JP5120952B2 - Coating method and coated body obtained thereby - Google Patents

Coating method and coated body obtained thereby Download PDF

Info

Publication number
JP5120952B2
JP5120952B2 JP2008253922A JP2008253922A JP5120952B2 JP 5120952 B2 JP5120952 B2 JP 5120952B2 JP 2008253922 A JP2008253922 A JP 2008253922A JP 2008253922 A JP2008253922 A JP 2008253922A JP 5120952 B2 JP5120952 B2 JP 5120952B2
Authority
JP
Japan
Prior art keywords
coating
paint
uppermost layer
coating material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008253922A
Other languages
Japanese (ja)
Other versions
JP2010082534A (en
Inventor
寛爾 森
和幸 舘
一幸 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008253922A priority Critical patent/JP5120952B2/en
Publication of JP2010082534A publication Critical patent/JP2010082534A/en
Application granted granted Critical
Publication of JP5120952B2 publication Critical patent/JP5120952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、2種類以上の塗料をウェットオンウェットで積層して熱硬化処理を施す塗装方法およびそれにより得られる塗装体に関する。   The present invention relates to a coating method for laminating two or more kinds of paints wet-on-wet and subjecting them to thermosetting treatment, and a coated body obtained thereby.

2種類以上の塗料をウェットオンウェットで積層した後、熱硬化処理を施す塗装方法により積層塗膜を形成する場合において、従来から、すべての塗料を積層した後に積層塗膜を構成するすべての層が同じ加熱温度で硬化するように各層を形成する熱硬化型塗料を選択し、積層塗膜全体を硬化させる方法が用いられていた。しかしながら、従来の塗装方法では、下層を焼き付けてから最上層を形成する塗料を積層して焼き付けた場合に比べて、積層塗膜の肌および光沢が劣るという問題があった。このため、積層塗膜の肌および光沢を向上させるために種々の方法が提案されている。   When two or more types of paints are laminated by wet-on-wet and then a laminated coating film is formed by a coating method in which thermosetting treatment is performed, all layers that make up the laminated coating film after all of the coatings have been conventionally laminated A method of selecting a thermosetting coating material for forming each layer so as to cure at the same heating temperature and curing the entire laminated coating film has been used. However, the conventional coating method has a problem that the skin and gloss of the laminated coating film are inferior compared to the case where the lower layer is baked and then the coating for forming the uppermost layer is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.

例えば、特開2002−35679号公報(特許文献1)には、電着塗装された素材の上に、中塗り塗料、ベース塗料およびクリア塗料を順次塗装し、3層を一度に焼き付け硬化させる塗膜形成方法において、不揮発分90質量%における温度に対する最低粘度が中塗り塗料≧ベース塗料≧クリア塗料の条件を満たし、硬化開始温度が中塗り塗料≦ベース塗料≦クリア塗料の条件を満たすような各塗料を用いることにより、優れた仕上がり外観が得られることが開示されている。   For example, Japanese Patent Laid-Open No. 2002-35679 (Patent Document 1) discloses a coating in which an intermediate coating, a base coating, and a clear coating are sequentially applied on an electrodeposited material, and three layers are baked and cured at a time. In the film forming method, the minimum viscosity with respect to the temperature at a non-volatile content of 90% by mass satisfies the conditions of intermediate coating paint ≧ base coating ≧ clear coating, and the curing start temperature satisfies the conditions of intermediate coating ≦ base coating ≦ clear coating. It is disclosed that an excellent finished appearance can be obtained by using a paint.

また、特開2005−177680号公報(特許文献2)には、中塗り塗料と上塗りベース塗料と上塗りクリア塗料とをウェットオンウェットで塗布してこれらを同時に焼き付ける際に、硬化速度の違いを利用して中塗り塗膜を上塗り塗膜より先に硬化させる塗装方法が開示されており、この塗装方法により鮮映性を確実に確保することが可能となることも開示されている。   Japanese Patent Application Laid-Open No. 2005-177680 (Patent Document 2) uses a difference in curing speed when applying an intermediate coating, a top coating base coating, and a top clear coating in a wet-on-wet manner and baking them simultaneously. Thus, a coating method in which the intermediate coating film is cured prior to the top coating film is disclosed, and it is also disclosed that the sharpness can be reliably ensured by this coating method.

しかしながら、塗装工業製品として代表的な自動車の外観品質においては、例えば、ウェーブスキャンによるWa値(波長<0.3mm)として15以下が要求されているが、従来の塗装方法では、Wa値を20程度にすることは可能であったが、15以下にすることは困難であった。
特開2002−35679号公報 特開2005−177680号公報
However, in the appearance quality of a typical automobile as a coating industry product, for example, a Wa value (wavelength <0.3 mm) by wave scan is required to be 15 or less. However, in the conventional coating method, a Wa value of 20 or less is required. Although it was possible to make it to the extent, it was difficult to make it 15 or less.
JP 2002-35679 A JP 2005-177680 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、2種類以上の塗料をウェットオンウェットで積層して高耐久性の確保などのために少なくとも最上層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる塗装方法、およびそれにより得られる外観品質に優れた塗装体を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and even when at least the uppermost layer is cured to ensure high durability by laminating two or more types of paints by wet-on-wet, It is an object of the present invention to provide a coating method capable of obtaining a laminated coating film with less unevenness on the surface of the uppermost layer, and a coated body excellent in appearance quality obtained thereby.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、積層塗膜の最上層の下層のうちの少なくとも1層を、最上層用塗料のゲル化開始時における損失弾性率が所定値以下である下層用塗料を使用して形成することにより、前記最上層のゲル化開始時においても前記下層用塗料を使用して形成された下層の流動性を確保し、最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮による凹凸の形成を最小限に抑えることができ、2種類以上の塗料をウェットオンウェットで積層して熱硬化処理を施しても外観品質に優れた積層塗膜(たとえば、Wa値が15以下のもの)が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have determined that at least one of the lowermost layers of the laminated coating film has a predetermined loss elastic modulus at the start of gelation of the uppermost layer coating material. By forming using a lower layer coating that is less than or equal to the value, the fluidity of the lower layer formed using the lower layer coating is ensured even at the start of gelation of the uppermost layer, and the uppermost layer is cured. It is possible to minimize the formation of irregularities due to shrinkage of the laminated coating after the fluidity is significantly reduced, and the appearance quality is improved even when two or more types of paints are laminated on a wet-on-wet and subjected to thermosetting treatment. The inventors have found that an excellent laminated coating film (for example, having a Wa value of 15 or less) can be obtained, and have completed the present invention.

すなわち、本発明の塗装方法は、
基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として、前記最上層用塗料のゲル化開始時における損失弾性率が1MPa以下である塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱硬化処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする方法である。
That is, the coating method of the present invention is:
A coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A thermosetting paint is prepared as the uppermost layer paint for forming the uppermost layer, and the gelation of the uppermost layer paint is started as at least one of the lower layer paints for forming the lower layer. Preparing a paint having a loss modulus of elasticity of 1 MPa or less at the time;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Subjecting the uncured laminated coating film to a thermosetting treatment to cure at least the uppermost layer coating;
It is the method characterized by including.

前記最上層用塗料としては、その硬化温度における重量減少率が0.5質量%以下の塗料が好ましい。また、本発明の塗装方法において、前記下層用塗料のうちの少なくとも1種として、前記最上層用塗料の硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料を用いることが好ましい。   The uppermost layer-coating material is preferably a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature. In the coating method of the present invention, it is preferable to use a thermosetting paint having a weight reduction rate of 0.5% by mass or less at the curing temperature of the uppermost layer paint as at least one of the lower layer paints. .

本発明の塗装体は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、本発明の塗装方法により得られたものであることを特徴とするものである。   The coated body of the present invention is a coated body having a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer, and obtained by the coating method of the present invention. It is what was characterized.

なお、本発明の塗装方法によって2種類以上の塗料をウェットオンウェットで積層して熱硬化処理を施した場合でも積層塗膜の表面の凹凸が少なくなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、最上層を含めすべての層で熱硬化型塗料が用いられ、各層を同じ加熱温度で硬化させたり、下層から順に硬化を開始するように設計されているため、最上層を形成する熱硬化型塗料を加熱処理により硬化させる際には、その下層においても熱硬化型塗料の硬化が進行して既に流動性を失った状態となっている。積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により生成した揮発性生成物が、残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は各層が十分に流動性を有している間はその流動などにより緩和されるが、最上層の流動性が硬化により著しく低下した場合には下層も硬化して流動性をほぼ失っているため、凹凸は緩和されず、基材表面や各層の界面の凹凸が最上層表面に転写され、積層塗膜の肌や光沢が悪化するものと推察される。   Even when two or more kinds of paints are laminated by wet-on-wet by the coating method of the present invention and the thermosetting treatment is performed, the reason why the unevenness of the surface of the laminated coating film is not necessarily clear is not certain. Guess as follows. That is, in the conventional multilayer coating formed by wet-on-wet, thermosetting paint is used in all layers including the uppermost layer, and each layer is cured at the same heating temperature, or curing is started in order from the lower layer. Because it is designed, when the thermosetting paint forming the uppermost layer is cured by heat treatment, the thermosetting paint is already cured in the lower layer, and the fluidity has already been lost. . In each layer of the multilayer coating film, the thermosetting paint is cured by an addition reaction after the condensation reaction or deblocking reaction of the curing agent, so that the volatile products generated by this condensation reaction or deblocking reaction together with the remaining solvent It volatilizes, the laminated coating film shrinks, and irregularities are formed on the coating film surface. The unevenness on the surface of the coating film is alleviated by the flow while each layer has sufficient fluidity, but if the fluidity of the top layer is significantly reduced by curing, the lower layer also cures and becomes fluid Therefore, it is presumed that the unevenness on the surface of the substrate and the interface of each layer is transferred to the surface of the uppermost layer, and the skin and gloss of the laminated coating film deteriorate.

一方、本発明の塗装方法では、下層のうちの少なくとも1層を、最上層用塗料のゲル化開始時における損失弾性率が所定値以下である下層用塗料を使用して形成するため、最上層が硬化する際にも前記下層用塗料を使用して形成された下層においては流動性が確保され、積層塗膜が収縮して塗膜表面に凹凸が形成した場合でもこの下層が流動することにより凹凸が緩和され、塗膜表面における凹凸の顕在化が抑制されるものと推察される。   On the other hand, in the coating method of the present invention, at least one of the lower layers is formed by using the lower layer paint whose loss elastic modulus at the start of gelation of the upper layer paint is equal to or less than a predetermined value. In the lower layer formed using the lower layer paint even when the film is cured, fluidity is ensured, and even when the laminated coating film contracts and irregularities are formed on the coating film surface, the lower layer flows. It is assumed that the unevenness is relaxed, and the manifestation of the unevenness on the surface of the coating film is suppressed.

本発明によれば、2種類以上の塗料をウェットオンウェットで積層して高耐久性の確保などのために少なくとも最上層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   According to the present invention, even if at least the uppermost layer is cured by laminating two or more kinds of paints on a wet-on-wet basis to ensure high durability, etc., a laminated coating film with less irregularities on the surface of the uppermost layer is obtained. Can do. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の塗装方法は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として、前記最上層用塗料のゲル化開始時における損失弾性率が1MPa以下である塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱硬化処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする方法である。
The coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A thermosetting paint is prepared as the uppermost layer paint for forming the uppermost layer, and the gelation of the uppermost layer paint is started as at least one of the lower layer paints for forming the lower layer. Preparing a paint having a loss modulus of elasticity of 1 MPa or less at the time;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Subjecting the uncured laminated coating film to a thermosetting treatment to cure at least the uppermost layer coating;
It is the method characterized by including.

本発明の塗装方法では、基材上に1種類以上の下層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の下層を形成する。次いで、この未硬化の下層の上に最上層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の最上層を形成する。その後、得られた未硬化積層塗膜に熱硬化処理を施して少なくとも前記最上層用塗料を硬化させる。   In the coating method of the present invention, one or more types of lower layer coating materials are applied on a substrate, and a solvent or the like is evaporated by drying or the like as necessary to form an uncured lower layer. Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent or the like is evaporated by drying or the like to form an uncured uppermost layer. Thereafter, the obtained uncured laminated coating film is subjected to a heat curing treatment to cure at least the uppermost layer-coating material.

基材としては、特に限定されず、例えば、金属(鉄、銅、アルミニウム、錫、亜鉛およびこれらの金属の合金など)、鋼板、プラスチック、発泡体、紙、木、布、ガラスなどが挙げられる。中でも、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面は、予め電着塗装などの処理が施されていてもよい。   The substrate is not particularly limited, and examples thereof include metals (iron, copper, aluminum, tin, zinc and alloys of these metals), steel plates, plastics, foams, paper, wood, cloth, glass, and the like. . Especially, this invention is applied suitably for the steel plate for motor vehicles with the required characteristic with respect to external appearance quality. These substrate surfaces may be subjected to a treatment such as electrodeposition coating in advance.

本発明の塗装方法においては、最上層用塗料としては熱硬化型塗料を使用する。このような最上層用熱硬化型塗料としては、例えば、塗膜形成可能な熱硬化性樹脂および硬化剤(例えば、前記熱硬化性樹脂の官能基と反応可能な官能基を2個以上有する化合物や樹脂)を含むものであればよく、通常の焼付塗装の最上層用塗料として使用される熱硬化型塗料(例えば、特開2004−275966号公報に記載のクリア塗料など)が挙げられる。その形態は溶剤型、水性、粉体のいずれでもよい。   In the coating method of the present invention, a thermosetting paint is used as the top layer paint. As such a thermosetting paint for the uppermost layer, for example, a thermosetting resin capable of forming a coating film and a curing agent (for example, a compound having two or more functional groups capable of reacting with the functional group of the thermosetting resin) Or a resin), and examples thereof include thermosetting paints (for example, clear paints described in JP-A No. 2004-275966) used as the uppermost layer paint for ordinary baking coating. The form may be any of solvent type, aqueous type and powder.

最上層用熱硬化型塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。最上層用熱硬化型塗料に含まれる硬化剤としてはアミン化合物、アミノ樹脂、イソシアネート化合物、およびイソシアネート樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film included in the thermosetting paint for the uppermost layer include acrylic resins, polyester resins, alkyd resins, epoxy resins, and urethane resins, but are not limited thereto. . Examples of the curing agent contained in the uppermost layer thermosetting paint include, but are not limited to, amine compounds, amino resins, isocyanate compounds, and isocyanate resins. These resins and curing agents may be used alone or in combination of two or more.

本発明に用いられる最上層用塗料の硬化温度Tは特に限定されないが、通常40℃以上200℃以下であり、好ましくは60℃以上160℃以下である。また、前記最上層用塗料は硬化反応において実質的に揮発性生成物を生成しない熱硬化型塗料であることが好ましい。このような塗料としてはその硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい塗料を最上層用塗料として使用すると熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にすることができる傾向にある。このような観点から揮発性生成物を生成しない熱硬化型塗料(重量減少率が0質量%)が最も好ましい。 The curing temperature T T of the uppermost layer-coating material for use in the present invention is not particularly limited but is usually 40 ° C. or higher 200 ° C. or less, preferably 160 ° C. 60 ° C. inclusive. The uppermost layer-coating material is preferably a thermosetting coating material that does not substantially generate a volatile product in the curing reaction. Such a coating material preferably has a weight reduction rate of 0.5% by mass or less at the curing temperature T T , more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. . When a paint having such a small weight reduction rate is used as the paint for the uppermost layer, the shrinkage of the coating film tends to be minimized after the uppermost layer is cured by the heat curing treatment and the fluidity is remarkably lowered. . From such a point of view, a thermosetting paint (a weight reduction rate of 0% by mass) that does not generate a volatile product is most preferable.

なお、本発明において、「塗料の硬化温度」とは、対象とする塗料を基材上に塗装して加熱処理を施し、塗膜を硬化せしめて基材上に定着させるために硬化時間などの硬化条件との関係で最も効率よく硬化できる温度をいい、一般的には塗料毎に設定(設計)されている焼付温度をいう。本発明では、この硬化温度(焼付温度)としてカタログ値を採用することができる。また、「塗料の重量減少率」は、以下の方法により測定される値である。すなわち、対象とする塗料を加熱処理後の膜厚が積層塗膜での目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度Tよりも40℃低い温度[T−40℃]および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度Tで30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出する。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。 In the present invention, the “coating temperature of the paint” refers to a curing time or the like for coating the target paint on the base material and applying a heat treatment to harden the coating film and fix it on the base material. It refers to the temperature at which curing can be performed most efficiently in relation to the curing conditions, and generally refers to the baking temperature set (designed) for each paint. In the present invention, a catalog value can be adopted as the curing temperature (baking temperature). The “weight reduction rate of the paint” is a value measured by the following method. That was coated on an aluminum foil as a target film thickness of a film thickness of the multilayer coating film after the heat treatment the coating of interest, the curing temperature T T of the obtained aluminum foil sample the uppermost layer-coating material Gas chromatograph / mass spectrometer equipped with a thermal desorption introduction device (for example, Thermal Desorption System manufactured by GERSTEL) after drying for 90 minutes under a vacuum condition of 40 ° C. lower temperature [T T −40 ° C.] and 10 −2 Torr or less. for example, Agilent Corp. 6890GC / 5975MSD) was heated for 30 minutes at a curing temperature T T of the uppermost layer-coating material by the volatile amount of product using a (Rc (unit: g)) and to quantify the residual solvent amount, equation (1 ) To calculate the weight loss rate. This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.

重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値(カタログ値など)を採用できる。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the value (catalog value etc.) of the recipe of a coating material can be employ | adopted for the mass of a pigment.

本発明において最上層用塗料の熱硬化性樹脂と硬化剤との好ましい組み合わせとしては、水酸基含有アクリル樹脂とイソシアネート化合物および/またはイソシアネート樹脂との組み合わせ、エポキシ基含有アクリル樹脂と多価カルボン酸化合物および/またはカルボキシル基含有樹脂との組み合わせなどが挙げられる。このような組み合わせからなる熱硬化型塗料を用いると加熱処理において揮発性生成物が生成しにくくなる傾向にある。   In the present invention, as a preferable combination of the thermosetting resin and the curing agent of the uppermost layer coating material, a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin, an epoxy group-containing acrylic resin and a polyvalent carboxylic acid compound, and And / or a combination with a carboxyl group-containing resin. When a thermosetting paint composed of such a combination is used, it tends to be difficult to generate a volatile product in the heat treatment.

また、本発明に用いられる最上層用塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   The uppermost layer coating material used in the present invention may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明の塗装方法においては、基材上に少なくとも1層の下層を形成するが、前記下層のうちの少なくとも1層は、最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)である塗料(以下、「低損失弾性率塗料」という)を用いて形成される。具体的には、下層が1層の場合にはこの下層を前記低損失弾性率塗料を用いて形成し、下層が2層以上の場合にはそれらのうちの少なくとも1層を前記低損失弾性率塗料を用いて形成する。下層が2層以上の場合、積層塗膜表面の凹凸をより緩和できる点で最上層に近い下層が前記低損失弾性率塗料を用いて形成されることが好ましい。前記低損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)の塗料であれば、加熱処理によって架橋構造を形成する熱硬化型のものでも、硬化反応を起こさず、架橋構造を形成しない非硬化型のものでもよいが、積層塗膜の強度を確保できる点で熱硬化型塗料を使用することが好ましく、他方、積層塗膜の収縮を最小限にできる点では非硬化型塗料を使用することが好ましく、これらは用途などに応じて適宜使い分けることができる。   In the coating method of the present invention, at least one lower layer is formed on the substrate. At least one of the lower layers has a loss elastic modulus of 1 MPa or less (preferably at the start of gelation of the uppermost layer paint) Is 0.7 MPa or less, more preferably 0.5 MPa or less) (hereinafter referred to as “low-loss elastic modulus paint”). Specifically, when the lower layer is one layer, the lower layer is formed using the low-loss elastic modulus paint, and when the lower layer is two or more layers, at least one of them is formed as the low-loss elastic modulus. Form with paint. When there are two or more lower layers, it is preferable that the lower layer close to the uppermost layer is formed using the low-loss elastic modulus coating material in that the unevenness on the surface of the laminated coating film can be further relaxed. The low-loss elastic modulus paint is a paint having a loss elastic modulus of 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less) at the start of gelation of the uppermost layer coating material. A thermosetting type that forms a cross-linked structure or a non-cured type that does not cause a curing reaction and does not form a cross-linked structure may be used. On the other hand, it is preferable to use a non-curable coating material in terms of minimizing the shrinkage of the laminated coating film, and these can be appropriately used depending on the application.

本発明において、「最上層用塗料のゲル化開始時における損失弾性率」とは、以下の方法により測定される損失弾性率で定義されるものである。すなわち、先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に加熱処理後の膜厚が35±5μmとなるように塗布する。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込む。   In the present invention, the “loss elastic modulus at the start of gelation of the uppermost layer coating material” is defined by the loss elastic modulus measured by the following method. That is, first, the uppermost layer coating material is applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after the heat treatment is 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The uppermost layer coating material is applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定する。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施する。測定時の温度プログラムは、室温(25℃)から硬化処理温度T(目的とする積層塗膜を焼き付ける温度であり、一般的には、最上層用塗料の硬化温度を採用する)まで昇温速度20±4℃/分で昇温し、その後、前記硬化処理温度Tを維持するように設定する。測定は、以下の変曲点以降15分以上経過するまで実施する。 In this way, the relative storage elastic modulus (E r ′) of the coating film is measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material is formed. The measurement is carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with an annular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° is attached. The temperature program at the time of measurement is raised from room temperature (25 ° C.) to the curing treatment temperature T 1 (the temperature at which the desired laminated coating film is baked and generally the curing temperature of the paint for the uppermost layer is adopted). The temperature is increased at a rate of 20 ± 4 ° C./min, and then the curing treatment temperature T 1 is maintained. The measurement is carried out until 15 minutes or more have passed since the following inflection point.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットすると、図1に示すように、時間の経過に従って下に凸の曲線から上に凸の曲線に変化する(以下、この変化する時点を「変曲点」という)という結果が得られる。この変曲点以降15分間の部分について下記式(2):
’=A〔1−exp{k(t−t)}〕 (2)
(式(2)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片tを求める。このtは、測定を開始してから最上層用塗料がゲル化を開始するまでの時間を表す。
When the measured value of the relative storage elastic modulus (E r ′) obtained is plotted with respect to time, as shown in FIG. This change time is called “inflection point”. For the portion of 15 minutes after this inflection point, the following formula (2):
E r ′ = A [1-exp {k (t−t d )}] (2)
(In formula (2), A and k are constants, and t represents time.)
And the time axis intercept t d is obtained by a nonlinear least square method. The t d represents the time from the start of measurement to the uppermost layer-coating material starts to gel.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして加熱処理後の膜厚が所定の値となるように塗布膜厚を調節して塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を測定する。測定は、目的とする積層塗膜の熱硬化処理時間(焼付時間)tまで実施し、前記時間tおよび前記熱硬化処理時間tにおける下層用塗料からなる塗膜の相対損失弾性率(それぞれ、E”(t)およびE”(t))を求める。 Next, for the lower layer paint, the coating film is formed by adjusting the coating film thickness so that the film thickness after the heat treatment becomes a predetermined value as in the case of the uppermost layer paint, The relative loss elastic modulus (E r ″) is measured under the same conditions as in the case of the uppermost layer coating material. The measurement is carried out until the target heat-treatment time (baking time) t 1 of the laminated coating film, and the time t d and the relative loss elastic modulus (E r ″ (t d ) and E r ″ (t 1 )) of the coating film made of the lower layer coating material at the thermosetting time t 1 are obtained.

次に、対象とする下層用塗料を、ガラス板またはポリプロピレン板などの加熱処理後の塗膜が剥離可能な表面が平滑な基材に、加熱処理後の膜厚が所定の値となるように塗布膜厚を調節しながら塗布し、必要に応じて所定の予備乾燥処理を施し、目的とする積層塗膜の熱硬化処理条件で塗膜に熱硬化処理を施す。その後、得られた硬化膜を基材から剥離する。この硬化膜を所定の形状に切断し、動的粘弾性測定装置(例えば、アイティー計測制御(株)製DVA−220型)を使用して、引張りモード、周波数1Hz、昇温速度5℃/分の条件で硬化膜の損失弾性率(E”)を測定し、前記硬化処理温度Tにおける下層用塗料からなる硬化膜の損失弾性率(E”(T))を求める。 Next, the target lower layer coating material is applied to a base material having a smooth surface from which a coating film after heat treatment such as a glass plate or a polypropylene plate can be peeled, and the film thickness after heat treatment becomes a predetermined value. The coating is applied while adjusting the coating thickness, and a predetermined preliminary drying treatment is performed as necessary, and the coating film is subjected to a thermosetting treatment under the target thermosetting condition of the laminated coating film. Then, the obtained cured film is peeled from the substrate. This cured film is cut into a predetermined shape, and using a dynamic viscoelasticity measuring apparatus (for example, DVA-220 model manufactured by IT Measurement Control Co., Ltd.), a tensile mode, a frequency of 1 Hz, a temperature rising rate of 5 ° C. / The loss elastic modulus (E ″) of the cured film is measured under the conditions of minutes, and the loss elastic modulus (E ″ (T 1 )) of the cured film made of the lower layer coating material at the curing treatment temperature T 1 is obtained.

前記熱硬化処理時間tにおける下層用塗料からなる塗膜の相対損失弾性率E”(t)は下層用塗料からなる硬化膜の相対損失弾性率とみなすことができることから、上記測定によって得られた下層用塗料からなる塗膜の相対損失弾性率E”(t)およびE”(t)ならびに下層用塗料からなる硬化膜の損失弾性率E”(T)から、下記式(3):
E”(t)=E”(t)×E”(T)/E”(t) (3)
により前記時間tにおける下層用塗料からなる塗膜の損失弾性率(E”(t))を求め、本発明においては、これを「最上層用塗料のゲル化開始時における下層用塗料の損失弾性率」とする。
The relative loss elastic modulus E r ″ (t 1 ) of the coating film made of the lower layer coating material at the thermosetting treatment time t 1 can be regarded as the relative loss elastic modulus of the cured film made of the lower layer coating material. From the relative loss elastic moduli E r ″ (t d ) and E r ″ (t 1 ) of the coating film made of the obtained lower layer coating material and the loss elastic modulus E ″ (T 1 ) of the cured film made of the lower layer coating material, Following formula (3):
E ″ (t d ) = E r ″ (t d ) × E ″ (T 1 ) / E r ″ (t 1 ) (3)
The loss elastic modulus (E ″ (t d )) of the coating film made of the lower layer paint at the time t d is obtained by the above-described method. In the present invention, this is expressed as “the lower layer paint at the start of gelation of the uppermost layer paint”. Loss elastic modulus ".

本発明の塗装方法においては、前記下層用塗料のうちの少なくとも1種が、使用する最上層用塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものであることが好ましく、0.3質量%以下のものであることがより好ましく、0.1質量%以下のものであることが特に好ましい。このような重量減少率が小さい下層用塗料を少なくとも1種使用すると熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から最上層を熱硬化させる際に揮発性生成物を生成しない下層用塗料(重量減少率が0質量%)が最も好ましい。 In the coating method of the present invention, at least one of the lower layer paint, the weight reduction rate in curing temperature T T of the uppermost layer-coating material is preferably at most 0.5 mass% for use, It is more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. When at least one kind of lower layer coating material having such a small weight reduction rate is used, the shrinkage of the coating film tends to be minimized after the uppermost layer is cured by heat curing and the fluidity is remarkably lowered. From this point of view, the lower layer paint (weight reduction rate is 0% by mass) that does not generate a volatile product when the uppermost layer is thermally cured is most preferable.

本発明に用いられる熱硬化型の低損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)のものであれば、通常の焼付塗装に使用される熱硬化型塗料を好適に使用することが可能であり、例えば、塗膜形成可能な熱硬化性樹脂および硬化剤(例えば、前記熱硬化性樹脂の官能基と反応可能な官能基を2個以上有する化合物や樹脂)を含み且つ最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)のものが挙げられる。前記熱硬化型低損失弾性率塗料の形態は、溶剤型、水性、粉体のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性または粉体が好ましい。   The thermosetting low-loss elastic modulus paint used in the present invention has a loss elastic modulus of 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less) at the start of gelation of the uppermost layer coating material. If it is a thing, it is possible to use suitably the thermosetting coating material used for normal baking coating, for example, the thermosetting resin and hardening agent (for example, the said thermosetting resin which can form a coating film) The loss elastic modulus at the start of gelation of the uppermost layer-coating material is 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.7 MPa or less). 5 MPa or less). The form of the thermosetting low-loss elastic modulus paint may be any of solvent type, water-based, and powder, but is preferably water-based or powder from the viewpoint that the discharge amount of volatile organic compounds can be reduced.

また、熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を低減できる点で、最上層を硬化させる際に実質的に揮発性生成物を生成しない熱硬化型低損失弾性率塗料を用いることが好ましい。このような塗料としては、使用する最上層用塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい熱硬化型低損失弾性率塗料を下層用塗料として使用すると熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から最上層を硬化させる際に揮発性生成物を生成しない熱硬化型低損失弾性率塗料(重量減少率が0質量%)が最も好ましい。 Also, the thermosetting type that does not substantially generate volatile products when curing the top layer in that it can reduce the shrinkage of the coating after the top layer is cured and the fluidity is significantly reduced by the thermosetting process. It is preferable to use a low-loss elastic modulus paint. As such a coating material, the weight reduction rate at the curing temperature T T of the coating material for the uppermost layer to be used is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.1% by mass. % Or less is particularly preferred. When such a thermosetting low-loss elastic modulus coating material with a small weight reduction rate is used as the coating material for the lower layer, the shrinkage of the coating film can be minimized after the uppermost layer is cured by the thermosetting treatment and the fluidity is remarkably lowered. There is a tendency. From such a viewpoint, a thermosetting low-loss elastic modulus paint (weight reduction rate of 0% by mass) that does not generate a volatile product when the uppermost layer is cured is most preferable.

このような熱硬化型低損失弾性率塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。また、前記熱硬化型低損失弾性率塗料に含まれる硬化剤としては、イソシアネート化合物、イソシアネート樹脂、アミン化合物、アミノ樹脂などが挙げられる。これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。本発明においては、前記熱硬化性樹脂および前記硬化剤の組成や配合比を調整したり、添加剤を配合するなどして、例えばガラス転移温度や架橋密度などを低くすることによって、熱硬化型低損失弾性率塗料についての最上層用塗料のゲル化開始時における損失弾性率を1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)にすることができる。   Examples of the thermosetting resin capable of forming a coating film contained in such a thermosetting low-loss elastic modulus coating material include acrylic resins, polyester resins, alkyd resins, epoxy resins, and urethane resins. Moreover, as a hardening | curing agent contained in the said thermosetting type low loss elastic modulus coating material, an isocyanate compound, an isocyanate resin, an amine compound, an amino resin, etc. are mentioned. Each of these resins and curing agents may be used alone or in combination of two or more. In the present invention, by adjusting the composition and blending ratio of the thermosetting resin and the curing agent, or by blending additives, for example, by lowering the glass transition temperature, the crosslinking density, etc., the thermosetting type The loss elastic modulus at the start of gelation of the uppermost layer-coating material for the low-loss elastic modulus coating material can be 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less).

一方、本発明に用いられる非硬化型の低損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)のものであれば最上層を硬化させる際に実質的に硬化反応を起こさない非硬化型塗料を使用することが可能であり、例えば、塗膜形成可能な樹脂を含み硬化剤を含まず且つ最上層用塗料のゲル化開始時における損失弾性率が1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)のものが挙げられる。前記非硬化型低損失弾性率塗料の形態は、溶剤型、水性、粉体のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性または粉体が好ましい。   On the other hand, the non-curing low-loss elastic modulus coating material used in the present invention has a loss elastic modulus of 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less) at the start of gelation of the uppermost layer coating material. ), It is possible to use a non-curing coating material that does not substantially cause a curing reaction when the uppermost layer is cured, for example, it contains a resin capable of forming a coating film and does not contain a curing agent, and Examples include those having a loss elastic modulus of 1 MPa or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less) at the start of gelation of the uppermost layer coating material. The form of the non-curable low-loss elastic modulus paint may be any of solvent type, water-based, and powder, but is preferably water-based or powder from the viewpoint that the discharge amount of volatile organic compounds can be reduced.

また、熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を低減できる点で、最上層を硬化させる際に実質的に揮発性生成物を生成しない非硬化型低損失弾性率塗料を用いることが好ましい。このような塗料としては、使用する最上層用塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい非硬化型低損失弾性率塗料を用いると熱硬化処理により最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮を小さくできる傾向にある。また、このような観点から最上層を硬化させる際に揮発性生成物を生成しない非硬化型低損失弾性率塗料(重量減少率が0質量%)が最も好ましい。 In addition, it is possible to reduce the shrinkage of the coating after the uppermost layer is cured and the fluidity is remarkably lowered by the heat curing treatment. It is preferable to use a low-loss elastic modulus paint. As such a coating material, the weight reduction rate at the curing temperature T T of the coating material for the uppermost layer to be used is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.1% by mass. % Or less is particularly preferred. When such a non-curing low-loss elastic modulus coating material having a small weight reduction rate is used, the shrinkage of the laminated coating film after the uppermost layer is cured by heat curing treatment and the fluidity is remarkably lowered tends to be reduced. From such a viewpoint, a non-curing low-loss elastic modulus paint (weight reduction rate of 0% by mass) that does not generate a volatile product when the uppermost layer is cured is most preferable.

このような非硬化型低損失弾性率塗料に含まれる塗膜形成可能な樹脂としては、それ単独では硬化反応を起こさない樹脂が好ましく、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料などから硬化剤を除いた樹脂成分、具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂の中から硬化反応を起こさないものを2種以上選択して併用してもよい。本発明においては、前記塗膜形成可能な樹脂のガラス転移温度や分子量などを調整することによって、非硬化型低損失弾性率塗料についての最上層用塗料のゲル化開始時における損失弾性率を1MPa以下(好ましくは0.7MPa以下、さらに好ましくは0.5MPa以下)にすることができる。   As a resin capable of forming a coating film contained in such a non-curable low-loss elastic modulus paint, a resin that does not cause a curing reaction by itself is preferable. For example, an intermediate coating paint described in JP-A-2004-275966 And resin components from which the curing agent is removed from the base paint and the like, specifically, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, a urethane resin, and the like, but are not limited thereto. Two or more of these resins that do not cause a curing reaction may be selected and used in combination. In the present invention, by adjusting the glass transition temperature, molecular weight, etc. of the resin capable of forming a coating film, the loss elastic modulus at the start of gelation of the uppermost layer coating material for the non-curing low loss elastic modulus coating material is 1 MPa. Or less (preferably 0.7 MPa or less, more preferably 0.5 MPa or less).

本発明においては、熱硬化型低損失弾性率塗料と非硬化型低損失弾性率塗料のうち、積層塗膜の強度を確保できる点で熱硬化型低損失弾性率塗料を使用することが好ましく、他方、積層塗膜の収縮を最小限にできる点では非硬化型低損失弾性率塗料を使用することが好ましく、これらは用途などに応じて適宜使い分けることができる。   In the present invention, it is preferable to use a thermosetting low-loss elastic modulus paint in terms of ensuring the strength of the laminated coating film among the thermosetting low-loss elastic modulus paint and the non-curable low-loss elastic modulus paint, On the other hand, it is preferable to use a non-curing low-loss elastic modulus paint in terms of minimizing the shrinkage of the laminated coating film, and these can be appropriately used depending on the application.

また、本発明においては、下層が2層以上の場合、それらのうちの少なくとも1層が前記低損失弾性率塗料を用いて形成された層であれば、残りの層は、最上層用塗料のゲル化開始時における損失弾性率が1MPaを超える塗料(以下、「高損失弾性率塗料」という)を用いて形成してもよい。このような高損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPaを超えるものであれば、加熱処理によって架橋構造を形成する熱硬化型のものでも、硬化反応を起こさず、架橋構造を形成しない非硬化型のものでもよいが、積層塗膜の強度を確保できる点で熱硬化型塗料を使用することが好ましく、他方、積層塗膜の収縮を最小限にできる点では非硬化型塗料を使用することが好ましく、これらは用途などに応じて適宜使い分けることができる。   In the present invention, when the lower layer has two or more layers, if at least one of them is a layer formed using the low-loss elastic modulus coating material, the remaining layers are the top layer coating material. You may form using the coating material (henceforth "high loss elastic modulus coating material") whose loss elastic modulus at the time of a gelation start exceeds 1 Mpa. As such a high loss elastic modulus coating material, if the loss elastic modulus at the start of gelation of the uppermost layer coating material exceeds 1 MPa, even a thermosetting type that forms a cross-linked structure by heat treatment can be cured. However, it is preferable to use a thermosetting paint from the viewpoint of ensuring the strength of the laminated coating film, while minimizing the shrinkage of the laminated coating film. It is preferable to use a non-curable paint from the viewpoint of being able to be used, and these can be properly used depending on the application.

本発明に用いられる熱硬化型の高損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPaを超えるものであれば通常の焼付塗装に使用される熱硬化型塗料を使用することが可能であり、例えば、塗膜形成可能な熱硬化性樹脂および硬化剤(例えば、前記熱硬化性樹脂の官能基と反応可能な官能基を2個以上有する化合物や樹脂)を含み且つ最上層用塗料のゲル化開始時における損失弾性率が1MPaを超えるものが挙げられる。前記熱硬化型高損失弾性率塗料の形態は、溶剤型、水性、粉体のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性または粉体が好ましい。   As the thermosetting type high loss elastic modulus coating material used in the present invention, the thermosetting coating material used for ordinary baking coating is applicable as long as the loss elastic modulus at the start of gelation of the uppermost layer coating material exceeds 1 MPa. For example, a thermosetting resin capable of forming a coating film and a curing agent (for example, a compound or resin having two or more functional groups capable of reacting with the functional group of the thermosetting resin). And the loss elastic modulus at the start of gelation of the coating for the uppermost layer exceeds 1 MPa. The form of the thermosetting high-loss elastic modulus coating material may be any of solvent type, aqueous type, and powder, but is preferably aqueous or powder from the viewpoint that the discharge amount of volatile organic compounds can be reduced.

また、熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を低減できる点で、最上層を硬化させる際に実質的に揮発性生成物を生成しない熱硬化型高損失弾性率塗料を用いることが好ましい。このような塗料としては、使用する最上層用塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい熱硬化型高損失弾性率塗料を下層用塗料として使用すると熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から最上層を硬化させる際に揮発性生成物を生成しない熱硬化型高損失弾性率塗料(重量減少率が0質量%)が最も好ましい。 Also, the thermosetting type that does not substantially generate volatile products when curing the top layer in that it can reduce the shrinkage of the coating after the top layer is cured and the fluidity is significantly reduced by the thermosetting process. It is preferable to use a high-loss elastic modulus paint. As such a coating material, the weight reduction rate at the curing temperature T T of the coating material for the uppermost layer to be used is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.1% by mass. % Or less is particularly preferred. When such a thermosetting high-loss elastic modulus coating material with a small weight loss rate is used as the coating for the lower layer, the shrinkage of the coating film can be minimized after the uppermost layer is cured by the thermosetting process and the fluidity is remarkably lowered. There is a tendency. From such a viewpoint, a thermosetting high-loss elastic modulus paint (weight reduction rate of 0% by mass) that does not generate a volatile product when the uppermost layer is cured is most preferable.

このような熱硬化型高損失弾性率塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。また、前記熱硬化型高損失弾性率塗料に含まれる硬化剤としては、イソシアネート化合物、イソシアネート樹脂、アミン化合物、アミノ樹脂などが挙げられる。これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。本発明においては、前記熱硬化性樹脂および前記硬化剤の組成や配合比を調整して、例えばガラス転移温度や架橋密度などを高くすることによって、熱硬化型高損失弾性率塗料についての最上層用塗料のゲル化開始時における損失弾性率を1MPaを超えるものとすることができる。   Examples of the thermosetting resin capable of forming a coating film contained in such a thermosetting high-loss elastic modulus coating material include acrylic resins, polyester resins, alkyd resins, epoxy resins, and urethane resins. Moreover, as a hardening | curing agent contained in the said thermosetting type high loss elastic modulus coating material, an isocyanate compound, an isocyanate resin, an amine compound, an amino resin, etc. are mentioned. Each of these resins and curing agents may be used alone or in combination of two or more. In the present invention, by adjusting the composition and blending ratio of the thermosetting resin and the curing agent, for example, by increasing the glass transition temperature, the crosslinking density, etc., the uppermost layer for the thermosetting high-loss elastic modulus paint The loss elastic modulus at the start of gelation of the coating material can be over 1 MPa.

一方、本発明に用いられる非硬化型の高損失弾性率塗料としては、最上層用塗料のゲル化開始時における損失弾性率が1MPaを超えるものであれば非硬化型塗料を使用することが可能であり、例えば、塗膜形成可能な樹脂を含み硬化剤を含まず且つ最上層用塗料のゲル化開始時における損失弾性率が1MPaを超えるものが挙げられる。前記非硬化型高損失弾性率塗料の形態は、溶剤型、水性、粉体のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性または粉体が好ましい。   On the other hand, as the non-curable high-loss elastic modulus coating material used in the present invention, it is possible to use a non-curable coating material as long as the loss elastic modulus at the start of gelation of the uppermost layer coating material exceeds 1 MPa. For example, a resin that can form a coating film, does not contain a curing agent, and has a loss elastic modulus of more than 1 MPa at the start of gelation of the uppermost layer-coating material. The form of the non-curing type high-loss elastic modulus coating material may be any of a solvent type, an aqueous type, and a powder, but an aqueous type or a powder is preferable from the viewpoint that the discharge amount of the volatile organic compound can be reduced.

また、熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を低減できる点で、最上層を硬化させる際に実質的に揮発性生成物を生成しない非硬化型高損失弾性率塗料を用いることが好ましい。このような塗料としては、使用する最上層用塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい非硬化型高損失弾性率塗料を下層用塗料として使用すると熱硬化処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から最上層を硬化させる際に揮発性生成物を生成しない非硬化型高損失弾性率塗料(重量減少率が0質量%)が最も好ましい。 In addition, it is possible to reduce the shrinkage of the coating after the uppermost layer is cured and the fluidity is remarkably lowered by the heat curing treatment. It is preferable to use a high-loss elastic modulus paint. As such a coating material, the weight reduction rate at the curing temperature T T of the coating material for the uppermost layer to be used is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.1% by mass. % Or less is particularly preferred. When such a non-curing type high-loss elastic modulus coating material with a small weight reduction rate is used as the coating material for the lower layer, the shrinkage of the coating film can be minimized after the uppermost layer is cured by heat curing and the fluidity is remarkably lowered. There is a tendency. From such a viewpoint, a non-curing type high-loss elastic modulus paint (weight reduction rate of 0% by mass) that does not generate a volatile product when the uppermost layer is cured is most preferable.

このような非硬化型高損失弾性率塗料に含まれる塗膜形成可能な樹脂としては、それ単独では硬化反応を起こさない樹脂が好ましく、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料などから硬化剤を除いた樹脂成分、具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂の中から硬化反応を起こさないものを2種以上選択して併用してもよい。本発明においては、前記塗膜形成可能な樹脂のガラス転移温度や分子量などを調整することによって、非硬化型高損失弾性率塗料についての最上層用塗料のゲル化開始時における損失弾性率を1MPaを超えるものにすることができる。   As a resin capable of forming a coating film contained in such a non-curing type high-loss elastic modulus coating material, a resin that does not cause a curing reaction by itself is preferable. For example, an intermediate coating material described in JP-A-2004-275966 And resin components from which the curing agent is removed from the base paint and the like, specifically, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, a urethane resin, and the like, but are not limited thereto. Two or more of these resins that do not cause a curing reaction may be selected and used in combination. In the present invention, by adjusting the glass transition temperature, molecular weight, etc. of the resin capable of forming the coating film, the loss elastic modulus at the start of gelation of the uppermost layer coating material for the non-curing type high loss elastic modulus coating material is 1 MPa. Can be exceeded.

また、本発明においては、最上層用塗料および下層用塗料(低損失弾性率塗料および/または高損失弾性率塗料)のいずれにおいても熱硬化型塗料を使用する場合に、硬化温度が同じ最上層用塗料と下層用塗料とを用いることも可能であり、硬化温度が異なる最上層用塗料と下層用塗料とを用いることも可能である。前者の場合には、後述する加熱処理を1段で実施する場合に適しており、他方、後者の場合には2段以上の加熱処理を施す場合に適している。   In the present invention, the top layer having the same curing temperature is used when the thermosetting paint is used in both the top layer paint and the bottom layer paint (low loss elastic modulus paint and / or high loss elastic modulus paint). It is also possible to use a paint for a lower layer and a paint for a lower layer, and it is also possible to use a paint for an uppermost layer and a paint for a lower layer having different curing temperatures. The former case is suitable when the heat treatment described later is performed in a single stage, while the latter case is suitable when two or more stages of heat treatment are performed.

後者の場合、最上層用塗料の硬化温度Tと下層用塗料の硬化温度Tは、下記式(4):
≦T−30 (4)
で表される条件を満たすことが好ましい。下層用塗料として前記式(4)で表される条件を満たすものを用いると、低温加熱処理と高温加熱処理の2段の加熱処理を施すことができるとともに、これらの加熱温度の差を十分に広げることができ、その結果、最上層と下層とを別個独立して硬化させることが可能となる。また、このような観点から硬化温度TとTは下記式(4a)
≦T−40 (4a)
(式(4a)中、TおよびTは前記式(4)中のTおよびTと同義である。)
で表される条件を満たすことがより好ましく、下層が2層以上の場合には、いずれの下層用塗料についてもその硬化温度Tが前記式(4)または(4a)で表される条件を満たすことが特に好ましい。
In the latter case, the curing temperature T U of the curing temperature T T and the lower layer-coating material of the uppermost layer-coating material, the following formula (4):
T U ≦ T T -30 (4)
It is preferable that the condition represented by If a coating material that satisfies the condition expressed by the above formula (4) is used as the lower layer coating, it is possible to perform a two-stage heat treatment of a low-temperature heat treatment and a high-temperature heat treatment, and a sufficient difference between these heating temperatures. As a result, the top layer and the bottom layer can be cured separately and independently. Further, the curing temperature T U and T T From this point of view the following formula (4a)
T U ≦ T T -40 (4a )
(Formula (4a) in, T U and T T are as defined T U and T T in the formula (4).)
It is more preferable to satisfy the condition expressed in the conditions when the lower layer of two or more layers, which for any lower layer paint curing temperature T U represented by the formula (4) or (4a) It is particularly preferable to satisfy it.

なお、本発明に用いられる下層用塗料(低損失弾性率塗料および/または高損失弾性率塗料)には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   The lower layer coating material (low-loss elastic modulus coating material and / or high-loss elastic modulus coating material) used in the present invention includes conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. It may be. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明の塗装方法では、先ず、前記基材上に前記下層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の下層を形成する。このとき、下層が1層の場合にはこの下層を前記低損失弾性率塗料を用いて形成する。下層が2層以上の場合にはそれらのうちの少なくとも1層を前記低損失弾性率塗料を用いて形成し、残りの層を高損失弾性率塗料を用いて形成してもよいし、すべての下層を前記低損失弾性率塗料を用いて形成してもよい。   In the coating method of the present invention, first, the lower layer coating material is applied onto the substrate, and if necessary, the solvent is evaporated by drying or the like to form an uncured lower layer. At this time, when the lower layer is one layer, the lower layer is formed using the low-loss elastic modulus paint. When there are two or more lower layers, at least one of them may be formed using the low-loss elastic modulus paint, and the remaining layers may be formed using the high-loss elastic modulus paint, The lower layer may be formed using the low-loss elastic modulus paint.

下層用塗料を塗布する際、熱硬化型塗料および非硬化型塗料のいずれの塗料を使用する場合でもエアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法を適用することができる。   When applying the coating for the lower layer, any known method such as air spray coating, air electrostatic spray coating, or rotary atomizing electrostatic coating can be used regardless of whether a thermosetting coating or non-curing coating is used. Can be applied.

下層の各層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。各下層の膜厚が前記下限未満では均一な下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると最上層の塗膜に含まれる溶媒などを多く吸収する傾向にあるとともにその層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   Although the film thickness of each lower layer can be appropriately set depending on the desired application, for example, the film thickness after the heat treatment is preferably 5 to 50 μm, and more preferably 10 to 40 μm. If the film thickness of each lower layer is less than the lower limit, it tends to be difficult to obtain a uniform lower layer coating film.On the other hand, if it exceeds the upper limit, it tends to absorb a large amount of the solvent contained in the uppermost layer coating film. Volatilization of the solvent contained in the layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

次に、前記未硬化の下層の上に前記最上層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の最上層を形成する。最上層用塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法が挙げられる。   Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent is evaporated by drying or the like to form an uncured uppermost layer. Examples of a method for applying the uppermost layer coating material include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

最上層の膜厚は所望の用途により適宜設定することができるが、例えば、加熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。最上層の膜厚が前記下限未満では流動性が不十分であり積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると流動性が過度に大きくなり鉛直方向に塗装する場合にはタレなどの欠陥が発生する傾向にある。   The film thickness of the uppermost layer can be appropriately set depending on the desired application. For example, the film thickness after the heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. When the film thickness of the uppermost layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate. On the other hand, when the upper limit is exceeded, the fluidity becomes excessively large and the coating is applied in the vertical direction. There is a tendency for defects such as sagging to occur.

このようにして、前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して形成された未硬化積層塗膜に加熱処理を施して少なくとも前記最上層用塗料を硬化させる。   In this way, at least the uppermost layer coating material is cured by applying heat treatment to the uncured laminated coating film formed by laminating the lower layer coating material and the uppermost layer coating material by wet-on-wet.

本発明の塗装方法において加熱処理を施す場合には、1段の加熱処理を施してもよいし、2段以上の加熱処理を施してもよいが、少なくとも最上層が硬化する温度以上での加熱処理(以下、「高温加熱処理」といい、このときの加熱温度を「高温加熱温度T」とする)、例えば[前記最上層用塗料の硬化温度T−20℃]以上の温度Tでの加熱処理を施すことが好ましい。この高温加熱温度Tは、1段の加熱処理または2段以上の加熱処理のいずれの場合においても、下記式(5):
−20≦T≦T+40 (5)
で表される条件を満たすことがより好ましく、下記式(5a):
≦T≦T+20 (5a)
で表される条件を満たすことが特に好ましく、下記式(5b):
=T (5b)
で表される条件を満たすことが最も好ましい。なお、式(5)、(5a)および(5b)中のTは式(4)中のTと同義である。高温加熱温度が前記下限未満になると最上層が十分に硬化しない傾向にあり、他方、前記上限を超えると最上層が過度に硬化して割れやすくなったり、黄変したりする傾向にある。
When performing the heat treatment in the coating method of the present invention, one step of heat treatment may be performed, or two or more steps of heat treatment may be performed, but at least at a temperature above the temperature at which the uppermost layer is cured. process (hereinafter, referred to as "high-temperature heat treatment", the heating temperature at this time is "high temperature heating temperature T H"), for example [hardening of the uppermost layer-coating material temperature T T -20 ° C.] temperature above T H It is preferable to perform the heat treatment at This high-temperature heating temperature TH is expressed by the following formula (5) in either case of one-stage heat treatment or two-stage or more heat treatment:
T T -20 ≦ T H ≦ T T +40 (5)
It is more preferable to satisfy the condition represented by the following formula (5a):
T T ≦ T H ≦ T T +20 (5a)
It is particularly preferable to satisfy the condition represented by the following formula (5b):
T T = T H (5b)
It is most preferable that the condition represented by Incidentally, the formula (5), T T in (5a) and (5b) has the same meaning as T T in the formula (4). When the high temperature heating temperature is less than the lower limit, the uppermost layer tends to be not sufficiently cured, and when the upper limit is exceeded, the uppermost layer is excessively cured and tends to be broken or yellowed.

高温加熱時間は最上層用塗料の硬化時間の50%以上150%以下であることが好ましく、60%以上100%以下であることがより好ましい。具体的には、最上層用塗料の硬化時間が30分の場合、高温加熱時間は15分以上45分以下であることが好ましく、18分以上30分以下であることがより好ましい。高温加熱時間が前記下限未満になると最上層が十分に硬化しない傾向にあり、他方、前記上限を超えると最上層が過度に硬化して割れやすくなったり、黄変したりする傾向にある。   The high temperature heating time is preferably 50% or more and 150% or less, and more preferably 60% or more and 100% or less of the curing time of the uppermost layer coating material. Specifically, when the curing time of the uppermost layer-coating material is 30 minutes, the high temperature heating time is preferably 15 minutes or more and 45 minutes or less, and more preferably 18 minutes or more and 30 minutes or less. When the high-temperature heating time is less than the lower limit, the uppermost layer tends to be not sufficiently cured, whereas when the upper limit is exceeded, the uppermost layer tends to be excessively cured and easily cracked or yellowed.

また、本発明の塗装方法においては、前記高温加熱処理の前に高温加熱温度Tよりも低い温度(以下、「低温加熱温度T」という)で加熱処理(以下、「低温加熱処理」という)を施すといった2段以上の加熱処理を実施してもよい。この低温加熱処理により最上層を硬化させる前に積層塗膜中の揮発分の濃度を低減することが可能となる傾向にある。さらに、低温加熱処理時の最上層の硬化を防止できるという観点から、前記低温加熱温度Tは、[前記最上層用塗料の硬化温度T−20℃]未満の温度が好ましく、[T−30℃]未満の温度がより好ましく、[T−40℃]未満の温度が特に好ましい。 In the coating method of the present invention, the lower temperature than the high temperature heating temperature T H in front of the high-temperature heat treatment (hereinafter, referred to as "low temperature heating temperature T L") heat treatment (hereinafter, referred to as "low temperature heating treatment" ) May be performed in two or more stages. It tends to be possible to reduce the concentration of volatile components in the laminated coating film before the uppermost layer is cured by this low-temperature heat treatment. Furthermore, in view of being able to prevent the top layer of the curing at a low temperature heat treatment, the low heating temperature T L is the temperature of less than [the curing temperature T T -20 ° C. of the uppermost layer-coating material] is preferably, [T T A temperature of less than -30 ° C is more preferred, and a temperature of less than [T T -40 ° C] is particularly preferred.

さらに、下層用塗料として熱硬化型塗料を使用する場合には、最上層を硬化させる前に下層を十分に硬化させることができるという点で、前記低温加熱温度Tは下記式(6):
−20≦T≦T−30 (6)
で表される条件を満たすことがより好ましく、下記式(6a):
≦T≦T−30 (6a)
で表される条件を満たすことが特に好ましく、下記式(6b):
+10≦T≦T−40 (6b)
で表される条件を満たすことが最も好ましい。なお、式(6)、(6a)および(6b)中のTおよびTは前記式(4)中のTおよびTと同義である。
Furthermore, when using a thermosetting paint as the lower layer paint, the low temperature heating temperature TL is expressed by the following formula (6) in that the lower layer can be sufficiently cured before the uppermost layer is cured.
T U −20 ≦ T L ≦ T T −30 (6)
It is more preferable to satisfy the condition represented by the following formula (6a):
T U ≦ T L ≦ T T −30 (6a)
It is particularly preferable to satisfy the condition represented by the following formula (6b):
T U + 10 ≦ T L ≦ T T −40 (6b)
It is most preferable that the condition represented by Note that equation (6), (6a) is T U and T T in and (6b) is synonymous with T U and T T in the formula (4).

低温加熱時間としては、下層用塗料として非硬化型塗料を使用する場合には、最上層を実質的には硬化させずに積層塗膜の揮発分濃度を低減することができるという点で、最上層用塗料の硬化時間の10%以上50%未満であることが好ましく、20%以上40%以下であることがより好ましい。また、下層用塗料として熱硬化型塗料を使用する場合には、下層用塗料の硬化時間の10%以上100%以下であることが好ましく、20%以上80%以下であることがより好ましい。低温加熱時間が前記下限未満になると下層が十分に硬化しない傾向にあり、他方、前記上限を超えると全体の加熱時間が増加し、生産性が低下する傾向にある。   Regarding the low-temperature heating time, when using a non-curable coating as the lower layer coating, the volatile content concentration of the laminated coating can be reduced without substantially curing the uppermost layer. It is preferably 10% or more and less than 50% of the curing time of the upper layer coating material, and more preferably 20% or more and 40% or less. Further, when a thermosetting paint is used as the lower layer paint, it is preferably 10% or more and 100% or less, more preferably 20% or more and 80% or less of the curing time of the lower layer paint. If the low-temperature heating time is less than the lower limit, the lower layer tends not to be cured sufficiently. On the other hand, if the upper limit is exceeded, the entire heating time increases and productivity tends to be lowered.

さらに、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化積層塗膜を安定させるために、前記加熱処理前、特に前記低温加熱処理前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。   Furthermore, in the coating method of the present invention, in order to stabilize the uncured laminated coating film laminated by wet-on-wet, it is preferable to leave it at room temperature before the heat treatment, particularly before the low temperature heat treatment. . The setting time is usually set to 1 to 20 minutes.

また、本発明においては、さらに高級な外観を得るためには、前記塗装方法により得られた塗装体の前記最上層の上にさらに塗料を塗布して熱硬化処理を施し、表面層を形成することが好ましい。前記塗料としては、前記最上層用塗料として例示したものを使用することができる。また、前記塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法が挙げられる。   Further, in the present invention, in order to obtain a higher-grade appearance, a coating is further applied on the uppermost layer of the coated body obtained by the coating method, and a thermosetting treatment is performed to form a surface layer. It is preferable. As the coating material, those exemplified as the top layer coating material can be used. Examples of the method for applying the paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

本発明の塗装体は、前記本発明の塗装方法により製造されたものであり、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも少なく、外観品質に優れている。このような塗装体は、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品として有用である。   The coated body of the present invention is manufactured by the coating method of the present invention, and has fewer irregularities on the surface of the multilayer coating film than the conventional multilayer coating film manufactured by wet-on-wet, and is excellent in appearance quality. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、最上層用塗料のゲル化開始時における下層用塗料の損失弾性率および塗料の加熱処理による重量減少率は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The loss elastic modulus of the lower layer coating material and the weight reduction rate due to the heat treatment of the coating material at the start of gelation of the uppermost layer coating material were measured by the following methods.

<最上層用塗料のゲル化開始時における下層用塗料の損失弾性率>
先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に加熱処理後の膜厚が35±5μmとなるように塗布した。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込んだ。
<Loss elastic modulus of the lower layer coating material at the start of gelation of the uppermost layer coating material>
First, the uppermost layer coating material was applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after the heat treatment was 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The top layer paint was applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定した。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施した。測定時の温度プログラムは、室温(25℃)から最上層用塗料の硬化温度Tまで昇温速度20±4℃/分で昇温し、その後、前記硬化温度Tを維持するように設定した。 In this way, the relative storage elastic modulus (E r ′) of the coating film was measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material was formed. The measurement was carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with a circular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° was attached. The temperature program at the time of measurement is set so that the temperature is raised from room temperature (25 ° C.) to the curing temperature T T of the paint for the uppermost layer at a rate of temperature increase of 20 ± 4 ° C./min, and then the curing temperature T T is maintained. did.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットし、上記した変曲点から15分間の部分について下記式(2):
’=A〔1−exp{k(t−t)}〕 (2)
(式(2)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片、すなわち測定を開始してから最上層用塗料がゲル化を開始するまでの時間tを求めた。
The measured value of the relative storage elastic modulus (E r ′) obtained was plotted against time, and the following equation (2) for the portion of 15 minutes from the above inflection point:
E r ′ = A [1-exp {k (t−t d )}] (2)
(In formula (2), A and k are constants, and t represents time.)
And the time axis intercept, that is, the time t d from the start of measurement to the start of gelation of the uppermost layer coating was obtained by the non-linear least square method.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして加熱処理後の膜厚が所定の値となるように塗布膜厚を調節して塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を、目的とする積層塗膜の焼付時間tまで測定し、前記時間tおよび前記焼付時間tにおける下層用塗料からなる塗膜の相対損失弾性率(それぞれ、E”(t)およびE”(t))を求めた。 Next, for the lower layer paint, the coating film is formed by adjusting the coating film thickness so that the film thickness after the heat treatment becomes a predetermined value as in the case of the uppermost layer paint, The relative loss elastic modulus (E r ″) is measured up to the baking time t 1 of the target laminated coating film under the same conditions as in the case of the uppermost layer coating material, and the lower layer coating material at the time t d and the baking time t 1 . The relative loss elastic moduli (E r ″ (t d ) and E r ″ (t 1 ), respectively) of the coating film made of

次に、対象とする下層用塗料を、表面が平滑なガラス板またはポリプロピレン板に、加熱処理後の膜厚が所定の値となるように塗布膜厚を調節しながら塗布し、予備乾燥処理を施し、目的とする積層塗膜の焼付条件で焼き付け、硬化膜を得た。その後、この硬化膜を基材から剥離し、所定の形状に切断した。動的粘弾性測定装置(例えば、アイティー計測制御(株)製DVA−220型)を使用して、引張りモード、周波数1Hz、昇温速度5℃/分の条件で前記硬化膜の損失弾性率(E”)を測定し、前記硬化温度Tにおける下層用塗料からなる硬化膜の損失弾性率(E”(T))を求めた。 Next, the target lower layer coating material is applied to a glass plate or polypropylene plate with a smooth surface while adjusting the coating film thickness so that the film thickness after the heat treatment becomes a predetermined value, and a preliminary drying treatment is performed. It was baked under the baking conditions of the target laminated coating film to obtain a cured film. Thereafter, the cured film was peeled from the substrate and cut into a predetermined shape. Using a dynamic viscoelasticity measuring apparatus (for example, DVA-220 type manufactured by IT Measurement Control Co., Ltd.), the loss elastic modulus of the cured film under the conditions of a tensile mode, a frequency of 1 Hz, and a heating rate of 5 ° C./min. (E ″) was measured, and the loss elastic modulus (E ″ (T T )) of the cured film composed of the lower layer coating material at the curing temperature T T was determined.

前記焼付時間tにおける下層用塗料からなる塗膜の相対損失弾性率E”(t)を下層用塗料からなる硬化膜の相対損失弾性率とみなし、上記測定によって得られた下層用塗料からなる塗膜の相対損失弾性率E”(t)およびE”(t)ならびに下層用塗料からなる硬化膜の損失弾性率E”(T)から、下記式(3):
E”(t)=E”(t)×E”(T)/E”(t) (3)
により前記時間tにおける下層用塗料からなる塗膜の損失弾性率(E”(t))を求め、これを「最上層用塗料のゲル化開始時における下層用塗料の損失弾性率」とした。
The relative loss elastic modulus E r ″ (t 1 ) of the coating film made of the lower layer coating material at the baking time t 1 is regarded as the relative loss elastic modulus of the cured film made of the lower layer coating material, and the lower layer coating material obtained by the above measurement is used. From the relative loss elastic moduli E r ″ (t d ) and E r ″ (t 1 ) of the coating film made of and the loss elastic modulus E ″ (T T ) of the cured film made of the coating material for the lower layer, the following formula (3):
E ″ (t d ) = E r ″ (t d ) × E ″ (T T ) / E r ″ (t 1 ) (3)
The loss elastic modulus (E ″ (t d )) of the coating film made of the lower layer paint at the time t d is obtained by the above, and this is referred to as “loss elastic modulus of the lower layer paint at the start of gelation of the uppermost layer paint”. did.

<重量減少率の測定>
対象とする塗料を加熱処理後の膜厚が積層塗膜の目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度Tよりも40℃低い温度[40−T℃]および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度Tで30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出した。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。
<Measurement of weight loss rate>
Coating a coating of interest on an aluminum foil so that the film thickness after heat treatment becomes a target thickness of the multilayer coating film, the resulting 40 ° C. than the curing temperature T T of the aluminum foil sample the uppermost layer-coating material A gas chromatograph / mass spectrometer (for example, Agilent) equipped with a thermal desorption introduction device (for example, Thermal Destruction System manufactured by GERSTEL) after drying at low temperature [40-T T ° C.] and a vacuum condition of 10 −2 Torr or less for 90 minutes. GMBH made 6890GC / 5975MSD) was heated for 30 minutes at a curing temperature T T of the uppermost layer-coating material by using a volatile amount of product (Rc (unit: g)) and to quantify the residual solvent amount, by weight by the formula (1) The reduction rate was calculated. This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.

重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値を使用した。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the mass of the pigment used the value of the coating composition table.

(合成例1)アクリルエマルションR−1の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 69.3質量部
ブチルアクリレート 94.5質量部
2−ヒドロキシエチルアクリレート 63.0質量部
スチレン 78.8質量部
アクリル酸 9.5質量部
このモノマー混合液315質量部、n−ドデシルメルカプタン4質量部、水105質量部およびアニオン界面活性剤(日本乳化剤(株)製「ニューコール707−SN」)14質量部を混合し、ミキサーを用いて攪拌して乳化させ、モノマープレエマルションを調製した。
(Synthesis Example 1) Synthesis of Acrylic Emulsion R-1 The following monomers were mixed to prepare a monomer mixture.
<Monomer mixture composition>
Methyl methacrylate 69.3 parts by weight Butyl acrylate 94.5 parts by weight 2-hydroxyethyl acrylate 63.0 parts by weight Styrene 78.8 parts by weight Acrylic acid 9.5 parts by weight This monomer mixture 315 parts by weight, n-dodecyl mercaptan 4 Part by mass, 105 parts by mass of water and 14 parts by mass of an anionic surfactant (“New Coal 707-SN” manufactured by Nippon Emulsifier Co., Ltd.) were mixed and stirred using a mixer to emulsify to prepare a monomer pre-emulsion. .

次に、攪拌機、温度計、滴下ロート、還流冷却器および窒素導入管を備えた通常のアクリル系樹脂エマルション製造用反応容器に、水280質量部、アニオン界面活性剤(日本乳化剤(株)製「ニューコール707−SN」)5.6質量部、および重合開始剤として過硫酸アンモニウム水溶液(過硫酸アンモニウム(Aldrich社製)0.7質量部と水13.3質量部とを攪拌混合して調製したもの)20質量部を仕込み、攪拌しながら80℃に昇温した。この溶液に、前記モノマープレエマルションのうちの5質量%を添加し、80℃で10分間保持した。その後、残りのモノマープレエマルションを4時間かけて攪拌しながら滴下した。滴下終了後、さらに80℃で1時間攪拌を継続して反応させた。その後、水56質量部を添加し、室温まで冷却した。冷却後、10質量%のジメチルエタノールアミン水溶液を用いて反応溶液のpHを7.2に調整し、不揮発分38.1質量%のアクリルエマルションR−1を得た。   Next, 280 parts by mass of water and an anionic surfactant (manufactured by Nippon Emulsifier Co., Ltd.) were added to a reaction vessel for producing an acrylic resin emulsion equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser and a nitrogen introduction tube. 5.6 parts by mass of Newcol 707-SN ") and 0.7 parts by mass of an aqueous ammonium persulfate solution (ammonium persulfate (manufactured by Aldrich)) and 13.3 parts by mass of water as a polymerization initiator ) 20 parts by mass were charged and heated to 80 ° C. with stirring. To this solution, 5% by mass of the monomer pre-emulsion was added and held at 80 ° C. for 10 minutes. Thereafter, the remaining monomer pre-emulsion was added dropwise with stirring over 4 hours. After completion of the dropwise addition, stirring was further continued at 80 ° C. for 1 hour for reaction. Thereafter, 56 parts by mass of water was added and cooled to room temperature. After cooling, the pH of the reaction solution was adjusted to 7.2 using a 10% by mass dimethylethanolamine aqueous solution to obtain an acrylic emulsion R-1 having a nonvolatile content of 38.1% by mass.

(合成例2)アクリルエマルションR−2の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 10.7質量部
ブチルアクリレート 203.2質量部
2−ヒドロキシエチルメタクリレート 50.4質量部
スチレン 42.5質量部
アクリル酸 8.2質量部
合成例1に記載のモノマー混合液の代わりにこのモノマー混合液315質量部を用い、反応溶液のpHを7.4に調整した以外は合成例1と同様にして、不揮発分38.1質量%、ガラス転移温度−20℃のアクリルエマルションR−2を得た。
(Synthesis example 2) Synthesis | combination of acrylic emulsion R-2 The following monomer was mixed and the monomer liquid mixture was prepared.
<Monomer mixture composition>
Methyl methacrylate 10.7 parts by mass Butyl acrylate 203.2 parts by mass 2-hydroxyethyl methacrylate 50.4 parts by mass Styrene 42.5 parts by mass Acrylic acid 8.2 parts by mass In place of the monomer mixture described in Synthesis Example 1, Acrylic emulsion R-2 having a non-volatile content of 38.1% by mass and a glass transition temperature of −20 ° C. in the same manner as in Synthesis Example 1 except that 315 parts by mass of the monomer mixture was used and the pH of the reaction solution was adjusted to 7.4. Got.

(合成例3)アクリルエマルションR−3の合成
下記モノマーを混合してモノマー混合液を調製した。
<モノマー混合組成>
メチルメタクリレート 48.8質量部
ブチルアクリレート 133.6質量部
2−ヒドロキシエチルメタクリレート 50.4質量部
スチレン 74.0質量部
アクリル酸 8.2質量部
合成例1に記載のモノマー混合液の代わりにこのモノマー混合液315質量部を用い、反応溶液のpHを7.4に調整した以外は合成例1と同様にして、不揮発分38.1質量%、ガラス転移温度10℃のアクリルエマルションR−3を得た。
(Synthesis example 3) Synthesis | combination of acrylic emulsion R-3 The following monomer was mixed and the monomer liquid mixture was prepared.
<Monomer mixture composition>
Methyl methacrylate 48.8 parts by weight Butyl acrylate 133.6 parts by weight 2-Hydroxyethyl methacrylate 50.4 parts by weight Styrene 74.0 parts by weight Acrylic acid 8.2 parts by weight In place of the monomer mixture described in Synthesis Example 1, An acrylic emulsion R-3 having a non-volatile content of 38.1% by mass and a glass transition temperature of 10 ° C. was prepared in the same manner as in Synthesis Example 1 except that 315 parts by mass of the monomer mixture was used and the pH of the reaction solution was adjusted to 7.4. Obtained.

(合成例4)アクリル樹脂Aの合成
メタクリル酸4.5質量部、アクリル酸エチル26.0質量部、水酸基含有モノマー(ダイセル化学工業社製、商品名「プラクセルFM−1」)64.5質量部、メチルスチレンダイマー(三井東圧化学社製、商品名「MSD−100」)5.0質量部およびアゾイソブチロニトリル13.0質量部を混合して混合液を調製した。
(Synthesis Example 4) Synthesis of Acrylic Resin A 4.5 parts by mass of methacrylic acid, 26.0 parts by mass of ethyl acrylate, a hydroxyl group-containing monomer (manufactured by Daicel Chemical Industries, Ltd., trade name “Placcel FM-1”) 64.5 parts by mass Part, methylstyrene dimer (trade name “MSD-100”, manufactured by Mitsui Toatsu Chemical Co., Ltd.) 5.0 parts by weight and azoisobutyronitrile 13.0 parts by weight were mixed to prepare a mixed solution.

攪拌機、温度調節器および還流冷却管を備えた反応容器にキシレン82.0質量部を仕込み、次いで前記混合液のうちの20.0質量部を加え、攪拌しながら加熱して温度を上昇させた。その後、還流させながら前記混合液の残り93.0質量部を3時間かけて滴下して、次いでアゾイソブチロニトリル1.0質量部およびキシレン12.0質量部からなる溶液を30分間かけて滴下して反応を行なった。得られた反応溶液をさらに1時間攪拌しながら還流させ、数平均分子量2000のアクリル樹脂Aを含む樹脂溶液Aを得た。この樹脂溶液Aを固形分濃度が75質量%になるまでエバポレータで脱溶媒し、アクリル樹脂ワニスAを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of xylene, and then 20.0 parts by mass of the mixed solution was added and heated while stirring to raise the temperature. . Thereafter, the remaining 93.0 parts by mass of the mixture was dropped over 3 hours while refluxing, and then a solution consisting of 1.0 part by mass of azoisobutyronitrile and 12.0 parts by mass of xylene was added over 30 minutes. The reaction was performed dropwise. The obtained reaction solution was further refluxed with stirring for 1 hour to obtain a resin solution A containing an acrylic resin A having a number average molecular weight of 2000. The resin solution A was desolvated with an evaporator until the solid content concentration became 75% by mass to obtain an acrylic resin varnish A.

(合成例5)アクリル樹脂Bの合成
アクリル酸5.0質量部、アクリル酸2−ヒドロキシエチル17.0質量部、メタクリル酸n−ブチル66.0質量部、アクリル酸ステアリル12.0質量部およびアゾビスイソブチロニトリル0.8質量部を混合して混合液を調製した。
(Synthesis Example 5) Synthesis of acrylic resin B 5.0 parts by mass of acrylic acid, 17.0 parts by mass of 2-hydroxyethyl acrylate, 66.0 parts by mass of n-butyl methacrylate, 12.0 parts by mass of stearyl acrylate and A mixed solution was prepared by mixing 0.8 parts by mass of azobisisobutyronitrile.

攪拌機、温度調節器および還流冷却管を備えた反応容器にイソプロピルアルコール82.0質量部を仕込み、窒素置換した後、温度80℃まで加熱した。次いで前記混合液(100.8質量部)を5時間かけて滴下した後、1時間攪拌を継続して数平均分子量15000のアクリル樹脂Bを含む樹脂溶液Bを得た。この樹脂溶液Bを固形分濃度が80質量%になるまでエバポレータで脱溶媒した後、ジメチルエタノールアミン6.0質量部およびイオン交換水36.0質量部を添加し、固形分濃度60質量%のアクリル樹脂ワニスBを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of isopropyl alcohol, purged with nitrogen, and then heated to a temperature of 80 ° C. Next, after the mixed liquid (100.8 parts by mass) was dropped over 5 hours, stirring was continued for 1 hour to obtain a resin solution B containing an acrylic resin B having a number average molecular weight of 15000. After this resin solution B was desolvated with an evaporator until the solid content concentration reached 80% by mass, 6.0 parts by mass of dimethylethanolamine and 36.0 parts by mass of ion-exchanged water were added to obtain a solid content concentration of 60% by mass. An acrylic resin varnish B was obtained.

(調製例1)着色顔料ペーストの調製
SUS製容器に、水123質量部、ウレタンディスパージョン(DIC(株)製「ハイドランWLS−202」)30質量部、湿潤分散剤(ビックケミー社製「Disperbyk181」)1.5質量部、消泡剤(サンノプコ(株)製「SNデフォーマー1340」)1.5質量部およびルチル型酸化チタン(石原産業(株)製「CR−90−2」)323.4質量部を仕込み、3分間予備混合した後、仕込み全体積量と同じ体積量のガラスビーズ(粒径1.6mm)を投入し、卓上サンドミルで1時間分散処理した。グラインドゲージにより測定した分散終了時の粒度は5μm以下であった。
(Preparation Example 1) Preparation of Colored Pigment Paste In a SUS container, 123 parts by weight of water, 30 parts by weight of urethane dispersion (“Hydran WLS-202” manufactured by DIC Corporation), a wetting dispersant (“Disperbyk 181” manufactured by BYK Chemie) ) 1.5 parts by mass, defoaming agent (“SN deformer 1340” manufactured by San Nopco) and rutile titanium oxide (“CR-90-2” manufactured by Ishihara Sangyo Co., Ltd.) 323.4 After charging the mass part and premixing for 3 minutes, glass beads (particle size: 1.6 mm) having the same volume as the total charged volume were charged and dispersed for 1 hour in a desktop sand mill. The particle size at the end of dispersion as measured with a grind gauge was 5 μm or less.

(調製例2)熱硬化型(メラミン硬化型)水性中塗り塗料P−1の調製
容器に、調製例1で得た着色顔料ペースト244.9質量部を仕込み、これに、攪拌しながら合成例1で得たアクリルエマルションR−1を170.6質量部およびメチル化メラミン樹脂(日本サイテックインダストリーズ(株)製「サイメル325」)を40.3質量部加えて5分間攪拌した。その後、水20質量部、ブチルジグリコール8質量部およびブチルグリコール16質量部を加えて5分間攪拌した。さらに、アルカリ増粘剤(チバスペシャリティーケミカルズ社製「Viscalex HV30」)、ジメチルエタノールアミンおよび水を適量加えて、不揮発分48.3質量%、pH8.4のメラミン硬化型水性中塗り塗料P−1を得た。この水性中塗り塗料P−1の硬化温度は140℃であった。また、この水性中塗り塗料P−1の配合中の全固形分質量に対する全顔料分質量(%)(以下、「PWC」という。)は42であった。
(Preparation Example 2) Preparation of thermosetting (melamine curable) waterborne intermediate coating P-1 In a container, 244.9 parts by mass of the color pigment paste obtained in Preparation Example 1 was charged, and this was a synthesis example while stirring. 170.6 parts by mass of acrylic emulsion R-1 obtained in 1 and 40.3 parts by mass of methylated melamine resin (“Cymel 325” manufactured by Nippon Cytec Industries, Ltd.) were added and stirred for 5 minutes. Thereafter, 20 parts by mass of water, 8 parts by mass of butyl diglycol and 16 parts by mass of butyl glycol were added and stirred for 5 minutes. Further, an alkali thickener (“Viscalex HV30” manufactured by Ciba Specialty Chemicals Co., Ltd.), dimethylethanolamine and water are added in an appropriate amount, and a melamine curable aqueous intermediate coating P- having a non-volatile content of 48.3% by mass and a pH of 8.4 1 was obtained. The curing temperature of this aqueous intermediate coating P-1 was 140 ° C. Further, the total pigment content mass (%) (hereinafter referred to as “PWC”) with respect to the total solid content mass in the formulation of the aqueous intermediate coating material P-1 was 42.

(調製例3)熱硬化型(メラミン硬化型)水性中塗り塗料P−2の調製
反応容器に合成例4で作製した固形分濃度75質量%のアクリル樹脂ワニスAを337質量部と酸化チタン(石原産業社製、商品名「CR−93」)1000質量部とカーボンブラック(デグサ社製、商品名「FW−200P」)10質量部とを仕込み、次いで酢酸ブチル163質量部とキシレン84質量部とを添加した。その後、仕込み全重量と同じ重量のガラスビーズ(粒径1.6mm)を投入し、卓上SGミルで3時間分散した。グラインドゲージによる分散終了時の粒度は5μm以下であった。その後、キシレン84質量部を添加した後、ガラスビーズを濾別し、顔料ペーストを作製した。この顔料ペーストに、前記アクリル樹脂ワニスAとメラミン樹脂(サイテック社製、商品名「サイメル254」)とをアクリル樹脂とメラミン樹脂との固形分重量比が10:1.5になるように、且つ中塗り塗膜中の顔料濃度が50.0質量%になるように添加し、イオン交換水で希釈して固形分濃度が50質量%のメラミン硬化型水性中塗り塗料P−2を調製した。この水性中塗り塗料P−2の硬化温度は140℃であった。
(Preparation Example 3) Preparation of thermosetting (melamine curable) aqueous intermediate coating P-2 337 parts by mass of acrylic resin varnish A having a solid content concentration of 75% by mass prepared in Synthesis Example 4 and titanium oxide ( Ishihara Sangyo Co., Ltd., trade name “CR-93”) 1000 parts by mass and carbon black (Degussa, trade name “FW-200P”) 10 parts by mass were charged, followed by butyl acetate 163 parts by mass and xylene 84 parts by mass. And were added. Thereafter, glass beads (particle size 1.6 mm) having the same weight as the total weight charged were charged and dispersed for 3 hours with a desktop SG mill. The particle size at the end of dispersion by a grind gauge was 5 μm or less. Thereafter, 84 parts by mass of xylene was added, and then the glass beads were separated by filtration to prepare a pigment paste. To this pigment paste, the acrylic resin varnish A and melamine resin (trade name “Cymel 254”, manufactured by Cytec Co., Ltd.) are added so that the solids weight ratio of the acrylic resin to the melamine resin is 10: 1.5, and It was added so that the pigment concentration in the intermediate coating film was 50.0% by mass and diluted with ion-exchanged water to prepare a melamine curable aqueous intermediate coating material P-2 having a solid content concentration of 50% by mass. The curing temperature of this aqueous intermediate coating P-2 was 140 ° C.

(調製例4)熱硬化型(メラミン硬化型)水性ベース塗料B−1の調製
容器に、合成例2で得たアクリルエマルションR−2を183.7質量部仕込み、これに、攪拌しながらメチル化メラミン樹脂(日本サイテックインダストリーズ(株)製「サイメル325」)40質量部、水150質量部およびブチルグリコール20質量部を加えて5分間攪拌した。さらに、アルカリ増粘剤(チバスペシャリティーケミカルズ社製「Viscalex HV30」)、ジメチルエタノールアミンおよび水を適量加えて、不揮発分23質量%、pH8.5の水性樹脂溶液を得た。
(Preparation Example 4) Preparation of thermosetting (melamine curable) water-based base paint B-1 A container is charged with 183.7 parts by mass of the acrylic emulsion R-2 obtained in Synthesis Example 2, and this is stirred with methyl. 40 parts by mass of melamine resin (“Cymel 325” manufactured by Nippon Cytec Industries, Ltd.), 150 parts by mass of water and 20 parts by mass of butyl glycol were added and stirred for 5 minutes. Further, an appropriate amount of an alkali thickener (“Viscalex HV30” manufactured by Ciba Specialty Chemicals), dimethylethanolamine and water was added to obtain an aqueous resin solution having a nonvolatile content of 23 mass% and a pH of 8.5.

また、別の容器に、ブチルグリコール53質量部およびリン酸エステル化合物(日本ルーブリゾール(株)製「Lubrizol2062」)5質量部を仕込み、5分間攪拌した。この溶液に、2種類のアルミペースト(ECKART GmbH製「Hydrolan2154」およびECKART GmbH製「Hydrolan2156」)をそれぞれ30.0質量部添加し、その後、1時間攪拌してアルミペースト溶液を得た。   In another container, 53 parts by mass of butyl glycol and 5 parts by mass of a phosphoric ester compound (“Lublizol 2062” manufactured by Nippon Lubrizol Co., Ltd.) were charged and stirred for 5 minutes. To this solution, 20.0 parts by mass of two types of aluminum paste (“Hydrolan 2154” manufactured by ECKART GmbH and “Hydrolan 2156” manufactured by ECKART GmbH) were added, respectively, and then stirred for 1 hour to obtain an aluminum paste solution.

次に、前記水性樹脂溶液478質量部にこのアルミペースト溶液101.6質量部を撹拌しながら添加し、さらに1時間攪拌して不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−1を得た。この水性ベース塗料B−1の140℃での重量減少率は3.6質量%(P=22.4として算出)であった。   Next, 101.6 parts by mass of this aluminum paste solution was added to 478 parts by mass of the aqueous resin solution while stirring, and the mixture was further stirred for 1 hour to have a nonvolatile content of 24.7% by mass and pH 8.0, a melamine curable aqueous base. A paint B-1 was obtained. The weight reduction rate of this water-based base coating material B-1 at 140 ° C. was 3.6% by mass (calculated as P = 22.4).

(調製例5)熱硬化型(メラミン硬化型)水性ベース塗料B−2の調製
アクリルエマルションR−2の代わりに合成例3で得たアクリルエマルションR−3を183.7質量部用いた以外は調製例4と同様にして、不揮発分24.7質量%、pH8.0のメラミン硬化型水性ベース塗料B−2を得た。この水性ベース塗料B−2の140℃での重量減少率は3.8質量%(P=22.4として算出)であった。
(Preparation Example 5) Preparation of Thermosetting (Melamine Curing Type) Water-Based Paint B-2 Except for using 183.7 parts by mass of the acrylic emulsion R-3 obtained in Synthesis Example 3 instead of the acrylic emulsion R-2 In the same manner as in Preparation Example 4, a melamine curable aqueous base paint B-2 having a nonvolatile content of 24.7% by mass and a pH of 8.0 was obtained. The weight reduction rate of this water-based base coating material B-2 at 140 ° C. was 3.8% by mass (calculated as P = 22.4).

(調製例6)非硬化型水性ベース塗料B−3の調製
合成例5で作製した固形分濃度60質量%のアクリル樹脂ワニスBにその固形分重量と同じ重量の1−t−ブトキシ−2−プロパノールを添加し、さらに水性塗料用アルミペーストをベース塗膜中の顔料濃度が17.7質量%になるように添加し、イオン交換水で希釈して固形分濃度が20質量%の非硬化型水性ベース塗料B−3を作製した。この非硬化型水性ベース塗料B−3の140℃での重量減少率は0質量%であった。
(Preparation Example 6) Preparation of non-curable water-based base coating material B-3 The acrylic resin varnish B having a solid content concentration of 60% by mass prepared in Synthesis Example 5 was added to 1-t-butoxy-2- with the same weight as the solid content. Propanol is added, and aluminum paste for water-based paint is added so that the pigment concentration in the base coating film is 17.7% by mass, diluted with ion-exchanged water, and solid content concentration is 20% by mass. An aqueous base paint B-3 was prepared. The weight loss rate of this non-curable water-based base coating material B-3 at 140 ° C. was 0% by mass.

(調製例7)熱硬化型(イソシアネート硬化型)クリア塗料Aの調製
表1に示す割合でポリオールおよび添加剤を混合して2液型の熱硬化型(イソシアネート硬化型)クリア塗料の主剤80.51質量部を調製した。また、前記熱硬化型クリア塗料の硬化剤として表1に示すイソシアネート硬化剤を使用した。以下の実施例および比較例ではこの主剤と硬化剤とを表1に示す割合で混合したもの(固形分濃度55質量%)を熱硬化型(イソシアネート硬化型)クリア塗料Aとして使用した。この熱硬化型クリア塗料Aの硬化温度は140℃であり、140℃での重量減少率は0質量%であった。また、ゲル化が開始するまでの時間tは10.2分であった。
(Preparation Example 7) Preparation of thermosetting (isocyanate curable) clear paint A Main component of two-component thermosetting (isocyanate curable) clear paint by mixing polyol and additives in the proportions shown in Table 1. 51 parts by weight were prepared. Moreover, the isocyanate hardening agent shown in Table 1 was used as a hardening | curing agent of the said thermosetting type clear coating material. In the following Examples and Comparative Examples, a mixture (solid content concentration 55% by mass) of this main ingredient and a curing agent mixed at a ratio shown in Table 1 was used as the thermosetting (isocyanate curing type) clear paint A. The curing temperature of this thermosetting clear paint A was 140 ° C., and the weight reduction rate at 140 ° C. was 0% by mass. The time t d to gelation starts was 10.2 minutes.

Figure 0005120952
Figure 0005120952

(実施例1)
最上層用塗料として調製例7で調製した熱硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用塗料として調製例2で調製したメラミン硬化型水性中塗り塗料P−1(硬化温度=140℃)および調製例4で調製したメラミン硬化型水性ベース塗料B−1(重量減少率(140℃)=3.6質量%)を使用した。なお、前記クリア塗料Aのゲル化開始時における前記水性中塗り塗料P−1および前記水性ベース塗料B−1の損失弾性率は、それぞれ2.4MPaおよび0.37MPaであった。
Example 1
The thermosetting clear coating material A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 0% by mass) prepared in Preparation Example 7 was used as the uppermost layer coating material, and the lower layer coating material was prepared in Preparation Example 2. Use melamine curable aqueous intermediate coating P-1 (curing temperature = 140 ° C.) and melamine curable aqueous base coating B-1 prepared in Preparation Example 4 (weight reduction rate (140 ° C.) = 3.6% by mass) did. The loss elastic moduli of the aqueous intermediate coating material P-1 and the aqueous base coating material B-1 at the start of gelation of the clear coating material A were 2.4 MPa and 0.37 MPa, respectively.

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に前記水性中塗り塗料P−1を加熱処理後の膜厚が30μmになるように塗装し、100℃で3分間加熱して水および有機溶剤などを揮発させ、この水性中塗り塗料P−1の層の上に前記水性ベース塗料B−1を加熱処理後の膜厚が20μmになるように塗装し、80℃で3分間加熱して水および有機溶剤などを揮発させ、この水性ベース塗料B−1の層の上に前記クリア塗料Aを加熱処理後の膜厚が35μmになるように塗装し、メラミン硬化型水性中塗り塗料P−1とメラミン硬化型水性ベース塗料B−1と熱硬化型クリア塗料Aとをウェットオンウェットで積層した未硬化積層塗膜を得た。この未硬化積層塗膜を室温で10分間静置(セッティング)した後、140℃で30分間の加熱処理を施して積層塗膜を得た。   The aqueous intermediate coating P-1 is applied to the surface of an electrodeposition coating plate (trade name “Sucsade 80V Gray” manufactured by Shinto Herberts Co., Ltd.) so that the film thickness after heat treatment is 30 μm. Water and an organic solvent are volatilized by heating for a minute, and the aqueous base coating material B-1 is applied on the layer of the aqueous intermediate coating material P-1 so that the film thickness after the heat treatment becomes 20 μm. Heat at 3 ° C. for 3 minutes to volatilize water and organic solvent, and apply the clear paint A on the layer of the aqueous base paint B-1 so that the film thickness after the heat treatment is 35 μm, and cure melamine An uncured laminated coating film obtained by laminating a mold-type waterborne intermediate coating P-1, a melamine curable aqueous base paint B-1, and a thermosetting clear paint A by wet-on-wet was obtained. The uncured multilayer coating film was allowed to stand (setting) at room temperature for 10 minutes, and then subjected to a heat treatment at 140 ° C. for 30 minutes to obtain a multilayer coating film.

得られた積層塗膜について、ウェーブスキャン(BYK−Gardner社製Wave−Scan Dual)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)〕を測定した。その結果を表2に示す。これらのウェーブスキャン値は、Waが小さいほど光沢が優れ、Wdが小さいほど肌がよいことを意味する。   About the obtained laminated coating film, the wave scan value [Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc (wavelength) using wave scan (Wave-Scan Dual manufactured by BYK-Gardner)] 1-3 mm), Wd (wavelength 3-10 mm)]. The results are shown in Table 2. These wave scan values mean that the smaller the Wa, the better the gloss, and the smaller the Wd, the better the skin.

(実施例2)
最上層用塗料として調製例7で調製した熱硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用塗料としてブロックイソシアネート硬化型の溶剤型中塗り塗料P−3(関西ペイント社製、商品名「SFX3300CD」、硬化温度=90℃)およびブロックイソシアネート硬化型の溶剤型ベース塗料B−4(関西ペイント社製、商品名「SFX420」、硬化温度=90℃)を使用した。なお、前記クリア塗料Aのゲル化開始時における前記溶剤型中塗り塗料P−3および溶剤型ベース塗料B−4の損失弾性率は、それぞれ3.2MPaおよび0.40MPaであった。
(Example 2)
The thermosetting clear coating material A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 0% by mass) prepared in Preparation Example 7 is used as the uppermost layer coating material, and the blocked isocyanate curable solvent is used as the lower layer coating material. In-mold coating P-3 (trade name “SFX3300CD”, curing temperature = 90 ° C., manufactured by Kansai Paint Co., Ltd.) and solvent type base coating B-4 of block isocyanate curing type (trade name “SFX420”, manufactured by Kansai Paint Co., Ltd.) Curing temperature = 90 ° C.) was used. The loss elastic moduli of the solvent-based intermediate coating P-3 and the solvent-based base coating B-4 at the start of gelation of the clear coating A were 3.2 MPa and 0.40 MPa, respectively.

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に前記溶剤型中塗り塗料P−3を加熱処理後の膜厚が30μmになるように塗装し、60℃で10分間加熱して有機溶剤などを揮発させ、この溶剤型中塗り塗料P−3の層の上に前記溶剤型ベース塗料B−4を加熱処理後の膜厚が20μmになるように塗装し、60℃で10分間加熱して有機溶剤などを揮発させ、この溶剤型ベース塗料B−4の層の上に前記クリア塗料Aを加熱処理後の膜厚が35μmになるように塗装し、溶剤型中塗り塗料P−3と溶剤型ベース塗料B−4とクリア塗料Aとをウェットオンウェットで積層した未硬化積層塗膜を得た。この未硬化積層塗膜を室温で10分間静置(セッティング)した後、100℃で10分間の低温加熱処理を施し、次いで140℃で30分間の高温加熱処理を施して積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。   The above-mentioned solvent-type intermediate coating P-3 is applied to the surface of an electrodeposition coating plate (made by Shinto Herberts Co., Ltd., trade name “Sucsade 80V Gray”) so that the film thickness after heat treatment is 30 μm, and at 60 ° C. The organic solvent is volatilized by heating for 10 minutes, and the solvent-based base coating material B-4 is applied on the layer of the solvent-based intermediate coating material P-3 so that the film thickness after the heat treatment is 20 μm, The organic solvent is volatilized by heating at 60 ° C. for 10 minutes, and the clear paint A is applied on the layer of the solvent-type base paint B-4 so that the film thickness after the heat treatment is 35 μm. An uncured laminated coating film obtained by laminating the intermediate coating material P-3, the solvent-based base coating material B-4, and the clear coating material A by wet on wet was obtained. This uncured laminated coating film was allowed to stand (setting) at room temperature for 10 minutes, then subjected to low-temperature heat treatment at 100 ° C. for 10 minutes, and then subjected to high-temperature heat treatment at 140 ° C. for 30 minutes to obtain a laminated coating film. . For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2.

(比較例1)
下層用塗料としてメラミン硬化型水性ベース塗料B−1(重量減少率(140℃)=3.6質量%)の代わりに調製例5で調製したメラミン硬化型水性ベース塗料B−2(重量減少率(140℃)=3.8質量%)を使用した以外は実施例1と同様にして積層塗膜を作製し、Wa〜Wdを測定した。その結果を表2に示す。なお、前記クリア塗料Aのゲル化開始時における前記水性ベース塗料B−2の損失弾性率は1.14MPaであった。
(Comparative Example 1)
Melamine curable water-based base coating B-2 (weight reduction rate) prepared in Preparation Example 5 instead of melamine curable water-based base coating B-1 (weight reduction rate (140 ° C.) = 3.6% by mass) as the lower layer coating A laminated coating film was prepared in the same manner as in Example 1 except that (140 ° C.) = 3.8% by mass), and Wa to Wd were measured. The results are shown in Table 2. The loss elastic modulus of the water-based base paint B-2 at the start of gelation of the clear paint A was 1.14 MPa.

(比較例2)
最上層用塗料として調製例7で調製した熱硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用塗料として調製例3で調製したメラミン硬化型水性中塗り塗料P−2(硬化温度=140℃)および調製例6で調製した非硬化型水性ベース塗料B−3(重量減少率(140℃)=0質量%)を使用した。なお、前記クリア塗料Aのゲル化開始時における前記水性中塗り塗料P−2および前記非硬化型水性ベース塗料B−3の損失弾性率は、それぞれ17.0MPaおよび1.28MPaであった。
(Comparative Example 2)
The thermosetting clear coating material A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0% by mass) prepared in Preparation Example 7 was used as the uppermost layer coating material, and the lower layer coating material was prepared in Preparation Example 3. Melamine curable aqueous intermediate coating material P-2 (curing temperature = 140 ° C.) and non-curable water-based base coating material B-3 prepared in Preparation Example 6 (weight reduction rate (140 ° C.) = 0 mass%) were used. The loss elastic moduli of the water-based intermediate coating P-2 and the non-curable water-based base coating B-3 at the start of gelation of the clear coating A were 17.0 MPa and 1.28 MPa, respectively.

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に前記水性中塗り塗料P−2を加熱処理後の膜厚が20μmになるように塗装し、100℃で3分間加熱して水および有機溶剤などを揮発させ、この水性中塗り塗料P−2の層の上に前記非硬化型水性ベース塗料B−3を加熱処理後の膜厚が15μmになるように塗装し、80℃で3分間加熱して水および有機溶剤などを揮発させ、この非硬化型水性ベース塗料B−3の層の上に前記クリア塗料Aを加熱処理後の膜厚が35μmになるように塗装し、メラミン硬化型水性中塗り塗料P−2と非硬化型水性ベース塗料B−3と熱硬化型クリア塗料Aとをウェットオンウェットで積層した未硬化積層塗膜を得た。この未硬化積層塗膜を室温で10分間静置(セッティング)した後、90℃で10分間の低温加熱処理を施し、次いで140℃で30分間の高温加熱処理を施して積層塗膜を得た。得られた積層塗膜について、実施例1と同様にしてWa〜Wdを測定した。その結果を表2に示す。   The water-based intermediate coating P-2 is applied to the surface of an electrodeposition coating plate (trade name “Sucsade 80V Gray” manufactured by Shinto Herberts Co., Ltd.) so that the film thickness after heat treatment is 20 μm. Water and organic solvent are volatilized by heating for a minute, and the non-curable water-based base paint B-3 is applied on the layer of the water-based intermediate coating P-2 so that the film thickness after the heat treatment is 15 μm. Then, it is heated at 80 ° C. for 3 minutes to volatilize water and organic solvent, and the film thickness after the heat treatment of the clear paint A on the layer of the non-curable water-based base paint B-3 is 35 μm. And an uncured laminated coating film obtained by laminating the melamine curable aqueous intermediate coating material P-2, the non-curable aqueous base coating material B-3, and the thermosetting clear coating material A by wet-on-wet was obtained. This uncured laminated coating film was allowed to stand (setting) at room temperature for 10 minutes, then subjected to low-temperature heat treatment at 90 ° C. for 10 minutes, and then subjected to high-temperature heat treatment at 140 ° C. for 30 minutes to obtain a laminated coating film. . For the obtained multilayer coating film, Wa to Wd were measured in the same manner as in Example 1. The results are shown in Table 2.

Figure 0005120952
Figure 0005120952

表2に示した結果から明らかなように、本発明のように最上層の下層のうちの少なくとも1層に最上層用塗料のゲル化開始時における損失弾性率が1MPa以下の塗料を使用したウェットオンウェットによる積層塗膜(実施例1〜2)のWa〜Wdはいずれも、最上層の下層の全てに最上層用塗料のゲル化開始時における損失弾性率が1MPaを超える塗料を使用した積層塗膜(比較例1〜2)に比べて小さく、特に、実施例1〜2の積層塗膜のWa値が15以下であるのに対して比較例1〜2の積層塗膜のWa値は15より大きくなり、実施例1〜2の積層塗膜は光沢、肌ともに比較例1〜2の積層塗膜よりも優れていることが確認された。   As is clear from the results shown in Table 2, as in the present invention, wet using a paint having a loss elastic modulus of 1 MPa or less at the start of gelation of the paint for the uppermost layer as at least one of the lower layers of the uppermost layer. Wa to Wd of the on-wet laminated coatings (Examples 1 and 2) are all laminated using a paint whose loss elastic modulus at the start of gelation of the paint for the uppermost layer exceeds 1 MPa for all of the lower layers of the uppermost layer. Compared to the coating film (Comparative Examples 1 and 2), the Wa value of the laminated coating film of Examples 1 and 2 is 15 or less, whereas the Wa value of the laminated coating film of Comparative Examples 1 and 2 is 15 or less. It was confirmed that the laminated coating films of Examples 1 and 2 were superior to the laminated coating films of Comparative Examples 1 and 2 in both gloss and skin.

なお、実施例と比較例における塗膜表面の凹凸の違いは以下のようにして起こるものと推察される。比較例1〜2の積層塗膜では、最上層の下層の全てが、最上層用塗料のゲル化開始時における損失弾性率が1MPaを超える塗料であるため、最上層のゲル化開始時においては下層の流動性が乏しく、最上層の硬化時に塗膜表面に形成された多数の凹凸が緩和されず、塗膜表面に凹凸が多く残存したものと推察される。これに対して、実施例1〜2の積層塗膜では、最上層の下層のうちの少なくとも1層の下層用塗料が、最上層用塗料のゲル化開始時における損失弾性率が1MPa以下の塗料であるため、最上層のゲル化開始時においても下層の流動性が確保され、最上層の硬化時に塗膜表面にわずかに形成された凹凸が下層の流動により緩和され、塗膜表面の凹凸がより少なくなったものと推察される。   In addition, it is guessed that the difference in the unevenness | corrugation of the coating-film surface in an Example and a comparative example arises as follows. In the laminated coating films of Comparative Examples 1 and 2, since all of the lower layers of the uppermost layer are paints having a loss elastic modulus exceeding 1 MPa at the start of gelation of the uppermost layer paint, at the start of gelation of the uppermost layer It is presumed that the fluidity of the lower layer is poor, and many irregularities formed on the surface of the coating when the uppermost layer is cured are not relaxed, and many irregularities remain on the surface of the coating. On the other hand, in the laminated coating films of Examples 1 and 2, at least one of the lower layer coatings of the uppermost layer is a coating material having a loss elastic modulus of 1 MPa or less at the start of gelation of the uppermost layer coating material. Therefore, the fluidity of the lower layer is ensured even at the start of gelation of the uppermost layer, and the unevenness slightly formed on the coating surface when the uppermost layer is cured is alleviated by the flow of the lower layer, and the unevenness of the coating surface is reduced. It is guessed that it was less.

以上説明したように、本発明によれば、2種類以上の塗料をウェットオンウェットで積層して加熱処理を施しても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   As described above, according to the present invention, even when two or more kinds of paints are laminated by wet-on-wet and subjected to heat treatment, a laminated coating film with less unevenness on the surface of the uppermost layer can be obtained. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

したがって、本発明は、2種類以上の塗料をウェットオンウェットで積層して加熱処理を施す場合においても外観品質に優れた塗装体を得ることができる塗装方法として有用であり、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品の塗装方法として有用である。   Therefore, the present invention is useful as a coating method capable of obtaining a coated body having excellent appearance quality even when two or more kinds of paints are laminated by wet-on-wet and subjected to heat treatment, in particular, passenger cars, trucks, It is useful as a painting method for automobile bodies such as buses and motorcycles and parts thereof.

相対貯蔵弾性率(E’)および相対損失弾性率(E”)の経時変化を示すグラフである。Is a graph showing changes with time in the relative storage elastic modulus (E r ') and the relative loss elastic modulus (E r ").

符号の説明Explanation of symbols

P…変曲点、t…最上層用塗料について相対貯蔵弾性率の測定を開始してからゲル化が開始するまでの時間。 P: Inflection point, t d : Time from the start of measurement of the relative storage elastic modulus to the start of gelation for the uppermost layer coating material.

Claims (4)

基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として、前記最上層用塗料のゲル化開始時における損失弾性率が1MPa以下である塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱硬化処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする塗装方法。
A coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A thermosetting paint is prepared as the uppermost layer paint for forming the uppermost layer, and the gelation of the uppermost layer paint is started as at least one of the lower layer paints for forming the lower layer. Preparing a paint having a loss modulus of elasticity of 1 MPa or less at the time;
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Subjecting the uncured laminated coating film to a thermosetting treatment to cure at least the uppermost layer coating;
The coating method characterized by including.
前記最上層用塗料が、その硬化温度における重量減少率が0.5質量%以下の塗料であることを特徴とする請求項1に記載の塗装方法。   The coating method according to claim 1, wherein the uppermost layer-coating material is a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature. 前記下層用塗料のうちの少なくとも1種が、前記最上層用塗料の硬化温度における重量減少率が0.5質量%以下の熱硬化型塗料であることを特徴とする請求項1または2に記載の塗装方法。   3. The thermosetting paint according to claim 1, wherein at least one of the lower layer paints is a thermosetting paint having a weight reduction rate of 0.5% by mass or less at the curing temperature of the uppermost layer paint. Painting method. 基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、請求項1〜3のうちのいずれか一項に記載の塗装方法により得られたものであることを特徴とする塗装体。   It is a coating body which has a laminated coating film provided with the at least 1 lower layer formed on the base material, and the uppermost layer formed on the said lower layer, Comprising: It is a coating body as described in any one of Claims 1-3. Painted body obtained by the coating method of
JP2008253922A 2008-09-30 2008-09-30 Coating method and coated body obtained thereby Expired - Fee Related JP5120952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253922A JP5120952B2 (en) 2008-09-30 2008-09-30 Coating method and coated body obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253922A JP5120952B2 (en) 2008-09-30 2008-09-30 Coating method and coated body obtained thereby

Publications (2)

Publication Number Publication Date
JP2010082534A JP2010082534A (en) 2010-04-15
JP5120952B2 true JP5120952B2 (en) 2013-01-16

Family

ID=42247024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253922A Expired - Fee Related JP5120952B2 (en) 2008-09-30 2008-09-30 Coating method and coated body obtained thereby

Country Status (1)

Country Link
JP (1) JP5120952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499538B2 (en) * 2015-07-22 2019-04-10 株式会社豊田中央研究所 Painting method
JP6420733B2 (en) * 2015-07-22 2018-11-07 株式会社豊田中央研究所 Painting method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038098A (en) * 2000-07-27 2002-02-06 Nippon Paint Co Ltd Base coating material, method for forming coating film and coated article
JP4256116B2 (en) * 2002-05-30 2009-04-22 関西ペイント株式会社 Method for forming glitter coating film
JP2005002252A (en) * 2003-06-13 2005-01-06 Nippon Bee Chemical Co Ltd Water-based coating and method for forming coated film
JP4781975B2 (en) * 2006-11-09 2011-09-28 国立大学法人広島大学 Application method of water-based paint
JP2009034667A (en) * 2007-07-06 2009-02-19 Toyota Central R&D Labs Inc Coating method, and coated object prepared by above method

Also Published As

Publication number Publication date
JP2010082534A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
CN101790428B (en) Coating method and coated member obtained by same
EP3747553A1 (en) Method for forming multilayer coating film and multilayer coating film
JP5513726B2 (en) Coating method and coated body obtained thereby
JP5260255B2 (en) Coating method and coated body obtained thereby
JP5261061B2 (en) Coating method and coated body obtained thereby
JP2009034667A (en) Coating method, and coated object prepared by above method
JP5120952B2 (en) Coating method and coated body obtained thereby
JP2017218527A (en) Isocyanate curable coating composition and coating method using the same
JP4235391B2 (en) Multilayer coating film forming method and aqueous intermediate coating composition
CN105960290B (en) Coating method and coated article obtained by said method
CN105939791B (en) Coating method and coated article obtained by said method
JP5280069B2 (en) Coating method and coated body obtained thereby
EP1189996B1 (en) Low-yellowing aqueous clear powder coating dispersions and their use
JP2009034668A (en) Coating method, and coated object prepared by the same
WO2022255216A1 (en) Aqueous coating composition and method for producing coated article
JP5342457B2 (en) Multi-layer coating formation method
JP6499538B2 (en) Painting method
EP3227350B1 (en) Pigmented coating agent and coatings produced from same
JP4476660B2 (en) Intermediate coating composition and method for forming laminated coating film
JP2002126627A (en) Method for forming multilayered coating film, multilayered coating film and water-based intermediate coating material composition
JP2009155396A (en) Clear coating composition, and method of forming multilayered coating film
JP6420733B2 (en) Painting method
JP4315001B2 (en) Method for coating overcoat clear coating composition and coated article
JP2022180115A (en) Aqueous coating composition and method for manufacturing coated article
JP2002126640A (en) Method for forming coating film, coating film, and waterbase coating material composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees