JP2009034667A - Coating method, and coated object prepared by above method - Google Patents

Coating method, and coated object prepared by above method Download PDF

Info

Publication number
JP2009034667A
JP2009034667A JP2008175087A JP2008175087A JP2009034667A JP 2009034667 A JP2009034667 A JP 2009034667A JP 2008175087 A JP2008175087 A JP 2008175087A JP 2008175087 A JP2008175087 A JP 2008175087A JP 2009034667 A JP2009034667 A JP 2009034667A
Authority
JP
Japan
Prior art keywords
paint
coating
uppermost layer
coating film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175087A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tate
和幸 舘
Takeshi Narita
猛 成田
Satoshi Kodama
敏 児玉
Kazuyuki Kuwano
一幸 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008175087A priority Critical patent/JP2009034667A/en
Publication of JP2009034667A publication Critical patent/JP2009034667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating method by which a laminated coating film can be obtained with its uppermost layer having a surface of slight unevenness even if at least the uppermost layer is cured by baking for the purpose of obtaining high durability thereof after laminating two or more species of paint by a wet-on-wet method. <P>SOLUTION: The coating method for forming a laminated coating film comprising at least a lower layer and an uppermost layer formed on a substrate includes: a step of preparing thermally uncurable paint as at least a species of paint for forming the lower layer(s), and further preparing thermosetting paint for forming the uppermost layer; a step of forming an uncured laminated coating film by laminating the paint for the lower layer and the paint for the uppermost layer on the substrate using a wet-on-wet method; and a step of subjecting the uncured laminated coating film to a heat treatment at least to cure the paint for the uppermost layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2種類以上の塗料をウェットオンウェットで積層して焼き付ける塗装方法およびそれにより得られる塗装体に関する。   The present invention relates to a coating method in which two or more kinds of paints are laminated and baked by wet-on-wet, and a coated body obtained thereby.

2種類以上の塗料をウェットオンウェットで積層した後、焼き付ける塗装方法により積層塗膜を形成する場合において、従来は、すべての塗料を積層した後に積層塗膜を構成するすべての層で焼き付けにより硬化反応が起こるように、すべての層について熱硬化型塗料が用いられ、積層塗膜全体が硬化されていた。この場合、下層を焼き付けてから最上層を形成する塗料を積層して焼き付けた場合に比べて、積層塗膜の肌および光沢が劣るという問題があった。このため、積層塗膜の肌および光沢を向上させるために種々の方法が提案されている。   When two or more types of paints are laminated by wet-on-wet and then a laminated coating film is formed by a baking method, conventionally, all the layers constituting the laminated coating film are cured by baking after all the coatings are laminated. Thermosetting paint was used for all layers so that the reaction occurred and the entire laminated coating was cured. In this case, there is a problem that the skin and gloss of the laminated coating film are inferior to the case where the lower layer is baked and then the coating material forming the uppermost layer is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.

例えば、特開平10−277478号公報(特許文献1)には、カラーベース塗料、光輝材含有ベース塗料およびクリア塗料を順次ウェットオンウェット方式で塗装した後、焼き付け処理を行って各層を硬化させる塗膜形成方法が開示されている。この方法では、各塗料の粘度上昇開始時間をカラーベース塗料、光輝材含有ベース塗料およびクリア塗料の順に長くなるように調整して、最上層を形成するクリア塗料が硬化に伴って粘度上昇する前に下層を形成するカラーベース塗料および光輝材含有ベース塗料の硬化を開始させている。   For example, Japanese Patent Application Laid-Open No. 10-277478 (Patent Document 1) discloses a coating film in which a color base paint, a glittering material-containing base paint, and a clear paint are sequentially applied by a wet-on-wet method and then baked to cure each layer. A forming method is disclosed. In this method, the viscosity increase start time of each paint is adjusted to be longer in the order of the color base paint, the glitter-containing base paint, and the clear paint, and before the clear paint forming the uppermost layer increases in viscosity as it hardens. Curing of the color base paint and glittering material-containing base paint forming the lower layer is started.

また、特開2005−193107号公報(特許文献2)には、中塗り塗料と上塗り塗料とをウェットオンウェットで塗装した後、これらを同時に硬化させる塗装方法において、積層塗膜の肌や光沢が劣る原因が中塗り塗膜層と上塗り塗膜層との混相による上塗り塗膜の平滑性の低下にあると考え、前記混相を防ぐために、中塗り塗料を塗布した後、未硬化の中塗り塗膜層の表面に中塗り塗膜層の硬化を促進させる硬化触媒を塗布することが開示されている。   Japanese Patent Application Laid-Open No. 2005-193107 (Patent Document 2) discloses a method of coating the skin and gloss of a laminated coating film in a coating method in which an intermediate coating and a top coating are applied wet-on-wet and then cured simultaneously. The reason for the inferiority is thought to be the decrease in smoothness of the top coat film due to the mixed phase of the intermediate coat layer and the top coat layer. It is disclosed that a curing catalyst that accelerates curing of the intermediate coating layer is applied to the surface of the film layer.

一方、積層塗膜の肌や光沢を低下させる原因が焼き付け硬化前の積層塗膜中の溶剤の残存にあることが知られている。特に、積層塗膜中の溶剤が硬化反応時に急激に蒸発すると積層塗膜表面が荒れるため、これを防ぐために以下のような方法が提案されている。例えば、特開2000−84463号公報(特許文献3)には、溶液型熱硬化性塗料を塗布する工程と低温加熱工程および高温加熱工程とを含む2段階加熱による塗膜形成方法が開示されている。また、特開2004−275966号公報(特許文献4)には、中塗り塗料、ベース塗料およびクリア塗料を順次ウェットオンウェットで塗装する工程と低温加熱段階および高温加熱段階の2段階の加熱工程を含む塗膜形成方法が開示されている。これらの方法では、低温加熱段階では塗料を硬化させずに塗料中の溶媒を穏やかに蒸発させ、その後高温加熱段階で各層の塗料に含まれる熱硬化性樹脂を硬化させている。   On the other hand, it is known that the cause of lowering the skin and gloss of the multilayer coating film is the residual solvent in the multilayer coating film before baking and curing. In particular, when the solvent in the laminated coating film is rapidly evaporated during the curing reaction, the surface of the laminated coating film becomes rough. In order to prevent this, the following method has been proposed. For example, Japanese Patent Laid-Open No. 2000-84463 (Patent Document 3) discloses a method for forming a coating film by two-stage heating including a step of applying a solution-type thermosetting paint, a low-temperature heating step, and a high-temperature heating step. Yes. Japanese Patent Application Laid-Open No. 2004-275966 (Patent Document 4) includes a two-step heating process, a process in which an intermediate paint, a base paint, and a clear paint are sequentially applied by wet-on-wet, a low-temperature heating stage, and a high-temperature heating stage. A coating film forming method is disclosed. In these methods, the solvent in the paint is gently evaporated without curing the paint in the low-temperature heating stage, and then the thermosetting resin contained in each layer of paint is cured in the high-temperature heating stage.

このように、従来から積層塗膜の肌および光沢を向上させるために種々の方法が提案されているが、例えば、自動車用鋼板などではより外観品質に優れた塗装体が求められており、ウェットオンウェットによる塗装方法の更なる改良が望まれている。
特開平10−277478号公報 特開2005−193107号公報 特開2000−84463号公報 特開2004−275966号公報
As described above, various methods have been proposed in the past to improve the skin and gloss of the laminated coating film. For example, for steel sheets for automobiles, a coated body having a better appearance quality has been demanded. Further improvement of the on-wet coating method is desired.
Japanese Patent Laid-Open No. 10-277478 JP-A-2005-193107 JP 2000-84463 A JP 2004-275966 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、2種類以上の塗料をウェットオンウェットで積層して焼き付けて高耐久性の確保などのために少なくとも最上層は硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる塗装方法、およびそれにより得られる外観品質に優れた塗装体を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and at least the uppermost layer is cured to ensure high durability by laminating and baking two or more kinds of paints by wet-on-wet. Another object of the present invention is to provide a coating method capable of obtaining a laminated coating film with less irregularities on the surface of the uppermost layer, and a coated body excellent in appearance quality obtained thereby.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、積層塗膜の最上層の下層のうちの少なくとも1層を熱処理により硬化反応を起こさない非硬化型塗料を使用して形成することにより、最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮を最小限に抑えることができ、2種類以上の塗料をウェットオンウェットで積層した後に焼き付けを実施しても外観品質に優れた積層塗膜が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have formed at least one of the lowermost layers of the laminated coating film using a non-curable coating material that does not cause a curing reaction by heat treatment. By doing so, the shrinkage of the laminated coating after the uppermost layer is cured and the fluidity is remarkably reduced can be minimized, and baking is performed after laminating two or more kinds of paints by wet-on-wet. In addition, the present inventors have found that a laminated coating film having excellent appearance quality can be obtained and completed the present invention.

すなわち、本発明の塗装方法は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料のうちの少なくとも1種類として熱処理により硬化反応を起こさない非硬化型塗料を準備し、且つ、前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とするものである。
That is, the coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A non-curing paint that does not cause a curing reaction by heat treatment is prepared as at least one of the lower-layer paints for forming the lower layer, and a thermosetting type is used as the upper-layer paint for forming the uppermost layer Preparing a paint; and
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Applying a heat treatment to the uncured laminated coating to cure at least the uppermost layer coating;
It is characterized by including.

前記非硬化型塗料は、前記最上層用塗料の硬化温度における重量減少率が0.5質量%以下の塗料であることが好ましく、硬化剤を含有しない塗料であることがより好ましい。   The non-curable coating material is preferably a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature of the uppermost layer coating material, and more preferably a coating material that does not contain a curing agent.

前記下層が2層以上の場合、前記下層を形成するための下層用塗料のすべてが非硬化型塗料であることが好ましい。   When the lower layer has two or more layers, it is preferable that all of the lower layer coating materials for forming the lower layer are non-curable coating materials.

また、前記最上層用塗料が、その硬化温度における重量減少率が0.5質量%以下の塗料であることが好ましく、熱処理による硬化反応において揮発性生成物を生成しない塗料であることがより好ましい。   The uppermost layer-coating material is preferably a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature, and more preferably a coating material that does not generate a volatile product in a curing reaction by heat treatment. .

本発明の塗装方法では、前記未硬化積層塗膜の揮発分濃度を3.5質量%以下に低減した後、[前記最上層用塗料の硬化温度−20℃]以上の温度で熱処理して少なくとも前記最上層用塗料を硬化させることが好ましい。また、前記未硬化積層塗膜に、[前記最上層用塗料の硬化温度−20℃]未満の温度で熱処理を施し、次いで[前記最上層用塗料の硬化温度−20℃]以上の温度で熱処理を施すことも好ましい。   In the coating method of the present invention, the volatile content concentration of the uncured laminated coating film is reduced to 3.5% by mass or less, and then heat-treated at a temperature of [the curing temperature of the top layer coating material—20 ° C.] or higher. It is preferable to cure the uppermost layer coating material. Further, the uncured laminated coating film is subjected to a heat treatment at a temperature lower than [the curing temperature of the uppermost layer paint −20 ° C.], and then subjected to a heat treatment at a temperature equal to or higher than the curing temperature of the uppermost layer paint −20 ° C. It is also preferable to apply.

本発明の塗装体は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、前記本発明の塗装方法により得られる塗装体であり、肌や光沢など外観品質に優れている。   The coated body of the present invention is a coated body having a laminated coating film comprising at least one lower layer formed on a base material and an uppermost layer formed on the lower layer, and according to the coating method of the present invention. This is a coated product that is excellent in appearance quality such as skin and gloss.

なお、本発明の塗装方法によって2種類以上の塗料をウェットオンウェットで積層して焼き付けた場合にも積層塗膜の表面の凹凸が少なくなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、最上層を含めすべての層で熱硬化型塗料が用いられているため、最上層を形成する熱硬化型塗料を熱処理により硬化させる際にその下層においても熱硬化型塗料が硬化する。このとき、積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により揮発性生成物が生成して残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は各層が十分に流動性を有している間はその流動などにより緩和されるが、各層、特に最上層の流動性が硬化により著しく低下すると凹凸は緩和されず、基材表面や各層の界面の凹凸が最上層表面に転写され、積層塗膜の肌や光沢が悪化することとなる。   In addition, even when two or more kinds of paints are laminated by wet-on-wet and baked by the coating method of the present invention, the reason why the unevenness of the surface of the laminated coating film is not necessarily clear is not certain, but the present inventors I guess as follows. That is, in the conventional multilayer coating film formed by wet-on-wet, thermosetting paint is used in all layers including the uppermost layer. Therefore, when the thermosetting paint forming the uppermost layer is cured by heat treatment, The thermosetting paint is cured also in the lower layer. At this time, in each layer of the laminated coating film, the thermosetting paint is cured by an addition reaction after the condensation reaction or the deblocking reaction of the curing agent. Therefore, a volatile product is generated and remains by this condensation reaction or deblocking reaction. It volatilizes with the solvent to be formed, the laminated coating film shrinks, and irregularities are formed on the coating film surface. The unevenness on the surface of the coating film is alleviated by the flow while each layer has sufficient fluidity, but the unevenness is not alleviated if the fluidity of each layer, particularly the uppermost layer, is significantly reduced by curing. Concavities and convexities at the surface of the material and the interface of each layer are transferred to the surface of the uppermost layer, and the skin and gloss of the laminated coating film deteriorate.

一方、本発明の塗装方法では、下層のうちの少なくとも1層を非硬化型塗料を用いて形成するため、最上層を熱硬化型塗料を用いて形成してもこの熱硬化型塗料を熱処理により硬化させる際に非硬化型塗料を用いて形成した下層では実質的には硬化反応が起こらず、揮発性生成物が実質的に生成しない。その結果、従来のような積層塗膜の収縮に影響を与えるような揮発性生成物の揮発が起こらず、積層塗膜の収縮を残存する溶媒の揮発のみに起因する最小限のものに抑えることができるものと本発明者らは推察する。なお、本発明において、「実質的には揮発性生成物を生成しない」および「揮発性生成物の揮発が実質的には起こらない」には、揮発性生成物の揮発による塗膜の収縮が塗膜の表面平滑性に影響を及ぼさない程度に揮発性生成物が生成および揮発する場合を包含するものとする。具体的には、塗料を熱処理して揮発性生成物が生成して揮発しても塗膜の重量減少率が0.5質量%以下である場合には、この塗料は実質的には揮発性生成物を生成せず、揮発しないものとする。   On the other hand, in the coating method of the present invention, since at least one of the lower layers is formed using a non-curable coating material, even if the uppermost layer is formed using a thermosetting coating material, the thermosetting coating material is subjected to heat treatment. In the lower layer formed by using a non-curing paint when cured, a curing reaction does not substantially occur and a volatile product is not substantially generated. As a result, the volatilization of the volatile product that affects the shrinkage of the conventional multi-layer coating film does not occur, and the shrinkage of the multi-layer coating film is suppressed to the minimum due to only the volatilization of the remaining solvent. The present inventors speculate that this is possible. In the present invention, “substantially does not generate a volatile product” and “volatilization of a volatile product does not substantially occur” includes shrinkage of a coating film due to volatilization of a volatile product. The case where the volatile product is generated and volatilized to such an extent that the surface smoothness of the coating film is not affected is included. Specifically, if the weight reduction rate of the coating film is 0.5% by mass or less even if a volatile product is generated and volatilized by heat-treating the paint, the paint is substantially volatile. It shall not produce product and will not volatilize.

本発明によれば、2種類以上の塗料をウェットオンウェットで積層して焼き付けて高耐久性の確保などのために少なくとも最上層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   According to the present invention, even when at least the uppermost layer is cured for the purpose of ensuring high durability by laminating and baking two or more types of paints on a wet-on-wet basis, a laminated coating film with less irregularities on the surface of the uppermost layer is obtained. Obtainable. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の塗装方法は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料のうちの少なくとも1種類として熱処理により硬化反応を起こさない非硬化型塗料を準備し、且つ、前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とするものである。
The coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A non-curing paint that does not cause a curing reaction by heat treatment is prepared as at least one of the lower-layer paints for forming the lower layer, and a thermosetting type is used as the upper-layer paint for forming the uppermost layer Preparing the paint,
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Applying a heat treatment to the uncured laminated coating to cure at least the uppermost layer coating;
It is characterized by including.

本発明の塗装方法では、基材上に1種類以上の下層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の下層を形成する。次いで、この未硬化の下層の上に最上層用塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の最上層を形成した後、得られた未硬化積層塗膜に熱処理を施して少なくとも前記最上層用塗料を硬化させる。   In the coating method of the present invention, one or more types of lower layer coating materials are applied on a substrate, and a solvent or the like is evaporated by drying or the like as necessary to form an uncured lower layer. Next, the uppermost layer coating material is applied onto the uncured lower layer, and if necessary, the solvent is evaporated by drying or the like to form an uncured uppermost layer. A heat treatment is applied to cure at least the uppermost layer coating material.

基材としては、特に限定されず、例えば、金属(鉄、銅、アルミニウム、錫、亜鉛およびこれらの金属の合金など)、鋼板、プラスチック、発泡体、紙、木、布、ガラスなどが挙げられる。中でも、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面は、予め電着塗装などの処理が施されていてもよい。   The substrate is not particularly limited, and examples thereof include metals (iron, copper, aluminum, tin, zinc and alloys of these metals), steel plates, plastics, foams, paper, wood, cloth, glass, and the like. . Especially, this invention is applied suitably for the steel plate for motor vehicles with the required characteristic with respect to external appearance quality. These substrate surfaces may be subjected to a treatment such as electrodeposition coating in advance.

本発明の塗装方法では、基材上に少なくとも1層の下層を形成するが、前記下層のうちの少なくとも1層は下層用塗料として熱処理により硬化反応を起こさない非硬化型塗料を用いて形成される。具体的には、下層が1層の場合にはこの下層を非硬化型塗料を用いて形成し、下層が2層以上の場合にはそれらのうちの少なくとも1層を非硬化型塗料を用いて形成する。下層が2層以上の場合、積層塗膜の収縮が低減できる点ですべての下層が非硬化型塗料を用いて形成されることが好ましい。   In the coating method of the present invention, at least one lower layer is formed on the substrate, but at least one of the lower layers is formed using a non-curable coating that does not cause a curing reaction by heat treatment as the lower layer coating. The Specifically, when the lower layer is a single layer, this lower layer is formed using a non-curable paint, and when the lower layer is two or more layers, at least one of them is formed using a non-curable paint. Form. When there are two or more lower layers, it is preferable that all lower layers are formed using a non-curable coating material in that the shrinkage of the laminated coating film can be reduced.

熱処理により硬化反応を起こさない非硬化型塗料は、熱処理により実質的に硬化反応を起こさないものであればよく、使用する最上層用塗料の硬化温度における重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような熱処理による重量減少率が小さい非硬化型塗料を用いると最上層の流動性が硬化により著しく低下した後の積層塗膜の収縮を小さくできる傾向にある。さらにこのような観点から塗膜形成可能な樹脂を含み硬化剤を含まない塗料が最も好ましい。非硬化型塗料の形態は、溶剤型、水性のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性が好ましい。   The non-curing coating material that does not cause a curing reaction by heat treatment may be any material that does not substantially cause a curing reaction by heat treatment, and the weight reduction rate at the curing temperature of the coating material for the uppermost layer to be used is 0.5% by mass or less. Are preferred, those with a mass of 0.3% or less are more preferred, and those with a mass of 0.1% or less are particularly preferred. When a non-curing coating material having a small weight reduction rate due to such heat treatment is used, the shrinkage of the laminated coating film after the fluidity of the uppermost layer is remarkably lowered by curing tends to be reduced. Further, from such a viewpoint, a paint containing a resin capable of forming a coating film and containing no curing agent is most preferable. The form of the non-curable coating material may be either solvent-based or water-based, but water-based is preferable in that the amount of volatile organic compounds discharged can be reduced.

なお、本発明において、「塗料の硬化温度」とは、対象とする塗料を基材上に塗装して熱処理を施し塗膜を硬化せしめて基材上に定着させるために硬化時間などの硬化条件との関係で最も効率よく硬化できる温度をいい、一般的には塗料毎に設定(設計)されている焼付温度をいう。本発明では、この硬化温度(焼付温度)としてカタログ値を採用することができる。また、「塗料の重量減少率」は、以下の方法により測定される値である。すなわち、対象とする塗料を熱処理後の膜厚が積層塗膜での目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度よりも40℃低い温度および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度で30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出する。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。 In the present invention, the “coating temperature of the paint” refers to a curing condition such as a curing time for coating the target paint on the base material and applying a heat treatment to cure the coating film and fix it on the base material. The temperature at which curing can be performed most efficiently is generally referred to, and generally the baking temperature set (designed) for each paint. In the present invention, a catalog value can be adopted as the curing temperature (baking temperature). The “weight reduction rate of the paint” is a value measured by the following method. That is, the target paint was coated on the aluminum foil so that the film thickness after heat treatment was the target film thickness in the laminated coating film, and the obtained aluminum foil sample was 40 ° C. higher than the curing temperature of the top layer paint. After drying at a low temperature and a vacuum condition of 10 −2 Torr or less for 90 minutes, a gas chromatograph / mass spectrometer (for example, 6890GC / 5975MSD manufactured by Agilent) equipped with a thermal desorption introduction device (for example, Thermal Desorption System manufactured by GERSTEL) is used. The volatile product amount (Rc (unit: g)) and the residual solvent amount are quantified by heating at the curing temperature of the uppermost layer coating material for 30 minutes, and the weight reduction rate is calculated by equation (1). This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.

重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値(カタログ値など)を採用できる。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the value (catalog value etc.) of the recipe of a coating material can be employ | adopted for the mass of a pigment.

また、本発明に用いられる非硬化型塗料としては、使用する最上層用塗料のゲル化開始時における相対損失弾性率が1s−2以下である塗料が好ましい傾向にある。なお、「最上層用塗料のゲル化開始時における相対損失弾性率」とは、以下の方法により測定される相対損失弾性率で定義されるものである。すなわち、先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に熱硬化処理後の膜厚が35±5μmとなるように塗布する。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込む。 In addition, as the non-curable paint used in the present invention, a paint having a relative loss elastic modulus of 1 s −2 or less at the start of gelation of the uppermost layer paint to be used tends to be preferable. The “relative loss elastic modulus at the start of gelation of the uppermost layer coating material” is defined by the relative loss elastic modulus measured by the following method. That is, first, the uppermost layer coating material is applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after the thermosetting treatment is 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The uppermost layer coating material is applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定する。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施する。測定時の温度プログラムは、室温(25℃)から最上層用塗料の硬化温度まで昇温速度20±4℃/分で昇温し、その後、前記硬化温度を維持するように設定する。 In this way, the relative storage elastic modulus (E r ′) of the coating film is measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material is formed. The measurement is carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with an annular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° is attached. The temperature program at the time of measurement is set so that the temperature is increased from room temperature (25 ° C.) to the curing temperature of the uppermost layer coating material at a rate of temperature increase of 20 ± 4 ° C./min, and then the curing temperature is maintained.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットすると、図1に示すように、時間の経過に従って下に凸の曲線から上に凸の曲線に変化する(以下、この変化する時点を「変曲点」という)という結果が得られる。この変曲点から15分間の部分について下記式(2):
’=A〔1−exp{k(t−t}〕 (2)
(式(2)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片tを求める。このtは、測定を開始してから最上層用塗料がゲル化を開始するまでの時間を表す。
When the measured value of the relative storage elastic modulus (E r ′) obtained is plotted with respect to time, as shown in FIG. 1, the curve changes from a downward convex curve to an upward convex curve as time elapses (hereinafter referred to as “protruding curve”). This change time is called “inflection point”. The following equation (2) for a portion of 15 minutes from this inflection point:
E r '= A [1-exp {k (t−t d }] (2)
(In formula (2), A and k are constants, and t represents time.)
And the time axis intercept t d is obtained by a nonlinear least square method. The t d represents the time from the start of measurement to the uppermost layer-coating material starts to gel.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を測定する。この測定結果から前記時間tにおける相対損失弾性率(E”)を求め、これを「最上層用塗料のゲル化開始時における相対損失弾性率」とする。 Next, for the lower layer coating material, a coating film is formed in the same manner as in the uppermost layer coating material, and the relative loss modulus (E r ″) is measured under the same conditions as in the uppermost layer coating material. From this measurement result, the relative loss elastic modulus (E r ″) at the time t d is obtained, and this is defined as “relative loss elastic modulus at the start of gelation of the uppermost layer coating material”.

なお、前記相対貯蔵弾性率(E’)および前記相対損失弾性率(E”)は、それぞれ一般的な貯蔵弾性率(E’)および相対損失弾性率(E”)と下記式:
’=BE’
”=BE”
で関連付けることができる。ここで、Bは測定条件によって決まる値あり、下記式:
B=(bhcosφ)/(Isinθ)
(式中、bは塗膜とナイフエッジとが接する長さ[単位:m]を示し、hは塗膜の膜厚[単位:m]を示し、φは静止した振子のナイフエッジ面と基材(上記の場合はステンレス鋼板)の表面とがなす角度を示し、Iは振子の刃先を軸とした回転慣性モーメント[単位:kg・m]を示す)
で表されるものである。したがって、測定条件が固定されればBは一定値となる。
The relative storage elastic modulus (E r ′) and the relative loss elastic modulus (E r ″) are respectively the general storage elastic modulus (E ′) and the relative loss elastic modulus (E ″) and the following formula:
E r '= BE'
E r "= BE"
Can be associated with. Here, B is a value determined by measurement conditions, and the following formula:
B = (bh 2 cos φ) / (I sin 3 θ)
(In the formula, b represents the length [unit: m] where the coating film and the knife edge are in contact, h represents the film thickness [unit: m] of the coating film, and φ represents the knife edge surface and the base of the stationary pendulum. Indicates the angle formed by the surface of the material (stainless steel plate in the above case), and I indicates the rotational moment of inertia [unit: kg · m 2 ] around the pendulum blade edge)
It is represented by Therefore, if measurement conditions are fixed, B becomes a constant value.

前記非硬化型塗料に含まれる塗膜形成可能な樹脂としては、それ単独では熱処理により硬化反応を起こさない樹脂であればよく、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料などから硬化剤を除いた樹脂成分、具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂の中から熱処理により硬化反応を起こさないものを2種以上選択して併用してもよい。   The resin capable of forming a coating film contained in the non-curable coating material may be a resin that does not cause a curing reaction by heat treatment alone. For example, an intermediate coating material or a base described in JP-A-2004-275966 Examples of the resin component excluding the curing agent from the paint and the like, specifically, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, a urethane resin, and the like, are not limited thereto. Two or more of these resins that do not cause a curing reaction by heat treatment may be selected and used in combination.

また、本発明にかかる非硬化型塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   In addition, the non-curable paint according to the present invention may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明では、下層が2層以上の場合、少なくとも1層が前記非硬化型塗料を用いて形成された層であれば、残りの層は熱硬化型塗料を用いて形成してもよい。   In the present invention, when there are two or more lower layers, as long as at least one layer is a layer formed using the non-curable paint, the remaining layers may be formed using a thermosetting paint.

下層用熱硬化型塗料としては、通常の焼付塗装に使用される熱硬化型塗料が使用でき、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料などが挙げられる。下層用熱硬化型塗料の形態は、溶剤型、水性のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性が好ましい。また、下層用熱硬化型塗料は、熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる観点から、使用する最上層用塗料の硬化温度における重量減少率が小さいものほど好ましい。   As the thermosetting paint for the lower layer, a thermosetting paint used in ordinary baking coating can be used, and examples thereof include an intermediate paint and a base paint described in JP-A-2004-275966. The form of the thermosetting paint for the lower layer may be either a solvent type or an aqueous type, but an aqueous type is preferred in that the amount of volatile organic compounds discharged can be reduced. In addition, the thermosetting paint for the lower layer reduces the weight at the curing temperature of the uppermost layer paint used from the viewpoint of minimizing the shrinkage of the coating after the uppermost layer is cured by heat treatment and the fluidity is significantly reduced. A smaller rate is preferred.

下層用熱硬化型塗料の具体例としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂と、アミン化合物、アミノ樹脂、イソシアネート化合物、イソシアネート樹脂などの硬化剤とを含む熱硬化型塗料が挙げられるが、これらに限定されるものではない。また、前記熱硬化性樹脂および前記硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。   Specific examples of the thermosetting paint for the lower layer include thermosetting resins such as acrylic resins, polyester resins, alkyd resins, epoxy resins and urethane resins, and curing agents such as amine compounds, amino resins, isocyanate compounds and isocyanate resins. However, the present invention is not limited to these. Moreover, the thermosetting resin and the curing agent may be used alone or in combination of two or more.

下層用熱硬化型塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   The thermosetting paint for the lower layer may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明では最上層用塗料として熱硬化型塗料を使用する。この最上層用熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂および硬化剤(例えば、前記熱硬化性樹脂の官能基と反応可能な官能基を2個以上有する化合物や樹脂)を含むものであればよく、通常の焼付塗装の最上層用塗料として使用される熱硬化型塗料(例えば、特開2004−275966号公報に記載のクリア塗料など)が挙げられる。その形態は溶剤型、水性、粉体のいずれでもよい。   In the present invention, a thermosetting paint is used as the paint for the uppermost layer. As the thermosetting paint for the uppermost layer, a thermosetting resin capable of forming a coating film and a curing agent (for example, a compound or resin having two or more functional groups capable of reacting with the functional group of the thermosetting resin). Any thermosetting paint (for example, clear paint described in JP-A-2004-275966) used as an uppermost-layer paint for ordinary baking coating may be used. The form may be any of solvent type, aqueous type and powder.

最上層用熱硬化型塗料の硬化温度は、特に限定されないが、通常40〜200℃、好ましくは60〜160℃である。   The curing temperature of the uppermost layer thermosetting paint is not particularly limited, but is usually 40 to 200 ° C, preferably 60 to 160 ° C.

最上層用塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。好ましい硬化剤としてはアミン化合物、アミノ樹脂、イソシアネート化合物、およびイソシアネート樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film contained in the uppermost layer-coating material include acrylic resins, polyester resins, alkyd resins, epoxy resins, and urethane resins, but are not limited thereto. Preferred curing agents include, but are not limited to, amine compounds, amino resins, isocyanate compounds, and isocyanate resins. These resins and curing agents may be used alone or in combination of two or more.

本発明の塗装方法では、前記最上層用塗料は熱処理による硬化反応において実質的に揮発性生成物を生成しない塗料であることが好ましい。このような塗料としてはその硬化温度における重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい熱硬化型塗料を最上層用塗料として使用すると熱処理による塗膜の収縮を最小限にすることができる傾向にある。また、このような観点から揮発性生成物を生成しない塗料(重量減少率が0質量%)が最も好ましい。   In the coating method of the present invention, the uppermost layer-coating material is preferably a coating material that does not substantially generate a volatile product in a curing reaction by heat treatment. Such a coating material preferably has a weight reduction rate of 0.5% by mass or less at the curing temperature, more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. When such a thermosetting paint having a small weight reduction rate is used as the uppermost layer paint, shrinkage of the coating film due to heat treatment tends to be minimized. From this point of view, a paint that does not generate a volatile product (weight reduction rate of 0% by mass) is most preferable.

熱処理による硬化反応において揮発性生成物を生成しない前記熱硬化性樹脂と前記硬化剤との組み合わせとしては、水酸基含有アクリル樹脂とイソシアネート化合物および/またはイソシアネート樹脂との組み合わせ、エポキシ基含有アクリル樹脂と多価カルボン酸化合物および/またはカルボキシル基含有樹脂との組み合わせなどが挙げられる。   The combination of the thermosetting resin that does not generate a volatile product in the curing reaction by heat treatment and the curing agent includes a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin, an epoxy group-containing acrylic resin, and a combination. Examples thereof include a combination with a polyvalent carboxylic acid compound and / or a carboxyl group-containing resin.

更に、前記最上層用塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   Further, the uppermost layer coating material may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明の塗装方法では、先ず、前記基材上に前記下層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の下層を形成する。このとき、下層が1層の場合にはこの下層を前記非硬化型塗料を用いて形成する。下層が2層以上の場合には少なくとも1層を前記非硬化型塗料を用いて形成し、残りの層は下層用熱硬化型塗料を用いて形成することができるが、積層塗膜の収縮を最小限にできる点ですべての下層を前記非硬化型塗料を用いて形成することが好ましい。また、下層を2層以上形成する場合、非硬化型塗料を用いた層はいずれの位置に形成してもよい。   In the coating method of the present invention, first, the lower layer coating material is applied onto the substrate, and if necessary, the solvent is evaporated by drying or the like to form an uncured lower layer. At this time, when the lower layer is a single layer, the lower layer is formed using the non-curable paint. When there are two or more lower layers, at least one layer can be formed using the non-curable paint, and the remaining layers can be formed using the lower layer thermosetting paint. It is preferable to form all the lower layers using the non-curable coating material in that it can be minimized. Moreover, when forming two or more lower layers, you may form the layer using a non-hardening-type paint in any position.

下層用塗料を塗布する際、非硬化型塗料および熱硬化型塗料のいずれの塗料を使用する場合でもエアー静電スプレー塗装や回転霧化式静電塗装などの従来公知の方法を適用することができる。   When applying the coating for the lower layer, it is possible to apply a conventionally known method such as air electrostatic spray coating or rotary atomizing electrostatic coating regardless of whether a non-curable coating or a thermosetting coating is used. it can.

下層の各層の膜厚は所望の用途により適宜設定することができるが、例えば、熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。各下層の膜厚が前記下限未満では均一な下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると最上層の塗膜に含まれる溶媒などを多く吸収する傾向にあるとともにその層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   The film thickness of each lower layer can be appropriately set depending on the desired application. For example, the film thickness after heat treatment is preferably 5 to 50 μm, more preferably 10 to 40 μm. If the film thickness of each lower layer is less than the lower limit, it tends to be difficult to obtain a uniform lower layer coating film.On the other hand, if it exceeds the upper limit, it tends to absorb a large amount of the solvent contained in the uppermost layer coating film. Volatilization of the solvent contained in the layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

次に、前記未硬化の下層の上に前記最上層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の最上層を形成する。最上層用塗料の塗布方法としては、エアー静電スプレー塗装や回転霧化式静電塗装などの従来公知の方法が挙げられる。   Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent is evaporated by drying or the like to form an uncured uppermost layer. Conventionally known methods such as air electrostatic spray coating and rotary atomizing electrostatic coating can be used as the coating method for the uppermost layer coating material.

最上層の膜厚は所望の用途により適宜設定することができるが、例えば、熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。最上層の膜厚が前記下限未満では流動性が不十分であり積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると流動性が過度に大きくなり鉛直方向に塗装する場合にはタレなどの欠陥が発生する傾向にある。   The film thickness of the uppermost layer can be appropriately set depending on the desired application. For example, the film thickness after heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. When the film thickness of the uppermost layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate. On the other hand, when the upper limit is exceeded, the fluidity becomes excessively large and the coating is applied in the vertical direction. There is a tendency for defects such as sagging to occur.

このようにして、前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して形成された未硬化積層塗膜に熱処理を施して少なくとも前記最上層用塗料を硬化させる。本発明の塗装方法において、前記熱処理は、少なくとも最上層が硬化する温度以上、例えば[前記最上層用塗料の硬化温度−20℃]以上の温度での加熱処理(以下、「高温加熱処理」という)を含んでいることが好ましい。   In this manner, at least the uppermost layer coating material is cured by applying heat treatment to the uncured laminated coating film formed by laminating the lower layer coating material and the uppermost layer coating material by wet-on-wet. In the coating method of the present invention, the heat treatment is a heat treatment (hereinafter referred to as “high temperature heat treatment”) at a temperature higher than at least the temperature at which the uppermost layer is cured, for example, [the curing temperature of the paint for the uppermost layer−20 ° C.]. ) Is preferably included.

高温加熱温度は、さらに、[前記最上層用塗料の硬化温度±20℃]の範囲の温度が好ましい。具体的には、最上層用塗料の硬化温度が140℃の場合、高温加熱温度は120℃以上であることが好ましく、120℃以上160℃以下であることが好ましい。高温加熱時間は最上層用塗料の硬化時間の50%以上150%以下であることが好ましく、60%以上100%以下であることが好ましい。具体的には、最上層用塗料の硬化時間が30分の場合、高温加熱時間は15分以上45分以下であることが好ましく、18分以上30分以下であることが好ましい。   Further, the high temperature heating temperature is preferably in a range of [the curing temperature of the top layer coating material ± 20 ° C.]. Specifically, when the curing temperature of the uppermost layer-coating material is 140 ° C., the high temperature heating temperature is preferably 120 ° C. or higher, and preferably 120 ° C. or higher and 160 ° C. or lower. The high temperature heating time is preferably 50% or more and 150% or less, and preferably 60% or more and 100% or less, of the curing time of the uppermost layer coating material. Specifically, when the curing time of the uppermost layer-coating material is 30 minutes, the high-temperature heating time is preferably 15 minutes to 45 minutes, and more preferably 18 minutes to 30 minutes.

また、本発明の塗装方法では、前記高温加熱処理を施す前に最上層を硬化させずに積層塗膜の揮発分濃度を好ましくは3.5質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下に低減する。これにより高温加熱処理により最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮を最小限にすることができる傾向にある。なお、本発明において、「積層塗膜の揮発分濃度」は、式(3)より算出される値である。   Further, in the coating method of the present invention, the volatile content concentration of the laminated coating film is preferably 3.5% by mass or less, more preferably 3% by mass or less, particularly without curing the uppermost layer before performing the high temperature heat treatment. Preferably, it is reduced to 2% by mass or less. This tends to minimize the shrinkage of the laminated coating after the uppermost layer is cured by heat treatment and the fluidity is significantly reduced. In the present invention, the “volatile content of the laminated coating film” is a value calculated from the formula (3).

V=(Wt−We)/Wt×100 (3)
式(3)中、Vは積層塗膜の揮発分濃度(単位:質量%)、Wtは任意の熱処理時間tにおける積層塗膜の質量(単位:g)、Weは熱処理終了時の積層塗膜の質量(単位:g)である。
V = (Wt−We) / Wt × 100 (3)
In formula (3), V is the volatile content concentration (unit: mass%) of the laminated coating film, Wt is the mass (unit: g) of the laminated coating film at an arbitrary heat treatment time t, and We is the laminated coating film at the end of the heat treatment. Mass (unit: g).

最上層を硬化させずに積層塗膜の揮発分濃度を低減する方法としては、[前記最上層用塗料の硬化温度−20℃]未満の温度で加熱処理(以下「低温加熱処理」という)を施す方法が好ましい。低温加熱温度は、さらに[前記最上層用塗料の硬化温度−30℃]未満の温度が好ましく、[前記最上層用塗料の硬化温度−40℃]未満の温度が特に好ましい。具体的には、最上層用塗料の硬化温度が140℃の場合、低温加熱温度は120℃未満であることが好ましく、110℃未満であることがより好ましく、100℃未満であることが特に好ましい。低温加熱時間は最上層用塗料の硬化時間の10%以上50%未満であることが好ましく、20%以上40%以下であることが好ましい。具体的には、最上層用塗料の硬化時間が30分の場合、低温加熱時間は3分以上15分以下であることが好ましく、6分以上12分以下であることが好ましい。前記低温加熱温度および低温加熱時間の範囲で未硬化積層塗膜を熱処理すると最上層を実質的には硬化させずに積層塗膜の揮発分濃度を低減することができる傾向にある。   As a method of reducing the volatile content concentration of the laminated coating film without curing the uppermost layer, heat treatment (hereinafter referred to as “low temperature heat treatment”) at a temperature lower than [the curing temperature of the uppermost layer coating material—20 ° C.] The method of applying is preferred. Further, the low-temperature heating temperature is preferably less than [the curing temperature of the uppermost layer paint −30 ° C.], particularly preferably less than [the curing temperature of the uppermost layer paint −40 ° C.]. Specifically, when the curing temperature of the paint for the uppermost layer is 140 ° C., the low temperature heating temperature is preferably less than 120 ° C., more preferably less than 110 ° C., and particularly preferably less than 100 ° C. . The low temperature heating time is preferably 10% or more and less than 50%, and preferably 20% or more and 40% or less of the curing time of the uppermost layer coating material. Specifically, when the curing time of the uppermost layer-coating material is 30 minutes, the low-temperature heating time is preferably 3 minutes to 15 minutes, and more preferably 6 minutes to 12 minutes. When the uncured laminated coating film is heat-treated in the range of the low temperature heating temperature and the low temperature heating time, the volatile content concentration of the laminated coating film tends to be reduced without substantially curing the uppermost layer.

さらに、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化状態の塗膜を安定させるために、前記熱処理前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。   Furthermore, in the coating method of the present invention, in order to stabilize the uncured coating film laminated by wet-on-wet, it is preferable to leave it at room temperature (setting) before the heat treatment. The setting time is usually set to 1 to 20 minutes.

また、本発明において、さらに高級な外観を有する塗装体を得るためには、前記塗装方法により得られた塗装体の前記最上層の上にさらに1種以上の塗料を塗布して硬化処理を施し、表面層を形成することが好ましい。前記塗料としては、前記最上層用塗料として例示したものを使用することができる。また、前記塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法が挙げられる。   In the present invention, in order to obtain a coated body having a higher-grade appearance, one or more kinds of paints are further applied on the uppermost layer of the coated body obtained by the coating method and subjected to a curing treatment. It is preferable to form a surface layer. As the coating material, those exemplified as the top layer coating material can be used. Examples of the method for applying the paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

本発明の塗装体は、前記本発明の塗装方法により製造されたものであり、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも少なく、外観品質に優れている。このような塗装体は、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品として有用である。   The coated body of the present invention is manufactured by the coating method of the present invention, and has fewer irregularities on the surface of the multilayer coating film than the conventional multilayer coating film manufactured by wet-on-wet, and is excellent in appearance quality. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、最上層用塗料のゲル化開始時における下層用塗料の相対損失弾性率および塗料の熱処理による重量減少率は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The relative loss elastic modulus of the lower layer paint and the weight reduction rate due to heat treatment of the lower layer paint at the start of gelation of the uppermost layer paint were measured by the following methods.

(最上層用塗料のゲル化開始時における下層用塗料の相対損失弾性率)
先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に熱処理後の膜厚が35±5μmとなるように塗布した。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込んだ。
(Relative loss elastic modulus of the lower layer paint at the start of gelation of the uppermost layer paint)
First, the uppermost layer-coating material was applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after heat treatment was 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The top layer paint was applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定した。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施した。測定時の温度プログラムは、室温(25℃)から最上層用塗料の硬化温度まで昇温速度20±4℃/分で昇温し、その後、前記硬化温度を維持するように設定した。 In this way, the relative storage elastic modulus (E r ′) of the coating film was measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material was formed. The measurement was carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with a circular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° was attached. The temperature program at the time of measurement was set so that the temperature was raised from room temperature (25 ° C.) to the curing temperature of the uppermost layer coating material at a rate of temperature increase of 20 ± 4 ° C./min, and then the curing temperature was maintained.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットし、上記した変曲点から15分間の部分について下記式(2):
’=A〔1−exp{k(t−t}〕 (2)
(式(2)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片、すなわち測定を開始してから最上層用塗料がゲル化を開始するまでの時間tを求めた。
The measured value of the relative storage elastic modulus (E r ′) obtained was plotted against time, and the following equation (2) for the portion of 15 minutes from the above inflection point:
E r '= A [1-exp {k (t−t d }] (2)
(In formula (2), A and k are constants, and t represents time.)
And the time axis intercept, that is, the time t d from the start of measurement to the start of gelation of the uppermost layer coating was obtained by the non-linear least square method.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を測定した。この測定結果から前記時間tにおける相対損失弾性率(E”)を求め、これを「最上層用塗料のゲル化開始時における相対損失弾性率」とした。 Next, for the lower layer coating material, a coating film is formed in the same manner as in the uppermost layer coating material, and the relative loss modulus (E r ″) is measured under the same conditions as in the uppermost layer coating material. From this measurement result, the relative loss elastic modulus (E r ″) at the time t d was obtained, and this was defined as “relative loss elastic modulus at the start of gelation of the uppermost layer coating material”.

(重量減少率の測定)
対象とする塗料を熱処理後の膜厚が積層塗膜の目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度よりも40℃低い温度および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて最上層用塗料の硬化温度で30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(1)により重量減少率を算出した。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。
(Measurement of weight loss rate)
The target paint is coated on the aluminum foil so that the film thickness after the heat treatment becomes the target film thickness of the laminated coating film, and the obtained aluminum foil sample is at a temperature 40 ° C. lower than the curing temperature of the uppermost layer paint. After drying for 90 minutes under a vacuum condition of 10 −2 Torr or less, using a gas chromatograph / mass spectrometer (for example, 6890GC / 5975MSD manufactured by Agilent) equipped with a thermal desorption introducing device (for example, Thermal Destruction System manufactured by GERSTEL) The amount of volatile products (Rc (unit: g)) and the amount of residual solvent were quantified by heating at the curing temperature of the upper layer coating material for 30 minutes, and the weight reduction rate was calculated by equation (1). This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.

重量減少率=100×Rc/W×100/(100−P) (1)
式(1)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)であり、Pはその塗膜100gに含まれる顔料の質量(単位:g)である。なお、顔料の質量は塗料の配合表の値を使用した。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (1)
In formula (1), W is the mass (unit: g) of the coating film obtained in the vacuum drying step, and P is the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the mass of the pigment used the value of the coating composition table.

(合成例1)アクリル樹脂Aの合成
メタクリル酸4.5質量部、アクリル酸エチル26.0質量部、水酸基含有モノマー(ダイセル化学工業社製、商品名「プラクセルFM−1」)64.5質量部、メチルスチレンダイマー(三井東圧化学社製、商品名「MSD−100」)5.0質量部およびアゾイソブチロニトリル13.0質量部を混合して混合溶液Aを調製した。
(Synthesis Example 1) Synthesis of Acrylic Resin A 4.5 parts by mass of methacrylic acid, 26.0 parts by mass of ethyl acrylate, a hydroxyl group-containing monomer (manufactured by Daicel Chemical Industries, Ltd., trade name “Placcel FM-1”) 64.5 parts by mass Part of the mixture, 5.0 parts by mass of methylstyrene dimer (trade name “MSD-100”, manufactured by Mitsui Toatsu Chemical Co., Ltd.) and 13.0 parts by mass of azoisobutyronitrile were prepared.

攪拌機、温度調節器および還流冷却管を備えた反応容器にキシレン82.0質量部を仕込み、次いで前記混合溶液Aのうちの20.0質量部を加え、攪拌しながら加熱して温度を上昇させた。その後、還流させながら前記混合溶液Aの残り93.0質量部を3時間かけて滴下して、次いでアゾイソブチロニトリル1.0質量部およびキシレン12.0質量部からなる溶液を30分間かけて滴下して反応を行なった。得られた反応溶液をさらに1時間攪拌しながら還流させ、数平均分子量2000のアクリル樹脂Aを含む樹脂溶液Aを得た。この樹脂溶液Aを固形分濃度が75質量%になるまでエバポレータで脱溶媒し、アクリル樹脂ワニスAを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of xylene, and then 20.0 parts by mass of the mixed solution A was added and heated while stirring to raise the temperature. It was. Thereafter, the remaining 93.0 parts by mass of the mixed solution A was dropped over 3 hours while refluxing, and then a solution consisting of 1.0 part by mass of azoisobutyronitrile and 12.0 parts by mass of xylene was added over 30 minutes. The reaction was carried out dropwise. The obtained reaction solution was further refluxed with stirring for 1 hour to obtain a resin solution A containing an acrylic resin A having a number average molecular weight of 2000. The resin solution A was desolvated with an evaporator until the solid content concentration became 75% by mass to obtain an acrylic resin varnish A.

(合成例2)アクリル樹脂Bの合成
アクリル酸5.0質量部、アクリル酸2−ヒドロキシエチル17.0質量部、メタクリル酸n−ブチル66.0質量部、アクリル酸ステアリル12.0質量部およびアゾビスイソブチロニトリル0.8質量部を混合して混合溶液Bを調製した。
(Synthesis Example 2) Synthesis of Acrylic Resin B 5.0 parts by mass of acrylic acid, 17.0 parts by mass of 2-hydroxyethyl acrylate, 66.0 parts by mass of n-butyl methacrylate, 12.0 parts by mass of stearyl acrylate and A mixed solution B was prepared by mixing 0.8 part by mass of azobisisobutyronitrile.

攪拌機、温度調節器および還流冷却管を備えた反応容器にイソプロピルアルコール82.0質量部を仕込み、窒素置換した後、温度80℃まで加熱した。次いで前記混合溶液B(100.8質量部)を5時間かけて滴下した後、1時間攪拌を継続して数平均分子量15000のアクリル樹脂Bを含む樹脂溶液Bを得た。この樹脂溶液Bを固形分濃度が80質量%になるまでエバポレータで脱溶媒した後、ジメチルエタノールアミン6.0質量部およびイオン交換水36.0質量部を添加し、固形分濃度60質量%のアクリル樹脂ワニスBを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of isopropyl alcohol, purged with nitrogen, and then heated to a temperature of 80 ° C. Next, after the mixed solution B (100.8 parts by mass) was dropped over 5 hours, stirring was continued for 1 hour to obtain a resin solution B containing an acrylic resin B having a number average molecular weight of 15000. After this resin solution B was desolvated with an evaporator until the solid content concentration reached 80% by mass, 6.0 parts by mass of dimethylethanolamine and 36.0 parts by mass of ion-exchanged water were added to obtain a solid content concentration of 60% by mass. An acrylic resin varnish B was obtained.

(調製例1)熱硬化型水性中塗り塗料Aの調製
反応容器に合成例1で作製した固形分濃度75質量%のアクリル樹脂ワニスAを337質量部と酸化チタン(石原産業社製、商品名「CR−93」)1000質量部とカーボンブラック(デグサ社製、商品名「FW−200P」)10質量部とを仕込み、次いで酢酸ブチル163質量部とキシレン84質量部とを添加した。その後、仕込み全質量と同じ質量のガラスビーズ(粒径1.6mm)を投入し、卓上SGミルで3時間分散した。グラインドゲージによる分散終了時の粒度は5μm以下であった。その後、キシレン84質量部を添加した後、ガラスビーズを濾別し、顔料ペーストを作製した。この顔料ペーストに、前記アクリル樹脂ワニスAとメラミン樹脂(サイテック社製、商品名「サイメル254」)とをアクリル樹脂とメラミン樹脂との固形分質量比が10:1.5になるように、且つ中塗り塗膜中の顔料濃度が50.0質量%になるように添加し、イオン交換水で希釈して固形分濃度が50質量%の熱硬化型水性中塗り塗料Aを調製した。この熱硬化型水性中塗り塗料Aの硬化温度は140℃であり、140℃での重量減少率は1.6質量%(P=50.0として算出)であった。
(Preparation example 1) Preparation of thermosetting aqueous intermediate coating material A 337 parts by mass of acrylic resin varnish A having a solid content concentration of 75% by mass prepared in Synthesis Example 1 and titanium oxide (made by Ishihara Sangyo Co., Ltd., trade name) "CR-93") 1000 parts by mass and carbon black (manufactured by Degussa, trade name "FW-200P") 10 parts by mass were charged, and then 163 parts by mass of butyl acetate and 84 parts by mass of xylene were added. Thereafter, glass beads (particle diameter 1.6 mm) having the same mass as the total mass charged were charged and dispersed for 3 hours with a desktop SG mill. The particle size at the end of dispersion by a grind gauge was 5 μm or less. Thereafter, 84 parts by mass of xylene was added, and then the glass beads were separated by filtration to prepare a pigment paste. In this pigment paste, the acrylic resin varnish A and the melamine resin (product name “Cymel 254”, manufactured by Cytec Co., Ltd.) are added so that the solid content mass ratio of the acrylic resin to the melamine resin is 10: 1.5, and It was added so that the pigment concentration in the intermediate coating film was 50.0% by mass and diluted with ion-exchanged water to prepare a thermosetting aqueous intermediate coating material A having a solid content concentration of 50% by mass. The curing temperature of the thermosetting aqueous intermediate coating material A was 140 ° C., and the weight reduction rate at 140 ° C. was 1.6% by mass (calculated as P = 50.0).

(調製例2)熱硬化型水性中塗り塗料Bの調製
前記アクリル樹脂ワニスAとメラミン樹脂(サイテック社製、商品名「サイメル254」)とをアクリル樹脂とメラミン樹脂との固形分質量比が10:3になるように使用した以外は調製例1と同様にして固形分濃度が50質量%の熱硬化型水性中塗り塗料Bを調製した。この熱硬化型水性中塗り塗料Bの硬化温度は140℃であり、140℃での重量減少率は3.3質量%(P=50.0として算出)であった。
(Preparation Example 2) Preparation of thermosetting water-based intermediate coating material B The acrylic resin varnish A and melamine resin (made by Cytec Co., Ltd., trade name “Cymel 254”) have a solid mass ratio of 10 to acrylic resin and melamine resin. : A thermosetting aqueous intermediate coating material B having a solid content concentration of 50% by mass was prepared in the same manner as in Preparation Example 1 except that the composition was used so as to be 3. The curing temperature of the thermosetting aqueous intermediate coating material B was 140 ° C., and the weight reduction rate at 140 ° C. was 3.3% by mass (calculated as P = 50.0).

(調製例3)非硬化型水性ベース塗料Aの調製
合成例2で作製した固形分濃度60質量%のアクリル樹脂ワニスBにその固形分質量と同じ質量の1−t−ブトキシ−2−プロパノールを添加し、さらに水性塗料用アルミペーストをベース塗膜中の顔料濃度が17.7質量%になるように添加し、イオン交換水で希釈して固形分濃度が20質量%の非硬化型水性ベース塗料Aを作製した。この非硬化型水性ベース塗料Aの140℃での重量減少率は0質量%であった。
(Preparation example 3) Preparation of non-curable water-based base coating material A To acrylic resin varnish B having a solid content concentration of 60% by mass prepared in Synthesis Example 2, 1-t-butoxy-2-propanol having the same mass as the solid content was added. Further, an aluminum paste for water-based paint is added so that the pigment concentration in the base coating film is 17.7% by mass, diluted with ion-exchanged water, and the solid content concentration is 20% by mass. Paint A was prepared. The weight loss rate of this non-curable water-based base coating material A at 140 ° C. was 0% by mass.

(調製例4)熱硬化型水性ベース塗料Bの調製
合成例2で作製した固形分濃度60質量%のアクリル樹脂ワニスBにメラミン樹脂(サイテック社製、商品名「サイメル325」)をアクリル樹脂とメラミン樹脂との固形分質量比が10:2になるように添加し、さらに水性塗料用アルミペーストをベース塗膜中の顔料濃度が17.7質量%になるように添加し、イオン交換水で希釈して固形分濃度が20質量%の熱硬化型水性ベース塗料Bを作製した。この熱硬化型水性ベース塗料Bの硬化温度は140℃であり、140℃での重量減少率は1.6質量%(P=17.7として算出)であった。
(Preparation Example 4) Preparation of thermosetting water-based base coating material B Melamine resin (product name “Cymel 325” manufactured by Cytec Co., Ltd.) and acrylic resin was added to acrylic resin varnish B having a solid content concentration of 60 mass% prepared in Synthesis Example 2. Add so that the mass ratio of the solid content with the melamine resin is 10: 2, and add the aluminum paste for water-based paint so that the pigment concentration in the base coating film is 17.7% by mass, A thermosetting water-based base coating material B having a solid content concentration of 20% by mass was prepared by dilution. The curing temperature of this thermosetting water-based base coating material B was 140 ° C., and the weight reduction rate at 140 ° C. was 1.6% by mass (calculated as P = 17.7).

(調製例5)熱硬化型水性ベース塗料Cの調製
前記アクリル樹脂ワニスBとメラミン樹脂(サイテック社製、商品名「サイメル325」)とをアクリル樹脂とメラミン樹脂との固形分質量比が10:1になるように使用した以外は調製例4と同様にして固形分濃度が20質量%の熱硬化型水性ベース塗料Cを作製した。この熱硬化型水性ベース塗料Cの硬化温度は140℃であり、140℃での重量減少率は0.8質量%(P=17.7として算出)であった。
(Preparation Example 5) Preparation of thermosetting water-based base coating material C The acrylic resin varnish B and melamine resin (trade name “Cymel 325”, manufactured by Cytec Co., Ltd.) have a solid mass ratio of 10: A thermosetting water-based base coating material C having a solid content concentration of 20% by mass was prepared in the same manner as in Preparation Example 4 except that 1 was used. The curing temperature of this thermosetting water-based base coating material C was 140 ° C., and the weight reduction rate at 140 ° C. was 0.8% by mass (calculated as P = 17.7).

(調製例6)熱硬化型クリア塗料Aの調製
表1に示す割合でポリオール、添加剤および溶剤を混合して2液型の熱硬化型クリア塗料の主剤を調製した。また、前記熱硬化型クリア塗料の硬化剤として表1に示すイソシアネート硬化剤を使用した。実施例1、3〜4および比較例1〜4ではこの主剤と硬化剤とを表1に示す割合で混合したもの(固形分濃度55質量%)を熱硬化型クリア塗料Aとして使用した。この熱硬化型クリア塗料Aの硬化温度は140℃であり、140℃での重量減少率は0質量%であった。
(Preparation Example 6) Preparation of Thermosetting Clear Paint A A polyol, an additive and a solvent were mixed at the ratio shown in Table 1 to prepare a main component of a two-component thermosetting clear paint. Moreover, the isocyanate hardening agent shown in Table 1 was used as a hardening | curing agent of the said thermosetting type clear coating material. In Examples 1, 3 to 4 and Comparative Examples 1 to 4, a mixture (solid content concentration 55% by mass) of the main agent and a curing agent mixed at a ratio shown in Table 1 was used as the thermosetting clear coating material A. The curing temperature of this thermosetting clear paint A was 140 ° C., and the weight reduction rate at 140 ° C. was 0% by mass.

(調製例7)熱硬化型クリア塗料Bの調製
表1に示す割合でポリオール、添加剤および溶剤を混合して2液型の熱硬化型クリア塗料の主剤を調製した。また、イソシアネート硬化剤(Bayer社製、商品名「Desmodur N 3390 Ba/SN」)の固形分100質量部に対してブロック剤として4.3質量部の3,5−ジメチルピラゾールを添加したものを前記熱硬化型クリア塗料の硬化剤として使用した。実施例2ではこの主剤と硬化剤とを表1に示す割合で混合したものを熱硬化型クリア塗料Bとして使用した。この熱硬化型クリア塗料Bの硬化温度は140℃であり、140℃での重量減少率は1.5質量%であった。
(Preparation Example 7) Preparation of thermosetting clear paint B A polyol, an additive and a solvent were mixed in the ratio shown in Table 1 to prepare a main component of a two-component thermosetting clear paint. Moreover, what added 4.3 mass part 3, 5- dimethyl pyrazole as a blocking agent with respect to solid content of 100 mass parts of isocyanate hardening | curing agent (The Bayer company make, brand name "Desmodur N3390 Ba / SN"). Used as a curing agent for the thermosetting clear paint. In Example 2, a mixture obtained by mixing the main agent and the curing agent at a ratio shown in Table 1 was used as the thermosetting clear coating material B. The curing temperature of this thermosetting clear paint B was 140 ° C., and the weight reduction rate at 140 ° C. was 1.5% by mass.

Figure 2009034667
Figure 2009034667

(実施例1)
最上層用塗料として調製例6で調製した熱硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用塗料として調製例3で調製した非硬化型水性ベース塗料A(重量減少率(140℃)=0質量%)を使用した。前記熱硬化型クリア塗料Aのゲル化開始時における前記非硬化型水性ベース塗料Aの相対損失弾性率は0.29s−2であった。
Example 1
The thermosetting clear coating material A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 0% by mass) prepared in Preparation Example 6 was used as the uppermost layer coating material, and the lower layer coating material was prepared in Preparation Example 3. Non-curable water-based base paint A (weight reduction rate (140 ° C.) = 0% by mass) was used. The relative loss elastic modulus of the non-curable aqueous base paint A at the start of gelation of the thermosetting clear paint A was 0.29 s −2 .

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に調製例3で調製した非硬化型水性ベース塗料Aを熱処理後の膜厚が20μmになるように塗装し、80℃で3分間加熱して水および有機溶剤などを揮発させた。次いで、この非硬化型水性ベース塗料Aの層の上に調製例6で調製した熱硬化型クリア塗料Aを熱処理後の膜厚が35μmになるように塗装し、非硬化型水性ベース塗料Aと熱硬化型クリア塗料Aとをウェットオンウェットで積層した未硬化積層塗膜を得た。この未硬化積層塗膜を室温で10分間静置(セッティング)した後、90℃で10分間の加熱処理と140℃で30分間の加熱処理を順次施して熱硬化型クリア塗料Aを硬化させた。この間、所定のタイミングで積層塗膜の質量Wt(単位:g)を測定し、式(3)より積層塗膜の揮発分濃度V(単位:質量%)を算出した。   On the surface of the electrodeposition coating plate (made by Shinto Herberts, trade name “Sucsade 80V Gray”), the non-curable water-based base paint A prepared in Preparation Example 3 is applied so that the film thickness after heat treatment is 20 μm. Heating at 80 ° C. for 3 minutes volatilized water and organic solvent. Next, the thermosetting clear coating material A prepared in Preparation Example 6 was applied onto the layer of the non-curable water-based base coating material A so that the film thickness after heat treatment was 35 μm. An uncured laminated coating film obtained by laminating the thermosetting clear paint A with wet on wet was obtained. The uncured laminated coating film was allowed to stand (setting) at room temperature for 10 minutes, and then subjected to a heat treatment at 90 ° C. for 10 minutes and a heat treatment at 140 ° C. for 30 minutes to cure the thermosetting clear coating material A. . During this time, the mass Wt (unit: g) of the multilayer coating film was measured at a predetermined timing, and the volatile content concentration V (unit: mass%) of the multilayer coating film was calculated from the formula (3).

V=(Wt−We)/Wt×100 (3)
式(3)中、Weは熱処理終了時の積層塗膜の質量(単位:g)である。
V = (Wt−We) / Wt × 100 (3)
In formula (3), We is the mass (unit: g) of the laminated coating film at the end of the heat treatment.

また、前記質量測定とともにウェーブスキャン(BYK−Gardner社製Wave−Scan Dual)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)〕を測定した。これらのウェーブスキャン値は、Waが小さいほど光沢が優れ、Wdが小さいほど肌がよいことを意味する。   In addition, wave scan values [Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc (wavelength 1 to 1 mm) using wave scan (Wave-Scan Dual manufactured by BYK-Gardner) together with the mass measurement]. 3 mm), Wd (wavelength 3 to 10 mm)]. These wave scan values mean that the smaller the Wa, the better the gloss, and the smaller the Wd, the better the skin.

熱処理後の積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

(実施例2)
クリア塗料として前記熱硬化型クリア塗料Aの代わりに調製例7で調製した熱硬化型クリア塗料B(硬化温度=140℃、重量減少率(140℃)=1.5質量%)を用いた以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記熱硬化型クリア塗料Bのゲル化開始時における前記非硬化型水性ベース塗料Aの相対損失弾性率は0.35s−2であった。
(Example 2)
Except for using the thermosetting clear paint B (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 1.5 mass%) prepared in Preparation Example 7 instead of the thermosetting clear paint A as the clear paint. Prepared a laminated coating film in the same manner as in Example 1, and measured V and Wa to Wd. The relative loss elastic modulus of the non-curable water-based base paint A at the start of gelation of the thermosetting clear paint B was 0.35 s −2 .

熱処理後の積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

(比較例1)
ベース塗料として前記非硬化型水性ベース塗料Aの代わりに調製例4で調製した熱硬化型水性ベース塗料B(硬化温度=140℃、重量減少率(140℃)=1.6質量%)を用いた以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記熱硬化型クリア塗料Aのゲル化開始時における前記熱硬化型水性ベース塗料Bの相対損失弾性率は1.1s−2であった。
(Comparative Example 1)
Instead of the non-curable water-based base paint A, the heat-curable water-based base paint B prepared in Preparation Example 4 (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 1.6% by mass) is used as the base paint. A laminated coating film was prepared in the same manner as in Example 1 except that V and Wa to Wd were measured. The relative loss elastic modulus of the thermosetting water-based base coating material B at the start of gelation of the thermosetting clear coating material A was 1.1 s- 2 .

熱処理後の積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

Figure 2009034667
Figure 2009034667

表2に示した結果から明らかなように、非硬化型水性ベース塗料を最上層の下層に使用し、熱処理により脱ブロック反応を伴う硬化反応が起こり収縮する熱硬化型クリア塗料を最上層に使用した本発明の積層塗膜(実施例2)のWa〜Wdはいずれも、熱硬化型水性ベース塗料を最上層の下層に使用し、熱処理による硬化反応において収縮しない熱硬化型クリア塗料を最上層に使用した積層塗膜(比較例1)に比べて小さく、実施例2の積層塗膜は光沢、肌ともに比較例1の積層塗膜よりも優れていることが確認された。また、非硬化型水性ベース塗料を最上層の下層に使用し、熱処理による硬化反応において収縮しない熱硬化型クリア塗料を最上層に使用した積層塗膜(実施例1)のWa〜Wdはいずれも、実施例2の積層塗膜の約1/2、比較例1の積層塗膜の1/2以下であり、実施例1の積層塗膜は光沢、肌ともに非常に優れたものであることが確認された。   As is clear from the results shown in Table 2, a non-curable water-based base paint is used for the lower layer of the uppermost layer, and a thermosetting clear paint that shrinks by heat treatment with a deblocking reaction is used for the uppermost layer. As for Wa to Wd of the laminated coating film of the present invention (Example 2), a thermosetting water-based base coating material is used for the lower layer of the uppermost layer, and a thermosetting clear coating material that does not shrink in the curing reaction by heat treatment is the uppermost layer. It was confirmed that the laminated coating film of Example 2 was superior to the laminated coating film of Comparative Example 1 both in terms of gloss and skin. In addition, Wa to Wd of the laminated coating film (Example 1) in which a non-curable water-based base paint is used for the lower layer of the uppermost layer and a thermosetting clear paint that does not shrink in the curing reaction by heat treatment is used for the uppermost layer. It is about 1/2 of the laminated coating film of Example 2 and 1/2 or less of the laminated coating film of Comparative Example 1, and the laminated coating film of Example 1 is very excellent in both gloss and skin. confirmed.

図2に示すように、90℃での熱処理で実施例1の積層塗膜は揮発分濃度Vが約2質量%まで、実施例2の積層塗膜は揮発分濃度Vが約2.5質量%まで低下したのに対して比較例1の積層塗膜は約4質量%までしか低下しなかった。その結果、140℃での熱処理の際に比較例1では揮発分濃度Vが約4質量%も減少したのに対して、実施例1では揮発分濃度Vの減少が約2質量%に抑えられ、実施例2では揮発分濃度Vの減少が約2.5質量%に抑えられた。なお、実施例2における揮発分濃度Vは140℃での熱処理による脱ブロック反応で生成する揮発分を含むものである。   As shown in FIG. 2, the laminated coating film of Example 1 has a volatile concentration V of up to about 2 mass% by heat treatment at 90 ° C., and the laminated coating film of Example 2 has a volatile concentration V of about 2.5 mass. %, While the laminated coating film of Comparative Example 1 was reduced only to about 4% by mass. As a result, in the heat treatment at 140 ° C., in Comparative Example 1, the volatile concentration V decreased by about 4% by mass, whereas in Example 1, the decrease in the volatile concentration V was suppressed to about 2% by mass. In Example 2, the decrease in the volatile concentration V was suppressed to about 2.5% by mass. In addition, the volatile matter concentration V in Example 2 includes the volatile matter generated by the deblocking reaction by heat treatment at 140 ° C.

図2および表2に示した結果から明らかなように、140℃での熱処理の際の揮発分濃度Vの減少量が小さい(実施例1<実施例2<比較例1)ほどWa〜Wdが小さくなり(実施例1<実施例2<比較例1)、光沢および肌については実施例1の積層塗膜が最も良く、次に実施例2の積層塗膜が良く、比較例1の積層塗膜は光沢および肌に劣るものであることが確認された。   As is clear from the results shown in FIG. 2 and Table 2, the smaller the amount of decrease in the volatile component concentration V during the heat treatment at 140 ° C. (Example 1 <Example 2 <Comparative Example 1), the more Wa to Wd are. Example 1 <Example 2 <Comparative Example 1) With respect to gloss and skin, the laminated coating film of Example 1 is the best, followed by the laminated coating film of Example 2, and the laminated coating film of Comparative Example 1 It was confirmed that the film was inferior in gloss and skin.

実施例1〜2および比較例1の積層塗膜においては、いずれも140℃での熱処理により熱硬化型クリア塗料が硬化を開始する(実施例2の場合においても素早く脱ブロック反応が起こり、即座に実施例1と同様の硬化反応が起こる。)が、熱硬化型クリア塗料の層の流動性が硬化により著しく低下した後には、140℃での熱処理の際の前記揮発分濃度Vの減少量に相当する分の積層塗膜の収縮が起こる。したがって、140℃での熱処理の際の揮発分濃度Vの減少量が小さいものほど、熱硬化型クリア塗料の層の流動性が硬化により著しく低下した後の収縮がより確実に抑えられ、その結果、積層塗膜表面の凹凸の形成(顕在化)がより抑制され、Wa〜Wdがより小さくなり、光沢および肌がより向上することが確認された。   In each of the laminated coating films of Examples 1 and 2 and Comparative Example 1, the thermosetting clear paint starts to be cured by heat treatment at 140 ° C. (In the case of Example 2 as well, the deblocking reaction occurs quickly and immediately. However, after the fluidity of the thermosetting clear coating layer is significantly reduced by curing, the amount of decrease in the volatile component concentration V during the heat treatment at 140 ° C. Corresponding to the shrinkage of the laminated coating film occurs. Therefore, the smaller the amount of decrease in the volatile content concentration V during the heat treatment at 140 ° C., the more reliably the shrinkage after the fluidity of the thermosetting clear coating layer is significantly lowered by curing is suppressed. It was confirmed that the formation (prominence) of irregularities on the surface of the laminated coating film was further suppressed, Wa to Wd were further reduced, and gloss and skin were further improved.

(実施例3)
前記非硬化型水性ベース塗料Aの代わりにポリウレタン樹脂系熱硬化型塗料(関西ペイント社製、商品名「レタンPG60改」、2液型(硬化剤:イソシアネート化合物))の主剤を非硬化型の溶剤型ベース塗料として用い、この非硬化型の溶剤型ベース塗料を熱処理後の膜厚が25μmになるように塗装した以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記非硬化型の溶剤型ベース塗料(ポリウレタン樹脂系熱硬化型塗料の主剤)の140℃での重量減少率は0質量%であった。また、前記熱硬化型クリア塗料Aのゲル化開始時における前記非硬化型の溶剤型ベース塗料の相対損失弾性率は0.16s−2であった。
(Example 3)
Instead of the non-curable water-based base paint A, a polyurethane resin-based thermosetting paint (manufactured by Kansai Paint Co., Ltd., trade name “Retan PG60 Kai”, two-component type (curing agent: isocyanate compound)) is used as a non-curable type. A laminated coating film was prepared in the same manner as in Example 1 except that this non-curable solvent-based base paint was applied so that the film thickness after heat treatment was 25 μm. Wd was measured. The weight reduction rate at 140 ° C. of the non-curable solvent-based base paint (the main component of the polyurethane resin thermosetting paint) was 0% by mass. Further, the relative loss elastic modulus of the non-curable solvent-based base paint at the start of gelation of the thermosetting clear paint A was 0.16 s −2 .

熱処理後の積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

(比較例2)
前記熱硬化型水性ベース塗料Bを熱処理後の膜厚が25μmになるように塗装した以外は比較例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。
(Comparative Example 2)
A laminated coating film was prepared in the same manner as in Comparative Example 1 except that the thermosetting water-based base coating material B was applied so that the film thickness after heat treatment was 25 μm, and V and Wa to Wd were measured.

熱処理後の積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

Figure 2009034667
Figure 2009034667

表3に示した結果から明らかなように、本発明のように最上層の下層に非硬化型の溶剤型ベース塗料を使用したウェットオンウェットによる積層塗膜(実施例3)のWa〜Wdはいずれも、最上層の下層に熱硬化型水性ベース塗料を使用した積層塗膜(比較例2)に比べて小さく、実施例3の積層塗膜は光沢、肌ともに比較例2の積層塗膜よりも向上していることが確認された。   As is apparent from the results shown in Table 3, Wa to Wd of the laminated coating film (Example 3) by wet-on-wet using a non-curing solvent-based base coating as the lowermost layer as in the present invention is as follows. Both are smaller than the multilayer coating film (Comparative Example 2) using a thermosetting water-based base coating as the lowermost layer, and the multilayer coating film of Example 3 is both glossy and skin better than the multilayer coating film of Comparative Example 2. It was also confirmed that it was improved.

図3に示すように、90℃での熱処理で実施例3の積層塗膜は揮発分濃度Vが約3質量%まで低下したのに対して比較例2の積層塗膜は約4質量%までしか低下しなかった。その結果、140℃での熱処理の際に比較例2では揮発分濃度Vが約4質量%も減少したのに対して、実施例3では揮発分濃度Vの減少が約3質量%に抑えられた。この140℃での熱処理の際の揮発分濃度Vの減少は積層塗膜の収縮に相当する。したがって、実施例3の積層塗膜は比較例2の積層塗膜に比べて140℃での熱処理の際、熱硬化型の溶剤型クリア塗料の層の流動性が硬化により著しく低下した後の収縮が確実に抑えられ、その結果、積層塗膜表面の凹凸の形成(顕在化)が抑制され、Wa〜Wdがいずれも小さくなり、光沢および肌が比較例2の積層塗膜よりも向上していることが確認された。   As shown in FIG. 3, the laminated coating film of Example 3 decreased to a volatile content concentration V of about 3 mass% by heat treatment at 90 ° C., whereas the laminated coating film of Comparative Example 2 decreased to about 4 mass%. Only a drop. As a result, in the heat treatment at 140 ° C., the volatile content concentration V decreased by about 4% by mass in Comparative Example 2, whereas the decrease in the volatile content V in Example 3 was suppressed to about 3% by mass. It was. The decrease in the volatile content concentration V during the heat treatment at 140 ° C. corresponds to the shrinkage of the laminated coating film. Accordingly, the multilayer coating film of Example 3 contracted after the fluidity of the thermosetting solvent-type clear coating layer was significantly reduced by curing during the heat treatment at 140 ° C. as compared with the multilayer coating film of Comparative Example 2. As a result, formation (prominence) of unevenness on the surface of the multilayer coating film is suppressed, Wa to Wd are all reduced, and gloss and skin are improved as compared with the multilayer coating film of Comparative Example 2. It was confirmed that

(実施例4)
最上層用塗料として調製例6で調製した熱硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用塗料として調製例1で調製した熱硬化型水性中塗り塗料A(硬化温度=140℃、重量減少率(140℃)=1.6質量%)および調製例3で調製した非硬化型水性ベース塗料A(重量減少率(140℃)=0質量%)を使用した。なお、前記熱硬化型クリア塗料Aのゲル化開始時における前記熱硬化型水性中塗り塗料Aおよび前記非硬化型水性ベース塗料Aの相対損失弾性率は、それぞれ4.7s−2および0.29s−2であった。
Example 4
The thermosetting clear coating material A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 0% by mass) prepared in Preparation Example 6 was used as the uppermost layer coating material, and the lower layer coating material was prepared in Preparation Example 1. Thermosetting water-based intermediate coating material A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 1.6% by mass) and non-curable water-based base coating material A prepared in Preparation Example 3 (weight reduction rate (140 ° C. ) = 0% by mass). The relative loss elastic moduli of the thermosetting water-based intermediate coating material A and the non-curable water-based base coating material A at the start of gelation of the thermosetting clear coating material A are 4.7 s -2 and 0.29 s, respectively. -2 .

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に調製例1で調製した熱硬化型水性中塗り塗料Aを熱処理後の膜厚が20μmになるように塗装し、100℃で3分間加熱して水および有機溶剤などを揮発させ、この熱硬化型水性中塗り塗料Aの層の上に調製例3で調製した非硬化型水性ベース塗料Aを熱処理後の膜厚が15μmになるように塗装し、この非硬化型水性ベース塗料Aの層の上に調製例6で調製した熱硬化型クリア塗料Aを熱処理後の膜厚が35μmになるように塗装した以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。   The thermosetting water-based intermediate coating material A prepared in Preparation Example 1 is applied to the surface of an electrodeposition coating plate (made by Shinto Herberts, trade name “Sucsade 80V Gray”) so that the film thickness after heat treatment is 20 μm. , After heating at 100 ° C. for 3 minutes to volatilize water, organic solvent, etc., the non-curable aqueous base coating material A prepared in Preparation Example 3 is heat-treated on the thermosetting aqueous intermediate coating material A layer. Other than coating so that the thickness is 15 μm, and coating the thermosetting clear paint A prepared in Preparation Example 6 on the layer of the non-curable water-based base paint A so that the film thickness after the heat treatment is 35 μm. Prepared a laminated coating film in the same manner as in Example 1, and measured V and Wa to Wd.

熱処理後の積層塗膜のWa〜Wdを表4に示す。また、熱処理中におけるVとWaとの関係を図4に示す。   Table 4 shows Wa to Wd of the laminated coating film after the heat treatment. FIG. 4 shows the relationship between V and Wa during the heat treatment.

(比較例3)
中塗り塗料として前記熱硬化型水性中塗り塗料Aの代わりに調製例2で調製した熱硬化型水性中塗り塗料B(硬化温度=140℃、重量減少率(140℃)=3.3質量%)を用い、ベース塗料として前記非硬化型水性ベース塗料Aの代わりに調製例4で調製した熱硬化型水性ベース塗料B(硬化温度=140℃、重量減少率(140℃)=1.6質量%)を用いた以外は実施例4と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記熱硬化型クリア塗料Aのゲル化開始時における前記熱硬化型水性中塗り塗料Bおよび前記熱硬化型水性ベース塗料Bの相対損失弾性率は、それぞれ7.5s−2および1.1s−2であった。
(Comparative Example 3)
Instead of the thermosetting water-based intermediate coating A, the thermosetting aqueous intermediate coating B prepared in Preparation Example 2 (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 3.3% by mass ) And the thermosetting water-based base paint B prepared in Preparation Example 4 instead of the non-curable water-based base paint A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 1.6 mass) %) Was used in the same manner as in Example 4 except that V and Wa to Wd were measured. The relative loss elastic modulus of the thermosetting water-based intermediate coating material B and the thermosetting water-based base coating material B at the start of gelation of the thermosetting clear coating material A is 7.5 s −2 and 1.1 s, respectively. -2 .

熱処理後の積層塗膜のWa〜Wdを表4に示す。また、熱処理中におけるVとWaとの関係を図4に示す。   Table 4 shows Wa to Wd of the laminated coating film after the heat treatment. FIG. 4 shows the relationship between V and Wa during the heat treatment.

(比較例4)
ベース塗料として非硬化型水性ベース塗料Aの代わりに調製例5で調製した熱硬化型水性ベース塗料C(硬化温度=140℃、重量減少率(140℃)=0.8質量%)を用いた以外は実施例4と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記熱硬化型クリア塗料Aのゲル化開始時における前記熱硬化型水性ベース塗料Cの相対損失弾性率は1.0s−2であった。
(Comparative Example 4)
Instead of the non-curable water-based base paint A, the thermosetting water-based base paint C (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0.8% by mass) prepared in Preparation Example 5 was used as the base paint. A laminated coating film was prepared in the same manner as in Example 4 except that V and Wa to Wd were measured. The relative loss elastic modulus of the thermosetting water-based base paint C at the start of gelation of the thermosetting clear paint A was 1.0 s −2 .

熱処理後の積層塗膜のWa〜Wdを表4に示す。また、熱処理中におけるVとWaとの関係を図4に示す。   Table 4 shows Wa to Wd of the laminated coating film after the heat treatment. FIG. 4 shows the relationship between V and Wa during the heat treatment.

Figure 2009034667
Figure 2009034667

表4に示した結果から明らかなように、本発明のように最上層の下層に非硬化型の水性ベース塗料を使用したウェットオンウェットによる積層塗膜(実施例4)のWa〜Wdはいずれも、最上層の下層に熱硬化型水性ベース塗料のみを使用した積層塗膜(比較例3〜4)に比べて小さく、実施例4の積層塗膜は光沢、肌ともに比較例3〜4の積層塗膜よりも向上していることが確認された。   As is apparent from the results shown in Table 4, Wa to Wd of the laminated coating film (Example 4) by wet-on-wet using a non-curing type water-based base coating as the lowermost layer as in the present invention is any Is smaller than the multilayer coating film (Comparative Examples 3 to 4) using only the thermosetting water-based base coating as the lowermost layer, and the multilayer coating film of Example 4 is that of Comparative Examples 3 to 4 for both gloss and skin. It was confirmed that it was improved over the laminated coating film.

図4に示すように、90℃での熱処理で実施例4の積層塗膜は揮発分濃度Vが約2質量%まで低下したのに対して比較例3および4の積層塗膜はそれぞれ約5質量%および約4質量%までしか低下しなかった。その結果、140℃での熱処理時において比較例3および4では揮発分濃度Vがそれぞれ約5質量%および約4質量%も減少したのに対して、実施例4では揮発分濃度Vの減少が約2質量%に抑えられた。この140℃での熱処理による揮発分濃度Vの減少は積層塗膜の収縮に相当する。したがって、実施例4の積層塗膜は比較例3および4の積層塗膜に比べて140℃での熱処理の際、熱硬化型の溶剤型クリア塗料の層の流動性が硬化により著しく低下した後の収縮が確実に抑えられ、その結果、積層塗膜表面の凹凸の形成(顕在化)が抑制され、Wa〜Wdがいずれも小さくなり、光沢および肌が比較例3および4の積層塗膜よりも向上していることが確認された。   As shown in FIG. 4, the laminated coating film of Example 4 decreased to a volatile content concentration V of about 2 mass% by heat treatment at 90 ° C., whereas the laminated coating films of Comparative Examples 3 and 4 each had about 5%. It decreased only to mass% and about 4 mass%. As a result, during the heat treatment at 140 ° C., in Comparative Examples 3 and 4, the volatile concentration V decreased by about 5 mass% and about 4 mass%, respectively, whereas in Example 4, the volatile concentration V decreased. It was suppressed to about 2% by mass. The decrease in the volatile content concentration V due to the heat treatment at 140 ° C. corresponds to the shrinkage of the laminated coating film. Therefore, after the fluidity of the layer of the thermosetting solvent-based clear coating material was significantly reduced by curing, the multilayer coating film of Example 4 was subjected to heat treatment at 140 ° C. as compared with the multilayer coating films of Comparative Examples 3 and 4. As a result, the formation (prominence) of unevenness on the surface of the multilayer coating film is suppressed, Wa to Wd are all reduced, and gloss and skin are more than those of the multilayer coating films of Comparative Examples 3 and 4. It was also confirmed that it was improved.

なお、実施例と比較例における積層塗膜の収縮量の違いは以下のようにして起こるものと推察される。下層のすべてに熱硬化型ベース塗料を使用した比較例1〜4の積層塗膜では下層が140℃での熱処理により硬化し、その際アクリル樹脂の水酸基とメラミン樹脂とが反応して揮発性のアルコールや水が生成する。これに対して、下層のうちの少なくも1層に非硬化型ベース塗料を使用した実施例1〜4の積層塗膜では熱硬化型の溶剤型クリア塗料の層の流動性が硬化により著しく低下する140℃での熱処理において非硬化型ベース塗料により形成された下層では硬化反応が実質的には起こらず揮発性生成物が生成しない。その結果、比較例1〜4では揮発性生成物が揮発して塗膜が収縮するのに対して実施例1〜4では揮発性生成物が実質的には生成しないため塗膜の収縮が少なくなると推察される。   In addition, it is guessed that the difference in the shrinkage | contraction amount of the laminated coating film in an Example and a comparative example arises as follows. In the laminated coating films of Comparative Examples 1 to 4 using a thermosetting base paint for all of the lower layers, the lower layers are cured by heat treatment at 140 ° C., and at that time, the hydroxyl group of the acrylic resin and the melamine resin react to become volatile. Alcohol and water are produced. On the other hand, the fluidity of the layer of the thermosetting solvent-type clear paint is remarkably lowered by curing in the laminated coating films of Examples 1 to 4 in which the non-curable base paint is used for at least one of the lower layers. In the heat treatment at 140 ° C., the curing reaction does not substantially occur in the lower layer formed by the non-curing base paint, and no volatile product is generated. As a result, in Comparative Examples 1 to 4, the volatile product volatilizes and the coating film shrinks, whereas in Examples 1 to 4, the volatile product does not substantially form, so the coating film shrinks less. It is assumed that

以上説明したように、本発明によれば、2種類以上の塗料をウェットオンウェットで積層して焼き付けて少なくとも最上層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   As described above, according to the present invention, even when at least the uppermost layer is cured by laminating and baking two or more kinds of paints on a wet-on-wet basis, it is possible to obtain a laminated coating film with less unevenness on the surface of the uppermost layer. it can. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

したがって、本発明は、2種類以上の塗料をウェットオンウェットで積層して焼き付ける場合においても外観品質に優れた塗装体を得ることができる塗装方法として有用であり、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品の塗装方法として有用である。   Therefore, the present invention is useful as a coating method capable of obtaining a coated body excellent in appearance quality even when two or more kinds of paints are laminated and baked by wet-on-wet, and is particularly suitable for passenger cars, trucks, buses, motorcycles. It is useful as a painting method for automobile bodies and parts thereof.

相対貯蔵弾性率(Er’)の経時変化を模式的に示すグラフである。It is a graph which shows typically a time-dependent change of relative storage elastic modulus (Er '). 実施例1〜2および比較例1で作製した積層塗膜の熱処理中における揮発分濃度Vとウェーブスキャン値Waとの関係を示すグラフである。It is a graph which shows the relationship between the volatile matter density | concentration V in the heat processing of the laminated coating film produced in Examples 1-2 and the comparative example 1, and the wave scan value Wa. 実施例3および比較例2で作製した積層塗膜の熱処理中における揮発分濃度Vとウェーブスキャン値Waとの関係を示すグラフである。It is a graph which shows the relationship between the volatile matter density | concentration V in the heat processing of the laminated coating film produced in Example 3 and Comparative Example 2, and the wave scan value Wa. 実施例4および比較例3〜4で作製した積層塗膜の熱処理中における揮発分濃度Vとウェーブスキャン値Waとの関係を示すグラフである。It is a graph which shows the relationship between the volatile matter density | concentration V and the wave scan value Wa in the heat processing of the laminated coating film produced in Example 4 and Comparative Examples 3-4.

符号の説明Explanation of symbols

P…変曲点、t…時間、t…最上層用塗料について相対貯蔵弾性率の測定を開始してからゲル化が開始するまでの時間。 P ... inflection point, t ... time, t d ... time from the start of measurement of the relative storage elastic modulus for the uppermost layer-coating material until gelation starts.

Claims (9)

基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記下層を形成するための下層用塗料のうちの少なくとも1種類として熱処理により硬化反応を起こさない非硬化型塗料を準備し、且つ、前記最上層を形成するための最上層用塗料として熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
前記未硬化積層塗膜に熱処理を施して少なくとも前記最上層用塗料を硬化させる工程と、
を含むことを特徴とする塗装方法。
A coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
A non-curing paint that does not cause a curing reaction by heat treatment is prepared as at least one of the lower-layer paints for forming the lower layer, and a thermosetting type is used as the upper-layer paint for forming the uppermost layer Preparing the paint,
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Applying a heat treatment to the uncured laminated coating to cure at least the uppermost layer coating;
The coating method characterized by including.
前記非硬化型塗料が、前記最上層用塗料の硬化温度における重量減少率が0.5質量%以下の塗料であることを特徴とする請求項1に記載の塗装方法。   The coating method according to claim 1, wherein the non-curable coating material is a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature of the uppermost layer coating material. 前記非硬化型塗料が硬化剤を含有しない塗料であることを特徴とする請求項1または2に記載の塗装方法。   The coating method according to claim 1, wherein the non-curable paint is a paint that does not contain a curing agent. 前記下層が2層以上であり、前記下層を形成するための下層用塗料のすべてが非硬化型塗料であることを特徴とする請求項1〜3のうちのいずれか一項に記載の塗装方法。   The said lower layer is two or more layers, and all the coating materials for lower layers for forming the said lower layer are non-curable coating materials, The coating method as described in any one of Claims 1-3 characterized by the above-mentioned. . 前記最上層用塗料が、その硬化温度における重量減少率が0.5質量%以下の塗料であることを特徴とする請求項1〜4のうちのいずれか一項に記載の塗装方法。   The coating method according to claim 1, wherein the uppermost layer-coating material is a coating material having a weight reduction rate of 0.5% by mass or less at the curing temperature. 前記最上層用塗料が熱処理による硬化反応において揮発性生成物を生成しない塗料であることを特徴とする請求項1〜5のうちのいずれか一項に記載の塗装方法。   The coating method according to any one of claims 1 to 5, wherein the uppermost layer-coating material is a coating material that does not generate a volatile product in a curing reaction by heat treatment. 前記未硬化積層塗膜の揮発分濃度を3.5質量%以下に低減した後、[前記最上層用塗料の硬化温度−20℃]以上の温度で熱処理して少なくとも前記最上層用塗料を硬化させることを特徴とする請求項1〜6のうちのいずれか一項に記載の塗装方法。   After reducing the volatile content concentration of the uncured laminated coating film to 3.5% by mass or less, heat treatment is performed at a temperature of [the curing temperature of the uppermost layer coating material −20 ° C.] or higher to cure at least the uppermost layer coating material. The coating method according to claim 1, wherein the coating method is performed. 前記未硬化積層塗膜に、[前記最上層用塗料の硬化温度−20℃]未満の温度で熱処理を施し、次いで[前記最上層用塗料の硬化温度−20℃]以上の温度で熱処理を施すことを特徴とする請求項1〜7のうちのいずれか一項に記載の塗装方法。   The uncured laminated coating film is subjected to a heat treatment at a temperature lower than [the curing temperature of the uppermost layer paint −20 ° C.], and then subjected to a heat treatment at a temperature equal to or higher than the [curing temperature of the uppermost layer paint −20 ° C.]. The coating method as described in any one of Claims 1-7 characterized by the above-mentioned. 基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、請求項1〜8のうちのいずれか一項に記載の塗装方法により得られたものであることを特徴とする塗装体。   It is a coating body which has a laminated coating film provided with the at least 1 lower layer formed on the base material, and the uppermost layer formed on the said lower layer, Comprising: It is a coating body as described in any one of Claims 1-8. Painted body obtained by the coating method of
JP2008175087A 2007-07-06 2008-07-03 Coating method, and coated object prepared by above method Pending JP2009034667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175087A JP2009034667A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by above method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007178682 2007-07-06
JP2008175087A JP2009034667A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by above method

Publications (1)

Publication Number Publication Date
JP2009034667A true JP2009034667A (en) 2009-02-19

Family

ID=40437092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175087A Pending JP2009034667A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by above method

Country Status (1)

Country Link
JP (1) JP2009034667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208017A (en) * 2008-03-05 2009-09-17 Toyota Central R&D Labs Inc Coating method and coated article obtained by this method
JP2010036095A (en) * 2008-08-04 2010-02-18 Toyota Central R&D Labs Inc Painting method and coated body obtained thereby
JP2010082535A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
JP2010082534A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
JP2020530062A (en) * 2017-08-09 2020-10-15 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH A method of painting a base material with a two-component (2K) clear coat and a two-component (2K) clear coat with improved visual appearance.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314039A (en) * 1996-05-23 1997-12-09 Toyota Motor Corp Plotting and coating method
JPH10113614A (en) * 1997-10-30 1998-05-06 Kansai Paint Co Ltd Formation of coating films
JPH10296171A (en) * 1997-04-28 1998-11-10 Nippon B Chem Kk Method for coating plastic base material
JP2002121462A (en) * 2000-10-13 2002-04-23 Kansai Paint Co Ltd Primer for plastic
JP2004275966A (en) * 2003-03-18 2004-10-07 Nippon Paint Co Ltd Coating film forming method
JP2005211756A (en) * 2004-01-28 2005-08-11 Mazda Motor Corp Coat drying method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314039A (en) * 1996-05-23 1997-12-09 Toyota Motor Corp Plotting and coating method
JPH10296171A (en) * 1997-04-28 1998-11-10 Nippon B Chem Kk Method for coating plastic base material
JPH10113614A (en) * 1997-10-30 1998-05-06 Kansai Paint Co Ltd Formation of coating films
JP2002121462A (en) * 2000-10-13 2002-04-23 Kansai Paint Co Ltd Primer for plastic
JP2004275966A (en) * 2003-03-18 2004-10-07 Nippon Paint Co Ltd Coating film forming method
JP2005211756A (en) * 2004-01-28 2005-08-11 Mazda Motor Corp Coat drying method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208017A (en) * 2008-03-05 2009-09-17 Toyota Central R&D Labs Inc Coating method and coated article obtained by this method
JP2010036095A (en) * 2008-08-04 2010-02-18 Toyota Central R&D Labs Inc Painting method and coated body obtained thereby
JP2010082535A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
JP2010082534A (en) * 2008-09-30 2010-04-15 Toyota Central R&D Labs Inc Coating method and coated body obtained by the same
JP2020530062A (en) * 2017-08-09 2020-10-15 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH A method of painting a base material with a two-component (2K) clear coat and a two-component (2K) clear coat with improved visual appearance.
JP7210547B2 (en) 2017-08-09 2023-01-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Two-component (2K) clearcoat and method of coating a substrate with a two-component (2K) clearcoat with enhanced visual appearance

Similar Documents

Publication Publication Date Title
US8795835B2 (en) Coating method and coated article obtained by the same
JP2009034667A (en) Coating method, and coated object prepared by above method
JP5261061B2 (en) Coating method and coated body obtained thereby
JP5260255B2 (en) Coating method and coated body obtained thereby
JP5513726B2 (en) Coating method and coated body obtained thereby
CN105960290B (en) Coating method and coated article obtained by said method
CN105939791B (en) Coating method and coated article obtained by said method
JP2007283271A (en) Method for forming multilayer coating film
JP2009034668A (en) Coating method, and coated object prepared by the same
JP5280069B2 (en) Coating method and coated body obtained thereby
JP2017218527A (en) Isocyanate curable coating composition and coating method using the same
JP4235391B2 (en) Multilayer coating film forming method and aqueous intermediate coating composition
JP5120952B2 (en) Coating method and coated body obtained thereby
JP6499538B2 (en) Painting method
WO2009081943A1 (en) Double-layer coating film formation method
JP2001009364A (en) Repairing method of metallic coating film
JP2002126627A (en) Method for forming multilayered coating film, multilayered coating film and water-based intermediate coating material composition
JP3286014B2 (en) Coating method using coating composition having improved interlayer adhesion, and multilayer coating
JP4315001B2 (en) Method for coating overcoat clear coating composition and coated article
JP2009155396A (en) Clear coating composition, and method of forming multilayered coating film
JP2002285044A (en) Thermosetting coating composition and method for forming coating film by using the same
JP6420733B2 (en) Painting method
JP5515832B2 (en) Laminate coating formation method
JP2004043525A (en) Water-based pigment dispersion composition, water-based intermediate coating composition, and method for forming coating film
JP2001058156A (en) Partial repairing method for coating film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120921