びラテムル(PD−104)17.5質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis example 4) Preparation of acrylic emulsion R-4 for aqueous intermediate coating First, 31.5 parts by mass of 2-ethylhexyl acrylate, 78.8 parts by mass of butyl methacrylate, 52.9 parts by mass of styrene, 4-hydroxy acrylate 72.5 parts by weight of butyl, 16.4 parts by weight of acrylic acid, 63.0 parts by weight of methyl methacrylate, 3.2 parts by weight of n-dodecyl mercaptan, 119 parts by weight of ion-exchanged water, and lathemul (PD-104) 17.5 Mass parts were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion.

次に、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂エマルション製造用反応容器に、イオン交換水280質量部、ラテムルPD−104(花王ケミカル製)3.5質量部及びAPS水溶液(重合開始剤:過硫酸アンモニウム、APS(Aldrich製)0.7質量部と水7質量部を撹拌混合したもの)を仕込み、撹拌しながら80℃に昇温した。次いで、この反応容器に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分保持した。その後、残りのモノマープレエマルションを上記反応容器中に3時間かけて撹拌しながら滴下した。滴下終了後、更に80℃で1時間撹拌を継続して反応させた。その後、イオン交換水322質量部を添加し、室温まで冷却した。冷却後、50質量%ジメチルエタノールアミン水溶液40.5質量部を添加し、10分撹拌して、水酸基価86、不揮発分29質量%のアクリルエマルションR−4を得た。   Next, 280 parts by mass of ion-exchanged water, Latemul PD-104 (manufactured by Kao Chemical Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen introduction tube and the like. 3.5 parts by mass and an APS aqueous solution (polymerization initiator: ammonium persulfate, 0.7 part by mass of APS (manufactured by Aldrich) and 7 parts by mass of water) were charged and heated to 80 ° C. while stirring. Next, 5% by mass of the monomer pre-emulsion was added to the reaction vessel and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was dropped into the reaction vessel with stirring over 3 hours. After completion of the dropwise addition, stirring was further continued at 80 ° C. for 1 hour for reaction. Thereafter, 322 parts by mass of ion-exchanged water was added and cooled to room temperature. After cooling, 40.5 parts by mass of a 50 mass% dimethylethanolamine aqueous solution was added and stirred for 10 minutes to obtain an acrylic emulsion R-4 having a hydroxyl value of 86 and a nonvolatile content of 29 mass%.

(合成例5)水性ベース用アクリルエマルションR−5の調製
まず、アクリル酸2−エチルヘキシル31.5質量部、メタクリル酸ブチル78.8質量部、アクリル酸ブチル37.8質量部、メタクリル酸2−ヒドロキシエチル63.0質量部、アクリル酸16.4質量部、スチレン87.6質量部、n−ドデシルメルカプタン3.2質量部、イオン交換水119質量部及びラテムル(PD−104)17.5質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis example 5) Preparation of acrylic emulsion R-5 for aqueous base First, 31.5 parts by mass of 2-ethylhexyl acrylate, 78.8 parts by mass of butyl methacrylate, 37.8 parts by mass of butyl acrylate, 2-methacrylic acid 2- 63.0 parts by mass of hydroxyethyl, 16.4 parts by mass of acrylic acid, 87.6 parts by mass of styrene, 3.2 parts by mass of n-dodecyl mercaptan, 119 parts by mass of ion-exchanged water, and 17.5 parts of latem (PD-104) The parts were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion.

次に、攪拌機、温度計、滴下ロート、還流冷却器及び窒素導入管等を備えた通常のアクリル系樹脂エマルション製造用反応容器に、イオン交換水280質量部、ラテムルPD−104(花王ケミカル製)3.5質量部及びAPS水溶液(重合開始剤:過硫酸アンモニウム、APS(Aldrich製)0.7質量部と水7質量部を撹拌混合したもの)を仕込み、撹拌しながら80℃に昇温した。次いで、この反応容器に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分保持した。その後、残りのモノマープレエマルションを上記反応容器中に3時間かけて撹拌しながら滴下した。滴下終了後、更に80℃で1時間撹拌を継続して反応させた。その後、イオン交換水322質量部を添加し、室温まで冷却した。冷却後、50質量%ジメチルエタノールアミン水溶液40.5質量部を添加し、10分撹拌して、水酸基価86、不揮発分29質量%のアクリルエマルションR−5を得た。   Next, 280 parts by mass of ion-exchanged water, Latemul PD-104 (manufactured by Kao Chemical Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, a nitrogen introduction tube and the like. 3.5 parts by mass and an APS aqueous solution (polymerization initiator: ammonium persulfate, 0.7 part by mass of APS (manufactured by Aldrich) and 7 parts by mass of water) were charged and heated to 80 ° C. while stirring. Next, 5% by mass of the monomer pre-emulsion was added to the reaction vessel and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was dropped into the reaction vessel with stirring over 3 hours. After completion of the dropwise addition, stirring was further continued at 80 ° C. for 1 hour for reaction. Thereafter, 322 parts by mass of ion-exchanged water was added and cooled to room temperature. After cooling, 40.5 parts by mass of a 50 mass% dimethylethanolamine aqueous solution was added and stirred for 10 minutes to obtain an acrylic emulsion R-5 having a hydroxyl value of 86 and a nonvolatile content of 29 mass%.

(調製例1)溶剤型クリア塗料C−1の調製
容器に、合成例1で得た溶剤型クリア用アクリル樹脂R−1を443.3質量部、合成例2で得た溶剤型クリア用アクリル樹脂R−2を300.3質量部、n−ブタノールを123.8質量部、ソルベッソ100を24.8質量部、キシレン14.9質量部、2−メトキシ−1−プロパノール39.6質量部、チヌビン123(BASF社製)9.9質量部、チヌビン384−2(BASF社製)9.9質量部、トリブチルアンモニウムブロミド溶液(トリブチルアンモニウムブロミド0.9質量部とn−ブタノール9質量部を混合したもの)9.9質量部を仕込み、これに、撹拌しながらBYK−370(BYK−Chmie製)2.8質量部、BYK−306(BYK−Chmie製)5.2質量部、BYK−392(BYK−Chmie製)9.5質量部、ディスパロンNSH8430(楠本化成製)5.0質量部、ディスパロンOX883(楠本化成製)1.2質量部を添加し、更に10分攪拌して、不揮発分52%の酸エポキシ硬化型の溶剤型クリア塗料C−1を得た。この溶剤型クリア塗料C−1の流動停止時間tcUは400秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは7.7%であった。
(Preparation Example 1) Preparation of solvent-type clear paint C-1 443.3 parts by mass of solvent-type clear acrylic resin R-1 obtained in Synthesis Example 1 in a container and solvent-type clear acrylic obtained in Synthesis Example 2 300.3 parts by mass of resin R-2, 123.8 parts by mass of n-butanol, 24.8 parts by mass of Solvesso 100, 14.9 parts by mass of xylene, 39.6 parts by mass of 2-methoxy-1-propanol, Tinuvin 123 (BASF) 9.9 parts by mass, Tinuvin 384-2 (BASF) 9.9 parts by mass, tributylammonium bromide solution (tributylammonium bromide 0.9 parts by mass and n-butanol 9 parts by mass) 9.9 parts by mass was charged into this, and 2.8 parts by mass of BYK-370 (manufactured by BYK-Chmie) and BYK-306 (manufactured by BYK-Chmie) 5.2 with stirring. Mass parts, 9.5 parts by mass of BYK-392 (manufactured by BYK-Chmie), 5.0 parts by mass of Disparon NSH8430 (manufactured by Enomoto Kasei), 1.2 parts by mass of Disparon OX883 (manufactured by Enomoto Kasei) are added, and further 10 minutes By stirring, an acid epoxy curable solvent-type clear paint C-1 having a nonvolatile content of 52% was obtained. The solvent-clear coating C-1 of the flow stop time t cU is 400 seconds, shrinkage omega U between until the standard baking time t bU ends after flow stop time t cU was 7.7% .

(調製例2)溶剤型クリア塗料C−2の調製
容器に、合成例3で得た溶剤型クリア用アクリル樹脂R−3を759.3質量部、酢酸ブチル197.4質量部、チヌビン123(BASF社製)9.9質量部、チヌビン384−2(BASF社製)9.9質量部を仕込み、これに、撹拌しながらBYK−370(BYK−Chmie製)2.8質量部、BYK−306(BYK−Chmie製)5.1質量部、BYK−392(BYK−Chmie製)9.5質量部、ディスパロンNSH8430(楠本化成)4.9質量部、ディスパロンOX883(楠本化成製)1.2質量部、ポリイソシアネート(旭化成ケミカル社製、「デュラネートTPA−100」)175質量部を添加し、更に10分攪拌して、不揮発分59%のイソシアネート硬化型の溶剤型クリア塗料C−2を得た。この溶剤型クリア塗料C−2の流動停止時間tcUは320秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは1.4%であった。
(Preparation Example 2) Preparation of Solvent Type Clear Paint C-2 In a container, 759.3 parts by mass of solvent type clear acrylic resin R-3 obtained in Synthesis Example 3 and 197.4 parts by mass of butyl acetate, Tinuvin 123 ( 9.9 parts by mass of BASF) and 9.9 parts of Tinuvin 384-2 (BASF) were charged, and 2.8 parts by mass of BYK-370 (BYK-Chmie), BYK-, while stirring. 306 (BYK-Chmie) 5.1 parts by mass, BYK-392 (BYK-Chmie) 9.5 parts by mass, Disparon NSH8430 (Tsubakimoto Kasei) 4.9 parts by mass, Disparon OX883 (Tsumoto Kasei) 1.2 Mass part, 175 parts by mass of polyisocyanate (Asahi Kasei Chemical Co., Ltd., “Duranate TPA-100”) was added, and the mixture was further stirred for 10 minutes to give an isocyanate hardness of 59% nonvolatile content. Chemical-type solvent-type clear paint C-2 was obtained. This solvent-type clear paint C-2 had a flow stop time t cU of 320 seconds, and a shrinkage rate ω U from the flow stop time t cU to the end of the standard baking time t bU was 1.4%. .

(調製例3)溶剤型クリア塗料C−3の調製
容器に、合成例3で得た溶剤型クリア用アクリル樹脂R−3を759.3質量部、酢酸ブチル197.4質量部、チヌビン123(BASF社製)9.9質量部、チヌビン384−2(BASF社製)9.9質量部を仕込み、これに、撹拌しながらBYK−370(BYK−Chmie製)2.8質量部、BYK−306(BYK−Chmie製)5.1質量部、BYK−392(BYK−Chmie製)9.5質量部、ディスパロンNSH8430(楠本化成)4.9質量部、ディスパロンOX883(楠本化成製)1.2質量部、ブロックイソシアネート(ポリイソシアネート(旭化成ケミカル社製、「デュラネートTPA−100」)のイソシアネート基の半分を3,5−ジメチルピラゾールでブロックしたもの)175質量部を添加し、更に10分攪拌して、イソシアネート硬化型の溶剤型クリア塗料C−3を得た。この溶剤型クリア塗料C−3の流動停止時間tcUは370秒であり、流動停止時間tcU後から標準焼付け時間tbU終了時までの間の収縮率ωは5.8%であった。
(Preparation example 3) Preparation of solvent-type clear paint C-3 In a container, 759.3 parts by mass of the acrylic resin R-3 for solvent-type clear obtained in Synthesis Example 3 and 197.4 parts by mass of butyl acetate, Tinuvin 123 ( 9.9 parts by mass of BASF) and 9.9 parts of Tinuvin 384-2 (BASF) were charged, and 2.8 parts by mass of BYK-370 (BYK-Chmie), BYK-, while stirring. 306 (BYK-Chmie) 5.1 parts by mass, BYK-392 (BYK-Chmie) 9.5 parts by mass, Disparon NSH8430 (Tsubakimoto Kasei) 4.9 parts by mass, Disparon OX883 (Tsumoto Kasei) 1.2 Part by weight, half of isocyanate group of blocked isocyanate (polyisocyanate (manufactured by Asahi Kasei Chemical Co., Ltd., “Duranate TPA-100”) is 3,5-dimethylpyrazo 175 parts by mass) was added, and the mixture was further stirred for 10 minutes to obtain an isocyanate-curable solvent-type clear paint C-3. The solvent-clear coating C-3 of the flow stop time t cU is 370 seconds, shrinkage omega U between until the standard baking time t bU ends after flow stop time t cU was 5.8% .

(調製例4)着色顔料ペーストの調製
容器に、イオン交換水450質量部、湿潤分散剤(Byk−Chemie社製、「Disperbyk−180」)50質量部、ルチル型酸化チタン(石原産業社製、「CR−90」)495質量部、カーボンブラック(三菱化学社製、「MA−100」)5質量部を仕込み、10分間予備混合した後、仕込み体積量と同じ体積量のガラスビーズ(粒径1.6mm)を投入し、卓上サンドミルで1時間分散した。グラインドゲージによる分散終了時の粒度は5μm以下であった。
(Preparation Example 4) Preparation of Colored Pigment Paste In a container, 450 parts by mass of ion-exchange water, 50 parts by mass of a wetting and dispersing agent (Byk-Chemie, “Disperbyk-180”), rutile titanium oxide (Ishihara Sangyo Co., Ltd., "CR-90") 495 parts by mass, carbon black (manufactured by Mitsubishi Chemical Co., Ltd., "MA-100") 5 parts by mass, and after premixing for 10 minutes, glass beads having the same volume as the charged volume (particle size 1.6 mm), and dispersed for 1 hour with a desktop sand mill. The particle size at the end of dispersion by a grind gauge was 5 μm or less.

(調製例5)水性中塗り塗料P−1の調製
容器に、合成例4で得た水性中塗り用アクリルエマルションR−4を185.7質量部仕込み、これに、撹拌しながらメチル化メラミン樹脂(オルネクスジャパン社製、「サイメル325」)30.0質量部、イオン交換水32質量部を加えて5分間攪拌した。更に、アルカリ増粘剤(BASF社製、「Viscalex HV30」)3.2質量部、ジメチルエタノールアミン0.8質量部、BYK−346(BYK−Chmie製)2.5質量部、着色顔料ペースト123.1質量部を加えて、不揮発分39.3質量%の水性中塗り塗料P−1を得た。この水性中塗り塗料P−1の収縮率ωは、流動停止時間tcUが320秒の場合には5.8%であり、tcUが370秒の場合には5.4%であり、tcUが400秒の場合には5.0%であった。
(Preparation Example 5) Preparation of aqueous intermediate coating material P-1 A container is charged with 185.7 parts by mass of the acrylic emulsion R-4 for aqueous intermediate coating obtained in Synthesis Example 4, and this is stirred with methylated melamine resin. (Ornex Japan, "Cymel 325") 30.0 parts by mass and 32 parts by mass of ion-exchanged water were added and stirred for 5 minutes. Furthermore, 3.2 parts by mass of an alkali thickener (manufactured by BASF, “Viscalex HV30”), 0.8 parts by mass of dimethylethanolamine, 2.5 parts by mass of BYK-346 (manufactured by BYK-Chmie), and coloring pigment paste 123 .1 part by mass was added to obtain an aqueous intermediate coating P-1 having a nonvolatile content of 39.3% by mass. The shrinkage ratio ω L of the waterborne intermediate coating P-1 is 5.8% when the flow stop time t cU is 320 seconds, and 5.4% when the t cU is 370 seconds, When t cU was 400 seconds, it was 5.0%.

(調製例6)水性中塗り塗料P−2の調製
容器に、合成例4で得た水性中塗り用アクリルエマルションR−4を132.6質量部仕込み、これに、撹拌しながらイオン交換水16.0質量部を加えて5分間攪拌した。更に、Viscalex HV30を1.6質量部、ジメチルエタノールアミンを0.4質量部、BYK−346を1.0質量部、着色顔料ペーストを61.5質量部加えて、不揮発分39.3質量%の水性中塗り塗料P−2を得た。この水性中塗り塗料P−2の収縮率ωは、流動停止時間tcUが320秒の場合には3.2%であり、tcUが400秒の場合には2.4%であった。
(Preparation Example 6) Preparation of aqueous intermediate coating material P-2 In a container, 132.6 parts by mass of the aqueous emulsion for aqueous intermediate coating R-4 obtained in Synthesis Example 4 was charged, and ion-exchanged water 16 was added thereto while stirring. 0.0 part by mass was added and stirred for 5 minutes. Furthermore, 1.6 parts by mass of Viscalex HV30, 0.4 parts by mass of dimethylethanolamine, 1.0 part by mass of BYK-346, and 61.5 parts by mass of a color pigment paste were added, and the non-volatile content was 39.3% by mass. Water-based intermediate coating material P-2 was obtained. The shrinkage ratio ω L of the water-based intermediate coating material P-2 was 3.2% when the flow stop time t cU was 320 seconds, and 2.4% when the t cU was 400 seconds. .

(調製例7)水性ベース塗料B−1の調製
容器に、合成例5で得たアクリルエマルションR−5を99.5質量部仕込み、これに、撹拌しながらイオン交換水54質量部を加えて5分間攪拌した。更に、アルカリ増粘剤(BASF社製、「Viscalex HV30」)2.0質量部、ジメチルエタノールアミン1.2質量部を加えて、水性樹脂液を得た。
(Preparation Example 7) Preparation of aqueous base paint B-1 99.5 parts by mass of the acrylic emulsion R-5 obtained in Synthesis Example 5 was charged into a container, and 54 parts by mass of ion-exchanged water was added to this while stirring. Stir for 5 minutes. Furthermore, 2.0 parts by mass of an alkali thickener (manufactured by BASF, “Viscalex HV30”) and 1.2 parts by mass of dimethylethanolamine were added to obtain an aqueous resin solution.

別の容器に、ブチルグリコール9.9質量部及びアルミペースト(Eckart社製、「Hydrolan2156」)9.9質量部を仕込み、更に1時間攪拌してアルミペースト溶液を得た。   In another container, 9.9 parts by mass of butyl glycol and 9.9 parts by mass of aluminum paste (Ekcart, “Hydrolan 2156”) were charged, and further stirred for 1 hour to obtain an aluminum paste solution.

次に、前記水性樹脂溶液156.7質量部に、このアルミペースト溶液19.8質量部を撹拌しながら添加し、更に1時間攪拌して、水性ベース塗料B−1を得た。この水性ベース塗料B−1の収縮率ωは、流動停止時間tcUが320秒の場合には2.8%であり、tcUが370秒の場合には2.0%であり、tcUが400秒の場合には0.9%であった。 Next, 19.8 parts by mass of this aluminum paste solution was added to 156.7 parts by mass of the aqueous resin solution while stirring, and further stirred for 1 hour to obtain an aqueous base paint B-1. The shrinkage rate ω I of the water-based base coating material B-1 is 2.8% when the flow stop time t cU is 320 seconds, 2.0% when the t cU is 370 seconds, and t When cU was 400 seconds, it was 0.9%.

(調製例8)水性ベース塗料B−2の調製
容器に、合成例5で得たアクリルエマルションR−5を84.5質量部仕込み、これに、撹拌しながらメチル化メラミン樹脂(オルネクスジャパン社製、「サイメル325」)5.6質量部、イオン交換水54質量部を加えて5分間攪拌した。更に、Viscalex HV30を3.0質量部、ジメチルエタノールアミン1.2質量部を加えて、水性樹脂液を得た。
(Preparation example 8) Preparation of water-based base coating material B-2 A container is charged with 84.5 parts by mass of the acrylic emulsion R-5 obtained in Synthesis Example 5, and this is stirred with methylated melamine resin (Ornex Japan). 5.6 parts by mass, “Cymel 325”) and 54 parts by mass of ion-exchanged water were added and stirred for 5 minutes. Further, 3.0 parts by mass of Viscalex HV30 and 1.2 parts by mass of dimethylethanolamine were added to obtain an aqueous resin solution.

別の容器に、ブチルグリコール9.9質量部及びアルミペースト(Eckart社製、「Hydrolan2156」)9.9質量部を仕込み、更に1時間攪拌してアルミペースト溶液を得た。   In another container, 9.9 parts by mass of butyl glycol and 9.9 parts by mass of aluminum paste (Ekcart, “Hydrolan 2156”) were charged, and further stirred for 1 hour to obtain an aluminum paste solution.

次に、前記水性樹脂溶液148.3質量部に、このアルミペースト溶液19.8質量部を撹拌しながら添加し、更に1時間攪拌して、水性ベース塗料B−2を得た。この水性ベース塗料B−2の収縮率ωは、流動停止時間tcUが320秒の場合には6.3%であり、tcUが400秒の場合には3.2%であった。 Next, 19.8 parts by mass of this aluminum paste solution was added to 148.3 parts by mass of the aqueous resin solution while stirring, and the mixture was further stirred for 1 hour to obtain an aqueous base paint B-2. The shrinkage rate ω I of this water-based base coating material B-2 was 6.3% when the flow stop time t cU was 320 seconds, and 3.2% when t cU was 400 seconds.

(調製例9)水性ベース塗料B−3の調製
合成例5で得たアクリルエマルションR−5の仕込み量を69.6質量部に、サイメル325の添加量を11.3質量部に、Viscalex HV30の添加量を4.0質量部に変更した以外は調製例8と同様にして、水性ベース塗料B−3を得た。この水性ベース塗料B−3の収縮率ωは、流動停止時間tcUが320秒の場合には8.2%であり、tcUが370秒の場合には7.2%であり、tcUが400秒の場合には6.4%であった。
(Preparation example 9) Preparation of water-based base coating material B-3 The amount of the acrylic emulsion R-5 obtained in Synthesis Example 5 is 69.6 parts by mass, the amount of Cymel 325 is 11.3 parts by mass, and the Viscalex HV30. A water-based base coating material B-3 was obtained in the same manner as in Preparation Example 8 except that the amount of addition was changed to 4.0 parts by mass. The shrinkage rate ω I of the water-based base coating material B-3 is 8.2% when the flow stop time t cU is 320 seconds, 7.2% when the t cU is 370 seconds, and t When cU was 400 seconds, it was 6.4%.

(調製例10)水性ベース塗料B−4の調製
容器に、合成例5で得たアクリルエマルションR−5を69.6質量部仕込み、これに、撹拌しながらサイメル325を11.3質量部、イオン交換水を54質量部、2−エチルヘキサノールを7.5質量部、ブチルグリコールを3.8質量部加えて5分間攪拌した。更に、Viscalex HV30を3.0質量部、ジメチルエタノールアミンを1.2質量部加えて、水性樹脂液を得た。
(Preparation Example 10) Preparation of aqueous base paint B-4 69.6 parts by mass of acrylic emulsion R-5 obtained in Synthesis Example 5 was charged into a container, and 11.3 parts by mass of Cymel 325 was added to this while stirring. 54 parts by mass of ion-exchanged water, 7.5 parts by mass of 2-ethylhexanol, and 3.8 parts by mass of butyl glycol were added and stirred for 5 minutes. Further, 3.0 parts by mass of Viscalex HV30 and 1.2 parts by mass of dimethylethanolamine were added to obtain an aqueous resin solution.

別の容器に、ブチルグリコール9.9質量部及びアルミペースト(Eckart社製、「Hydrolan2156」)9.9質量部を仕込み、更に1時間攪拌してアルミペースト溶液を得た。   In another container, 9.9 parts by mass of butyl glycol and 9.9 parts by mass of aluminum paste (Ekcart, “Hydrolan 2156”) were charged, and further stirred for 1 hour to obtain an aluminum paste solution.

次に、前記水性樹脂溶液150.4質量部に、このアルミペースト溶液19.8質量部を撹拌しながら添加し、更に1時間攪拌して、水性ベース塗料B−4を得た。この水性ベース塗料B−4の収縮率ωは、流動停止時間tcUが320秒の場合には10.3%であり、tcUが400秒の場合には8.1%であった。 Next, 19.8 parts by mass of this aluminum paste solution was added to 150.4 parts by mass of the aqueous resin solution while stirring, and the mixture was further stirred for 1 hour to obtain an aqueous base paint B-4. The shrinkage rate ω I of this water-based base coating material B-4 was 10.3% when the flow stop time t cU was 320 seconds and 8.1% when the t cU was 400 seconds.

(調製例11)水性ベース塗料B−5の調製
2−エチルヘキサノールの添加量を15.0質量部に、ブチルグリコールの添加量を7.5質量部に、Viscalex HV30の添加量を2.0質量部に変更した以外は調製例10と同様にして、水性ベース塗料B−5を得た。この水性ベース塗料B−5の収縮率ωは、流動停止時間tcUが320秒の場合には9.9%であり、tcUが400秒の場合には9.2%であった。
(Preparation Example 11) Preparation of aqueous base paint B-5 The addition amount of 2-ethylhexanol is 15.0 parts by mass, the addition amount of butyl glycol is 7.5 parts by mass, and the addition amount of Viscalex HV30 is 2.0. Except having changed into the mass part, it carried out similarly to the preparation example 10, and obtained water-based base coating material B-5. The shrinkage rate ω I of this water-based base coating material B-5 was 9.9% when the flow stop time t cU was 320 seconds, and 9.2% when t cU was 400 seconds.

(調製例12)水性ベース塗料B−6の調製
2−エチルヘキサノールの添加量を22.5質量部に、ブチルグリコールの添加量を11.3質量部に、Viscalex HV30の添加量を2.0質量部に変更した以外は調製例10と同様にして、水性ベース塗料B−6を得た。この水性ベース塗料B−6の収縮率ωは、流動停止時間tcUが320秒の場合には10.4%であり、tcUが400秒の場合には10.3%であった。
(Preparation Example 12) Preparation of aqueous base paint B-6 The addition amount of 2-ethylhexanol was 22.5 parts by mass, the addition amount of butyl glycol was 11.3 parts by mass, and the addition amount of Viscalex HV30 was 2.0. Except having changed into the mass part, it carried out similarly to the preparation example 10, and obtained water-based base coating material B-6. The shrinkage rate ω I of this water-based base coating material B-6 was 10.4% when the flow stop time t cU was 320 seconds, and 10.3% when t cU was 400 seconds.

(調製例13)水性ベース塗料B−7の調製
2−エチルヘキサノールの添加量を30.0質量部に、ブチルグリコールの添加量を15.0質量部に、Viscalex HV30の添加量を2.0質量部に変更した以外は調製例10と同様にして、水性ベース塗料B−7を得た。この水性ベース塗料B−7の収縮率ωは、流動停止時間tcUが320秒の場合には12.7%であり、tcUが400秒の場合には12.0%であった。
(Preparation Example 13) Preparation of aqueous base paint B-7 The addition amount of 2-ethylhexanol was 30.0 parts by mass, the addition amount of butyl glycol was 15.0 parts by mass, and the addition amount of Viscalex HV30 was 2.0. Except having changed into the mass part, it carried out similarly to the preparation example 10, and obtained water-based base coating material B-7. The shrinkage rate ω I of this water-based base coating material B-7 was 12.7% when the flow stop time t cU was 320 seconds, and 12.0% when the t cU was 400 seconds.

(実施例1)
電着塗装を施した鋼板(日本ルートサービス(株)製)の表面に、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を、焼付け後の膜厚が20μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次に、調製例9で得た水性ベース塗料B−3(tcU=400秒の場合、ω=6.4%)を、焼付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次いで、この水性ベース塗料B−3の層の上に、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を焼付け後の膜厚が35μmになるように塗装し、水性中塗り塗料P−1と水性ベース塗料B−3と溶剤型クリア塗料C−1とをウェットオンウェットで積層した未硬化積層塗膜を得た。
Example 1
On the surface of the electrodeposited steel sheet (manufactured by Nippon Route Service Co., Ltd.), the waterborne intermediate coating P-1 obtained in Preparation Example 5 (in the case of t cU = 400 seconds, ω L = 5.0%) Was coated so that the film thickness after baking was 20 μm, and heated at 80 ° C. for 3 minutes to volatilize water and organic solvent. Next, the aqueous base paint B-3 obtained in Preparation Example 9 (in the case of t cU = 400 seconds, ω I = 6.4%) was applied so that the film thickness after baking was 15 μm, and 80 ° C. For 3 minutes to evaporate water and organic solvent. Next, the film thickness after baking the solvent-type clear coating material C-1 (t cU = 400 seconds, ω U = 7.7%) obtained in Preparation Example 1 on the layer of the aqueous base coating material B-3. The coating was applied to a thickness of 35 μm to obtain an uncured laminated coating film obtained by laminating water-based intermediate coating material P-1, water-based base coating material B-3, and solvent-type clear coating material C-1 by wet-on-wet.

この未硬化積層塗膜を室温で10分間静置(セッティング)した後、硬化反応をさせるために140℃で30分間の加熱処理(焼付け処理)を施して各層を硬化させ、積層塗膜を得た。   After leaving this uncured laminated coating film at room temperature for 10 minutes (setting), a heat treatment (baking process) is performed at 140 ° C. for 30 minutes to cure the layers, and a multilayer coating film is obtained. It was.

得られた積層塗膜について、ウェーブスキャン(BYK−Gardner社製「Wave−Scan Dual」)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)、We(波長10〜30mm)〕を測定した。その結果を表1に示す。これらのウェーブスキャン値は、値が小さいほど上層表面における当該波長の凹凸が少ないことを示し、外観品質が優れることを意味する。ちなみに、duやWaが小さいほど光沢が優れ、WdやWeが小さいほど肌がよいことを意味する。   About the obtained laminated coating film, wave scan values (Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc, Wc using a wave scan ("Wave-Scan Dual" manufactured by BYK-Gardner)), Wc (Wavelength 1 to 3 mm), Wd (wavelength 3 to 10 mm), We (wavelength 10 to 30 mm)] were measured. The results are shown in Table 1. These wave scan values indicate that the smaller the value, the fewer the irregularities of the wavelength on the surface of the upper layer, and the better the appearance quality. Incidentally, the smaller the du or Wa, the better the gloss, and the smaller the Wd or We, the better the skin.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−3により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.3%であり、水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は1.4であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は2.7%であった。 Moreover, in the obtained multilayer coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-3, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 3 (first adjacent layer paint) is 1.3%, and the shrinkage of the aqueous base paint B-3 (first adjacent layer paint) rate omega A1 and aqueous intermediate coating composition P-1 the absolute value of the difference between the shrinkage omega A2 of (second adjacent layer paint) | Δω 2 | was 1.4. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 2.7%.

(実施例2)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を用い、ベース塗料として、調製例11で得た水性ベース塗料B−5(tcU=400秒の場合、ω=9.2%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 2)
As the intermediate coating, the aqueous intermediate coating P-1 obtained in Preparation Example 5 (ω L = 5.0% in the case of t cU = 400 seconds) was used, and the aqueous base obtained in Preparation Example 11 was used as the base coating. Using paint B-5 (in the case of t cU = 400 seconds, ω I = 9.2%), as a clear paint, solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−5により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−5(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.5%であり、水性ベース塗料B−5(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は4.2であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は5.7%であった。 Further, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-5, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 5 (first adjacent layer paint) is 1.5%, and the shrinkage of the water-based base paint B-5 (first adjacent layer paint) rate omega A1 and aqueous intermediate coating composition P-1 the absolute value of the difference between the shrinkage omega A2 of (second adjacent layer paint) | Δω 2 | was 4.2. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 5.7%.

(実施例3)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を用い、ベース塗料として、調製例12で得た水性ベース塗料B−6(tcU=400秒の場合、ω=10.3%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 3)
As the intermediate coating, the aqueous intermediate coating P-1 obtained in Preparation Example 5 (ω L = 5.0% when t cU = 400 seconds) was used, and the aqueous base obtained in Preparation Example 12 was used as the base coating. Using the paint B-6 (in the case of t cU = 400 seconds, ω I = 10.3%), as a clear paint, the solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−6により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−6(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は2.6%であり、水性ベース塗料B−6(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は5.3%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は7.9%であった。 Further, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-6, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 6 (first adjacent layer paint) is 2.6%, and the shrinkage of the water-based base paint B-6 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-1 (the second adjacent layer paint) | Δω 2 | was 5.3%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 7.9%.

(実施例4)
中塗り塗料として、調製例6で得た水性中塗り塗料P−2(tcU=400秒の場合、ω=2.4%)を用い、ベース塗料として、調製例9で得た水性ベース塗料B−3(tcU=400秒の場合、ω=6.4%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
Example 4
As the intermediate coating, the aqueous intermediate coating P-2 obtained in Preparation Example 6 (ω L = 2.4% in the case of t cU = 400 seconds) was used, and the aqueous base obtained in Preparation Example 9 was used as the base coating. Using the coating material B-3 (in the case of t cU = 400 seconds, ω I = 6.4%), as the clear coating material, the solvent-type clear coating material C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−3により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−2により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.3%であり、水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−2(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は4.0%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は5.3%であった。 Moreover, in the obtained multilayer coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-3, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating P-2. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 3 (first adjacent layer paint) is 1.3%, and the shrinkage of the aqueous base paint B-3 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and an aqueous intermediate coating P-2 (the second adjacent layer paint) | Δω 2 | was 4.0%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 5.3%.

(実施例5)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=320秒の場合、ω=5.8%)を用い、ベース塗料として、調製例7で得た水性ベース塗料B−1(tcU=320秒の場合、ω=2.8%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 5)
As the intermediate coating material, the aqueous intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 5.8% when t cU = 320 seconds) was used, and the aqueous base material obtained in Preparation Example 7 was used as the base coating material. Using paint B-1 (in the case of t cU = 320 seconds, ω I = 2.8%), as a clear paint, solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.4%であり、水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は3.0%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は4.4%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 1.4%, and the shrinkage of the aqueous base paint B-1 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-1 (the second adjacent layer paint) | Δω 2 | was 3.0%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) was 4.4%.

(実施例6)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=320秒の場合、ω=5.8%)を用い、ベース塗料として、調製例8で得た水性ベース塗料B−2(tcU=320秒の場合、ω=6.3%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 6)
As the intermediate coating material, the aqueous intermediate coating material P-1 obtained in Preparation Example 5 (in the case of t cU = 320 seconds, ω L = 5.8%) was used, and the aqueous coating material obtained in Preparation Example 8 was used as the base coating material. The paint B-2 (when t cU = 320 seconds, ω I = 6.3%) was used as the clear paint, and the solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−2により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−2(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.9%であり、水性ベース塗料B−2(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は0.5%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は5.4%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-2, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 2 (first adjacent layer paint) is 4.9%, and the shrinkage of the aqueous base paint B-2 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-1 (the second adjacent layer paint) | Δω 2 | was 0.5%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) was 5.4%.

(実施例7)
中塗り塗料として、調製例6で得た水性中塗り塗料P−2(tcU=320秒の場合、ω=3.2%)を用い、ベース塗料として、調製例7で得た水性ベース塗料B−1(tcU=320秒の場合、ω=2.8%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 7)
As the intermediate coating material, the aqueous intermediate coating material P-2 obtained in Preparation Example 6 (in the case of t cU = 320 seconds, ω L = 3.2%) was used, and the aqueous coating material obtained in Preparation Example 7 was used as the base coating material. Using paint B-1 (in the case of t cU = 320 seconds, ω I = 2.8%), as a clear paint, solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−2により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.4%であり、水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−2(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は0.4%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は1.8%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating P-2. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 1.4%, and the shrinkage of the aqueous base paint B-1 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-2 (the second adjacent layer paint) | Δω 2 | was 0.4%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 1.8%.

(実施例8)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=370秒の場合、ω=5.4%)を用い、ベース塗料として、調製例7で得た水性ベース塗料B−1(tcU=370秒の場合、ω=2.0%)を用い、クリア塗料として、調製例3で得た溶剤型クリア塗料C−3(tcU=370秒、ω=5.8%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 8)
As the intermediate coating material, the aqueous intermediate coating material P-1 obtained in Preparation Example 5 (in the case of t cU = 370 seconds, ω L = 5.4%) was used, and the aqueous coating material obtained in Preparation Example 7 was used as the base coating material. Using the paint B-1 (in the case of t cU = 370 seconds, ω I = 2.0%), as a clear paint, the solvent-type clear paint C-3 obtained in Preparation Example 3 (t cU = 370 seconds, ω U = 5.8%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−3(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は3.8%であり、水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は3.4%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は7.2%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-3 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 1 (first adjacent layer paint) is 3.8%, and the shrinkage of the aqueous base paint B-1 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-1 (the second adjacent layer paint) | Δω 2 | was 3.4%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 7.2%.

(比較例1)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を用い、ベース塗料として、調製例13で得た水性ベース塗料B−7(tcU=400秒の場合、ω=12.0%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 1)
As the intermediate coating material, the water-based intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 5.0% when t cU = 400 seconds) was used, and the aqueous base material obtained in Preparation Example 13 was used as the base coating material. Using paint B-7 (in the case of t cU = 400 seconds, ω I = 12.0%), as a clear paint, solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−7により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.3%であり、水性ベース塗料B−7(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は7.0%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は11.3%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed of the water-based base coating material B-7, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint (the first paint) from after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. absolute value of the difference between the shrinkage omega A1 of the one adjacent layer paint) | Δω 1 | is 4.3%, shrinkage of the water-based base coating material B-7 (first adjacent layer paint) omega A1 The absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the water-based intermediate coating material P-1 (the second adjacent layer coating material) was 7.0%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 11.3%.

(比較例2)
中塗り塗料として、調製例6で得た水性中塗り塗料P−2(tcU=400秒の場合、ω=2.4%)を用い、ベース塗料として、調製例13で得た水性ベース塗料B−7(tcU=400秒の場合、ω=12.0%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 2)
As the intermediate coating, the aqueous intermediate coating P-2 obtained in Preparation Example 6 (ω L = 2.4% when t cU = 400 seconds) was used, and the aqueous base obtained in Preparation Example 13 was used as the base coating. Using paint B-7 (in the case of t cU = 400 seconds, ω I = 12.0%), as a clear paint, solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−7により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−2により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−7(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.3%であり、水性ベース塗料B−7(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−2(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は9.6%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は13.9%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed of the water-based base coating material B-7, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating P-2. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 7 (first adjacent layer paint) is 4.3%, and the shrinkage of the aqueous base paint B-7 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-2 (the second adjacent layer paint) | Δω 2 | was 9.6%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 13.9%.

(比較例3)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=320秒の場合、ω=5.8%)を用い、ベース塗料として、調製例9で得た水性ベース塗料B−3(tcU=320秒の場合、ω=8.2%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 3)
As the intermediate coating material, the aqueous intermediate coating material P-1 obtained in Preparation Example 5 (in the case of t cU = 320 seconds, ω L = 5.8%) was used, and the aqueous coating material obtained in Preparation Example 9 was used as the base coating material. Using paint B-3 (in the case of t cU = 320 seconds, ω I = 8.2%), as a clear paint, the solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−3により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−1により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は6.8%であり、水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−1(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は2.4%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は9.2%であった。 Moreover, in the obtained multilayer coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-3, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating material P-1. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 3 (first adjacent layer paint) is 6.8%, and the shrinkage of the water-based base paint B-3 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-1 (the second adjacent layer paint) | Δω 2 | was 2.4%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 9.2%.

(比較例4)
中塗り塗料として、調製例6で得た水性中塗り塗料P−2(tcU=320秒の場合、ω=3.2%)を用い、ベース塗料として、調製例9で得た水性ベース塗料B−3(tcU=320秒の場合、ω=8.2%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 4)
As the intermediate coating, the aqueous intermediate coating P-2 obtained in Preparation Example 6 (ω L = 3.2% in the case of t cU = 320 seconds) was used, and the aqueous base obtained in Preparation Example 9 was used as the base coating. Using paint B-3 (in the case of t cU = 320 seconds, ω I = 8.2%), as a clear paint, the solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 1 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−3により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性中塗り塗料P−2により形成された下層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は6.8%であり、水性ベース塗料B−3(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料P−2(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は5.0%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は11.8%であった。 Moreover, in the obtained multilayer coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-3, and the second adjacent layer adjacent to the first adjacent layer. Is a lower layer formed by the water-based intermediate coating P-2. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 3 (first adjacent layer paint) is 6.8%, and the shrinkage of the water-based base paint B-3 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition P-2 (the second adjacent layer paint) | Δω 2 | was 5.0%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 11.8%.

表1に示した結果から明らかなように、本発明のように、下層、中間層及び上層の各層に熱硬化型塗料を使用し、ウェットオンウェットにより積層して未硬化積層塗膜を得、その後焼付け処理を施す塗装方法において、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の上層用塗料(溶剤型クリア塗料)の収縮率ωと第一の隣接層用塗料(水性ベース塗料)の収縮率ωA1との差の絶対値|Δω|と、第一の隣接層用塗料(水性ベース塗料)の収縮率ωA1と第二の隣接層用塗料(水性中塗り塗料)の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)が8.0%以下となるように、上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料を選択して形成した積層塗膜(実施例1〜8)のWa〜Wdはいずれも、前記絶対値の和(Δω+Δω)が8.0%を超えている従来の積層塗膜(比較例1〜4)に比べて小さく、外観品質が高度に優れたものであることが確認された。すなわち、本発明のように、前記絶対値の和(Δω+Δω)が8.0%以下となるように、上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料を選択してウェットオンウェットで積層した塗膜(実施例1〜8)のWaは25以下で要求外観品質を満たしていた。これに対して、前記絶対値の和(Δω+Δω)が8.0%を超える上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料をウェットオンウェットで積層した塗膜(比較例1〜4)のWaは25を上回り、要求外観品質を満たしていないことが確認された。 As is clear from the results shown in Table 1, as in the present invention, a thermosetting paint is used for each of the lower layer, the intermediate layer and the upper layer, and is laminated by wet-on-wet to obtain an uncured laminated coating film. Thereafter, in the coating method in which the baking process is performed, the shrinkage rate ω U of the upper layer paint (solvent type clear paint) from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint The absolute value | Δω 1 | of the difference between the shrinkage rate ω A1 of the first adjacent layer coating material (water-based base coating material) and the second shrinkage rate ω A1 of the first adjacent layer coating material (water-based base coating material) The upper layer coating material, the first layer coating (first aqueous coating material) so that the sum (Δω 1 + Δω 2 ) with the absolute value | Δω 2 | of the difference from the shrinkage rate ω A2 of the layer coating material (water-based intermediate coating material) The laminated coating film formed by selecting the adjacent layer coating material and the second adjacent layer coating material (Examples 1 to Any Wa~Wd of), the absolute value of the sum (Δω 1 + Δω 2) is smaller than that of a conventional multilayer coating film exceeds 8.0% (Comparative Example 1-4), high appearance quality It was confirmed to be excellent. That is, as in the present invention, the upper layer coating material, the first adjacent layer coating material, and the second adjacent layer coating material are adjusted so that the sum of the absolute values (Δω 1 + Δω 2 ) is 8.0% or less. Wa of the coating films (Examples 1 to 8) selected and wet-on-wet laminated was 25 or less and satisfied the required appearance quality. On the other hand, an upper layer coating material in which the sum of the absolute values (Δω 1 + Δω 2 ) exceeds 8.0%, a first adjacent layer coating material, and a second adjacent layer coating material are laminated by wet on wet. Wa of the film (Comparative Examples 1 to 4) exceeded 25, and it was confirmed that the required appearance quality was not satisfied.

(実施例9)
電着塗装を施した鋼板(日本ルートサービス(株)製)の表面に、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を、焼付け後の膜厚が20μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次に、調製例9で得た水性ベース塗料B−3(tcU=400秒の場合、ω=6.4%)を、焼付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次に、調製例10で得た水性ベース塗料B−4(tcU=400秒の場合、ω=8.1%)を、焼付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水及び有機溶剤などを揮発させた。次いで、この水性ベース塗料B−4の層の上に、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を焼付け後の膜厚が35μmになるように塗装し、水性中塗り塗料P−1と水性ベース塗料B−3と水性ベース塗料B−4と溶剤型クリア塗料C−1とをウェットオンウェットで積層した未硬化積層塗膜を得た。
Example 9
On the surface of the electrodeposited steel sheet (manufactured by Nippon Route Service Co., Ltd.), the waterborne intermediate coating P-1 obtained in Preparation Example 5 (in the case of t cU = 400 seconds, ω L = 5.0%) Was coated so that the film thickness after baking was 20 μm, and heated at 80 ° C. for 3 minutes to volatilize water and organic solvent. Next, the aqueous base paint B-3 obtained in Preparation Example 9 (in the case of t cU = 400 seconds, ω I = 6.4%) was applied so that the film thickness after baking was 15 μm, and 80 ° C. For 3 minutes to evaporate water and organic solvent. Next, the water-based base paint B-4 obtained in Preparation Example 10 (in the case of t cU = 400 seconds, ω I = 8.1%) was applied so that the film thickness after baking was 15 μm, and 80 ° C. For 3 minutes to evaporate water and organic solvent. Subsequently, the film thickness after baking the solvent-type clear coating material C-1 (t cU = 400 seconds, ω U = 7.7%) obtained in Preparation Example 1 on the layer of the aqueous base coating material B-4. An uncured laminated coating film coated to 35 μm and laminated with water-based intermediate coating material P-1, water-based base coating material B-3, water-based base coating material B-4, and solvent-type clear coating material C-1 in a wet-on-wet manner. Got.

この未硬化積層塗膜を室温で10分間静置(セッティング)した後、硬化反応をさせるために140℃で30分間の加熱処理(焼付け処理)を施して各層を硬化させ、積層塗膜を得た。   After leaving this uncured laminated coating film at room temperature for 10 minutes (setting), a heat treatment (baking process) is performed at 140 ° C. for 30 minutes to cure the layers, and a multilayer coating film is obtained. It was.

得られた積層塗膜について、ウェーブスキャン(BYK−Gardner社製「Wave−Scan Dual」)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)、We(波長10〜30mm)〕を測定した。その結果を表2に示す。   About the obtained laminated coating film, wave scan values (Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc, Wc using a wave scan ("Wave-Scan Dual" manufactured by BYK-Gardner)), Wc (Wavelength 1 to 3 mm), Wd (wavelength 3 to 10 mm), We (wavelength 10 to 30 mm)] were measured. The results are shown in Table 2.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−4により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性ベース塗料B−3により形成された中間層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−4(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は0.4%であり、水性ベース塗料B−4(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料B−3(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は1.7%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は2.1%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-4, and the second adjacent layer adjacent to the first adjacent layer. Is an intermediate layer formed of the water-based base coating material B-3. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 4 (first adjacent layer paint) is 0.4%, and the shrinkage of the water-based base paint B-4 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition B-3 (the second adjacent layer paint) | Δω 2 | was 1.7%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (2.1ω 1 + Δω 2 ) and 2.1%.

(実施例10)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=320秒の場合、ω=5.8%)を用い、ベース塗料として、水性ベース塗料B−3の代わりに調製例8で得た水性ベース塗料B−2(tcU=320秒の場合、ω=6.3%)を用い、水性ベース塗料B−4の代わりに調製例7で得た水性ベース塗料B−1(tcU=320秒の場合、ω=2.8%)を用い、クリア塗料として、調製例2で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例9と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Example 10)
As the intermediate coating material, the water-based intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 5.8% when t cU = 320 seconds) was used, and the base coating material was replaced with the aqueous base coating material B-3. The aqueous base paint B-2 obtained in Preparation Example 8 (ω I = 6.3% when t cU = 320 seconds) was used, and the aqueous base paint obtained in Preparation Example 7 was used instead of the aqueous base paint B-4. Using paint B-1 (in the case of t cU = 320 seconds, ω I = 2.8%), as a clear paint, solvent-type clear paint C-2 obtained in Preparation Example 2 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 9 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性ベース塗料B−2により形成された中間層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は1.4%であり、水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料B−2(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は3.5%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は4.9%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer. Is an intermediate layer formed by the water-based base paint B-2. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 1 (first adjacent layer paint) is 1.4%, and the shrinkage of the aqueous base paint B-1 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition B-2 (the second adjacent layer paint) | Δω 2 | was 3.5%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 4.9%.

(比較例5)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=400秒の場合、ω=5.0%)を用い、ベース塗料として、水性ベース塗料B−3の代わりに調製例13で得た水性ベース塗料B−7(tcU=400秒の場合、ω=12.0%)を用い、水性ベース塗料B−4の代わりに調製例7で得た水性ベース塗料B−1(tcU=400秒の場合、ω=0.9%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−1(tcU=400秒、ω=7.7%)を用いた以外は実施例9と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 5)
As the intermediate coating material, the water-based intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 5.0% when t cU = 400 seconds) was used, and the base coating material was replaced with the aqueous base coating material B-3. The aqueous base paint B-7 obtained in Preparation Example 13 (in the case of t cU = 400 seconds, ω I = 12.0%) was used, and the aqueous base paint obtained in Preparation Example 7 was used instead of the aqueous base paint B-4. Using the paint B-1 (in the case of t cU = 400 seconds, ω I = 0.9%), as the clear paint, the solvent-type clear paint C-1 obtained in Preparation Example 1 (t cU = 400 seconds, ω U = 7.7%) was used in the same manner as in Example 9 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−1により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性ベース塗料B−7により形成された中間層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−1(上層用塗料)の収縮率ωと水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は6.8%であり、水性ベース塗料B−1(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料B−7(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は11.1%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は17.9%であった。 In the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-1, and the second adjacent layer adjacent to the first adjacent layer. Is an intermediate layer formed of the water-based base paint B-7. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-1 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage ratio ω A1 of 1 (first adjacent layer paint) is 6.8%, and the shrinkage of the aqueous base paint B-1 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition B-7 (the second adjacent layer paint) | Δω 2 | was 11.1%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage rate ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 17.9%.

(比較例6)
中塗り塗料として、調製例5で得た水性中塗り塗料P−1(tcU=320秒の場合、ω=5.8%)を用い、ベース塗料として、水性ベース塗料B−3の代わりに調製例13で得た水性ベース塗料B−7(tcU=320秒の場合、ω=12.7%)を用い、水性ベース塗料B−4の代わりに調製例8で得た水性ベース塗料B−2(tcU=320秒の場合、ω=6.3%)を用い、クリア塗料として、調製例1で得た溶剤型クリア塗料C−2(tcU=320秒、ω=1.4%)を用いた以外は実施例9と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Weを測定した。その結果を表1に示す。
(Comparative Example 6)
As the intermediate coating material, the water-based intermediate coating material P-1 obtained in Preparation Example 5 (ω L = 5.8% when t cU = 320 seconds) was used, and the base coating material was replaced with the aqueous base coating material B-3. The aqueous base paint B-7 obtained in Preparation Example 13 (ω I = 12.7% when t cU = 320 seconds) was used, and the aqueous base paint obtained in Preparation Example 8 was used instead of the aqueous base paint B-4. Using paint B-2 (in the case of t cU = 320 seconds, ω I = 6.3%), as a clear paint, the solvent-type clear paint C-2 obtained in Preparation Example 1 (t cU = 320 seconds, ω U = 1.4%) was used in the same manner as in Example 9 to obtain a laminated coating film. About the obtained laminated coating film, Wa-We were measured like Example 1. FIG. The results are shown in Table 1.

また、得られた積層塗膜において、上層に隣接する第一の隣接層は前記水性ベース塗料B−2により形成された中間層であり、前記第一の隣接層に隣接する第二の隣接層は前記水性ベース塗料B−7により形成された中間層である。したがって、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の溶剤型クリア塗料C−2(上層用塗料)の収縮率ωと水性ベース塗料B−2(第一の隣接層用塗料)の収縮率ωA1との差の絶対値|Δω|は4.9%であり、水性ベース塗料B−2(第一の隣接層用塗料)の収縮率ωA1と水性中塗り塗料B−7(第二の隣接層用塗料)の収縮率ωA2との差の絶対値|Δω|は6.4%であった。また、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値|Δω|と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)は11.3%であった。 Moreover, in the obtained laminated coating film, the first adjacent layer adjacent to the upper layer is an intermediate layer formed by the water-based base coating material B-2, and the second adjacent layer adjacent to the first adjacent layer. Is an intermediate layer formed of the water-based base paint B-7. Therefore, the shrinkage rate ω U of the solvent-type clear paint C-2 (upper layer paint) and the water-based base paint B- from the time after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value | Δω 1 | of the difference from the shrinkage rate ω A1 of 2 (first adjacent layer paint) is 4.9%, and the shrinkage of the aqueous base paint B-2 (first adjacent layer paint) absolute value of the difference between the shrinkage omega A2 rate omega A1 and aqueous intermediate coating composition B-7 (the second adjacent layer paint) | Δω 2 | was 6.4%. In addition, the absolute value | Δω 1 | of the difference between the shrinkage rate ω U of the upper layer coating material and the shrinkage rate ω A1 of the first adjacent layer coating material, and the shrinkage rate ω A1 of the first adjacent layer coating material. And the absolute value | Δω 2 | of the difference between the shrinkage ratio ω A2 of the second adjacent layer coating material (Δω 1 + Δω 2 ) and 11.3%.

表2に示した結果から明らかなように、本発明のように、下層、2層の中間層及び上層の各層に熱硬化型塗料を使用し、ウェットオンウェットにより積層して未硬化積層塗膜を得、その後焼付け処理を施す塗装方法において、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の上層用塗料(溶剤型クリア塗料)の収縮率ωと第一の隣接層用塗料(第一の水性ベース塗料)の収縮率ωA1との差の絶対値|Δω|と、第一の隣接層用塗料(第一の水性ベース塗料)の収縮率ωA1と第二の隣接層用塗料(第二の水性ベース塗料)の収縮率ωA2との差の絶対値|Δω|との和(Δω+Δω)が8.0%以下となるように、上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料を選択して形成した積層塗膜(実施例9〜10)のWa〜Wdはいずれも、前記絶対値の和(Δω+Δω)が8.0%を超えている従来の積層塗膜(比較例5〜6)に比べて小さく、外観品質が高度に優れたものであることが確認された。すなわち、本発明のように、前記絶対値の和(Δω+Δω)が8.0%以下となるように、上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料を選択してウェットオンウェットで積層した塗膜(実施例9〜10)のWaは30以下で要求外観品質を満たしていた。これに対して、前記絶対値の和(Δω+Δω)が8.0%を超える上層用塗料、第一の隣接層用塗料及び第二の隣接層用塗料をウェットオンウェットで積層した塗膜(比較例5〜6)のWaは30を上回り、要求外観品質を満たしていないことが確認された。 As is clear from the results shown in Table 2, as in the present invention, a thermosetting paint is used for each of the lower layer, the intermediate layer and the upper layer, and the uncured laminated coating film is laminated by wet-on-wet. In the coating method in which the baking process is performed, the shrinkage rate ω of the upper layer paint (solvent type clear paint) from after the flow stop time t cU of the upper layer paint to the end of the standard baking time t b of each paint The absolute value | Δω 1 | of the difference between the shrinkage rate ω A1 of U and the first adjacent layer coating material (first aqueous base coating material), and the first adjacent layer coating material (first aqueous base coating material) absolute value of the difference between the shrinkage omega A2 and shrinkage omega A1 second adjacent layer coating material (second aqueous base paint) | Δω 2 | sum of (Δω 1 + Δω 2) is 8.0% or less Select the upper layer paint, the first adjacent layer paint, and the second adjacent layer paint so that Both were Wa~Wd the multilayer coating film (Example 9-10), the sum of the absolute values (Δω 1 + Δω 2) conventional laminated coating film is greater than 8.0% (Comparative Example 5-6 ) And the appearance quality was confirmed to be highly superior. That is, as in the present invention, the upper layer coating material, the first adjacent layer coating material, and the second adjacent layer coating material are adjusted so that the sum of the absolute values (Δω 1 + Δω 2 ) is 8.0% or less. Wa of the coating films (Examples 9 to 10) selected and wet-on-wet was 30 or less and satisfied the required appearance quality. On the other hand, an upper layer coating material in which the sum of the absolute values (Δω 1 + Δω 2 ) exceeds 8.0%, a first adjacent layer coating material, and a second adjacent layer coating material are laminated by wet on wet. Wa of the film (Comparative Examples 5 to 6) exceeded 30 and it was confirmed that the required appearance quality was not satisfied.

以上より、3種類以上の塗料をウェットオンウェットで積層して塗膜を形成する場合において、上層用塗料の流動停止時間tcU後から各塗料の標準焼付け時間t終了時までの間の上層用塗料の収縮率と第一の隣接層用塗料の収縮率との差の絶対値と、第一の隣接層用塗料の収縮率と第二の隣接層用塗料の収縮率との差の絶対値との和を8.0%以下とすることによって、外観品質が高度に優れた積層塗膜を得ることができることが確認された。 As described above, in the case where a coating film is formed by laminating three or more kinds of paints by wet-on-wet, the upper layer from the flow stopping time t cU of the upper layer paint to the end of the standard baking time t b of each paint. The absolute value of the difference between the shrinkage of the paint for the first layer and the shrinkage of the paint for the first adjacent layer, and the absolute value of the difference between the shrinkage of the paint of the first adjacent layer and the shrinkage of the second layer It was confirmed that by making the sum with the value 8.0% or less, it is possible to obtain a laminated coating film having a high appearance quality.

以上説明したように、本発明によれば、3種類以上の塗料をウェットオンウェットで積層して同時に焼付けて各層を硬化させても、上層表面の凹凸の発生が十分に抑制された積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢等の外観品質が高度に優れた塗装体を得ることができる。   As described above, according to the present invention, even when three or more kinds of paints are laminated on a wet-on-wet basis and simultaneously baked to cure each layer, the multilayer coating film in which the occurrence of irregularities on the upper layer surface is sufficiently suppressed. Can be obtained. Thereby, the coating body which was highly excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

したがって、本発明は、3種類以上の塗料をウェットオンウェットで積層して同時に焼付ける場合においても外観品質が高度に優れた塗装体を得ることができる塗装方法として有用であり、特に乗用車、トラック、バス、オートバイ等の自動車用車体やその部品の塗装方法として有用である。   Therefore, the present invention is useful as a coating method capable of obtaining a coated body having a high appearance quality even when three or more kinds of paints are laminated on a wet on wet basis and simultaneously baked. It is useful as a method for painting automobile bodies such as buses and motorcycles and parts thereof.

Claims (4)

基材上に形成された下層と該下層上に形成された少なくとも1層の中間層と該中間層上に形成された上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料として熱硬化型塗料を準備し、前記中間層を形成するための中間層用塗料として熱硬化型塗料を準備し、かつ、前記上層を形成するための上層用塗料として熱硬化型塗料を準備する準備工程と、
前記基材上に前記下層用塗料、前記中間層用塗料及び前記上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する形成工程と、
前記未硬化積層塗膜に焼付け処理を施して前記下層用塗料、前記中間層用塗料及び前記上層用塗料を同時に硬化させる焼付工程と、
を含んでおり、
前記準備工程において、前記上層に隣接する前記中間層を第一の隣接層とし、該第一の隣接層を形成するための前記中間層用塗料を第一の隣接層用塗料とし、前記第一の隣接層に隣接する前記中間層又は前記下層を第二の隣接層とし、該第二の隣接層を形成するための前記中間層用塗料又は前記下層用塗料を第二の隣接層用塗料とし、前記上層用塗料について電場ピックアップ粘度計を用いて標準焼付け温度140℃、標準昇温速度20℃/minの条件で測定されるオシロ波形において、振れ幅が最大振れ幅の5%まで小さくなった時間を前記上層用塗料の流動停止時間t cU とし、前記上層用塗料の流動停止時間tcU後から標準焼付け時間tbU終了時までの間の前記上層用塗料の収縮率をωとし、前記上層用塗料の流動停止時間tcU後から前記第一の隣接層用塗料の標準焼付け時間tbA1終了時までの間の前記第一の隣接層用塗料の収縮率をωA1とし、前記上層用塗料の流動停止時間tcU後から前記第二の隣接層用塗料の標準焼付け時間tbA2終了時までの間の前記第二の隣接層用塗料の収縮率をωA2とするとき、前記上層用塗料の収縮率ωと前記第一の隣接層用塗料の収縮率ωA1との差の絶対値と、前記第一の隣接層用塗料の収縮率ωA1と前記第二の隣接層用塗料の収縮率ωA2との差の絶対値との和が8.0%以下となるように、前記上層用塗料、前記第一の隣接層用塗料及び前記第二の隣接層用塗料を選択する、
ことを特徴とする塗装方法。
A coating method for forming a laminated coating film comprising a lower layer formed on a substrate, at least one intermediate layer formed on the lower layer, and an upper layer formed on the intermediate layer,
A thermosetting paint is prepared as a lower layer paint for forming the lower layer, a thermosetting paint is prepared as an intermediate layer paint for forming the intermediate layer, and an upper layer for forming the upper layer A preparation process for preparing a thermosetting paint as a paint
A forming step of laminating the lower layer coating material, the intermediate layer coating material and the upper layer coating material on the base material by wet-on-wet to form an uncured laminated coating film,
A baking process in which the uncured laminated coating film is subjected to a baking treatment to simultaneously cure the lower layer coating material, the intermediate layer coating material and the upper layer coating material,
Contains
In the preparation step, the intermediate layer adjacent to the upper layer is a first adjacent layer, the intermediate layer coating material for forming the first adjacent layer is a first adjacent layer coating material, and the first The intermediate layer or the lower layer adjacent to the adjacent layer is the second adjacent layer, and the intermediate layer paint or the lower layer paint for forming the second adjacent layer is the second adjacent layer paint. In the oscilloscope waveform measured using the electric field pickup viscometer with the standard baking temperature of 140 ° C. and the standard heating rate of 20 ° C./min for the upper layer coating material, the amplitude was reduced to 5% of the maximum amplitude. The time is defined as the flow stop time t cU of the upper layer paint, and the contraction rate of the upper layer paint from after the flow stop time t cU of the upper layer paint to the end of the standard baking time t bU is defined as ω U , Flow stop time of upper layer paint The shrinkage rate of the first for the adjacent layer paint until the standard baking time t BA1 end of the first for the adjacent layer coating and omega A1 after cU, flow down time of the layer-coating material t cU after When the contraction rate of the second adjacent layer paint between the second adjacent layer paint and the end of the standard baking time t bA2 of the second adjacent layer is ω A2 , the shrinkage rate ω U of the upper layer paint and the the difference between the absolute value and the first of the contraction ratio omega A1 of paint adjacent layer a second for adjacent layer coating shrinkage omega A2 of the difference between the shrinkage omega A1 of the first for the adjacent layer coating The upper layer coating material, the first adjacent layer coating material and the second adjacent layer coating material are selected so that the sum of the absolute value and the absolute value is 8.0% or less.
A painting method characterized by that.
前記上層用塗料の収縮率ωが0〜40%の範囲にあり、前記第一の隣接層用塗料の収縮率ωA1が0〜40%の範囲にあり、前記第二の隣接層用塗料の収縮率ωA2が0〜40%の範囲にある、ことを特徴とする請求項1に記載の塗装方法。 The shrinkage rate ω U of the upper layer coating material is in the range of 0 to 40%, the shrinkage rate ω A1 of the first coating material for the adjacent layer is in the range of 0 to 40%, and the second coating material for the adjacent layer The coating method according to claim 1, wherein the shrinkage ratio ω A2 is in the range of 0 to 40%. 前記上層用塗料が、硬化剤としてメラミン樹脂を含まない塗料であることを特徴とする請求項1又は2に記載の塗装方法。   The coating method according to claim 1, wherein the upper layer coating material is a coating material that does not contain a melamine resin as a curing agent. 前記上層用塗料が、熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料であることを特徴とする請求項1〜3のうちのいずれか一項に記載の塗装方法。   The said upper layer coating material is a thermosetting coating material which does not produce | generate a volatile product in the hardening reaction by heat processing, The coating method as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2015145177A 2015-07-22 2015-07-22 Painting method Active JP6420733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145177A JP6420733B2 (en) 2015-07-22 2015-07-22 Painting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145177A JP6420733B2 (en) 2015-07-22 2015-07-22 Painting method

Publications (2)

Publication Number Publication Date
JP2017023942A JP2017023942A (en) 2017-02-02
JP6420733B2 true JP6420733B2 (en) 2018-11-07

Family

ID=57945693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145177A Active JP6420733B2 (en) 2015-07-22 2015-07-22 Painting method

Country Status (1)

Country Link
JP (1) JP6420733B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229671A (en) * 2006-03-02 2007-09-13 Honda Motor Co Ltd Method for forming multilayer coating film
JP4919897B2 (en) * 2007-07-24 2012-04-18 トヨタ自動車株式会社 Multi-layer coating formation method
JP5261061B2 (en) * 2008-08-04 2013-08-14 株式会社豊田中央研究所 Coating method and coated body obtained thereby
JP5120952B2 (en) * 2008-09-30 2013-01-16 株式会社豊田中央研究所 Coating method and coated body obtained thereby
JP5513726B2 (en) * 2008-09-30 2014-06-04 株式会社豊田中央研究所 Coating method and coated body obtained thereby
JP5260255B2 (en) * 2008-12-17 2013-08-14 株式会社豊田中央研究所 Coating method and coated body obtained thereby

Also Published As

Publication number Publication date
JP2017023942A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5148480B2 (en) Method for forming glittering multilayer coating film
JP5049963B2 (en) Aqueous base coat paint containing glitter pigment
JP5116486B2 (en) Method for forming glittering multilayer coating film
JP4648803B2 (en) Application method of water-based base coat paint
JP2017218527A (en) Isocyanate curable coating composition and coating method using the same
JP6048840B2 (en) Coating method and coated body obtained thereby
JP6021192B2 (en) Coating method and coated body obtained thereby
JP5513726B2 (en) Coating method and coated body obtained thereby
JP5261061B2 (en) Coating method and coated body obtained thereby
JP6499538B2 (en) Painting method
JP6420733B2 (en) Painting method
JP4641940B2 (en) Thermosetting liquid coating composition for aluminum wheel and method for coating aluminum wheel
JP7011556B2 (en) Coating composition and method for forming a multi-layer coating film
JP5342457B2 (en) Multi-layer coating formation method
JP6630332B2 (en) Coated metal plate
JP5773369B2 (en) Method of recoating an object having a sealer part
JP5120952B2 (en) Coating method and coated body obtained thereby
JP2003226843A (en) Water-based metallic coating material and method for forming double-layer coating film
JP2014508200A (en) Base paint for overbaked multilayer coatings
JP7439231B1 (en) Clear coating composition and method for producing coated articles
JP4315001B2 (en) Method for coating overcoat clear coating composition and coated article
JP2008073618A (en) Method of forming multilayer coating film
JP2693999C (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6420733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250