JP5260255B2 - Coating method and coated body obtained thereby - Google Patents
Coating method and coated body obtained thereby Download PDFInfo
- Publication number
- JP5260255B2 JP5260255B2 JP2008321238A JP2008321238A JP5260255B2 JP 5260255 B2 JP5260255 B2 JP 5260255B2 JP 2008321238 A JP2008321238 A JP 2008321238A JP 2008321238 A JP2008321238 A JP 2008321238A JP 5260255 B2 JP5260255 B2 JP 5260255B2
- Authority
- JP
- Japan
- Prior art keywords
- paint
- coating
- uppermost layer
- lower layer
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、2種類の塗料をウェットオンウェットで積層して焼き付ける塗装方法およびそれにより得られる塗装体に関する。 The present invention relates to a coating method in which two types of paints are laminated and baked by wet-on-wet, and a coated body obtained thereby.
2種類の塗料をウェットオンウェットで積層した後、焼き付ける塗装方法により積層塗膜を形成する場合において、従来から、すべての塗料を積層した後に積層塗膜を構成するすべての層が同じ加熱温度で硬化するように各層を形成する熱硬化型塗料を選択し、積層塗膜全体を硬化させる方法が用いられていた。しかしながら、従来の塗装方法では、下層を焼き付けてから最上層を形成する塗料を積層して焼き付けた場合に比べて、積層塗膜の肌および光沢が劣るという問題があった。このため、積層塗膜の肌および光沢を向上させるために種々の方法が提案されている。 When two layers of paints are laminated wet-on-wet and then a laminated coating film is formed by a baking method, all layers constituting the laminated coating film have been heated at the same heating temperature after all the coating materials have been laminated. A method of selecting a thermosetting paint for forming each layer so as to be cured and curing the entire laminated coating film has been used. However, the conventional coating method has a problem that the skin and gloss of the laminated coating film are inferior compared to the case where the lower layer is baked and then the coating for forming the uppermost layer is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.
例えば、特開2007−283271号公報(特許文献1)には、水性ベース塗料および硬化剤としてイソシアネート化合物を用いた水性クリア塗料をウェットオンウェットで塗装し、次いで両塗膜を一緒に加熱硬化させる複層塗膜形成方法において、水性クリア塗料の塗装時にベース塗膜の固形分濃度を85質量%以上且つ20℃におけるベース塗膜の吸水率を10質量%以下にすることによって、水性クリア塗料の塗装後にクリア層からベース層への水の拡散および浸透を抑制することができ、ベース塗膜の水の吸収によるクリア塗膜の粘度上昇を抑えることが可能となることが開示されている。さらに、これによって複層塗膜の仕上り外観を向上させることも可能となることが開示されている。 For example, in Japanese Patent Application Laid-Open No. 2007-283271 (Patent Document 1), a water-based base coating material and a water-based clear coating material using an isocyanate compound as a curing agent are applied wet-on-wet, and then both coating films are heated and cured together. In the multilayer coating film forming method, the solid content concentration of the base coating film is 85% by mass or more and the water absorption rate of the base coating film at 20 ° C. is 10% by mass or less at the time of application of the water-based clear coating material. It has been disclosed that diffusion and penetration of water from the clear layer to the base layer after coating can be suppressed, and an increase in viscosity of the clear coating film due to water absorption of the base coating film can be suppressed. Furthermore, it is disclosed that it is possible to improve the finished appearance of the multilayer coating film.
しかしながら、硬化剤としてイソシアネート化合物を用いたクリア塗膜は焼付時の硬化が速く、ベース塗料が硬化する前にクリア塗膜が流動性を失うことから、従来のベース塗料とクリア塗料を用いたウェットオンウェットによる塗装においては、クリア塗膜の硬化後に、ベース塗膜の硬化の進行に伴う硬化収縮によって形成された凹凸が緩和されることなく、クリア塗膜表面に転写されるため、外観品質が損なわれ、肌および光沢を自動車の外観品質に要求されるレベルまで向上させることが困難であった。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、2種類の塗料をウェットオンウェットで積層して焼き付けて高耐久性の確保などのために各層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる塗装方法、およびそれにより得られる外観品質に優れた塗装体を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art. Even if each layer is cured in order to ensure high durability by laminating and baking two types of paints in a wet-on-wet manner, It is an object of the present invention to provide a coating method capable of obtaining a laminated coating film with less irregularities on the surface of the upper layer, and a coated body excellent in appearance quality obtained thereby.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、2種類の熱硬化型塗料をウェットオンウェットで積層して焼き付け塗装をする場合において、その硬化温度における重量減少率が所定の範囲の熱硬化型塗料を使用して積層塗膜の最上層を形成し、且つガラス転移温度(Tg)が低い基体樹脂を含有する熱硬化型塗料を使用して最上層の下層を形成することによって、最上層が硬化して流動性が著しく低下した後においても下層の流動性が確保され、さらにその後の硬化状態においても下層の高緩和性(分子の高運動性)も得られ、その結果、積層塗膜の収縮による凹凸の形成を最小限に抑えることができ、2種類の塗料をウェットオンウェットで積層した後に焼き付けを実施しても外観品質に優れた積層塗膜が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have determined that the weight reduction rate at the curing temperature is predetermined when two types of thermosetting paints are laminated by wet-on-wet and baked. The uppermost layer of the laminated coating film is formed using a thermosetting paint in the range of 5 and the lower layer of the uppermost layer is formed using a thermosetting paint containing a base resin having a low glass transition temperature (Tg). As a result, the fluidity of the lower layer is ensured even after the uppermost layer is cured and the fluidity is remarkably lowered, and even in the subsequent cured state, high relaxation of the lower layer (high molecular mobility) is also obtained. As a result, the formation of unevenness due to shrinkage of the laminated coating can be minimized, and a laminated coating excellent in appearance quality can be obtained even if baking is performed after laminating two types of paints wet-on-wet see And it has led to the completion of the present invention.
すなわち、本発明の塗装方法は、基材上に形成された下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料としてその硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料を準備し、前記下層を形成するための下層用塗料としてガラス転移温度が5℃以下の基体樹脂を含有し且つ前記最上層用塗料のゲル化開始時における損失弾性率が1MPa以下である熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に加熱処理を施して前記下層用塗料および前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする方法である。
That is, the coating method of the present invention is a coating method for forming a laminated coating film comprising a lower layer formed on a substrate and an uppermost layer formed on the lower layer,
Before Symbol weight loss percentage at the curing temperature as the uppermost layer-coating material for forming the uppermost layer is prepared 0.5 wt% or less of the thermosetting coating material, a glass transition as a lower layer-coating material for forming the lower layer Preparing a thermosetting paint containing a base resin having a temperature of 5 ° C. or less and having a loss elastic modulus of 1 MPa or less at the start of gelation of the uppermost layer paint ;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Heat-treating the uncured laminated coating to cure the lower layer coating and the uppermost layer coating;
It is the method characterized by including.
本発明の塗装方法においては、前記下層用塗料として前記最上層用塗料の硬化温度における重量減少率が0.5質量%以下の塗料を用いることが好ましい。 In the coating method of the present invention, it is preferable to use a paint having a weight reduction rate of 0.5% by mass or less at the curing temperature of the uppermost layer paint as the lower layer paint .
また、本発明の塗装方法においては、前記未硬化積層塗膜に[前記最上層用塗料の硬化温度−20℃]未満の温度で加熱処理を施し、次いで[前記最上層用塗料の硬化温度−20℃]以上の温度で加熱処理を施すことが好ましい。 In the coating method of the present invention, the uncured laminated coating film is subjected to a heat treatment at a temperature lower than [the curing temperature of the uppermost layer-coating material—20 ° C.], and then [the curing temperature of the uppermost layer-coating material− It is preferable to perform heat treatment at a temperature of 20 ° C. or higher.
本発明の塗装体は、基材上に形成された下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、前記本発明の塗装方法により得られたものであり、肌や光沢などの外観品質に優れた積層塗膜を備えることを特徴とするものである。 The coated body of the present invention is a coated body having a laminated coating film comprising a lower layer formed on a substrate and an uppermost layer formed on the lower layer, and obtained by the coating method of the present invention. It is characterized by having a laminated coating film with excellent appearance quality such as skin and gloss.
なお、本発明の塗装方法によって2種類の塗料をウェットオンウェットで積層して焼き付けた場合にも積層塗膜の表面の凹凸が少なくなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、最上層を含めすべての層で熱硬化型塗料が用いられ、各層を同じ加熱温度で同時に硬化させたり、下層から順に硬化を開始するように設計されているため、最上層を形成する熱硬化型塗料を加熱処理(焼き付け処理)により硬化させる際には、その下層においても熱硬化型塗料の硬化が進行して既に流動性を失った状態となっている。このような積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により生成した揮発性生成物が、残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は各層が十分に流動性を有している間はその流動などにより緩和されるが、最上層の流動性が硬化により著しく低下した場合には下層も硬化して流動性をほぼ失っているため、凹凸は緩和されず、基材表面や各層の界面の凹凸が最上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。 The reason why the unevenness of the surface of the laminated coating film is reduced is not always clear even when two types of paints are laminated by wet-on-wet and baked by the coating method of the present invention. I guess so. That is, in the conventional multilayer coating formed by wet-on-wet, thermosetting paint is used in all layers including the uppermost layer, and each layer is cured at the same heating temperature at the same time, or curing is started in order from the lower layer. Therefore, when the thermosetting paint forming the uppermost layer is cured by heat treatment (baking treatment), the thermosetting paint has been cured in the lower layer and has already lost its fluidity. It is in a state. In each layer of such a laminated coating film, the thermosetting paint is cured by an addition reaction after a condensation reaction or a deblocking reaction of a curing agent, so that volatile products generated by this condensation reaction or deblocking reaction remain. It volatilizes with the solvent to be formed, the laminated coating film shrinks, and irregularities are formed on the coating film surface. The unevenness on the surface of the coating film is alleviated by the flow while each layer has sufficient fluidity, but if the fluidity of the top layer is significantly reduced by curing, the lower layer also cures and becomes fluid Therefore, it is presumed that the unevenness on the surface of the substrate and the interface of each layer is transferred to the surface of the uppermost layer, and the skin and gloss of the laminated coating film deteriorate.
また、硬化剤としてイソシアネート化合物やイソシアネート樹脂を含有する熱硬化型塗料を最上層用塗料として用いた場合などにおいては、最上層用塗料の硬化速度が速いため、下層が硬化する前に最上層が流動性を失うことが多い。この場合、最上層が硬化した後に下層の硬化が進行するが、従来のウェットオンウェット塗装に用いられていた下層用塗料は、硬化状態における緩和性に乏しく、下層の硬化の進行に伴う収縮により形成された凹凸が十分に緩和されず、基材表面や各層の界面の凹凸が最上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。 In addition, when a thermosetting paint containing an isocyanate compound or isocyanate resin as a curing agent is used as the uppermost layer paint, the uppermost layer is coated before the lower layer is cured because the uppermost layer paint is fast. Often loses liquidity. In this case, curing of the lower layer proceeds after the uppermost layer is cured, but the lower layer coating material used in conventional wet-on-wet coating has poor relaxation in the cured state, and due to shrinkage accompanying the progress of curing of the lower layer. The formed irregularities are not sufficiently relaxed, and the irregularities at the surface of the base material and the interface of each layer are transferred to the uppermost layer surface, and it is assumed that the skin and gloss of the laminated coating film deteriorate.
一方、本発明の塗装方法では、下層を、Tgが低い基体樹脂を含有する熱硬化型塗料を使用して形成するため、最上層が硬化する際にも前記下層においては高流動性が確保され、さらにその後の硬化状態においても高緩和性(分子の高運動性)が得られるため、積層塗膜が収縮して塗膜表面に凹凸が形成した場合でもこの下層の流動性により凹凸が緩和され、塗膜表面における凹凸の顕在化が抑制されるものと推察される。 On the other hand, in the coating method of the present invention, since the lower layer is formed using a thermosetting paint containing a base resin having a low Tg, high fluidity is secured in the lower layer even when the uppermost layer is cured. In addition, high relaxation (high molecular mobility) is obtained even in the subsequent cured state, so even if the laminated coating contracts and irregularities are formed on the coating surface, the irregularities are relaxed by the fluidity of this lower layer. It is presumed that unevenness on the surface of the coating film is suppressed.
本発明によれば、2種類の塗料をウェットオンウェットで積層して焼き付けて高耐久性の確保などのために各層を硬化させても最上層表面の凹凸が少ない積層塗膜を得ることが可能となる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。 According to the present invention, it is possible to obtain a multilayer coating film with less unevenness on the surface of the uppermost layer even if each layer is cured by laminating and baking two types of paints wet-on-wet to ensure high durability. It becomes. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
本発明の塗装方法は、基材上に形成された下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料としてガラス転移温度が5℃以下の基体樹脂を含有する熱硬化型塗料を準備し、前記最上層を形成するための最上層用塗料としてその硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に加熱処理を施して前記下層用塗料および前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする方法である。
The coating method of the present invention is a coating method for forming a laminated coating film comprising a lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A thermosetting paint containing a base resin having a glass transition temperature of 5 ° C. or lower is prepared as a lower layer coating material for forming the lower layer, and a weight at the curing temperature as the uppermost layer coating material for forming the uppermost layer. A step of preparing a thermosetting paint having a reduction rate of 0.5% by mass or less;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Heat-treating the uncured laminated coating to cure the lower layer coating and the uppermost layer coating;
It is the method characterized by including.
本発明の塗装方法では、先ず、基材上に下層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の下層を形成する。このとき、下層用塗料としてガラス転移温度が5℃以下の基体樹脂を含有する熱硬化型塗料(以下、「低Tg熱硬化型塗料」という)を使用する。次いで、この未硬化の下層の上に最上層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の最上層を形成する。その後、得られた未硬化積層塗膜に加熱処理(焼き付け処理)を施して各層を硬化させる。 In the coating method of the present invention, first, a coating material for a lower layer is applied on a substrate, and if necessary, a solvent or the like is evaporated by drying or the like to form an uncured lower layer. At this time, a thermosetting paint containing a base resin having a glass transition temperature of 5 ° C. or lower (hereinafter referred to as “low Tg thermosetting paint”) is used as the lower layer paint. Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent or the like is evaporated by drying or the like to form an uncured uppermost layer. Thereafter, the obtained uncured laminated coating film is subjected to heat treatment (baking treatment) to cure each layer.
本発明に用いられる基材としては特に限定されず、例えば、金属(鉄、銅、アルミニウム、錫、亜鉛およびこれらの金属の合金など)、鋼板、プラスチック、発泡体、紙、木、布、ガラスなどが挙げられる。中でも、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面には、予め電着塗装、または電着塗装と中塗り塗装などの処理が施されていてもよい。 The substrate used in the present invention is not particularly limited, and examples thereof include metals (iron, copper, aluminum, tin, zinc and alloys of these metals), steel plates, plastics, foams, paper, wood, cloth, and glass. Etc. Especially, this invention is applied suitably for the steel plate for motor vehicles with the required characteristic with respect to external appearance quality. The surface of these base materials may be previously subjected to treatment such as electrodeposition coating or electrodeposition coating and intermediate coating.
本発明の塗装方法においては、前記基材上に熱硬化型塗料を使用して下層を形成するが、この下層は、ガラス転移温度が5℃以下の基体樹脂を含有する低Tg熱硬化型塗料を用いて形成される。このように、下層を前記低Tg熱硬化型塗料を用いて形成することによって最上層が硬化して流動性が著しく低下した場合においても下層の流動性が十分に確保され、且つこの下層が硬化状態にあっても十分な緩和性が確保されるため、積層塗膜の収縮による表面の凹凸を緩和し、外観品質に優れた積層塗膜を得ることが可能となる。 In the coating method of the present invention, a lower layer is formed on the substrate using a thermosetting paint, and this lower layer is a low Tg thermosetting paint containing a base resin having a glass transition temperature of 5 ° C. or lower. It is formed using. Thus, even when the lowermost layer is formed using the low-Tg thermosetting paint and the uppermost layer is cured and the fluidity is remarkably lowered, the fluidity of the lower layer is sufficiently secured, and the lower layer is cured. Since sufficient relaxation is ensured even in the state, it is possible to relieve surface irregularities due to shrinkage of the laminated coating film, and to obtain a laminated coating film having excellent appearance quality.
本発明に用いられる低Tg熱硬化型塗料は、Tgが5℃以下の基体樹脂を含むものであり、Tgが−5℃以下の基体樹脂を含むものが好ましく、Tgが−15℃以下の基体樹脂を含むものがより好ましい。前記基体樹脂のTgが前記上限を超えると最上層の流動性が硬化により著しく低下した場合に下層も硬化して流動性が十分に確保できず、さらに下層が硬化状態になった場合の緩和性も十分に確保できないため、塗膜表面の凹凸が緩和されず、積層塗膜の肌や光沢が悪化する傾向にある。 The low Tg thermosetting paint used in the present invention includes a base resin having a Tg of 5 ° C. or lower, preferably a base resin having a Tg of −5 ° C. or lower, and a base having a Tg of −15 ° C. or lower. A resin containing resin is more preferable. When the Tg of the base resin exceeds the upper limit, when the fluidity of the uppermost layer is remarkably lowered by curing, the lower layer is also cured and the fluidity cannot be sufficiently secured, and the relaxation property when the lower layer is in a cured state However, the unevenness of the coating film surface is not relaxed, and the skin and gloss of the laminated coating film tend to deteriorate.
なお、本発明において、「基体樹脂」とは塗料に含まれる樹脂の主体成分を意味するものである。このような基体樹脂のガラス転移温度(Tg(単位:K))は下記のFox式(Bulletin of the American Physical Society,13,p123(1956))を参照):
1/Tg=w1/Tg1+・・・+wi/Tgi+・・・+wn/Tgn
(式中、wiはモノマーi(i=1〜nの整数)の質量分率を表し、Tgiはモノマーi(i=1〜nの整数)のホモポリマーのガラス転移温度(単位:K)を表す。)
を用いて算出することができる。なお、ホモポリマーのTgとしてはJ.Jpn.Soc.Colour Mater.,64,p594-p595(1991)に記載された値を適用することができ、この文献に記載されていないホモポリマーのTgとしては“POLYMER HANDBOOK(FOURTH
EDITION)”、J.BRANDRUP,E.H.IMMERGUTおよびE.A.GRULKE編、JOHN WILEY & SONS,INC.に記載された値を適用することができる。また、モノマー組成を調整することによって所定のTgの基体樹脂を調製することができる。
In the present invention, the “base resin” means a main component of the resin contained in the paint. For the glass transition temperature (Tg (unit: K)) of such a base resin, refer to the following Fox formula (Bulletin of the American Physical Society, 13, p123 (1956)):
1 / Tg = w 1 / Tg 1 +... + W i / Tg i +... + W n / Tg n
Where w i represents the mass fraction of monomer i (i = integer from 1 to n) and T g i is the glass transition temperature (unit: K) of the homopolymer of monomer i (i = 1 to n) )
Can be used to calculate. The Tg of the homopolymer is described in J. Org. Jpn. Soc. Color Mater. , 64, p594-p595 (1991) can be applied, and the Tg of homopolymers not described in this document is “POLYMER HANDBOOK (FOURTH
EDITION) ”, J. BRANDRUP, EH IMMERGUT and EA GRULKE, JOHN WILEY & SONS, INC., And the values described above can be applied. A base resin of Tg can be prepared.
このような低Tg熱硬化型塗料に用いられる基体樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂は1種を単独で用いても2種以上を併用してもよい。このような基体樹脂のTgは、前記Fox式により算出でき、モノマー組成を調整することによって所定のTgの基体樹脂を得ることができる。 Examples of the base resin used in such a low Tg thermosetting paint include, but are not limited to, acrylic resin, polyester resin, alkyd resin, epoxy resin, and urethane resin. These resins may be used alone or in combination of two or more. The Tg of such a base resin can be calculated by the Fox equation, and a base resin having a predetermined Tg can be obtained by adjusting the monomer composition.
前記低Tg熱硬化型塗料に含まれる硬化剤としては、イソシアネート化合物、イソシアネート樹脂、アミン化合物、アミノ樹脂などが挙げられる。これらの硬化剤は1種を単独で用いても2種以上を併用してもよい。 Examples of the curing agent contained in the low Tg thermosetting paint include isocyanate compounds, isocyanate resins, amine compounds, and amino resins. These curing agents may be used alone or in combination of two or more.
本発明において、前記低Tg熱硬化型塗料の形態は、溶剤型、水性のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性が好ましい。また、前記低Tg熱硬化型塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。さらに、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。 In the present invention, the form of the low Tg thermosetting paint may be either a solvent type or an aqueous type, but an aqueous type is preferable in that the amount of volatile organic compounds discharged can be reduced. The low Tg thermosetting paint may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. Furthermore, in order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.
本発明の塗装方法において、前記下層用塗料としては、使用する最上層用塗料の硬化温度における重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい下層用塗料を使用すると加熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から最上層を硬化させる際に揮発性生成物を生成しない下層用塗料(重量減少率が0質量%)が最も好ましい。 In the coating method of the present invention, the lower layer paint preferably has a weight reduction rate at the curing temperature of the uppermost layer paint to be used of 0.5% by mass or less, more preferably 0.3% by mass or less. Particularly preferred is 0.1% by mass or less. When the lower layer coating material having such a small weight reduction rate is used, the shrinkage of the coating film tends to be minimized after the uppermost layer is cured by heat treatment and the fluidity is remarkably lowered. Further, from this point of view, a lower layer coating material (a weight reduction rate of 0% by mass) that does not generate a volatile product when the uppermost layer is cured is most preferable.
なお、本発明において、「塗料の硬化温度」とは、一般的には塗料毎に設定(設計)されている焼付温度をいう。本発明では、この硬化温度(焼付温度)としてカタログ値を採用することができる。また、「塗料の重量減少率」は、以下の方法により測定される値である。すなわち、対象とする塗料を加熱処理後の膜厚が積層塗膜での目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度よりも40℃低い温度および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度で30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出する。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。 In the present invention, the term "curing temperature of the coating material", is one general refers to baking temperature which is set for each paint (design). In the present invention, a catalog value can be adopted as the curing temperature (baking temperature). The “weight reduction rate of the paint” is a value measured by the following method. That is, the target paint is applied on the aluminum foil so that the film thickness after the heat treatment becomes the target film thickness in the laminated coating film, and the obtained aluminum foil sample is 40 times higher than the curing temperature of the uppermost layer paint. A gas chromatograph / mass spectrometer (for example, 6890GC / 5975MSD manufactured by Agilent) equipped with a thermal desorption introduction device (for example, Thermal Desorption System manufactured by GERSTEL) after drying at a low temperature of 90 ° C. and a vacuum condition of 10 −2 Torr or less. The amount of volatile products (Rc (unit: g)) and the amount of residual solvent are quantified by heating at the curing temperature of the coating material for the uppermost layer for 30 minutes, and the weight reduction rate is calculated by equation (1). This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.
重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値(カタログ値など)を採用できる。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the value (catalog value etc.) of the recipe of a coating material can be employ | adopted for the mass of a pigment.
また、本発明の塗装方法において、前記下層用塗料としては、使用する最上層用塗料のゲル化開始時における損失弾性率が1MPa以下のものが好ましく、0.7MPa以下のものがより好ましく、0.5MPa以下のものが特に好ましい(以下、「低損失弾性率塗料」という)。このような低損失弾性率塗料を下層用塗料として使用することにより最上層が硬化して流動性が著しく低下しても下層においては流動性が確保され、さらにその後の硬化状態においても高緩和性が得られるため、積層塗膜の収縮による表面の凹凸をより緩和することができ、外観品質に優れた積層塗膜を得ることができる。 In the coating method of the present invention, the lower layer paint preferably has a loss elastic modulus of 1 MPa or less, more preferably 0.7 MPa or less, at the start of gelation of the uppermost layer paint used. Particularly preferred is one having a viscosity of 5 MPa or less (hereinafter referred to as “low-loss elastic modulus paint”). By using such a low-loss elastic modulus coating as a coating for the lower layer, the fluidity is secured in the lower layer even if the uppermost layer is cured and the fluidity is remarkably lowered. Therefore, the unevenness of the surface due to shrinkage of the laminated coating film can be further relaxed, and a laminated coating film having excellent appearance quality can be obtained.
なお、本発明において、「最上層用塗料のゲル化開始時における損失弾性率」とは、以下の方法により測定される損失弾性率で定義されるものである。すなわち、先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に加熱処理後の膜厚が35±5μmとなるように塗布する。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込む。 In the present invention, the “loss elastic modulus at the start of gelation of the uppermost layer coating material” is defined by the loss elastic modulus measured by the following method. That is, first, the uppermost layer coating material is applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after the heat treatment is 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The uppermost layer coating material is applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.
このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(Er’)を測定する。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施する。測定時の温度プログラムは、室温(25℃)から硬化処理温度T1(目的とする積層塗膜を焼き付ける温度であり、一般的には、最上層用塗料の硬化温度を採用する)まで昇温速度20±4℃/分で昇温し、その後、前記硬化処理温度T1を維持するように設定する。測定は、以下の変曲点以降15分以上経過するまで実施する。 In this way, the relative storage elastic modulus (E r ′) of the coating film is measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material is formed. The measurement is carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with an annular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° is attached. The temperature program at the time of measurement is raised from room temperature (25 ° C.) to the curing treatment temperature T 1 (the temperature at which the desired laminated coating film is baked and generally the curing temperature of the paint for the uppermost layer is adopted). The temperature is increased at a rate of 20 ± 4 ° C./min, and then the curing treatment temperature T 1 is maintained. The measurement is carried out until 15 minutes or more have passed since the following inflection point.
得られた相対貯蔵弾性率(Er’)の測定値を時間に対してプロットすると、図1に示すように、時間の経過に従って下に凸の曲線から上に凸の曲線に変化する(以下、この変化する時点を「変曲点」という)という結果が得られる。この変曲点以降15分間の部分について下記式(2):
Er’=A〔1−exp{k(t−td)}〕 (2)
(式(2)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片tdを求める。このtdは、測定を開始してから最上層用塗料がゲル化を開始するまでの時間を表す。
When the measured value of the relative storage elastic modulus (E r ′) obtained is plotted with respect to time, as shown in FIG. 1, the curve changes from a downward convex curve to an upward convex curve as time elapses (hereinafter referred to as “protruding curve”). This change time is called “inflection point”. For the portion of 15 minutes after this inflection point, the following formula (2):
E r ′ = A [1-exp {k (t−t d )}] (2)
(In formula (2), A and k are constants, and t represents time.)
And the time axis intercept t d is obtained by a nonlinear least square method. The t d represents the time from the start of measurement to the uppermost layer-coating material starts to gel.
次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして加熱処理後の膜厚が所定の値となるように塗布膜厚を調節して塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(Er”)を測定する。測定は、目的とする積層塗膜の熱硬化処理時間(焼付時間)t1まで実施し、前記時間tdおよび前記熱硬化処理時間t1における下層用塗料からなる塗膜の相対損失弾性率(それぞれ、Er”(td)およびEr”(t1))を求める。 Next, for the lower layer paint, the coating film is formed by adjusting the coating film thickness so that the film thickness after the heat treatment becomes a predetermined value as in the case of the uppermost layer paint, The relative loss elastic modulus (E r ″) is measured under the same conditions as in the case of the uppermost layer coating material. The measurement is carried out until the target heat-treatment time (baking time) t 1 of the laminated coating film, and the time t d and the relative loss elastic modulus (E r ″ (t d ) and E r ″ (t 1 )) of the coating film made of the lower layer coating material at the thermosetting time t 1 are obtained.
次に、対象とする下層用塗料を、ガラス板またはポリプロピレン板などの加熱処理後の塗膜が剥離可能な表面が平滑な基材に、加熱処理後の膜厚が所定の値となるように塗布膜厚を調節しながら塗布し、必要に応じて所定の予備乾燥処理を施し、目的とする積層塗膜の熱硬化処理条件で塗膜に熱硬化処理を施す。その後、得られた硬化膜を基材から剥離する。この硬化膜を所定の形状に切断し、動的粘弾性測定装置(例えば、アイティー計測制御(株)製DVA−220型)を使用して、引張りモード、周波数1Hz、昇温速度5℃/分の条件で硬化膜の損失弾性率(E”)を測定し、前記硬化処理温度T1における下層用塗料からなる硬化膜の損失弾性率(E”(T1))を求める。 Next, the target lower layer coating material is applied to a base material having a smooth surface from which a coating film after heat treatment such as a glass plate or a polypropylene plate can be peeled, and the film thickness after heat treatment becomes a predetermined value. The coating is applied while adjusting the coating thickness, and a predetermined preliminary drying treatment is performed as necessary, and the coating film is subjected to a thermosetting treatment under the target thermosetting condition of the laminated coating film. Then, the obtained cured film is peeled from the substrate. This cured film is cut into a predetermined shape, and using a dynamic viscoelasticity measuring apparatus (for example, DVA-220 model manufactured by IT Measurement Control Co., Ltd.), a tensile mode, a frequency of 1 Hz, a temperature rising rate of 5 ° C. / The loss elastic modulus (E ″) of the cured film is measured under the conditions of minutes, and the loss elastic modulus (E ″ (T 1 )) of the cured film made of the lower layer coating material at the curing treatment temperature T 1 is obtained.
前記熱硬化処理時間t1における下層用塗料からなる塗膜の相対損失弾性率Er”(t1)は下層用塗料からなる硬化膜の相対損失弾性率とみなすことができることから、上記測定によって得られた下層用塗料からなる塗膜の相対損失弾性率Er”(td)およびEr”(t1)ならびに下層用塗料からなる硬化膜の損失弾性率E”(T1)から、下記式(3):
E”(td)=Er”(td)×E”(T1)/Er”(t1) (3)
により前記時間tdにおける下層用塗料からなる塗膜の損失弾性率(E”(td))を求め、本発明においては、これを「最上層用塗料のゲル化開始時における下層用塗料の損失弾性率」とする。
The relative loss elastic modulus E r ″ (t 1 ) of the coating film made of the lower layer coating material at the thermosetting treatment time t 1 can be regarded as the relative loss elastic modulus of the cured film made of the lower layer coating material. From the relative loss elastic moduli E r ″ (t d ) and E r ″ (t 1 ) of the coating film made of the obtained lower layer coating material and the loss elastic modulus E ″ (T 1 ) of the cured film made of the lower layer coating material, Following formula (3):
E ″ (t d ) = E r ″ (t d ) × E ″ (T 1 ) / E r ″ (t 1 ) (3)
The loss elastic modulus (E ″ (t d )) of the coating film made of the lower layer paint at the time t d is obtained by the above-described method. In the present invention, this is expressed as “the lower layer paint at the start of gelation of the uppermost layer paint”. Loss elastic modulus ".
また、本発明においては、前記熱硬化性樹脂および前記硬化剤の組成や配合比を調整したり、添加剤を配合するなどして、例えばガラス転移温度や架橋密度などを調整することによって、最上層用塗料のゲル化開始時における下層用塗料の損失弾性率を制御することができる。 Further, in the present invention, by adjusting the composition and blending ratio of the thermosetting resin and the curing agent or blending additives, for example, by adjusting the glass transition temperature, the crosslinking density, etc. The loss elastic modulus of the lower layer coating material at the start of gelation of the upper layer coating material can be controlled.
本発明では最上層用塗料として、加熱処理による硬化反応において実質的に揮発性生成物を生成しない熱硬化型塗料、すなわち、その硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料を使用する。このような重量減少率が小さい熱硬化型塗料を最上層用塗料として使用すると加熱処理による塗膜の収縮を最小限にすることができる。また、このような観点から、重量減少率が0.3質量%以下の塗料が好ましく、0.1質量%以下の塗料より好ましく、揮発性生成物を生成しない塗料(重量減少率が0質量%)が特に好ましい。 In the present invention, as the uppermost layer-coating material, a thermosetting coating material that does not substantially generate a volatile product in a curing reaction by heat treatment, that is, a thermosetting type having a weight reduction rate of 0.5% by mass or less at the curing temperature. Use paint. When such a thermosetting coating material having a small weight reduction rate is used as the uppermost layer coating material, shrinkage of the coating film due to heat treatment can be minimized. From such a viewpoint, a paint having a weight reduction rate of 0.3% by mass or less is preferable, a paint having a weight reduction rate of 0.1% by mass or less is more preferable, and a paint that does not generate a volatile product (the weight reduction rate is 0% by mass). Is particularly preferred.
最上層用塗料に含まれる基体樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。好ましい硬化剤としてはイソシアネート化合物およびイソシアネート樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂および硬化剤はそれぞれ1種を単独で用いても2種以上を併用してもよい。本発明においては、これらの基体樹脂と硬化剤とを、重量減少率が前記範囲となるように組み合わせて最上層用塗料を調製する。加熱処理による硬化反応において実質的に揮発性生成物を生成しない前記熱硬化性樹脂と前記硬化剤との組み合わせとしては、水酸基含有アクリル樹脂とイソシアネート化合物および/またはイソシアネート樹脂との組み合わせなどが挙げられる。 Examples of the base resin contained in the uppermost layer coating material include, but are not limited to, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, and a urethane resin. Preferred curing agents include, but are not limited to, isocyanate compounds and isocyanate resins. These resins and curing agents may be used alone or in combination of two or more. In the present invention, the coating material for the uppermost layer is prepared by combining the base resin and the curing agent so that the weight reduction rate falls within the above range. Examples of the combination of the thermosetting resin that does not substantially generate a volatile product in the curing reaction by heat treatment and the curing agent include a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin. .
前記最上層用塗料の形態は溶剤型、水性のいずれでもよい。また、最上層用塗料の硬化温度は、特に限定されないが、通常40〜200℃であり、60〜160℃であることが好ましい。 The form of the uppermost layer-coating material may be either solvent-based or water-based. Moreover, although the curing temperature of the coating material for uppermost layers is not specifically limited, Usually, it is 40-200 degreeC, and it is preferable that it is 60-160 degreeC.
このような最上層用塗料のうち、Tgが5℃を超える基体樹脂を含有する熱硬化型塗料が好ましい。最上層用塗料としてTgが前記下限以下の基体樹脂を含有する熱硬化型塗料を用いると積層塗膜の機械的特性や耐久性が低下する傾向にある。最上層用塗料に用いられる基体樹脂のTgは、前記Fox式により算出でき、モノマー組成を調整することによって所定のTgの基体樹脂を得ることができる。 Among such uppermost layer coating materials, thermosetting coating materials containing a base resin having a Tg of more than 5 ° C. are preferred. If a thermosetting paint containing a base resin having a Tg of not more than the lower limit is used as the uppermost layer paint, the mechanical properties and durability of the laminated coating film tend to be lowered. The Tg of the base resin used in the uppermost layer coating material can be calculated by the Fox equation, and a base resin having a predetermined Tg can be obtained by adjusting the monomer composition.
また、前記最上層用塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線吸収剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。 The uppermost layer-coating material may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet absorber, and an antifoaming agent may be blended within a conventionally known range.
本発明の塗装方法では、先ず、前記基材上に前記低Tg熱硬化型塗料を塗布し、必要に応じて乾燥などにより溶媒を蒸発させて未硬化の下層を形成する。下層用塗料を塗布する際、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法を適用することができる。 In the coating method of the present invention, first, the low Tg thermosetting paint is applied on the substrate, and the solvent is evaporated by drying or the like as necessary to form an uncured lower layer. When applying the lower layer coating material, conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating can be applied.
下層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。下層の膜厚が前記下限未満では均一な下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると最上層の塗膜に含まれる溶媒などを多く吸収する傾向にあるとともに下層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。 Although the film thickness of a lower layer can be suitably set with a desired use, For example, it is preferable that it is 5-50 micrometers by the film thickness after heat processing, and it is more preferable that it is 10-40 micrometers. If the film thickness of the lower layer is less than the lower limit, it tends to be difficult to obtain a uniform lower layer coating film. On the other hand, if the upper layer exceeds the upper limit, the lower layer itself tends to absorb much solvent contained in the uppermost coating film. Volatilization of the solvent contained therein is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.
次に、前記未硬化の下層の上に前記最上層用塗料を塗布し、必要に応じて乾燥などにより溶媒を蒸発させて未硬化の最上層を形成する。最上層用塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装や回転霧化式静電塗装などの従来公知の方法が挙げられる。 Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent is evaporated by drying or the like to form an uncured uppermost layer. Examples of the method for applying the uppermost layer coating material include conventionally known methods such as air spray coating, air electrostatic spray coating, rotary atomizing electrostatic coating, and rotary atomizing electrostatic coating.
最上層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。最上層の膜厚が前記下限未満では流動性が不十分であり積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると流動性が過度に大きくなり鉛直方向に塗装する場合にはタレなどの欠陥が発生する傾向にある。 The film thickness of the uppermost layer can be appropriately set depending on the desired application. For example, the film thickness after the heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. When the film thickness of the uppermost layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate. On the other hand, when the upper limit is exceeded, the fluidity becomes excessively large and the coating is applied in the vertical direction. There is a tendency for defects such as sagging to occur.
このようにして、前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して形成された未硬化積層塗膜に加熱処理(焼き付け処理)を施して各層を硬化させる。本発明の塗装方法において、前記加熱処理は、少なくとも最上層が硬化する温度以上、例えば[前記最上層用塗料の硬化温度−20℃]以上の温度での加熱処理(以下、「高温加熱処理」という)を含んでいることが好ましい。 In this way, the uncured laminated coating film formed by laminating the lower layer coating material and the uppermost layer coating material by wet-on-wet is subjected to heat treatment (baking treatment) to cure each layer. In the coating method of the present invention, the heat treatment is a heat treatment at a temperature at least equal to or higher than the temperature at which the uppermost layer is cured, for example, [the curing temperature of the uppermost layer paint −20 ° C.]. It is preferable to contain.
高温加熱温度は、さらに、[前記最上層用塗料の硬化温度±20℃]の範囲の温度が好ましい。具体的には、最上層用塗料の硬化温度が140℃の場合、高温加熱温度は120℃以上であることが好ましく、120℃以上160℃以下であることが好ましい。高温加熱時間は最上層用塗料の硬化時間の50%以上150%以下であることが好ましく、60%以上100%以下であることが好ましい。具体的には、最上層用塗料の硬化時間が30分の場合、高温加熱時間は15分以上45分以下であることが好ましく、18分以上30分以下であることが好ましい。 Further, the high temperature heating temperature is preferably in a range of [the curing temperature of the top layer coating material ± 20 ° C.]. Specifically, when the curing temperature of the uppermost layer-coating material is 140 ° C., the high temperature heating temperature is preferably 120 ° C. or higher, and preferably 120 ° C. or higher and 160 ° C. or lower. The high temperature heating time is preferably 50% or more and 150% or less, and preferably 60% or more and 100% or less, of the curing time of the uppermost layer coating material. Specifically, when the curing time of the uppermost layer-coating material is 30 minutes, the high-temperature heating time is preferably 15 minutes to 45 minutes, and more preferably 18 minutes to 30 minutes.
また、本発明の塗装方法では、前記高温加熱処理を施す前に最上層を硬化させずに積層塗膜の揮発分濃度を低減することが好ましい。これにより高温加熱処理により最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮を最小限にすることができる傾向にある。 Moreover, in the coating method of this invention, it is preferable to reduce the volatile matter density | concentration of a laminated coating film, without hardening the uppermost layer, before performing the said high temperature heat processing. This tends to minimize the shrinkage of the laminated coating after the uppermost layer is cured by heat treatment and the fluidity is significantly reduced.
最上層を硬化させずに積層塗膜の揮発分濃度を低減する方法としては、[前記最上層用塗料の硬化温度−20℃]未満の温度で加熱処理(以下「低温加熱処理」という)を施す方法が好ましい。低温加熱温度は、さらに[前記最上層用塗料の硬化温度−30℃]未満の温度が好ましく、[前記最上層用塗料の硬化温度−40℃]未満の温度が特に好ましい。具体的には、最上層用塗料の硬化温度が140℃の場合、低温加熱温度は120℃未満であることが好ましく、110℃未満であることがより好ましく、100℃未満であることが特に好ましい。低温加熱時間は最上層用塗料の硬化時間の10%以上50%未満であることが好ましく、20%以上40%以下であることが好ましい。具体的には、最上層用塗料の硬化時間が30分の場合、低温加熱時間は3分以上15分以下であることが好ましく、6分以上12分以下であることが好ましい。前記低温加熱温度および低温加熱時間の範囲で未硬化積層塗膜を加熱処理すると最上層を実質的には硬化させずに積層塗膜の揮発分濃度を低減することができる傾向にある。 As a method of reducing the volatile content concentration of the laminated coating film without curing the uppermost layer, heat treatment (hereinafter referred to as “low temperature heat treatment”) at a temperature lower than [the curing temperature of the uppermost layer coating material—20 ° C.] The method of applying is preferred. Further, the low-temperature heating temperature is preferably less than [the curing temperature of the uppermost layer paint −30 ° C.], particularly preferably less than [the curing temperature of the uppermost layer paint −40 ° C.]. Specifically, when the curing temperature of the paint for the uppermost layer is 140 ° C., the low temperature heating temperature is preferably less than 120 ° C., more preferably less than 110 ° C., and particularly preferably less than 100 ° C. . The low temperature heating time is preferably 10% or more and less than 50%, and preferably 20% or more and 40% or less of the curing time of the uppermost layer coating material. Specifically, when the curing time of the uppermost layer-coating material is 30 minutes, the low-temperature heating time is preferably 3 minutes to 15 minutes, and more preferably 6 minutes to 12 minutes. When the uncured laminated coating film is heat-treated within the range of the low temperature heating temperature and the low temperature heating time, the volatile content concentration of the laminated coating film tends to be reduced without substantially curing the uppermost layer.
さらに、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化状態の塗膜を安定させるために、前記加熱処理前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。 Furthermore, in the coating method of the present invention, in order to stabilize the uncured coating film laminated by wet-on-wet, it is preferable to leave it at room temperature (setting) before the heat treatment. The setting time is usually set to 1 to 20 minutes.
また、本発明において、さらに高級な外観を有する塗装体を得るためには、前記塗装方法により得られた塗装体の前記最上層の上にさらに1種以上の塗料を塗布して加熱処理を施し、表面層を形成することが好ましい。前記塗料としては、前記最上層用塗料として例示したものを使用することができる。また、前記塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法が挙げられる。 In the present invention, in order to obtain a coated body having a higher-grade appearance, one or more kinds of paints are further applied on the uppermost layer of the coated body obtained by the coating method and subjected to a heat treatment. It is preferable to form a surface layer. As the coating material, those exemplified as the top layer coating material can be used. Examples of the method for applying the paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.
本発明の塗装体は、前記本発明の塗装方法により製造されたものであり、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも少なく、外観品質に優れている。このような塗装体は、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品として有用である。 The coated body of the present invention is manufactured by the coating method of the present invention, and has fewer irregularities on the surface of the multilayer coating film than the conventional multilayer coating film manufactured by wet-on-wet, and is excellent in appearance quality. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.
以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、基体樹脂のガラス転移温度(Tg)および塗料の加熱処理による重量減少率は以下の方法により測定した。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The glass transition temperature (Tg) of the base resin and the weight reduction rate due to the heat treatment of the paint were measured by the following methods.
<ガラス転移温度の算出>
下記のFox式:
1/Tg=w1/Tg1+・・・+wi/Tgi+・・・+wn/Tgn
(式中、wiはモノマーi(i=1〜nの整数)の質量分率を表し、Tgiはモノマーi(i=1〜nの整数)のホモポリマーのガラス転移温度(単位:K)を表す。)
を用いて算出した。なお、実施例および比較例で使用したモノマーのホモポリマーのTgを以下に示す。
メチルメタクリレート 105℃
ブチルアクリレート −54℃
2−ヒドロキシエチルメタクリレート 55℃
スチレン 100℃
アクリル酸 106℃
<Calculation of glass transition temperature>
The following Fox formula:
1 / Tg = w 1 / Tg 1 +... + W i / Tg i +... + W n / Tg n
Where w i represents the mass fraction of monomer i (i = integer from 1 to n) and T g i is the glass transition temperature (unit: K) of the homopolymer of monomer i (i = 1 to n) )
It calculated using. In addition, Tg of the homopolymer of the monomer used by the Example and the comparative example is shown below.
Methyl methacrylate 105 ° C
Butyl acrylate -54 ° C
2-Hydroxyethyl methacrylate 55 ° C
Acrylic acid 106 ℃
<重量減少率の測定>
対象とする塗料を加熱処理後の膜厚が積層塗膜の目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度よりも40℃低い温度および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度で30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出した。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。
<Measurement of weight loss rate>
The target paint is coated on the aluminum foil so that the film thickness after the heat treatment becomes the target film thickness of the laminated coating film, and the obtained aluminum foil sample is 40 ° C. lower than the curing temperature of the top layer paint. And after drying for 90 minutes under a vacuum condition of 10 −2 Torr or less, using a gas chromatograph / mass spectrometer (for example, 6890GC / 5975MSD manufactured by Agilent) equipped with a thermal desorption introduction apparatus (for example, Thermal Destruction System manufactured by GERSTEL). The amount of volatile products (Rc (unit: g)) and the amount of residual solvent were quantified by heating at the curing temperature of the coating for the uppermost layer for 30 minutes, and the weight reduction rate was calculated by equation (1). This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.
重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値を使用した。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the mass of the pigment used the value of the coating composition table.
(合成例1)アクリルエマルションR−1の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 10.7質量部
ブチルアクリレート 203.2質量部
2−ヒドロキシエチルアクリレート 50.4質量部
スチレン 42.5質量部
アクリル酸 8.2質量部
このモノマー混合液315質量部、n−ドデシルメルカプタン4質量部、水105質量部およびアニオン界面活性剤(日本乳化剤(株)製「ニューコール707−SN」)14質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis Example 1) Synthesis of Acrylic Emulsion R-1 The following monomers were mixed to prepare a monomer mixture.
<Monomer mixture composition>
Methyl methacrylate 10.7 parts by mass Butyl acrylate 203.2 parts by mass 2-hydroxyethyl acrylate 50.4 parts by mass Styrene 42.5 parts by mass Acrylic acid 8.2 parts by mass This monomer mixture 315 parts by mass, n-dodecyl mercaptan 4 Part by mass, 105 parts by mass of water and 14 parts by mass of an anionic surfactant (“New Coal 707-SN” manufactured by Nippon Emulsifier Co., Ltd.) were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion. .
次に、攪拌機、温度計、滴下ロート、還流冷却器および窒素導入管を備えた通常のアクリル系樹脂エマルション製造用反応容器に、水280質量部、アニオン界面活性剤(日本乳化剤(株)製「ニューコール707−SN」)5.6質量部、および重合開始剤として過硫酸アンモニウム水溶液(過硫酸アンモニウム(Aldrich社製)0.7質量部と水13.3質量部とを攪拌混合して調製したもの)20質量部を仕込み、攪拌しながら80℃に昇温した。この溶液に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分間保持した。その後、残りのモノマープレエマルションを4時間かけて攪拌しながら滴下した。滴下終了後、さらに80℃で1時間攪拌を継続して反応させた。その後、水56質量部を添加し、室温まで冷却した。冷却後、10質量%のジメチルエタノールアミン水溶液を用いて反応溶液のpHを7.4に調整し、不揮発分38.1質量%、Tg=−20℃のアクリルエマルションR−1を得た。 Next, 280 parts by mass of water and an anionic surfactant (manufactured by Nippon Emulsifier Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser and a nitrogen introduction tube. 5.6 parts by mass of Newcol 707-SN ") and 0.7 parts by mass of an aqueous ammonium persulfate solution (ammonium persulfate (manufactured by Aldrich)) and 13.3 parts by mass of water as a polymerization initiator ) 20 parts by mass were charged and heated to 80 ° C. with stirring. To this solution, 5% by mass of the monomer pre-emulsion was added and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was added dropwise with stirring over 4 hours. After completion of the dropwise addition, the reaction was further continued at 80 ° C. for 1 hour with stirring. Thereafter, 56 parts by mass of water was added and cooled to room temperature. After cooling, the pH of the reaction solution was adjusted to 7.4 using a 10% by mass aqueous dimethylethanolamine solution to obtain an acrylic emulsion R-1 having a nonvolatile content of 38.1% by mass and Tg = −20 ° C.
(合成例2)アクリルエマルションR−2の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 22.7質量部
ブチルアクリレート 178.6質量部
2−ヒドロキシエチルメタクリレート 50.4質量部
スチレン 55.1質量部
アクリル酸 8.2質量部
合成例1に記載のモノマー混合液の代わりにこのモノマー混合液315質量部を用いた以外は合成例1と同様にして、不揮発分38.1質量%、Tg=−10℃のアクリルエマルションR−2を得た。
(Synthesis example 2) Synthesis | combination of acrylic emulsion R-2 The following monomer was mixed and the monomer liquid mixture was prepared.
<Monomer mixture composition>
Methyl methacrylate 22.7 parts by mass Butyl acrylate 178.6 parts by mass 2-Hydroxyethyl methacrylate 50.4 parts by mass Styrene 55.1 parts by mass Acrylic acid 8.2 parts by mass In place of the monomer mixture described in Synthesis Example 1, An acrylic emulsion R-2 having a nonvolatile content of 38.1% by mass and Tg = −10 ° C. was obtained in the same manner as in Synthesis Example 1 except that 315 parts by mass of the monomer mixture was used.
(合成例3)アクリルエマルションR−3の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 36.2質量部
ブチルアクリレート 155.6質量部
2−ヒドロキシエチルメタクリレート 50.4質量部
スチレン 64.6質量部
アクリル酸 8.2質量部
合成例1に記載のモノマー混合液の代わりにこのモノマー混合液315質量部を用いた以外は合成例1と同様にして、不揮発分38.1質量%、Tg=0℃のアクリルエマルションR−3を得た。
(Synthesis example 3) Synthesis | combination of acrylic emulsion R-3 The following monomer was mixed and the monomer liquid mixture was prepared.
<Monomer mixture composition>
Methyl methacrylate 36.2 parts by mass Butyl acrylate 155.6 parts by mass 2-hydroxyethyl methacrylate 50.4 parts by mass Styrene 64.6 parts by mass Acrylic acid 8.2 parts by mass In place of the monomer mixture described in Synthesis Example 1, An acrylic emulsion R-3 having a nonvolatile content of 38.1% by mass and Tg = 0 ° C. was obtained in the same manner as in Synthesis Example 1 except that 315 parts by mass of the monomer mixture was used.
(合成例4)アクリルエマルションR−4の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 48.8質量部
ブチルアクリレート 133.6質量部
2−ヒドロキシエチルメタクリレート 50.4質量部
スチレン 74.0質量部
アクリル酸 8.2質量部
合成例1に記載のモノマー混合液の代わりにこのモノマー混合液315質量部を用いた以外は合成例1と同様にして、不揮発分38.1質量%、Tg=10℃のアクリルエマルションR−4を得た。
(Synthesis example 4) Synthesis | combination of acrylic emulsion R-4 The following monomer was mixed and the monomer liquid mixture was prepared.
<Monomer mixture composition>
Methyl methacrylate 48.8 parts by weight Butyl acrylate 133.6 parts by weight 2-Hydroxyethyl methacrylate 50.4 parts by weight Styrene 74.0 parts by weight Acrylic acid 8.2 parts by weight In place of the monomer mixture described in Synthesis Example 1, An acrylic emulsion R-4 having a nonvolatile content of 38.1% by mass and Tg = 10 ° C. was obtained in the same manner as in Synthesis Example 1 except that 315 parts by mass of the monomer mixture was used.
(調製例1)メラミン硬化型水性ベース塗料B−1の調製
容器に、合成例1で得たTg=−20℃のアクリルエマルションR−1を183.7質量部仕込み、これに、攪拌しながらメチル化メラミン樹脂(日本サイテックインダストリーズ(株)製「サイメル325」)40質量部、水150質量部およびブチルグリコール20質量部を加えて5分間攪拌した。さらに、アルカリ増粘剤(チバスペシャリティーケミカルズ社製「Viscalex HV30」)、ジメチルエタノールアミンおよび水を適量加えて、不揮発分23質量%、pH8.5の水性樹脂溶液を得た。
(Preparation example 1) Preparation of melamine curable aqueous base paint B-1 In a container, 183.7 parts by mass of the acrylic emulsion R-1 having a Tg of −20 ° C. obtained in Synthesis Example 1 was charged and stirred. 40 parts by mass of a methylated melamine resin (“Cymel 325” manufactured by Nippon Cytec Industries, Ltd.), 150 parts by mass of water and 20 parts by mass of butyl glycol were added and stirred for 5 minutes. Further, an appropriate amount of an alkali thickener (“Viscalex HV30” manufactured by Ciba Specialty Chemicals), dimethylethanolamine and water was added to obtain an aqueous resin solution having a nonvolatile content of 23 mass% and a pH of 8.5.
また、別の容器に、ブチルグリコール53質量部およびリン酸エステル化合物(日本ルーブリゾール(株)製「Lubrizol2062」)5質量部を仕込み、5分間攪拌した。この溶液に、2種類のアルミペースト(Eckart GmbH製「Hydrolan2154」およびEckart GmbH製「Hydrolan2156」)をそれぞれ30質量部添加し、その後、1時間攪拌してアルミペースト溶液を得た。 In another container, 53 parts by mass of butyl glycol and 5 parts by mass of a phosphoric ester compound (“Lublizol 2062” manufactured by Nippon Lubrizol Co., Ltd.) were charged and stirred for 5 minutes. To this solution, 30 parts by mass of two types of aluminum pastes (“Hydrolan 2154” manufactured by Eckart GmbH and “Hydrolan 2156” manufactured by Eckart GmbH) were added, and then stirred for 1 hour to obtain an aluminum paste solution.
次に、前記水性樹脂溶液457.7質量部にこのアルミペースト溶液101.6質量部を撹拌しながら添加し、さらに1時間攪拌して不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−1を得た。この水性ベース塗料B−1の140℃での重量減少率は3.6質量%(P=22.4として算出)であった。 Next, 101.6 parts by mass of this aluminum paste solution was added to 457.7 parts by mass of the aqueous resin solution while stirring, and the mixture was further stirred for 1 hour to have a non-volatile content of 24.7% by mass and a pH 8.0 melamine curable type. An aqueous base paint B-1 was obtained. The weight reduction rate of this water-based base coating material B-1 at 140 ° C. was 3.6% by mass (calculated as P = 22.4).
(調製例2)メラミン硬化型水性ベース塗料B−2の調製
アクリルエマルションR−1の代わりに合成例2で得たTg=−10℃のアクリルエマルションR−2を183.7質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−2を得た。この水性ベース塗料B−2の140℃での重量減少率は3.7質量%(P=22.4として算出)であった。
(Preparation Example 2) Preparation of Melamine Curing Water-Based Paint B-2 Except for using 183.7 parts by mass of acrylic emulsion R-2 having a Tg of −10 ° C. obtained in Synthesis Example 2 instead of acrylic emulsion R-1 In the same manner as in Preparation Example 1, a melamine curable aqueous base paint B-2 having a non-volatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight loss rate of this water-based base coating material B-2 at 140 ° C. was 3.7% by mass (calculated as P = 22.4).
(調製例3)メラミン硬化型水性ベース塗料B−3の調製
アクリルエマルションR−1の代わりに合成例3で得たTg=0℃のアクリルエマルションR−3を183.7質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−3を得た。この水性ベース塗料B−3の140℃での重量減少率は3.8質量%(P=22.4として算出)であった。
(Preparation Example 3) Preparation of Melamine Curing Water-Based Paint B-3 Except for using 183.7 parts by mass of acrylic emulsion R-3 with Tg = 0 ° C. obtained in Synthesis Example 3 instead of acrylic emulsion R-1. In the same manner as in Preparation Example 1, a melamine curable aqueous base paint B-3 having a nonvolatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight loss rate of this water-based base coating material B-3 at 140 ° C. was 3.8% by mass (calculated as P = 22.4).
(調製例4)メラミン硬化型水性ベース塗料B−4の調製
アクリルエマルションR−1の代わりに合成例4で得たTg=10℃のアクリルエマルションR−4を183.7質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−4を得た。この水性ベース塗料B−4の140℃での重量減少率は3.8質量%(P=22.4として算出)であった。
(Preparation Example 4) Preparation of Melamine Curing Water-Based Paint B-4 Except for using 183.7 parts by mass of acrylic emulsion R-4 with Tg = 10 ° C. obtained in Synthesis Example 4 instead of acrylic emulsion R-1. In the same manner as in Preparation Example 1, a melamine curable aqueous base paint B-4 having a non-volatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight loss rate of this water-based base coating material B-4 at 140 ° C. was 3.8% by mass (calculated as P = 22.4).
(調製例5)イソシアネート硬化型水性ベース塗料B−5の調製
Tg=−20℃のアクリルエマルションR−1の仕込み量を210質量部に変更し、メチル化メラミン樹脂の代わりに水分散性ポリイソシアネート(DIC(株)製「バーノックDNW5000」)25質量部を用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のイソシアネート硬化型水性ベース塗料B−5を得た。この水性ベース塗料B−5の140℃での重量減少率は0質量%(P=22.4として算出)であった。
(Preparation Example 5) Preparation of isocyanate-curable aqueous base paint B-5 The amount of acrylic emulsion R-1 charged with Tg = −20 ° C. was changed to 210 parts by mass, and water-dispersible polyisocyanate was used instead of methylated melamine resin. Except for using 25 parts by mass (“Bernock DNW5000” manufactured by DIC Corporation), an isocyanate-curable aqueous base paint B-5 having a non-volatile content of 24.7% by mass and a pH of 8.0 was obtained in the same manner as in Preparation Example 1. It was. The weight loss rate of this water-based base coating material B-5 at 140 ° C. was 0% by mass (calculated as P = 22.4).
(調製例6)イソシアネート硬化型水性ベース塗料B−6の調製
アクリルエマルションR−1の代わりに合成例2で得たTg=−10℃のアクリルエマルションR−2を210質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のイソシアネート硬化型水性ベース塗料B−6を得た。この水性ベース塗料B−6の140℃での重量減少率は0質量%(P=22.4として算出)であった。
(Preparation Example 6) Preparation of Isocyanate-Curable Water-Based Paint B-6 Prepared except that 210 parts by mass of acrylic emulsion R-2 with Tg = -10 ° C. obtained in Synthesis Example 2 was used instead of acrylic emulsion R-1. In the same manner as in Example 1, an isocyanate-curable aqueous base paint B-6 having a nonvolatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight reduction rate of this water-based base coating material B-6 at 140 ° C. was 0% by mass (calculated as P = 22.4).
(調製例7)イソシアネート硬化型水性ベース塗料B−7の調製
アクリルエマルションR−1の代わりに合成例3で得たTg=0℃のアクリルエマルションR−3を210質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のイソシアネート硬化型水性ベース塗料B−7を得た。この水性ベース塗料B−7の140℃での重量減少率は0質量%(P=22.4として算出)であった。
(Preparation example 7) Preparation of isocyanate curable aqueous base paint B-7 Preparation example except that 210 parts by mass of Tg = 0 ° C. acrylic emulsion R-3 obtained in Synthesis Example 3 was used instead of acrylic emulsion R-1 In the same manner as in Example 1, an isocyanate-curable aqueous base coating material B-7 having a non-volatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight loss rate of this water-based base coating material B-7 at 140 ° C. was 0% by mass (calculated as P = 22.4).
(調製例8)イソシアネート硬化型水性ベース塗料B−8の調製
アクリルエマルションR−1の代わりに合成例4で得たTg=10℃のアクリルエマルションR−4を210質量部用いた以外は調製例1と同様にして、不揮発分24.7質量%、pH8.0のイソシアネート硬化型水性ベース塗料B−8を得た。この水性ベース塗料B−8の140℃での重量減少率は0質量%(P=22.4として算出)であった。
(Preparation Example 8) Preparation of Isocyanate-Curable Water-Based Paint B-8 Preparation Example except that 210 parts by mass of Tg = 10 ° C. acrylic emulsion R-4 obtained in Synthesis Example 4 was used instead of acrylic emulsion R-1 In the same manner as in Example 1, an isocyanate-curable aqueous base coating material B-8 having a nonvolatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight reduction rate of this water-based base coating material B-8 at 140 ° C. was 0% by mass (calculated as P = 22.4).
(調製例9)熱硬化型(イソシアネート硬化型)クリア塗料Cの調製
表1に示す割合でポリオールおよび添加剤を混合して2液型の熱硬化型(イソシアネート硬化型)クリア塗料の主剤80.51質量部を調製した。また、前記熱硬化型クリア塗料の硬化剤として表1に示すイソシアネート硬化剤を使用した。以下の実施例および比較例ではこの主剤と硬化剤とを表1に示す割合で混合したもの(固形分濃度55質量%)を熱硬化型(イソシアネート硬化型)クリア塗料Cとして使用した。この熱硬化型クリア塗料Cの硬化温度は140℃であり、140℃での重量減少率は0質量%(P=0として算出)であった。また、ゲル化が開始するまでの時間tdは10.2分であった。
(Preparation Example 9) Preparation of thermosetting (isocyanate curable) clear paint C Main component of two-component thermosetting (isocyanate curable) clear paint by mixing polyol and additives in the ratio shown in Table 1. 51 parts by weight were prepared. Moreover, the isocyanate hardening agent shown in Table 1 was used as a hardening | curing agent of the said thermosetting type clear coating material. In the following examples and comparative examples, a mixture (solid content concentration of 55% by mass) of the main agent and the curing agent mixed at a ratio shown in Table 1 was used as the thermosetting (isocyanate curing type) clear paint C. The curing temperature of this thermosetting clear paint C was 140 ° C., and the weight reduction rate at 140 ° C. was 0% by mass (calculated as P = 0). The time t d to gelation starts was 10.2 minutes.
(実施例1)
中塗り塗装および電着塗装を施した鋼板(日本ルートサービス(株)製)の表面に、調製例1で得たメラミン硬化型水性ベース塗料B−1(基体樹脂のTg=−20℃)を、焼き付け後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水および有機溶剤などを揮発させた。次いで、この水性ベース塗料B−1の層の上に調製例9で得た熱硬化型クリア塗料Cを、焼き付け後の膜厚が35μmになるように塗装し、メラミン硬化型水性ベース塗料B−1と熱硬化型クリア塗料Cとをウェットオンウェットで積層した未硬化積層塗膜を得た。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−1の損失弾性率は0.20MPaであった。
Example 1
On the surface of the steel sheet (manufactured by Nippon Route Service Co., Ltd.) subjected to intermediate coating and electrodeposition coating, the melamine curable aqueous base paint B-1 obtained in Preparation Example 1 (Tg of the base resin = −20 ° C.). The film was baked to a film thickness of 15 μm and heated at 80 ° C. for 3 minutes to volatilize water and organic solvent. Next, the thermosetting clear paint C obtained in Preparation Example 9 was applied onto the layer of the aqueous base paint B-1 so that the film thickness after baking was 35 μm, and the melamine curable aqueous base paint B- 1 and the thermosetting clear coating material C were obtained by laminating wet and wet coatings. The loss elastic modulus of the water-based base paint B-1 at the start of gelation of the thermosetting clear paint C was 0.20 MPa.
この未硬化積層塗膜を室温で10分間静置(セッティング)した後、90℃で10分間の加熱処理(焼き付け処理)と140℃で30分間の加熱処理(焼き付け処理)を順次施して各層を硬化させ、積層塗膜を得た。 After leaving this uncured laminated coating film at room temperature for 10 minutes (setting), a heating process (baking process) at 90 ° C. for 10 minutes and a heating process (baking process) at 140 ° C. for 30 minutes were sequentially performed. Cured to obtain a laminated coating film.
得られた積層塗膜について、ウェーブスキャン(BYK−Gardner社製「Wave−Scan Dual」)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)〕を測定した。その結果を表2に示す。これらのウェーブスキャン値は、Waが小さいほど光沢が優れ、Wdが小さいほど肌がよいことを意味する。 About the obtained laminated coating film, wave scan values (Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc, Wc using a wave scan ("Wave-Scan Dual" manufactured by BYK-Gardner)), Wc (Wavelength 1 to 3 mm), Wd (wavelength 3 to 10 mm)] were measured. The results are shown in Table 2. These wave scan values mean that the smaller the Wa, the better the gloss, and the smaller the Wd, the better the skin.
(実施例2)
メラミン硬化型水性ベース塗料B−1の代わりに調製例2で得たメラミン硬化型水性ベース塗料B−2(基体樹脂のTg=−10℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−2の損失弾性率は0.45MPaであった。
(Example 2)
Except for using the melamine curable water-based base paint B-2 obtained in Preparation Example 2 (Tg of the base resin = -10 ° C.) instead of the melamine curable water-based base paint B-1, the same as in Example 1, A laminated coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-2 at the start of gelation of the thermosetting clear paint C was 0.45 MPa.
(実施例3)
メラミン硬化型水性ベース塗料B−1の代わりに調製例3で得たメラミン硬化型水性ベース塗料B−3(基体樹脂のTg=0℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−3の損失弾性率は0.72MPaであった。
(Example 3)
Lamination was carried out in the same manner as in Example 1 except that the melamine curable aqueous base paint B-3 obtained in Preparation Example 3 (Tg of the base resin = 0 ° C.) was used instead of the melamine curable aqueous base paint B-1. A coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base coating material B-3 at the start of gelation of the thermosetting clear coating material C was 0.72 MPa.
(実施例4)
メラミン硬化型水性ベース塗料B−1の代わりに調製例5で得たイソシアネート硬化型水性ベース塗料B−5(基体樹脂のTg=−20℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−5の損失弾性率は0.22MPaであった。
Example 4
In the same manner as in Example 1 except that the isocyanate curable aqueous base paint B-5 obtained in Preparation Example 5 (Tg of the base resin = −20 ° C.) was used instead of the melamine curable aqueous base paint B-1. A laminated coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-5 at the start of gelation of the thermosetting clear paint C was 0.22 MPa.
(実施例5)
メラミン硬化型水性ベース塗料B−1の代わりに調製例6で得たイソシアネート硬化型水性ベース塗料B−6(基体樹脂のTg=−10℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−6の損失弾性率は0.48MPaであった。
(Example 5)
In the same manner as in Example 1 except that the isocyanate curable aqueous base paint B-6 obtained in Preparation Example 6 (Tg of the base resin = −10 ° C.) was used instead of the melamine curable aqueous base paint B-1. A laminated coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-6 at the start of gelation of the thermosetting clear paint C was 0.48 MPa.
(実施例6)
メラミン硬化型水性ベース塗料B−1の代わりに調製例7で得たイソシアネート硬化型水性ベース塗料B−7(基体樹脂のTg=0℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−7の損失弾性率は0.78MPaであった。
(Example 6)
Lamination was carried out in the same manner as in Example 1 except that the isocyanate curable water-based base paint B-7 (Tg of the base resin = 0 ° C.) obtained in Preparation Example 7 was used instead of the melamine curable water-based base paint B-1. A coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-7 at the start of gelation of the thermosetting clear paint C was 0.78 MPa.
(比較例1)
メラミン硬化型水性ベース塗料B−1の代わりに調製例4で得たメラミン硬化型水性ベース塗料B−4(基体樹脂のTg=10℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−4の損失弾性率は1.12MPaであった。
(Comparative Example 1)
Lamination was carried out in the same manner as in Example 1 except that the melamine curable aqueous base paint B-4 obtained in Preparation Example 4 (Tg of substrate resin = 10 ° C.) was used instead of the melamine curable aqueous base paint B-1. A coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-4 at the start of gelation of the thermosetting clear paint C was 1.12 MPa.
(比較例2)
メラミン硬化型水性ベース塗料B−1の代わりに調製例8で得たイソシアネート硬化型水性ベース塗料B−8(基体樹脂のTg=10℃)を用いた以外は実施例1と同様にして、積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。なお、前記熱硬化型クリア塗料Cのゲル化開始時における前記水性ベース塗料B−8の損失弾性率は1.15MPaであった。
(Comparative Example 2)
Lamination was carried out in the same manner as in Example 1 except that the isocyanate curable aqueous base paint B-8 (Tg of the base resin = 10 ° C.) obtained in Preparation Example 8 was used instead of the melamine curable aqueous base paint B-1. A coating film was obtained. For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-8 at the start of gelation of the thermosetting clear paint C was 1.15 MPa.
表2に示した結果から明らかなように、本発明のように、下層および最上層の各層に熱硬化型塗料を使用し、そのうち、下層用塗料として、ガラス転移温度が5℃以下の基体樹脂を含有する熱硬化型塗料を使用したウェットオンウェットによる積層塗膜(実施例1〜6)のWa〜Wdはいずれも、ガラス転移温度が5℃を超える基体樹脂を含有する熱硬化型塗料を下層用塗料として使用した従来の積層塗膜(比較例1〜2)に比べて小さく、外観品質に優れたものであった。 As is apparent from the results shown in Table 2, as in the present invention, a thermosetting paint is used for each of the lower layer and the uppermost layer, and of these, a base resin having a glass transition temperature of 5 ° C. or lower as the lower layer paint Wa to Wd of laminated coating films (Examples 1 to 6) using wet-on-wet using a thermosetting paint containing a base material having a glass transition temperature exceeding 5 ° C. is a thermosetting paint containing a base resin. It was smaller than the conventional laminated coating film (Comparative Examples 1 and 2) used as the lower layer coating material, and was excellent in appearance quality.
また、実施例1〜3と比較例1の積層塗膜および実施例4〜6と比較例2の積層塗膜を比較すると、下層用熱硬化型塗料に含まれる基体樹脂のTgが低くなるにつれてWa〜Wdは小さくなり、外観品質がより向上することが確認された。特に、実施例1、2、4、5の積層塗膜においては、非常に優れた外観品質を有するものであることが確認された。 Further, when the laminated coating films of Examples 1 to 3 and Comparative Example 1 and the laminated coating films of Examples 4 to 6 and Comparative Example 2 are compared, the Tg of the base resin contained in the lower layer thermosetting paint is decreased. It was confirmed that Wa to Wd were reduced and the appearance quality was further improved. In particular, the laminated coating films of Examples 1, 2, 4, and 5 were confirmed to have very excellent appearance quality.
さらに、実施例1〜3の積層塗膜と実施例4〜6の積層塗膜を比較すると、イソシアネート硬化型水性ベース塗料を使用した場合(実施例4〜6)には、メラミン硬化型水性ベース塗料を使用した場合(実施例1〜3)に比べて、Wa〜Wd(特にWa)がより小さくなり、外観品質がさらに向上することが確認された。これは、イソシアネート硬化型水性ベース塗料の140℃での重量減少率がメラミン硬化型水性ベース塗料に比べて小さく、イソシアネート硬化型水性ベース塗料を使用したことによって加熱処理時の塗膜の収縮が抑制されたためであると推察される。 Furthermore, when the laminated coating film of Examples 1-3 and the laminated coating film of Examples 4-6 are compared, when an isocyanate curable aqueous base paint is used (Examples 4-6), a melamine curable aqueous base is used. It was confirmed that Wa to Wd (particularly Wa) became smaller and the appearance quality was further improved as compared with the case where the paint was used (Examples 1 to 3). This is because the weight reduction rate at 140 ° C of the isocyanate-curable aqueous base paint is smaller than that of the melamine-curable aqueous base paint, and the use of the isocyanate-curable aqueous base paint suppresses the shrinkage of the coating film during heat treatment. It is guessed that this is because
以上説明したように、本発明によれば、2種類の塗料をウェットオンウェットで積層して焼き付けて各層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質により優れた塗装体を得ることができる。 As described above, according to the present invention, it is possible to obtain a laminated coating film with less unevenness on the surface of the uppermost layer even when two types of paints are laminated by wet-on-wet and baked to cure each layer. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and glossiness, can be obtained.
したがって、本発明は、2種類の塗料をウェットオンウェットで積層して焼き付ける場合においても外観品質に優れた塗装体を得ることができる塗装方法として有用であり、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品の塗装方法として有用である。 Therefore, the present invention is useful as a coating method capable of obtaining a coated body having excellent appearance quality even when two types of paints are laminated and baked by wet-on-wet, and particularly for passenger cars, trucks, buses, motorcycles, etc. It is useful as a painting method for automobile bodies and parts thereof.
P…変曲点、td…最上層用塗料について相対貯蔵弾性率の測定を開始してからゲル化が開始するまでの時間。 P: Inflection point, t d : Time from the start of measurement of the relative storage elastic modulus to the start of gelation for the uppermost layer coating material.
Claims (4)
前記最上層を形成するための最上層用塗料としてその硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料を準備し、前記下層を形成するための下層用塗料としてガラス転移温度が5℃以下の基体樹脂を含有し且つ前記最上層用塗料のゲル化開始時における損失弾性率が1MPa以下である熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に加熱処理を施して前記下層用塗料および前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする塗装方法。 A coating method for forming a laminated coating film comprising a lower layer formed on a substrate and an uppermost layer formed on the lower layer,
Before Symbol weight loss percentage at the curing temperature as the uppermost layer-coating material for forming the uppermost layer is prepared 0.5 wt% or less of the thermosetting coating material, a glass transition as a lower layer-coating material for forming the lower layer Preparing a thermosetting paint containing a base resin having a temperature of 5 ° C. or less and having a loss elastic modulus of 1 MPa or less at the start of gelation of the uppermost layer paint ;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Heat-treating the uncured laminated coating to cure the lower layer coating and the uppermost layer coating;
The coating method characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008321238A JP5260255B2 (en) | 2008-12-17 | 2008-12-17 | Coating method and coated body obtained thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008321238A JP5260255B2 (en) | 2008-12-17 | 2008-12-17 | Coating method and coated body obtained thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010142712A JP2010142712A (en) | 2010-07-01 |
JP5260255B2 true JP5260255B2 (en) | 2013-08-14 |
Family
ID=42563700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008321238A Expired - Fee Related JP5260255B2 (en) | 2008-12-17 | 2008-12-17 | Coating method and coated body obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5260255B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6048840B2 (en) * | 2014-01-30 | 2016-12-21 | トヨタ自動車株式会社 | Coating method and coated body obtained thereby |
JP6021192B2 (en) | 2014-01-30 | 2016-11-09 | トヨタ自動車株式会社 | Coating method and coated body obtained thereby |
JP6420733B2 (en) * | 2015-07-22 | 2018-11-07 | 株式会社豊田中央研究所 | Painting method |
JP6499538B2 (en) * | 2015-07-22 | 2019-04-10 | 株式会社豊田中央研究所 | Painting method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008106134A (en) * | 2006-10-25 | 2008-05-08 | Nippon Paint Co Ltd | Cationic electrodeposition coating composition and its application |
GB2447741B (en) * | 2007-03-12 | 2009-06-17 | Kansai Paint Co Ltd | Method for making multilayer coating film |
-
2008
- 2008-12-17 JP JP2008321238A patent/JP5260255B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010142712A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101790428B (en) | Coating method and coated member obtained by same | |
JP5260255B2 (en) | Coating method and coated body obtained thereby | |
JP5513726B2 (en) | Coating method and coated body obtained thereby | |
JP5261061B2 (en) | Coating method and coated body obtained thereby | |
JP2009034667A (en) | Coating method, and coated object prepared by above method | |
EP3010984B1 (en) | Pigmented coating agent and method for producing a multilayer coating using the pigmented coating agent for producing a pane adhesion | |
JP2007283271A (en) | Method for forming multilayer coating film | |
JP5120952B2 (en) | Coating method and coated body obtained thereby | |
EP3099424B1 (en) | Coating method | |
JP4235391B2 (en) | Multilayer coating film forming method and aqueous intermediate coating composition | |
JP2017218527A (en) | Isocyanate curable coating composition and coating method using the same | |
CN105960290B (en) | Coating method and coated article obtained by said method | |
JP5280069B2 (en) | Coating method and coated body obtained thereby | |
JP2009034668A (en) | Coating method, and coated object prepared by the same | |
JP6499538B2 (en) | Painting method | |
JP5342457B2 (en) | Multi-layer coating formation method | |
EP3227350A1 (en) | Pigmented coating agent and coatings produced therefrom | |
JP2003226843A (en) | Water-based metallic coating material and method for forming double-layer coating film | |
JP2009155396A (en) | Clear coating composition, and method of forming multilayered coating film | |
JP6420733B2 (en) | Painting method | |
JPH11228904A (en) | High-solid top-coating paint film and painting method thereof | |
JP2002126625A (en) | Method for forming coating film and coating film | |
JP2004321901A (en) | Method for forming multilayer coating film and intermediate coat used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101105 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5260255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |