JP2009034668A - Coating method, and coated object prepared by the same - Google Patents

Coating method, and coated object prepared by the same Download PDF

Info

Publication number
JP2009034668A
JP2009034668A JP2008175088A JP2008175088A JP2009034668A JP 2009034668 A JP2009034668 A JP 2009034668A JP 2008175088 A JP2008175088 A JP 2008175088A JP 2008175088 A JP2008175088 A JP 2008175088A JP 2009034668 A JP2009034668 A JP 2009034668A
Authority
JP
Japan
Prior art keywords
paint
temperature
lower layer
coating
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175088A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tate
和幸 舘
Takeshi Narita
猛 成田
Satoshi Kodama
敏 児玉
Kazuyuki Kuwano
一幸 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008175088A priority Critical patent/JP2009034668A/en
Publication of JP2009034668A publication Critical patent/JP2009034668A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating method by which a laminated coating film can be obtained with its uppermost layer having a surface of slight unevenness even if the uppermost layer and one or more of lower layer(s) are cured by baking after laminating two or more species of paint by a wet-on-wet method. <P>SOLUTION: The coating method for forming a laminated coating film comprising at least a lower layer and an uppermost layer formed on a substrate includes: a step of preparing, as paint for forming the uppermost layer, thermosetting paint that has a curing temperature T<SB>T</SB>of ≥40°C and ≤200°C and does not generate a volatile matter upon being subjected to a heat treatment, and further preparing thermosetting paint for the lower layer, which has a curing temperature T<SB>U</SB>satisfying the following equation (1): T<SB>U</SB>≤T<SB>T</SB>-30 (wherein T<SB>U</SB>is a curing temperature [°C] of the paint for the lower layer, and T<SB>T</SB>is a curing temperature [°C] of the paint for the uppermost layer) as at least one of the paint for forming the lower layer; a step of forming an uncured laminated coating film by laminating the paint for the lower layer and the paint for the uppermost layer on the substrate using a wet-on-wet method; a step of setting T<SB>L</SB>(a temperature [°C] for lower-temperature heating) and T<SB>H</SB>(a temperature [°C] for higher-temperature heating) so that T<SB>L</SB>and T<SB>H</SB>are each within respective specific temperature ranges; and a step of subjecting the uncured laminated film to a heat treatment at the temperature T<SB>L</SB>and at least curing the paint for the lower layer to form a laminated coating film where the paint for the uppermost layer is uncured, and further subjecting the resulting uncured laminated coating film where the uppermost layer is uncured to a heat treatment at the temperature T<SB>H</SB>to cure the paint for the uppermost layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2種類以上の塗料をウェットオンウェットで積層して焼き付ける塗装方法およびそれにより得られる塗装体に関する。   The present invention relates to a coating method in which two or more kinds of paints are laminated and baked by wet-on-wet, and a coated body obtained thereby.

2種類以上の塗料をウェットオンウェットで積層した後、焼き付ける塗装方法により積層塗膜を形成する場合において、従来は、すべての塗料を積層した後に積層塗膜を構成するすべての層が同じ加熱温度で硬化するように各層を形成する熱硬化型塗料を選択し、積層塗膜全体を硬化していた。この場合、下層を焼き付けてから最上層を形成する塗料を積層して焼き付けた場合に比べて、積層塗膜の肌および光沢が劣るという問題があった。このため、積層塗膜の肌および光沢を向上させるために種々の方法が提案されている。   When two or more types of paints are laminated by wet-on-wet and then a laminated coating film is formed by a baking method, conventionally, all layers constituting the laminated coating film have the same heating temperature after all the paints are laminated. The thermosetting paint for forming each layer was selected so as to be cured at, and the entire laminated coating film was cured. In this case, there is a problem that the skin and gloss of the laminated coating film are inferior to the case where the lower layer is baked and then the coating material forming the uppermost layer is laminated and baked. For this reason, various methods have been proposed to improve the skin and gloss of the laminated coating film.

例えば、特開平10−277478号公報(特許文献1)には、カラーベース塗料、光輝材含有ベース塗料およびクリア塗料を順次ウェットオンウェット方式で塗装した後、焼き付け処理を行って各層を硬化させる塗膜形成方法が開示されている。この方法では、各塗料の粘度上昇開始時間をカラーベース塗料、光輝材含有ベース塗料およびクリア塗料の順に長くなるように調整して、最上層を形成するクリア塗料が硬化に伴って粘度上昇する前に下層を形成するカラーベース塗料および光輝材含有ベース塗料の硬化を開始させている。   For example, Japanese Patent Application Laid-Open No. 10-277478 (Patent Document 1) discloses a coating film in which a color base paint, a glittering material-containing base paint, and a clear paint are sequentially applied by a wet-on-wet method and then baked to cure each layer. A forming method is disclosed. In this method, the viscosity increase start time of each paint is adjusted to be longer in the order of the color base paint, the glitter-containing base paint, and the clear paint, and before the clear paint forming the uppermost layer increases in viscosity as it hardens. Curing of the color base paint and glittering material-containing base paint forming the lower layer is started.

また、特開2005−193107号公報(特許文献2)には、中塗り塗料と上塗り塗料とをウェットオンウェットで塗装した後、これらを同時に硬化させる塗装方法において、積層塗膜の肌や光沢が劣る原因が中塗り塗膜層と上塗り塗膜層との混相による上塗り塗膜の平滑性の低下にあると考え、前記混相を防ぐために、中塗り塗料を塗布した後、未硬化の中塗り塗膜層の表面に中塗り塗膜層の硬化を促進させる硬化触媒を塗布することが開示されている。   Japanese Patent Application Laid-Open No. 2005-193107 (Patent Document 2) discloses a method of coating the skin and gloss of a laminated coating film in a coating method in which an intermediate coating and a top coating are applied wet-on-wet and then cured simultaneously. The reason for the inferiority is thought to be the decrease in smoothness of the top coat film due to the mixed phase of the intermediate coat layer and the top coat layer. It is disclosed that a curing catalyst that accelerates curing of the intermediate coating layer is applied to the surface of the film layer.

一方、積層塗膜の肌や光沢を低下させる原因が焼き付け硬化前の積層塗膜中の溶剤の残存にあることが知られている。特に、積層塗膜中の溶剤が硬化反応時に急激に蒸発すると積層塗膜表面が荒れるため、これを防ぐために以下のような方法が提案されている。例えば、特開2000−84463号公報(特許文献3)には、溶液型熱硬化性塗料を塗布する工程と低温加熱工程および高温加熱工程とを含む2段階加熱による塗膜形成方法が開示されている。また、特開2004−275966号公報(特許文献4)には、中塗り塗料、ベース塗料およびクリア塗料を順次ウェットオンウェットで塗装する工程と低温加熱段階および高温加熱段階の2段階の加熱処理工程を含む塗膜形成方法が開示されている。これらの方法では、低温加熱段階では塗料を硬化させずに塗料中の溶媒を穏やかに蒸発させ、その後高温加熱段階で各層の塗料に含まれる熱硬化性樹脂を硬化させている。   On the other hand, it is known that the cause of lowering the skin and gloss of the multilayer coating film is the residual solvent in the multilayer coating film before baking and curing. In particular, when the solvent in the laminated coating film is rapidly evaporated during the curing reaction, the surface of the laminated coating film becomes rough. In order to prevent this, the following method has been proposed. For example, Japanese Patent Laid-Open No. 2000-84463 (Patent Document 3) discloses a method for forming a coating film by two-stage heating including a step of applying a solution-type thermosetting paint, a low-temperature heating step, and a high-temperature heating step. Yes. Japanese Patent Application Laid-Open No. 2004-275966 (Patent Document 4) discloses a two-step heat treatment process, a process of sequentially applying an intermediate coating, a base paint, and a clear paint by wet-on-wet, a low-temperature heating stage, and a high-temperature heating stage. A method of forming a coating film containing the above is disclosed. In these methods, the solvent in the paint is gently evaporated without curing the paint in the low-temperature heating stage, and then the thermosetting resin contained in each layer of paint is cured in the high-temperature heating stage.

このように、従来から積層塗膜の肌および光沢を向上させるために種々の方法が提案されているが、例えば、自動車用鋼板などではより外観品質に優れた塗装体が求められており、ウェットオンウェットによる塗装方法の更なる改良が望まれている。
特開平10−277478号公報 特開2005−193107号公報 特開2000−84463号公報 特開2004−275966号公報
As described above, various methods have been proposed in the past to improve the skin and gloss of the laminated coating film. For example, for steel sheets for automobiles, a coated body having a better appearance quality has been demanded. Further improvement of the on-wet coating method is desired.
Japanese Patent Laid-Open No. 10-277478 JP-A-2005-193107 JP 2000-84463 A JP 2004-275966 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、2種類以上の塗料をウェットオンウェットで積層して焼き付けにより高耐久性の確保などのために最上層を硬化させ、さらに1層以上の下層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる塗装方法、およびそれにより得られる外観品質に優れた塗装体を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, in which two or more kinds of paints are laminated in a wet-on-wet manner, and the uppermost layer is cured to ensure high durability by baking, and further, It is an object of the present invention to provide a coating method capable of obtaining a laminated coating film with less unevenness on the surface of the uppermost layer even when one or more lower layers are cured, and a coated body excellent in appearance quality obtained thereby.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、積層塗膜の最上層を形成するための最上層用塗料として熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料を使用し、下層を形成するための下層用塗料のうちの少なくとも1種類として硬化温度が最上層用塗料の硬化温度よりも低い熱硬化型塗料を使用し、且つこれらの塗料をウェットオンウェットで積層した後、熱処理により先ず前記下層用熱硬化型塗料を硬化させ、次いでより高温での熱処理により前記最上層熱硬化型塗料を硬化させることにより、最上層が硬化して流動性が著しく低下した後の積層塗膜の収縮を最小限に抑えることができ、2種類以上の塗料をウェットオンウェットで積層した後に焼き付けを実施しても外観品質に優れた積層塗膜が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have established a thermosetting type that does not generate a volatile product in a curing reaction by heat treatment as a coating for the uppermost layer for forming the uppermost layer of a laminated coating film. Use at least one kind of lower layer paint to form a lower layer using a paint, a thermosetting paint having a curing temperature lower than the curing temperature of the uppermost layer paint, and wet-on-wet these paints First, the lower layer thermosetting paint is cured by heat treatment, and then the uppermost layer thermosetting paint is cured by heat treatment at a higher temperature, so that the uppermost layer is cured and the fluidity is significantly reduced. It is possible to minimize the shrinkage of the laminated coating after it has been applied, and even if two or more types of paints are laminated wet-on-wet and then baked, a laminated coating with excellent appearance quality is obtained. Heading to be, and have completed the present invention.

すなわち、本発明の塗装方法は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として硬化温度Tが40℃以上200℃以下であり且つ熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として硬化温度Tが下記式(1)
≦T−30 (1)
(式(1)中、Tは下層用熱硬化型塗料の硬化温度[℃]を示し、Tは最上層用熱硬化型塗料の硬化温度[℃]を示す。)
を満たす下層用熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料及び前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
下記式(2)
−20≦T≦T−30 (2)
および下記式(3)
−20≦T≦T+40 (3)
(式(2)および(3)中、Tは低温加熱温度[℃]を示し、Tは高温加熱温度[℃]を示し、TおよびTは式(1)中のTおよびTと同義である。)
を満たす加熱温度TおよびTを設定する工程と、
前記未硬化積層塗膜に前記温度Tで熱処理を施して少なくとも前記下層用熱硬化型塗料を硬化させて最上層が未硬化の積層塗膜を形成し、次いで、最上層が未硬化の前記積層塗膜に前記温度Tで熱処理を施して最上層用熱硬化型塗料を硬化させる工程と、
を含むことを特徴とするものである。
That is, the coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
Preparing a thermosetting coating material having a curing temperature T T of 40 ° C. or more and 200 ° C. or less and forming no volatile product in a curing reaction by heat treatment as the uppermost layer coating material for forming the uppermost layer; the curing temperature T U is the following formula as at least one of the lower layer coating material for forming the lower layer (1)
T U ≦ T T -30 (1)
(In the formula (1), T U represents a curing temperature [℃] of the lower layer for thermosetting paint, T T denotes the curing temperature of the uppermost layer-thermosetting coating material [℃].)
A step of preparing a thermosetting paint for the lower layer satisfying
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Following formula (2)
T U −20 ≦ T L ≦ T T −30 (2)
And the following formula (3)
T T -20 ≦ T H ≦ T T +40 (3)
(In the formula (2) and (3), T L represents the low heating temperature [℃], T H represents a high-temperature heating temperature [° C.], T U and T T is T U and in the formula (1) it is synonymous with the T T.)
Setting the heating temperatures T L and T H to satisfy
The uncured laminated coating film is subjected to a heat treatment at the temperature TL to cure at least the thermosetting paint for the lower layer to form an uncured laminated coating film, and then the uppermost layer is uncured. curing the uppermost layer-thermosetting coating material is subjected to heat treatment at the temperature T H in the multilayer coating film,
It is characterized by including.

前記最上層用熱硬化型塗料は、前記温度Tにおける重量減少率が0.5質量%以下の塗料であることが好ましい。 The thermosetting paint for the uppermost layer is preferably a paint having a weight reduction rate of 0.5% by mass or less at the temperature T T.

前記下層が2層以上の場合、前記下層を形成するための下層用塗料のすべてが前記下層用熱硬化型塗料であることが好ましい。   When the lower layer is two or more layers, it is preferable that all of the lower layer coating materials for forming the lower layer are the lower layer thermosetting coating materials.

本発明の塗装方法では、最上層が未硬化の前記積層塗膜の揮発分濃度を4質量%以下に低減した後、最上層が未硬化の前記積層塗膜に前記温度Tで熱処理を施して前記最上層用塗料を硬化させることが好ましい。 The coating method of the present invention, after the uppermost layer is reduced volatiles concentration of the multilayer coating film of the uncured 4 wt% or less, the top layer is a heat treatment at the temperature T H in the multilayer coating film of uncured subjected It is preferable to cure the uppermost layer paint.

本発明の塗装体は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、前記本発明の塗装方法により得られる塗装体であり、肌や光沢など外観品質に優れている。   The coated body of the present invention is a coated body having a laminated coating film comprising at least one lower layer formed on a base material and an uppermost layer formed on the lower layer, and according to the coating method of the present invention. This is a coated product that is excellent in appearance quality such as skin and gloss.

なお、本発明の塗装方法によって2種類以上の塗料をウェットオンウェットで積層して焼き付けた場合にも積層塗膜の表面の凹凸が少なくなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、従来のウェットオンウェットにより形成した積層塗膜では、最上層を含めすべての層で同じ加熱温度で硬化反応が起こるように各層を形成するための熱硬化型塗料が選択されるため、最上層を形成する熱硬化型塗料を熱処理により硬化させる際にその下層においても熱硬化型塗料が硬化する。このとき、積層塗膜の各層では縮合反応や硬化剤の脱ブロック反応の後の付加反応により熱硬化型塗料を硬化させるため、この縮合反応や脱ブロック反応により揮発性生成物が生成して残存する溶媒とともに揮発し、積層塗膜が収縮して塗膜表面に凹凸が形成される。この塗膜表面の凹凸は各層が十分に流動性を有している間はその流動などにより緩和されるが、各層、特に最上層の流動性が硬化により著しく低下すると凹凸は緩和されず、基材表面や各層の界面の凹凸が最上層表面に転写され、積層塗膜の肌や光沢が悪化することとなる。   In addition, even when two or more kinds of paints are laminated by wet-on-wet and baked by the coating method of the present invention, the reason why the unevenness of the surface of the laminated coating film is not necessarily clear is not certain, but the present inventors I guess as follows. In other words, in a conventional multilayer coating film formed by wet-on-wet, a thermosetting paint for forming each layer is selected so that a curing reaction occurs at the same heating temperature in all layers including the uppermost layer. When the thermosetting paint forming the upper layer is cured by heat treatment, the thermosetting paint is cured also in the lower layer. At this time, in each layer of the laminated coating film, the thermosetting paint is cured by an addition reaction after the condensation reaction or the deblocking reaction of the curing agent. Therefore, a volatile product is generated and remains by this condensation reaction or deblocking reaction. It volatilizes with the solvent to be formed, and the laminated coating film contracts to form irregularities on the coating film surface. The unevenness on the surface of the coating film is alleviated by the flow while each layer has sufficient fluidity, but the unevenness is not alleviated if the fluidity of each layer, particularly the uppermost layer, is significantly reduced by curing. Concavities and convexities at the surface of the material and the interface of each layer are transferred to the surface of the uppermost layer, and the skin and gloss of the laminated coating film deteriorate.

一方、本発明の塗装方法では、まず、最上層を形成する熱硬化型塗料が実質的に硬化しない温度で下層に熱処理を施して下層を形成する熱硬化型塗料を硬化させ、次いでより高温で熱処理を施して最上層を形成する熱硬化型塗料を硬化させる。この方法では、最上層が硬化する際には、既に下層の硬化はかなり進行しているため下層で生成する揮発性生成物は減少し、下層の収縮が抑制されると推察する。更に、最上層用熱硬化型塗料として硬化反応において揮発性生成物を実質的に生成しない熱硬化型塗料を使用するため、最上層でも硬化の際に揮発性生成物が実質的には揮発せず、積層塗膜の表面形状に影響を与えるような揮発性生成物の揮発による収縮が起こらないと推察する。なお、本発明において、「揮発性生成物を実質的に生成しない」および「揮発性生成物が実質的に揮発しない」には、揮発性生成物の揮発による塗膜の収縮が塗膜の表面形状に影響を及ぼさない程度に揮発性生成物が生成および揮発する場合を包含するものとする。具体的には、塗料に温度Tでの熱処理を施して揮発性生成物が生成して揮発しても塗膜の重量減少率が0.5質量%以下である場合には、この塗料は実質的に揮発性生成物を生成せず、揮発しないものとする。 On the other hand, in the coating method of the present invention, first, the thermosetting paint that forms the lower layer is cured by applying heat treatment to the lower layer at a temperature at which the thermosetting paint that forms the uppermost layer is not substantially cured, and then at a higher temperature. The thermosetting paint that forms the top layer is cured by heat treatment. In this method, when the uppermost layer is cured, the curing of the lower layer has already progressed considerably, so that the volatile products generated in the lower layer are reduced and the shrinkage of the lower layer is suppressed. Furthermore, since a thermosetting coating that does not substantially generate a volatile product in the curing reaction is used as the thermosetting coating for the uppermost layer, the volatile product is substantially volatilized during the curing of the uppermost layer. Therefore, it is presumed that the contraction due to the volatilization of the volatile product which affects the surface shape of the laminated coating film does not occur. In the present invention, “the volatile product is not substantially generated” and “the volatile product is not substantially volatilized” include that the contraction of the coating film due to the volatilization of the volatile product is the surface of the coating film. The case where a volatile product is generated and volatilized to such an extent that the shape is not affected is included. Specifically, if the weight reduction rate of the coating film is 0.5% by mass or less even when the paint is subjected to a heat treatment at a temperature T T to produce a volatile product and volatilize, the paint It shall produce virtually no volatile product and shall not volatilize.

本発明によれば、2種類以上の塗料をウェットオンウェットで積層して焼き付けにより高耐久性の確保などのために最上層を硬化させ、さらに1層以上の下層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   According to the present invention, even if two or more kinds of paints are laminated on a wet-on-wet basis and are baked to ensure high durability, the uppermost layer is cured, and even if one or more lower layers are cured, the uppermost layer A laminated coating film with less surface irregularities can be obtained. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の塗装方法は、基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として硬化温度Tが40℃以上200℃以下であり且つ熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として硬化温度Tが下記式(1)
≦T−30 (1)
(式(1)中、Tは下層用熱硬化型塗料の硬化温度[℃]を示し、Tは最上層用熱硬化型塗料の硬化温度[℃]を示す。)
を満たす下層用熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料及び前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
下記式(2)
−20≦T≦T−30 (2)
および下記式(3)
−20≦T≦T+40 (3)
(式(2)および(3)中、Tは低温加熱温度[℃]を示し、Tは高温加熱温度[℃]を示し、TおよびTは式(1)中のTおよびTと同義である。)
を満たす加熱温度TおよびTを設定する工程と、
前記未硬化積層塗膜に前記温度Tで熱処理(以下「低温加熱処理」ともいう。)を施して少なくとも前記下層用熱硬化型塗料を硬化させて最上層が未硬化の積層塗膜を形成し、次いで、最上層が未硬化の前記積層塗膜に前記温度Tで熱処理(以下「高温加熱処理」ともいう。)を施して最上層用熱硬化型塗料を硬化させる工程と、
を含むことを特徴とするものである。
The coating method of the present invention is a coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
Preparing a thermosetting coating material having a curing temperature T T of 40 ° C. or more and 200 ° C. or less and forming no volatile product in a curing reaction by heat treatment as the uppermost layer coating material for forming the uppermost layer; the curing temperature T U is the following formula as at least one of the lower layer coating material for forming the lower layer (1)
T U ≦ T T -30 (1)
(In the formula (1), T U represents a curing temperature [℃] of the lower layer for thermosetting paint, T T denotes the curing temperature of the uppermost layer-thermosetting coating material [℃].)
A step of preparing a thermosetting paint for the lower layer satisfying
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Following formula (2)
T U −20 ≦ T L ≦ T T −30 (2)
And the following formula (3)
T T -20 ≦ T H ≦ T T +40 (3)
(In the formula (2) and (3), T L represents the low heating temperature [℃], T H represents a high-temperature heating temperature [° C.], T U and T T is T U and in the formula (1) it is synonymous with the T T.)
Setting the heating temperatures T L and T H to satisfy
The uncured laminated coating film is subjected to a heat treatment at the temperature TL (hereinafter also referred to as “low-temperature heat treatment”) to cure at least the thermosetting paint for the lower layer to form an uncured laminated coating film. and, then, a step of the top layer to cure the temperature T H in the heat treatment (hereinafter referred to as "high-temperature heat treatment".) the applied with thermosetting coating material for the uppermost layer to the multilayer coating film of the uncured,
It is characterized by including.

本発明の塗装方法では、基材上に1種類以上の下層用熱硬化型塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の下層を形成する。次いで、この未硬化の下層の上に最上層用熱硬化型塗料を塗布し、必要に応じて乾燥等により溶媒等を蒸発させて未硬化の最上層を形成する。その後、この得られた未硬化積層塗膜に低温加熱処理を施して少なくとも前記下層用熱硬化型塗料を硬化させた後、高温加熱処理を施して最上層用熱硬化型塗料を硬化させる。   In the coating method of the present invention, one or more lower layer thermosetting paints are applied on a substrate, and a solvent or the like is evaporated by drying or the like as necessary to form an uncured lower layer. Next, a thermosetting paint for the uppermost layer is applied on the uncured lower layer, and a solvent or the like is evaporated by drying or the like as necessary to form an uncured uppermost layer. Thereafter, the obtained uncured laminated coating film is subjected to a low-temperature heat treatment to cure at least the lower layer thermosetting paint, and then subjected to a high-temperature heat treatment to cure the uppermost layer thermosetting paint.

基材としては、特に限定されず、例えば、金属(鉄、銅、アルミニウム、錫、亜鉛およびこれらの金属の合金など)、鋼板、プラスチック、発泡体、紙、木、布、ガラスなどが挙げられる。中でも、外観品質に対する要求特性が高い自動車用鋼板に本発明は好適に適用される。これら基材表面は、予め電着塗装などの処理が施されていてもよい。   The substrate is not particularly limited, and examples thereof include metals (iron, copper, aluminum, tin, zinc and alloys of these metals), steel plates, plastics, foams, paper, wood, cloth, glass, and the like. . Especially, this invention is applied suitably for the steel plate for motor vehicles with the required characteristic with respect to external appearance quality. These substrate surfaces may be subjected to a treatment such as electrodeposition coating in advance.

本発明の塗装方法では、基材上に少なくとも1層の下層を形成するが、前記下層のうちの少なくとも1層は硬化温度が前記式(1)を満たす熱硬化型塗料を用いて形成される。具体的には、下層が1層の場合にはこの下層を熱硬化型塗料を用いて形成し、下層が2層以上の場合にはそれらのうちの少なくとも1層を熱硬化型塗料を用いて形成する。   In the coating method of the present invention, at least one lower layer is formed on the substrate, and at least one of the lower layers is formed using a thermosetting coating material having a curing temperature satisfying the formula (1). . Specifically, when the lower layer is a single layer, this lower layer is formed using a thermosetting paint, and when the lower layer is two or more layers, at least one of them is formed using a thermosetting paint. Form.

前記下層用熱硬化型塗料は硬化温度Tが下記式(1)
≦T−30 (1)
(式(1)中、Tは下層用熱硬化型塗料の硬化温度[℃]を示し、Tは最上層用熱硬化型塗料の硬化温度[℃]を示す。)
を満たす熱硬化型塗料である。下層用熱硬化型塗料として硬化温度が前記式(1)を満たす熱硬化型塗料を用いると加熱温度Tと加熱温度Tとの差を十分に広げることができ、その結果、下層の硬化と最上層の硬化とを別個独立に進行させることができる。また、このような観点から硬化温度TとTは下記式(1a)
≦T−40 (1a)
(式(1a)中、TおよびTは式(1)中のTおよびTと同義である。)
を満たすことが好ましい。
The lower layer heat-curable coating material curing temperature T U is the following formula (1)
T U ≦ T T -30 (1)
(In the formula (1), T U represents a curing temperature [℃] of the lower layer for thermosetting paint, T T denotes the curing temperature of the uppermost layer-thermosetting coating material [℃].)
It is a thermosetting paint that satisfies the above. The curing temperature as the lower layer heat-curable coating material (1) can be expanded sufficiently the difference between the heating temperature T L and the heating temperature T H using a thermosetting coating material satisfying, as a result, the lower layer of the cured And the curing of the top layer can proceed independently. Further, the curing temperature T U and T T From this point of view the following formula (1a)
T U ≦ T T -40 (1a )
(Formula (1a) in, T U and T T are as defined T U and T T in the formula (1).)
It is preferable to satisfy.

なお、本発明において、「熱硬化型塗料の硬化温度」とは、対象とする塗料を基材上に塗装して熱処理を施し塗膜を硬化せしめて基材上に定着させるために硬化時間などの硬化条件との関係で最も効率よく硬化できる温度をいい、一般的には塗料毎に設定(設計)されている焼付温度をいう。本発明では、この硬化温度(焼付温度)としてカタログ値を採用することができる。   In the present invention, the “curing temperature of the thermosetting paint” refers to a curing time for coating the target paint on the substrate, applying a heat treatment to cure the coating film, and fixing it on the substrate. The temperature at which curing can be performed most efficiently in relation to the curing conditions, and generally the baking temperature set (designed) for each paint. In the present invention, a catalog value can be adopted as the curing temperature (baking temperature).

前記下層用熱硬化型塗料としては、前記式(1)、好ましくは前記式(1a)を満たすものであれば、通常の焼付塗装に使用される熱硬化型塗料が使用でき、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料など、塗膜形成可能な熱硬化性樹脂および硬化剤(例えば、前記熱硬化性樹脂の官能基と反応可能な官能基を2個以上有する化合物や樹脂)を含むものが挙げられる。前記下層用熱硬化型塗料の形態は、溶剤型、水性のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性が好ましい。   As the thermosetting paint for the lower layer, any thermosetting paint used in ordinary baking coating can be used as long as it satisfies the formula (1), preferably the formula (1a). Thermosetting resin and curing agent capable of forming a coating film such as intermediate coating and base coating described in Japanese Patent Application Publication No. 2004-275966 (for example, having two or more functional groups capable of reacting with the functional group of the thermosetting resin) Compound and resin). The form of the thermosetting paint for the lower layer may be either solvent-based or water-based, but water-based is preferable in that the amount of volatile organic compounds discharged can be reduced.

前記下層用熱硬化型塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、前記下層用熱硬化型塗料に含まれる硬化剤としては、アミン化合物、アミノ樹脂、イソシアネート化合物、およびイソシアネート樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film included in the lower layer thermosetting paint include, but are not limited to, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, and a urethane resin. . Moreover, as a hardening | curing agent contained in the said thermosetting coating material for lower layers, an amine compound, an amino resin, an isocyanate compound, an isocyanate resin, etc. are mentioned, However, It is not limited to these. These resins and curing agents may be used alone or in combination of two or more.

本発明では、前記下層用熱硬化型塗料のうち、最上層を硬化させる際に最上層が硬化して流動性が著しく低下した後の塗膜の収縮を低減できる点で前記高温加熱処理時に実質的に揮発性生成物を生成しない塗料であることが好ましい。このような塗料としては、使用する最上層用熱硬化型塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい熱硬化型塗料を下層用熱硬化型塗料として使用すると熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にできる傾向にある。また、このような観点から前記高温加熱処理時に揮発性生成物を生成しない塗料(重量減少率が0質量%)が最も好ましい。 In the present invention, among the thermosetting paints for the lower layer, when the uppermost layer is cured, the uppermost layer is substantially cured at the time of the high-temperature heat treatment in that the shrinkage of the coating film after the upper layer is cured and the fluidity is significantly reduced can be reduced. In particular, it is preferable that the coating material does not generate a volatile product. As such a coating material, the weight reduction rate at the curing temperature T T of the thermosetting coating material for the uppermost layer to be used is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, Particularly preferred is 1% by mass or less. When such a thermosetting paint with a small weight reduction rate is used as the thermosetting paint for the lower layer, the shrinkage of the coating film tends to be minimized after the uppermost layer is cured by heat treatment and the fluidity is remarkably lowered. . From this point of view, a paint (a weight reduction rate of 0% by mass) that does not generate a volatile product during the high-temperature heat treatment is most preferable.

なお、本発明において「塗料の重量減少率」は、以下の方法により測定される値である。すなわち、対象とする塗料を熱処理後の膜厚が積層塗膜での目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用熱硬化型塗料の硬化温度Tよりも40℃低い温度[T−40℃]および10−2Torr以下の真空条件で90分間乾燥した後、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて前記温度Tで30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量を定量し、式(4)により重量減少率を算出する。 In the present invention, “weight reduction rate of paint” is a value measured by the following method. That is, the target paint is coated on the aluminum foil so that the film thickness after the heat treatment becomes the target film thickness in the laminated coating film, and the obtained aluminum foil sample is set to the curing temperature T of the thermosetting paint for the uppermost layer. Gas chromatograph / mass spectrometry with a heat desorption introducing device (for example, Thermal Destruction System manufactured by GERSTEL) after drying for 90 minutes under a vacuum condition of 40 ° C. lower than T [T T −40 ° C.] and 10 −2 Torr or less. Using an apparatus (for example, 6890GC / 5975MSD manufactured by Agilent), the amount of volatile products (Rc (unit: g)) and the amount of residual solvent were quantified by heating at the temperature T T for 30 minutes, and the weight was calculated according to the formula (4). Calculate the reduction rate.

重量減少率=100×Rc/W×100/(100−P) (4)
式(4)中、Wは前記真空乾燥工程で得られた塗膜の質量(単位:g)を示し、Pはその塗膜100gに含まれる顔料の質量(単位:g)を示す。なお、顔料の質量は塗料の配合表の値(カタログ値など)を採用できる。このようにして算出された重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (4)
In formula (4), W represents the mass (unit: g) of the coating film obtained in the vacuum drying step, and P represents the mass (unit: g) of the pigment contained in 100 g of the coating film. In addition, the value (catalog value etc.) of the recipe of a coating material can be employ | adopted for the mass of a pigment. The weight reduction rate calculated in this way is the ratio of the volatile product amount to the total binder amount in the coating film.

前記高温加熱処理時に実質的に揮発性生成物を生成しない熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂と硬化剤とが熱処理により付加反応して硬化する塗料などが挙げられる。具体的には、前記熱硬化型塗料として水酸基含有アクリル樹脂とイソシアネート化合物および/またはイソシアネート樹脂との組み合わせ、エポキシ基含有アクリル樹脂と多価カルボン酸化合物および/またはカルボキシル基含有樹脂との組み合わせなどが挙げられる。   Examples of the thermosetting coating material that does not substantially generate a volatile product during the high-temperature heat treatment include a coating material in which a thermosetting resin capable of forming a coating film and a curing agent are subjected to an addition reaction by heat treatment to be cured. Specifically, the thermosetting paint includes a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin, a combination of an epoxy group-containing acrylic resin and a polyvalent carboxylic acid compound and / or a carboxyl group-containing resin, and the like. Can be mentioned.

また、本発明に用いられる下層用熱硬化型塗料としては、使用する最上層用塗料のゲル化開始時における相対損失弾性率が1s−2以下である塗料が好ましい傾向にある。なお、「最上層用塗料のゲル化開始時における相対損失弾性率」とは、以下の方法により測定される相対損失弾性率で定義されるものである。すなわち、先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に熱硬化処理後の膜厚が35±5μmとなるように塗布する。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込む。 Further, as the lower layer thermosetting paint used in the present invention, a paint having a relative loss elastic modulus of 1 s −2 or less at the start of gelation of the uppermost layer paint to be used tends to be preferable. The “relative loss elastic modulus at the start of gelation of the uppermost layer coating material” is defined by the relative loss elastic modulus measured by the following method. That is, first, the uppermost layer coating material is applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after the thermosetting treatment is 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The uppermost layer coating material is applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定する。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施する。測定時の温度プログラムは、室温(25℃)から最上層用塗料の硬化温度まで昇温速度20±4℃/分で昇温し、その後、前記硬化温度を維持するように設定する。 In this way, the relative storage elastic modulus (E r ′) of the coating film is measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material is formed. The measurement is carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with an annular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° is attached. The temperature program at the time of measurement is set so that the temperature is increased from room temperature (25 ° C.) to the curing temperature of the uppermost layer coating material at a rate of temperature increase of 20 ± 4 ° C./min, and then the curing temperature is maintained.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットすると、図1に示すように、時間の経過に従って下に凸の曲線から上に凸の曲線に変化する(以下、この変化する時点を「変曲点」という)という結果が得られる。この変曲点から15分間の部分について下記式(5):
’=A〔1−exp{k(t−t}〕 (5)
(式(5)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片tを求める。このtは、測定を開始してから最上層用塗料がゲル化を開始するまでの時間を表す。
When the measured value of the relative storage elastic modulus (E r ′) obtained is plotted with respect to time, as shown in FIG. 1, the curve changes from a downward convex curve to an upward convex curve as time elapses (hereinafter referred to as “protruding curve”). This change time is called “inflection point”. The following equation (5) for the 15 minute portion from this inflection point:
E r '= A [1-exp {k (t−t d }] (5)
(In formula (5), A and k are constants, and t represents time.)
And the time axis intercept t d is obtained by a nonlinear least square method. The t d represents the time from the start of measurement to the uppermost layer-coating material starts to gel.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を測定する。この測定結果から前記時間tにおける相対損失弾性率(E”)を求め、これを「最上層用塗料のゲル化開始時における相対損失弾性率」とする。 Next, for the lower layer coating material, a coating film is formed in the same manner as in the uppermost layer coating material, and the relative loss modulus (E r ″) is measured under the same conditions as in the uppermost layer coating material. From this measurement result, the relative loss elastic modulus (E r ″) at the time t d is obtained, and this is defined as “relative loss elastic modulus at the start of gelation of the uppermost layer coating material”.

なお、前記相対貯蔵弾性率(E’)および前記相対損失弾性率(E”)は、それぞれ一般的な貯蔵弾性率(E’)および相対損失弾性率(E”)と下記式:
’=BE’
”=BE”
で関連付けることができる。ここで、Bは測定条件によって決まる値あり、下記式:
B=(bhcosφ)/(Isinθ)
(式中、bは塗膜とナイフエッジとが接する長さ[単位:m]を示し、hは塗膜の膜厚[単位:m]を示し、φは静止した振子のナイフエッジ面と基材(上記の場合はステンレス鋼板)の表面とがなす角度を示し、Iは振子の刃先を軸とした回転慣性モーメント[単位:kg・m]を示す)
で表されるものである。したがって、測定条件が固定されればBは一定値となる。
The relative storage elastic modulus (E r ′) and the relative loss elastic modulus (E r ″) are respectively the general storage elastic modulus (E ′) and the relative loss elastic modulus (E ″) and the following formula:
E r '= BE'
E r "= BE"
Can be associated with. Here, B is a value determined by measurement conditions, and the following formula:
B = (bh 2 cos φ) / (I sin 3 θ)
(In the formula, b represents the length [unit: m] where the coating film and the knife edge are in contact, h represents the film thickness [unit: m] of the coating film, and φ represents the knife edge surface and the base of the stationary pendulum. Indicates the angle formed by the surface of the material (stainless steel plate in the above case), and I indicates the rotational moment of inertia [unit: kg · m 2 ] around the pendulum blade edge)
It is represented by Therefore, if measurement conditions are fixed, B becomes a constant value.

本発明においては、前記熱硬化性樹脂および前記硬化剤の組成や配合比を調整したり、添加剤を配合するなどして、例えばガラス転移温度や架橋密度などを低くすることによって、下層用熱硬化型塗料についての最上層用塗料のゲル化開始時における相対損失弾性率を1s−2以下にすることができる。 In the present invention, by adjusting the composition and blending ratio of the thermosetting resin and the curing agent, blending additives, etc., for example, by lowering the glass transition temperature, the crosslinking density, etc., the lower layer heat The relative loss elastic modulus at the start of gelation of the uppermost layer-coating material for the curable coating material can be 1 s −2 or less.

本発明にかかる下層用熱硬化型塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   The thermosetting paint for a lower layer according to the present invention may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

また、本発明の塗装方法では、下層が2層以上の場合、それらのうちの少なくとも1層を前記下層用熱硬化型塗料を用いて形成し、残りの層を熱処理により硬化反応を起こさない非硬化型塗料を用いて形成することができる。   Further, in the coating method of the present invention, when there are two or more lower layers, at least one of them is formed using the lower layer thermosetting paint, and the remaining layers are not subjected to a curing reaction by heat treatment. It can be formed using a curable paint.

前記下層を形成するための非硬化型塗料としては、熱処理により実質的に硬化反応を起こさないものであればよく、最上層用熱硬化型塗料の硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい非硬化型塗料を用いると熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を小さくできる傾向にある。さらにこのような観点から塗膜形成可能な樹脂を含み硬化剤を含まない塗料が最も好ましい。非硬化型塗料の形態は、溶剤型、水性のいずれでもよいが、揮発性有機化合物の排出量を削減できる点で水性が好ましい。 Non-curable coating material for forming the lower layer, as long as it does not cause substantial curing reaction by the heat treatment, the weight reduction rate in curing temperature T T of the uppermost layer-thermosetting coating material is 0.5 The thing of the mass% or less is preferable, the thing of 0.3 mass% or less is more preferable, and the thing of 0.1 mass% or less is especially preferable. When such a non-curing paint having a small weight reduction rate is used, the shrinkage of the coating film after the uppermost layer is cured by heat treatment and the fluidity is remarkably lowered tends to be reduced. Further, from such a viewpoint, a paint containing a resin capable of forming a coating film and containing no curing agent is most preferable. The form of the non-curable coating material may be either solvent-based or water-based, but water-based is preferable in that the amount of volatile organic compounds discharged can be reduced.

前記非硬化型塗料に含まれる塗膜形成可能な樹脂としては、それ単独では熱処理により硬化反応を起こさない樹脂であればよく、例えば、特開2004−275966号公報に記載の中塗り塗料やベース塗料などから硬化剤を除いた樹脂成分、具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。また、これらの樹脂の中から熱処理により硬化反応を起こさないものを2種以上選択して併用してもよい。   The resin capable of forming a coating film contained in the non-curable coating material may be a resin that does not cause a curing reaction by heat treatment alone. For example, an intermediate coating material or a base described in JP-A-2004-275966 Examples of the resin component excluding the curing agent from the paint and the like, specifically, an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, a urethane resin, and the like, are not limited thereto. Two or more of these resins that do not cause a curing reaction by heat treatment may be selected and used in combination.

また、前記非硬化型塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   In addition, the non-curable coating material may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明の塗装方法では、最上層用塗料として硬化温度Tが40℃以上200℃以下、好ましくは60℃以上160℃以下の熱硬化型塗料を使用する。また、前記最上層用熱硬化型塗料は、熱処理による硬化反応において揮発性生成物を生成しないものである。なお、本発明において、揮発性生成物を生成しない塗料は実質的に揮発性生成物を生成しないものであればよい。このような塗料は硬化温度Tにおける重量減少率が0.5質量%以下のものが好ましく、0.3質量%以下のものがより好ましく、0.1質量%以下のものが特に好ましい。このような重量減少率が小さい熱硬化型塗料を最上層用塗料として使用すると熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にすることができる傾向にある。 The coating method of the present invention, the curing temperature T T as the uppermost layer-coating material is 40 ° C. or higher 200 ° C. or less, preferably used 60 ° C. or higher 160 ° C. or less of the thermosetting coating material. The uppermost layer thermosetting paint does not generate a volatile product in a curing reaction by heat treatment. In the present invention, the coating material that does not generate a volatile product may be any material that does not substantially generate a volatile product. Such a coating material preferably has a weight reduction rate of 0.5% by mass or less at the curing temperature T T , more preferably 0.3% by mass or less, and particularly preferably 0.1% by mass or less. When such a thermosetting paint with a small weight reduction rate is used as the paint for the uppermost layer, the shrinkage of the coating film tends to be minimized after the uppermost layer is cured by heat treatment and the fluidity is significantly lowered. is there.

前記最上層用熱硬化型塗料としては、塗膜形成可能な熱硬化性樹脂と硬化剤(例えば、前記熱硬化性樹脂の官能基と付加反応可能な官能基を2個以上有する化合物や樹脂)とが付加反応により硬化する塗料が挙げられ、通常の焼付塗装の最上層用塗料として使用される熱硬化型塗料(例えば、特開2004−275966号公報に記載のクリア塗料など)が使用できる。最上層用熱硬化型塗料の形態は溶剤型、水性、粉体のいずれでもよい。   As the thermosetting paint for the uppermost layer, a thermosetting resin capable of forming a coating film and a curing agent (for example, a compound or resin having two or more functional groups capable of undergoing addition reaction with the functional group of the thermosetting resin). And a thermosetting paint (for example, a clear paint described in JP-A No. 2004-275966) used as the uppermost layer paint for ordinary baking coating. The form of the thermosetting paint for the uppermost layer may be any of solvent type, aqueous type and powder.

前記最上層用熱硬化型塗料に含まれる塗膜形成可能な熱硬化性樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられるが、これらに限定されるものではない。前記最上層用熱硬化型塗料に含まれる硬化剤としてはアミン化合物、アミノ樹脂、イソシアネート化合物、およびイソシアネート樹脂などが挙げられるが、これらに限定されるものではない。ただし、硬化反応時に揮発性生成物が生成しないように前記熱硬化性樹脂と前記硬化剤との適当な組み合わせを選択する必要がある。また、これらの樹脂および硬化剤はそれぞれ1種単独で用いても2種以上を併用してもよい。   Examples of the thermosetting resin capable of forming a coating film included in the thermosetting paint for the uppermost layer include acrylic resins, polyester resins, alkyd resins, epoxy resins, urethane resins, and the like. Absent. Examples of the curing agent contained in the uppermost layer thermosetting paint include, but are not limited to, amine compounds, amino resins, isocyanate compounds, and isocyanate resins. However, it is necessary to select an appropriate combination of the thermosetting resin and the curing agent so that a volatile product is not generated during the curing reaction. These resins and curing agents may be used alone or in combination of two or more.

前記熱硬化性樹脂と前記硬化剤との好ましい組み合わせとしては、水酸基含有アクリル樹脂とイソシアネート化合物および/またはイソシアネート樹脂との組み合わせ、エポキシ基含有アクリル樹脂と多価カルボン酸化合物および/またはカルボキシル基含有樹脂との組み合わせなどが挙げられる。   Preferred combinations of the thermosetting resin and the curing agent include a combination of a hydroxyl group-containing acrylic resin and an isocyanate compound and / or an isocyanate resin, an epoxy group-containing acrylic resin and a polyvalent carboxylic acid compound and / or a carboxyl group-containing resin. The combination with is mentioned.

更に、前記最上層用塗料には、必要に応じて従来公知の着色顔料や光輝性顔料などが従来公知の範囲で含まれていてもよい。また、各種物性を調整するために粘性制御剤、表面調整剤、増粘剤、酸化防止剤、紫外線防止剤、消泡剤などの各種添加剤を従来公知の範囲で配合してもよい。   Further, the uppermost layer coating material may contain conventionally known color pigments, glitter pigments, and the like within a conventionally known range, if necessary. In order to adjust various physical properties, various additives such as a viscosity control agent, a surface conditioner, a thickener, an antioxidant, an ultraviolet ray inhibitor and an antifoaming agent may be blended within a conventionally known range.

本発明の塗装方法では、先ず、前記基材上に前記下層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の下層を形成する。このとき、下層が1層の場合にはこの下層は前記下層用熱硬化型塗料を用いて形成される。下層が2層以上の場合にはそれらのうちの少なくとも1層を前記下層用熱硬化型塗料を用いて形成し、残りの層を前記下層用非硬化型塗料を用いて形成することができるが、積層塗膜の強度を向上できる点ですべての層を前記下層用熱硬化型塗料を用いて形成することが好ましい。   In the coating method of the present invention, first, the lower layer coating material is applied onto the substrate, and if necessary, the solvent is evaporated by drying or the like to form an uncured lower layer. At this time, when the lower layer is one layer, the lower layer is formed using the lower layer thermosetting paint. When there are two or more lower layers, at least one of them can be formed using the lower layer thermosetting paint, and the remaining layers can be formed using the lower layer non-curable paint. In view of improving the strength of the laminated coating film, it is preferable to form all the layers using the lower layer thermosetting paint.

下層用塗料を塗布する際、熱硬化型塗料および非硬化型塗料のいずれの塗料を使用する場合でもエアー静電スプレー塗装や回転霧化式静電塗装などの従来公知の方法を適用することができる。   When applying the coating for the lower layer, it is possible to apply a conventionally known method such as air electrostatic spray coating or rotary atomizing electrostatic coating when using either a thermosetting paint or a non-curing paint. it can.

下層の各層の膜厚は所望の用途により適宜設定することができるが、例えば、熱処理後の膜厚で5〜50μmであることが好ましく、10〜40μmであることがより好ましい。各下層の膜厚が前記下限未満では均一な下層の塗膜が得にくくなる傾向にあり、他方、前記上限を超えると最上層の塗膜に含まれる溶媒などを多く吸収する傾向にあるとともにその層自身に含まれる溶媒の揮発も抑制され積層塗膜の外観品質を悪化させる傾向にある。   The film thickness of each lower layer can be appropriately set depending on the desired application. For example, the film thickness after heat treatment is preferably 5 to 50 μm, more preferably 10 to 40 μm. If the film thickness of each lower layer is less than the lower limit, it tends to be difficult to obtain a uniform lower layer coating film.On the other hand, if it exceeds the upper limit, it tends to absorb a large amount of the solvent contained in the uppermost layer coating film. Volatilization of the solvent contained in the layer itself is also suppressed, and the appearance quality of the laminated coating film tends to deteriorate.

次に、前記未硬化の下層の上に前記最上層用塗料を塗布し、必要に応じて乾燥等により溶媒を蒸発させて未硬化の最上層を形成する。最上層用塗料の塗布方法としては、エアー静電スプレー塗装や回転霧化式静電塗装などの従来公知の方法が挙げられる。   Next, the uppermost layer-coating material is applied on the uncured lower layer, and if necessary, the solvent is evaporated by drying or the like to form an uncured uppermost layer. Conventionally known methods such as air electrostatic spray coating and rotary atomizing electrostatic coating can be used as the coating method for the uppermost layer coating material.

最上層の膜厚は所望の用途により適宜設定することができるが、例えば、熱処理後の膜厚で15〜60μmであることが好ましく、20〜50μmであることがより好ましい。最上層の膜厚が前記下限未満では流動性が不十分であり積層塗膜の外観品質が悪化する傾向にあり、他方、前記上限を超えると流動性が過度に大きくなり鉛直方向に塗装する場合にはタレなどの欠陥が発生する傾向にある。   The film thickness of the uppermost layer can be appropriately set depending on the desired application. For example, the film thickness after heat treatment is preferably 15 to 60 μm, and more preferably 20 to 50 μm. When the film thickness of the uppermost layer is less than the lower limit, the fluidity is insufficient and the appearance quality of the laminated coating film tends to deteriorate. On the other hand, when the upper limit is exceeded, the fluidity becomes excessively large and the coating is applied in the vertical direction. There is a tendency for defects such as sagging to occur.

次に、前記のようにして前記下層用塗料および前記最上層用塗料をウェットオンウェットで積層して形成された未硬化積層塗膜に先ず温度Tで熱処理を施して前記下層用熱硬化型塗料を硬化させて最上層が未硬化の積層塗膜を形成する。その後、この最上層が未硬化の積層塗膜に温度Tで熱処理を施して前記最上層用硬化型塗料を硬化させる。 Next, the uncured laminated coating film formed by laminating the lower layer coating material and the uppermost layer coating material as described above is first subjected to a heat treatment at a temperature TL , and then the lower layer thermosetting type. The paint is cured to form an uncured laminated coating. Thereafter, the uppermost layer is curing the curable coating top layer is subjected to heat treatment at a temperature T H in the multilayer coating film uncured.

本発明の塗装方法において、前記加熱温度TおよびTは、下記式(2)
−20≦T≦T−30 (2)
および下記式(3)
−20≦T≦T+40 (3)
(式(2)および式(3)中、Tは低温加熱温度[℃]を示し、Tは高温加熱温度[℃]を示し、TおよびTは式(1)中のTおよびTと同義である。)
を満たすように設定される。前記加熱温度TおよびTを前記式を満たすように設定することにより先ず最上層を硬化させずに下層を硬化させ、その後最上層を硬化させることができる。このような観点から前記加熱温度Tは下記式(2a)
≦T≦T−30 (2a)
を満たすことが好ましく、下記式(2b)
+10≦T≦T−40 (2b)
を満たすことがより好ましい。また、前記加熱温度Tは下記式(3a)
≦T≦T+20 (3a)
を満たすことが好ましく、下記式(3b)
=T (3b)
を満たすことがより好ましい。
In the coating method of the present invention, the heating temperatures TL and TH are represented by the following formula (2):
T U −20 ≦ T L ≦ T T −30 (2)
And the following formula (3)
T T -20 ≦ T H ≦ T T +40 (3)
(In the formula (2) and (3), T L represents the low heating temperature [℃], T H represents a high-temperature heating temperature [° C.], T U and T T is T U in the formula (1) And T T. )
It is set to satisfy. By setting the heating temperatures T L and T H so as to satisfy the above formula, the lower layer can be cured first without curing the uppermost layer, and then the uppermost layer can be cured. From such a viewpoint, the heating temperature TL is expressed by the following formula (2a)
T U ≦ T L ≦ T T- 30 (2a)
It is preferable to satisfy the following formula (2b)
T U + 10 ≦ T L ≦ T T −40 (2b)
It is more preferable to satisfy. The heating temperature TH is expressed by the following formula (3a)
T T ≦ T H ≦ T T +20 (3a)
It is preferable to satisfy the following formula (3b)
T T = T H (3b)
It is more preferable to satisfy.

式(2a)、(2b)、(3a)および(3b)中、T、T、TおよびTは式(2)および(3)中のT、T、TおよびTと同義である。 Formula (2a), (2b), (3a) and (3b) in, T L, T H, T U and T T is T L in formula (2) and (3), T H, T U and T Synonymous with T.

前記低温加熱時間は下層用熱硬化型塗料の硬化時間の10%以上100%以下であることが好ましく、20%以上80%以下であることがより好ましい。具体的には、下層用熱硬化型塗料の硬化時間が30分の場合、低温加熱時間は3分以上30分以下であることが好ましく、6分以上24分以下であることがより好ましい。低温加熱時間が前記下限未満になると下層が十分に硬化しない傾向にあり、他方、前記上限を超えると全体の加熱時間が増加し、生産性が低下する傾向にある。   The low-temperature heating time is preferably 10% or more and 100% or less, and more preferably 20% or more and 80% or less of the curing time of the thermosetting paint for the lower layer. Specifically, when the curing time of the lower layer thermosetting paint is 30 minutes, the low-temperature heating time is preferably 3 minutes or longer and 30 minutes or shorter, and more preferably 6 minutes or longer and 24 minutes or shorter. If the low-temperature heating time is less than the lower limit, the lower layer tends not to be cured sufficiently. On the other hand, if the upper limit is exceeded, the entire heating time increases and productivity tends to be lowered.

また、前記高温加熱時間は最上層用熱硬化型塗料の硬化時間の50%以上150%以下であることが好ましく、60%以上100%以下であることがより好ましい。具体的には、最上層用熱硬化型塗料の硬化時間が30分の場合、高温加熱時間は15分以上45分以下であることが好ましく、18分以上30分以下であることがより好ましい。高温加熱時間が前記下限未満になると最上層が十分に硬化しない傾向にあり、他方、前記上限を超えると最上層が過度に硬化して割れやすくなったり、黄変したりする傾向にある。   The high temperature heating time is preferably 50% or more and 150% or less, and more preferably 60% or more and 100% or less of the curing time of the thermosetting paint for the uppermost layer. Specifically, when the curing time of the thermosetting paint for the uppermost layer is 30 minutes, the high temperature heating time is preferably 15 minutes or longer and 45 minutes or shorter, and more preferably 18 minutes or longer and 30 minutes or shorter. When the high-temperature heating time is less than the lower limit, the uppermost layer tends to be not sufficiently cured, whereas when the upper limit is exceeded, the uppermost layer tends to be excessively cured and easily cracked or yellowed.

本発明の塗装方法では、前記高温加熱処理を施す前に最上層が未硬化の積層塗膜の揮発分濃度を好ましくは4質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下に低減する。これにより高温加熱処理により最上層が硬化して流動性が著しく低下した後の塗膜の収縮を最小限にすることができる傾向にある。なお、本発明において、「積層塗膜の揮発分濃度」は、式(6)より算出される値である。   In the coating method of the present invention, the volatile content concentration of the uncured laminated coating film before the high-temperature heat treatment is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass. Reduce to: This tends to minimize the shrinkage of the coating film after the uppermost layer is cured by heat treatment and the fluidity is remarkably lowered. In the present invention, the “volatile content of the laminated coating film” is a value calculated from the equation (6).

V=(Wt−We)/Wt×100 (6)
式(6)中、Vは積層塗膜の揮発分濃度(単位:質量%)を示し、Wtは任意の熱処理時間tにおける積層塗膜の質量(単位:g)を示し、Weは最終的に得られた積層塗膜の質量(単位:g)を示す。
V = (Wt−We) / Wt × 100 (6)
In formula (6), V represents the volatile content concentration (unit: mass%) of the laminated coating film, Wt represents the mass (unit: g) of the laminated coating film at an arbitrary heat treatment time t, and We is finally The mass (unit: g) of the obtained multilayer coating film is shown.

高温加熱処理を施す前に最上層が未硬化の積層塗膜の揮発分濃度を低減する好ましい方法としては、前記温度Tで熱処理を施す方法が挙げられる。 As a preferred method for reducing the volatile content concentration of the laminated coating film whose uppermost layer is uncured before the high temperature heat treatment, a method of performing a heat treatment at the temperature TL can be mentioned.

さらに、本発明の塗装方法では、ウェットオンウェットにより積層された未硬化積層塗膜を安定させるために、前記低温加熱処理前に室温で静置(セッティング)させることが好ましい。セッティング時間は通常1〜20分に設定される。   Furthermore, in the coating method of the present invention, in order to stabilize the uncured laminated coating film laminated by wet-on-wet, it is preferable to leave it at room temperature (setting) before the low-temperature heat treatment. The setting time is usually set to 1 to 20 minutes.

また、本発明において、さらに高級な外観を有する塗装体を得るためには、前記塗装方法により得られた塗装体の前記最上層の上にさらに1種以上の塗料を塗布して硬化処理を施し、表面層を形成することが好ましい。前記塗料としては、前記最上層用塗料として例示したものを使用することができる。また、前記塗料の塗布方法としては、エアスプレー塗装やエアー静電スプレー塗装、回転霧化式静電塗装などの従来公知の方法が挙げられる。   In the present invention, in order to obtain a coated body having a higher-grade appearance, one or more kinds of paints are further applied on the uppermost layer of the coated body obtained by the coating method and subjected to a curing treatment. It is preferable to form a surface layer. As the coating material, those exemplified as the top layer coating material can be used. Examples of the method for applying the paint include conventionally known methods such as air spray coating, air electrostatic spray coating, and rotary atomizing electrostatic coating.

本発明の塗装体は、前記本発明の塗装方法により製造されたものであり、積層塗膜表面の凹凸が従来のウェットオンウェットで製造した積層塗膜よりも少なく、外観品質に優れている。このような塗装体は、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品として有用である。   The coated body of the present invention is manufactured by the coating method of the present invention, and has fewer irregularities on the surface of the multilayer coating film than the conventional multilayer coating film manufactured by wet-on-wet, and is excellent in appearance quality. Such a coated body is particularly useful as a vehicle body for automobiles such as passenger cars, trucks, buses, motorcycles, and parts thereof.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、最上層用塗料のゲル化開始時における下層用塗料の相対損失弾性率および塗料の熱処理による重量減少率は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The relative loss elastic modulus of the lower layer paint and the weight reduction rate due to heat treatment of the lower layer paint at the start of gelation of the uppermost layer paint were measured by the following methods.

(最上層用塗料のゲル化開始時における下層用塗料の相対損失弾性率)
先ず、最上層用塗料を40mm×50mmのステンレス鋼板(厚さ0.5mm)に熱処理後の膜厚が35±5μmとなるように塗布した。具体的には、前記ステンレス鋼板を水平な台に配置し、前記ステンレス鋼板の対向する2辺の縁からそれぞれ5mm程度の領域に厚さ70μmの粘着テープを貼り付け、刃先が直線であるナイフを前記テープ上で滑らせて、前記ステンレス鋼板とナイフの刃先との隙間に最上層用塗料を塗り込んだ。
(Relative loss elastic modulus of the lower layer paint at the start of gelation of the uppermost layer paint)
First, the uppermost layer-coating material was applied to a 40 mm × 50 mm stainless steel plate (thickness 0.5 mm) so that the film thickness after heat treatment was 35 ± 5 μm. Specifically, the stainless steel plate is placed on a horizontal base, an adhesive tape with a thickness of 70 μm is applied to each of the areas of about 5 mm from the two opposite edges of the stainless steel plate, and a knife with a straight edge is provided. The top layer paint was applied to the gap between the stainless steel plate and the blade edge of the knife by sliding on the tape.

このようにして最上層用塗料からなる塗膜を形成してから7±1分間後に、前記塗膜の相対貯蔵弾性率(E’)を測定した。測定は、刃先角度40°のナイフエッジを取り付けた直径74mmの円環状振子を装着した剛体振子型物性試験器((株)エー・アンド・デイ製RPT−5000型)を使用して実施した。測定時の温度プログラムは、室温(25℃)から最上層用塗料の硬化温度まで昇温速度20±4℃/分で昇温し、その後、前記硬化温度を維持するように設定した。 In this way, the relative storage elastic modulus (E r ′) of the coating film was measured 7 ± 1 minutes after the coating film made of the uppermost layer coating material was formed. The measurement was carried out using a rigid pendulum type physical property tester (RPT-5000, manufactured by A & D Co., Ltd.) equipped with a circular pendulum with a diameter of 74 mm to which a knife edge with a blade angle of 40 ° was attached. The temperature program at the time of measurement was set so that the temperature was raised from room temperature (25 ° C.) to the curing temperature of the uppermost layer coating material at a rate of temperature increase of 20 ± 4 ° C./min, and then the curing temperature was maintained.

得られた相対貯蔵弾性率(E’)の測定値を時間に対してプロットし、上記した変曲点から15分間の部分について下記式(5):
’=A〔1−exp{k(t−t}〕 (5)
(式(5)中、Aおよびkは定数であり、tは時間を示す。)
を当てはめ、非線形最小二乗法により時間軸切片、すなわち測定を開始してから最上層用塗料がゲル化を開始するまでの時間tを求めた。
The measured value of the relative storage elastic modulus (E r ′) obtained was plotted against time, and the following equation (5) for the portion of 15 minutes from the above inflection point:
E r '= A [1-exp {k (t−t d }] (5)
(In formula (5), A and k are constants, and t represents time.)
And the time axis intercept, that is, the time t d from the start of measurement to the start of gelation of the uppermost layer coating was obtained by the non-linear least square method.

次に、対象とする下層用塗料について、前記最上層用塗料の場合と同様にして塗膜を形成し、前記最上層用塗料の場合と同一条件で相対損失弾性率(E”)を測定した。この測定結果から前記時間tにおける相対損失弾性率(E”)を求め、これを「最上層用塗料のゲル化開始時における相対損失弾性率」とした。 Next, for the lower layer coating material, a coating film is formed in the same manner as in the uppermost layer coating material, and the relative loss modulus (E r ″) is measured under the same conditions as in the uppermost layer coating material. From this measurement result, the relative loss elastic modulus (E r ″) at the time t d was obtained, and this was defined as “relative loss elastic modulus at the start of gelation of the uppermost layer coating material”.

(重量減少率の測定)
対象とする塗料を熱処理後の膜厚が積層塗膜の目標膜厚となるようにアルミ箔上に塗装し、得られたアルミ箔試料を最上層用塗料の硬化温度Tよりも40℃低い温度[T−40℃]および10−2Torr以下の真空条件で90分間乾燥した。得られた未硬化塗膜を備えたアルミ箔試料を、加熱脱着導入装置(例えば、GERSTEL社製Thermal Desorption System)付きガスクロマトグラフ/質量分析装置(例えば、Agilent社製6890GC/5975MSD)を用いて前記温度Tで30分間加熱して揮発性生成物量(Rc(単位:g))と残存溶媒量とを定量し、式(4)により重量減少率を算出した。この重量減少率は、塗膜中の全バインダー量に対する前記揮発性生成物量の割合である。
(Measurement of weight loss rate)
Painted on an aluminum foil so that the film thickness after heat treatment of the coating to the subject is the target thickness of the multilayer coating film, less 40 ° C. than the curing temperature T T of the obtained aluminum foil sample coating top layer The film was dried for 90 minutes at a temperature [T T −40 ° C.] and a vacuum condition of 10 −2 Torr or less. The obtained aluminum foil sample provided with the uncured coating film was subjected to the above-described process using a gas chromatograph / mass spectrometer (for example, 6890GC / 5975MSD manufactured by Agilent) with a heat desorption introducing device (for example, Thermal Deposition System manufactured by GERSTEL). The amount of volatile products (Rc (unit: g)) and the amount of residual solvent were quantified by heating at temperature T T for 30 minutes, and the weight reduction rate was calculated by the formula (4). This weight reduction rate is a ratio of the volatile product amount to the total binder amount in the coating film.

重量減少率=100×Rc/W×100/(100−P) (4)
式(4)中、Wは前記真空乾燥工程で得られた未硬化塗膜の質量(単位:g)を示し、Pは塗膜100gに含まれる顔料の質量を示す。なお、顔料の質量は塗料の配合表の値を使用した。
Weight reduction rate = 100 × Rc / W × 100 / (100-P) (4)
In formula (4), W represents the mass (unit: g) of the uncured coating film obtained in the vacuum drying step, and P represents the mass of the pigment contained in 100 g of the coating film. In addition, the mass of the pigment used the value of the coating composition table.

(合成例1)アクリル樹脂Aの合成
メタクリル酸4.5質量部、アクリル酸エチル26.0質量部、水酸基含有モノマー(ダイセル化学工業社製、商品名「プラクセルFM−1」)64.5質量部、メチルスチレンダイマー(三井東圧化学社製、商品名「MSD−100」)5.0質量部およびアゾイソブチロニトリル13.0質量部を混合して混合溶液Aを調製した。
(Synthesis Example 1) Synthesis of Acrylic Resin A 4.5 parts by mass of methacrylic acid, 26.0 parts by mass of ethyl acrylate, a hydroxyl group-containing monomer (manufactured by Daicel Chemical Industries, Ltd., trade name “Placcel FM-1”) 64.5 parts by mass Part of the mixture, 5.0 parts by mass of methylstyrene dimer (trade name “MSD-100”, manufactured by Mitsui Toatsu Chemical Co., Ltd.) and 13.0 parts by mass of azoisobutyronitrile were prepared.

攪拌機、温度調節器および還流冷却管を備えた反応容器にキシレン82.0質量部を仕込み、次いで前記混合溶液Aのうちの20.0質量部を加え、攪拌しながら加熱して温度を上昇させた。その後、還流させながら前記混合溶液Aの残り93.0質量部を3時間かけて滴下して、次いでアゾイソブチロニトリル1.0質量部およびキシレン12.0質量部からなる溶液を30分間かけて滴下して反応を行なった。得られた反応溶液をさらに1時間攪拌しながら還流させ、数平均分子量2000のアクリル樹脂Aを含む樹脂溶液Aを得た。この樹脂溶液Aを固形分濃度が75質量%になるまでエバポレータで脱溶媒し、アクリル樹脂ワニスAを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of xylene, and then 20.0 parts by mass of the mixed solution A was added and heated while stirring to raise the temperature. It was. Thereafter, the remaining 93.0 parts by mass of the mixed solution A was dropped over 3 hours while refluxing, and then a solution consisting of 1.0 part by mass of azoisobutyronitrile and 12.0 parts by mass of xylene was added over 30 minutes. The reaction was carried out dropwise. The obtained reaction solution was further refluxed with stirring for 1 hour to obtain a resin solution A containing an acrylic resin A having a number average molecular weight of 2000. The resin solution A was desolvated with an evaporator until the solid content concentration became 75% by mass to obtain an acrylic resin varnish A.

(合成例2)アクリル樹脂Bの合成
アクリル酸5.0質量部、アクリル酸2−ヒドロキシエチル17.0質量部、メタクリル酸n−ブチル66.0質量部、アクリル酸ステアリル12.0質量部およびアゾビスイソブチロニトリル0.8質量部を混合して混合溶液Bを調製した。
(Synthesis Example 2) Synthesis of Acrylic Resin B 5.0 parts by mass of acrylic acid, 17.0 parts by mass of 2-hydroxyethyl acrylate, 66.0 parts by mass of n-butyl methacrylate, 12.0 parts by mass of stearyl acrylate and A mixed solution B was prepared by mixing 0.8 part by mass of azobisisobutyronitrile.

攪拌機、温度調節器および還流冷却管を備えた反応容器にイソプロピルアルコール82.0質量部を仕込み、窒素置換した後、温度80℃まで加熱した。次いで前記混合溶液B(100.8質量部)を5時間かけて滴下した後、1時間攪拌を継続して数平均分子量15000のアクリル樹脂Bを含む樹脂溶液Bを得た。この樹脂溶液Bを固形分濃度が80質量%になるまでエバポレータで脱溶媒した後、ジメチルエタノールアミン6.0質量部およびイオン交換水36.0質量部を添加し、固形分濃度60質量%のアクリル樹脂ワニスBを得た。   A reaction vessel equipped with a stirrer, a temperature controller and a reflux condenser was charged with 82.0 parts by mass of isopropyl alcohol, purged with nitrogen, and then heated to a temperature of 80 ° C. Next, after the mixed solution B (100.8 parts by mass) was dropped over 5 hours, stirring was continued for 1 hour to obtain a resin solution B containing an acrylic resin B having a number average molecular weight of 15000. After this resin solution B was desolvated with an evaporator until the solid content concentration reached 80% by mass, 6.0 parts by mass of dimethylethanolamine and 36.0 parts by mass of ion-exchanged water were added to obtain a solid content concentration of 60% by mass. An acrylic resin varnish B was obtained.

(調製例1)メラミン硬化型水性中塗り塗料aの調製
反応容器に合成例1で作製した固形分濃度75質量%のアクリル樹脂ワニスAを337質量部と酸化チタン(石原産業社製、商品名「CR−93」)1000質量部とカーボンブラック(デグサ社製、商品名「FW−200P」)10質量部とを仕込み、次いで酢酸ブチル163質量部とキシレン84質量部とを添加した。その後、仕込み全質量と同じ質量のガラスビーズ(粒径1.6mm)を投入し、卓上SGミルで3時間分散した。グラインドゲージによる分散終了時の粒度は5μm以下であった。その後、キシレン84質量部を添加した後、ガラスビーズを濾別し、顔料ペーストを作製した。この顔料ペーストに、前記アクリル樹脂ワニスAとメラミン樹脂(サイテック社製、商品名「サイメル254」)とをアクリル樹脂とメラミン樹脂との固形分質量比が10:3になるように、且つ中塗り塗膜中の顔料濃度が50.0質量%になるように添加し、イオン交換水で希釈して固形分濃度が50質量%のメラミン硬化型水性中塗り塗料aを調製した。このメラミン硬化型水性中塗り塗料aの硬化温度は140℃である。
(Preparation example 1) Preparation of melamine curable aqueous intermediate coating material a In a reaction vessel, 337 parts by mass of acrylic resin varnish A having a solid content concentration of 75% by mass prepared in Synthesis Example 1 and titanium oxide (made by Ishihara Sangyo Co., Ltd., trade name) "CR-93") 1000 parts by mass and carbon black (manufactured by Degussa, trade name "FW-200P") 10 parts by mass were charged, and then 163 parts by mass of butyl acetate and 84 parts by mass of xylene were added. Thereafter, glass beads (particle diameter 1.6 mm) having the same mass as the total mass charged were charged and dispersed for 3 hours with a desktop SG mill. The particle size at the end of dispersion by a grind gauge was 5 μm or less. Thereafter, 84 parts by mass of xylene was added, and then the glass beads were separated by filtration to prepare a pigment paste. To this pigment paste, the acrylic resin varnish A and melamine resin (trade name “Cymel 254”, manufactured by Cytec Co., Ltd.) are coated so that the solid mass ratio of the acrylic resin and melamine resin is 10: 3. It was added so that the pigment concentration in the coating film was 50.0% by mass and diluted with ion-exchanged water to prepare a melamine curable aqueous intermediate coating material a having a solid content concentration of 50% by mass. The curing temperature of this melamine curable aqueous intermediate coating material a is 140 ° C.

(調製例2)メラミン硬化型水性ベース塗料aの調製
合成例2で作製した固形分濃度60質量%のアクリル樹脂ワニスBにメラミン樹脂(サイテック社製、商品名「サイメル325」)をアクリル樹脂とメラミン樹脂との固形分質量比が10:2になるように添加し、さらに水性塗料用アルミペーストをベース塗膜中の顔料濃度が17.7質量%になるように添加し、イオン交換水で希釈して固形分濃度が20質量%のメラミン硬化型水性ベース塗料aを作製した。このメラミン硬化型水性ベース塗料aの硬化温度は140℃である。
(Preparation Example 2) Preparation of Melamine Curing Type Aqueous Base Paint “a” Melamine resin (product name “Cymel 325” manufactured by Cytec Co., Ltd.) and acrylic resin was added to acrylic resin varnish B having a solid content concentration of 60% by mass produced in Synthesis Example 2. Add so that the mass ratio of the solid content with the melamine resin is 10: 2, and add the aluminum paste for water-based paint so that the pigment concentration in the base coating film is 17.7% by mass, Dilution was performed to prepare a melamine-curable water-based base paint a having a solid content concentration of 20% by mass. The curing temperature of this melamine curable aqueous base coating material a is 140 ° C.

(調製例3)イソシアネート硬化型クリア塗料Aの調製
表1に示す割合でポリオール、添加剤および溶剤を混合して2液型のイソシアネート硬化型クリア塗料の主剤を調製した。また、前記イソシアネート硬化型クリア塗料の硬化剤として表1に示すイソシアネート硬化剤を使用した。以下の実施例1〜5および比較例1、3ではこの主剤と硬化剤とを表1に示す割合で混合したもの(固形分濃度55質量%)をイソシアネート硬化型クリア塗料Aとして使用した。このイソシアネート硬化型クリア塗料Aの硬化温度は140℃であり、140℃での重量減少率は0質量%であった。
Preparation Example 3 Preparation of Isocyanate Curing Clear Paint A A polyol, an additive and a solvent were mixed in the ratio shown in Table 1 to prepare a main component of a two-component isocyanate curing clear paint. Moreover, the isocyanate hardening agent shown in Table 1 was used as a hardening | curing agent of the said isocyanate hardening type clear coating material. In Examples 1 to 5 and Comparative Examples 1 and 3 below, a mixture (solid content concentration 55% by mass) of the main agent and a curing agent mixed at a ratio shown in Table 1 was used as the isocyanate curable clear coating material A. The curing temperature of this isocyanate curable clear coating material A was 140 ° C., and the weight reduction rate at 140 ° C. was 0% by mass.

(調製例4)イソシアネート硬化型クリア塗料Bの調製
表1に示す割合でポリオール、添加剤および溶剤を混合して2液型のイソシアネート硬化型クリア塗料の主剤を調製した。また、イソシアネート硬化剤(Bayer社製、商品名「Desmodur N 3390 Ba/SN」)の固形分100質量部に対してブロック剤として21.5質量部の3,5−ジメチルピラゾールを添加したものを前記熱硬化型クリア塗料の硬化剤として使用した。比較例2ではこの主剤と硬化剤とを表1に示す割合で混合したものをブロックイソシアネート硬化型クリア塗料Bとして使用した。このブロックイソシアネート硬化型クリア塗料Bの硬化温度は140℃であり、140℃での重量減少率は6.1質量%であった。
(Preparation Example 4) Preparation of Isocyanate Curing Clear Paint B A polyol, an additive and a solvent were mixed at the ratio shown in Table 1 to prepare a main component of a two-component isocyanate curing clear paint. Moreover, what added 21.5 mass parts 3,5- dimethyl pyrazole as a blocking agent with respect to solid content 100 mass parts of isocyanate hardening | curing agent (The product made by Bayer, brand name "Desmodur N3390 Ba / SN"). Used as a curing agent for the thermosetting clear paint. In the comparative example 2, what mixed this main ingredient and hardening | curing agent in the ratio shown in Table 1 was used as the block isocyanate hardening type clear coating material B. FIG. The curing temperature of this blocked isocyanate curable clear coating B was 140 ° C., and the weight reduction rate at 140 ° C. was 6.1% by mass.

Figure 2009034668
Figure 2009034668

(実施例1)
最上層用塗料として調製例3で調製したイソシアネート硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、下層用熱硬化型塗料として硬化温度Tが80℃のブロックイソシアネート硬化型の溶剤型ベース塗料A(関西ペイント社製、商品名「SFX800」)を使用した。なお、前記イソシアネート硬化型クリア塗料Aはイソシアネート化合物の付加反応により硬化するため、揮発性生成物は実質的に生成しない。また、前記ブロックイソシアネート硬化型ベース塗料Aはブロックイソシアネートの脱ブロック反応で生成するイソシアネート化合物の付加反応により硬化するが、この脱ブロック反応において揮発性のブロック剤が生成する。前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記ブロックイソシアネート硬化型ベース塗料Aの相対損失弾性率は0.60s−2であった。
Example 1
The isocyanate-curable clear coating A (curing temperature = 140 ° C., weight loss rate (140 ° C.) = 0% by mass) prepared in Preparation Example 3 was used as the uppermost layer coating, and the curing temperature T was used as the thermosetting coating for the lower layer. A block isocyanate-curing solvent-based base paint A (trade name “SFX800” manufactured by Kansai Paint Co., Ltd.) having a U of 80 ° C. was used. In addition, since the said isocyanate curable clear coating material A hardens | cures by the addition reaction of an isocyanate compound, a volatile product is not produced | generated substantially. The blocked isocyanate-curable base coating material A is cured by an addition reaction of an isocyanate compound generated by the deblocking reaction of the blocked isocyanate, and a volatile blocking agent is generated in the deblocking reaction. The relative loss elastic modulus of the blocked isocyanate curable base coating material A at the start of gelation of the isocyanate curable clear coating material A was 0.60 s −2 .

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に前記ブロックイソシアネート硬化型ベース塗料Aを熱処理後の膜厚が25μmになるように塗装し、60℃で10分間加熱して有機溶剤を揮発させた。次いで、このブロックイソシアネート硬化型ベース塗料Aの層の上に前記イソシアネート硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を熱処理後の膜厚が35μmになるように塗装し、ブロックイソシアネート硬化型ベース塗料Aとイソシアネート硬化型クリア塗料Aとをウェットオンウェットで積層した未硬化積層塗膜を得た。この未硬化積層塗膜を室温で10分間静置(セッティング)した後、90℃で10分間の低温加熱処理を施してブロックイソシアネート硬化型ベース塗料Aを硬化させ、次いで140℃で30分間の高温加熱処理を施してイソシアネート硬化型クリア塗料Aを硬化させた。この間、所定のタイミングで積層塗膜の質量Wt(単位:g)を測定し、式(6)より積層塗膜の揮発分濃度V(単位:質量%)を算出した。   The block isocyanate curable base coating A is applied to the surface of an electrodeposition coating plate (made by Shinto Herberts Co., Ltd., trade name “Sucsade 80V Gray”) so that the film thickness after heat treatment is 25 μm, and at 60 ° C. for 10 minutes. The organic solvent was volatilized by heating. Next, the isocyanate curable clear coating A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0% by mass) is formed on the layer of the blocked isocyanate curable base coating A to a film thickness after heat treatment of 35 μm. Thus, an uncured laminated coating film obtained by laminating the blocked isocyanate curable base coating material A and the isocyanate curable clear coating material A by wet-on-wet was obtained. The uncured laminated coating film was allowed to stand at room temperature for 10 minutes, then subjected to low-temperature heat treatment at 90 ° C. for 10 minutes to cure the blocked isocyanate curable base coating material A, and then at a high temperature of 140 ° C. for 30 minutes. The isocyanate-curable clear paint A was cured by heat treatment. During this time, the mass Wt (unit: g) of the multilayer coating film was measured at a predetermined timing, and the volatile content concentration V (unit: mass%) of the multilayer coating film was calculated from the equation (6).

V=(Wt−We)/Wt×100 (6)
式(6)中、Weは得られた積層塗膜の質量(単位:g)である。
V = (Wt−We) / Wt × 100 (6)
In formula (6), We is the mass (unit: g) of the obtained laminated coating film.

また、前記質量測定とともにウェーブスキャン(BYK−Gardner社製Wave−Scan Dual)を用いてウェーブスキャン値〔Wa(波長<0.3mm)、Wb(波長0.3〜1mm)、Wc(波長1〜3mm)、Wd(波長3〜10mm)〕を測定した。これらのウェーブスキャン値は、Waが小さいほど光沢が優れ、Wdが小さいほど肌がよいことを意味する。   In addition, wave scan values [Wa (wavelength <0.3 mm), Wb (wavelength 0.3 to 1 mm), Wc (wavelength 1 to 1 mm) using wave scan (Wave-Scan Dual manufactured by BYK-Gardner) together with the mass measurement]. 3 mm), Wd (wavelength 3 to 10 mm)]. These wave scan values mean that the smaller the Wa, the better the gloss, and the smaller the Wd, the better the skin.

得られた積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

(実施例2)
下層用熱硬化型塗料としてブロックイソシアネート硬化型の溶剤型ベース塗料Aの代わりに硬化温度Tが80℃のイソシアネート硬化型(2液型)の溶剤型ベース塗料B(関西ペイント社製、商品名「レタンPG60改」)を使用した以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記イソシアネート硬化型ベース塗料Bはイソシアネート化合物の付加反応により硬化するため、揮発性生成物は実質的に生成しない。また、前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記イソシアネート硬化型ベース塗料Bの相対損失弾性率は0.30s−2であった。
(Example 2)
The curing temperature T U is 80 ° C. isocyanate curing type instead of blocked isocyanate-curable solvent-based coating material A as the lower layer heat-curable coating solvent type (2-liquid type) base paint B (tradename, Kansai Paint Co. A laminated coating film was prepared in the same manner as in Example 1 except that “Letane PG60 Kai” was used, and V and Wa to Wd were measured. In addition, since the said isocyanate curable base coating material B hardens | cures by the addition reaction of an isocyanate compound, a volatile product is not produced | generated substantially. The relative loss elastic modulus of the isocyanate curable base coating B at the start of gelation of the isocyanate curable clear coating A was 0.30 s −2 .

得られた積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

(比較例1)
下層用熱硬化型塗料としてブロックイソシアネート硬化型の溶剤型ベース塗料A(硬化温度=80℃)の代わりに調製例2で調製したメラミン硬化型水性ベース塗料a(硬化温度=140℃)を使用した以外は実施例1と同様にして2段の加熱処理(90℃および140℃)を実施して積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記メラミン硬化型ベース塗料aはアクリル樹脂の水酸基とメラミン樹脂とが縮合反応して硬化が進行し、この縮合反応において揮発性のアルコールや水が生成する。また、前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記メラミン硬化型ベース塗料aの相対損失弾性率は1.1s−2であった。
(Comparative Example 1)
The melamine curable aqueous base paint a (curing temperature = 140 ° C.) prepared in Preparation Example 2 was used in place of the blocked isocyanate curable solvent-based base paint A (curing temperature = 80 ° C.) as the lower layer thermosetting paint. Except for the above, two steps of heat treatment (90 ° C. and 140 ° C.) were performed in the same manner as in Example 1 to prepare a laminated coating film, and V and Wa to Wd were measured. In the melamine curable base coating material a, the hydroxyl group of the acrylic resin and the melamine resin undergo a condensation reaction to cure, and volatile alcohol and water are generated in the condensation reaction. The relative loss elastic modulus of the melamine curable base coating material a at the start of gelation of the isocyanate curable clear coating material A was 1.1 s- 2 .

得られた積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

(比較例2)
クリア塗料として前記イソシアネート硬化型クリア塗料Aの代わりに調製例4で調製したブロックイソシアネート硬化型クリア塗料B(硬化温度=140℃、重量減少率(140℃)=6.1質量%)を用いた以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記ブロックイソシアネート硬化型クリア塗料Bはブロックイソシアネートの脱ブロック反応で生成するイソシアネート化合物の付加反応により硬化するが、この脱ブロック反応において揮発性のブロック剤が生成する。前記ブロックイソシアネート硬化型クリア塗料Bのゲル化開始時における前記ブロックイソシアネート硬化型ベース塗料Aの相対損失弾性率は0.95s−2であった。
(Comparative Example 2)
Instead of the isocyanate curable clear paint A, the blocked isocyanate curable clear paint B (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 6.1% by mass) prepared in Preparation Example 4 was used as the clear paint. A laminated coating film was produced in the same manner as in Example 1 except that V and Wa to Wd were measured. In addition, although the said block isocyanate hardening type clear coating material B hardens | cures by the addition reaction of the isocyanate compound produced | generated by deblocking reaction of blocked isocyanate, a volatile blocking agent produces | generates in this deblocking reaction. The relative loss elastic modulus of the blocked isocyanate curable base coating material A at the start of gelation of the blocked isocyanate curable clear coating material B was 0.95 s −2 .

熱処理後の積層塗膜のWa〜Wdを表2に示す。また、熱処理中におけるVとWaとの関係を図2に示す。   Table 2 shows Wa to Wd of the laminated coating film after the heat treatment. Further, FIG. 2 shows the relationship between V and Wa during the heat treatment.

Figure 2009034668
Figure 2009034668

表2に示した結果から明らかなように、本発明のように最上層よりも低い温度で硬化する熱硬化型塗料を使用して下層を形成し、低温で加熱処理を施して下層を硬化させ、次いで高温で加熱処理を施して最上層を硬化させて得られた積層塗膜(実施例1〜2)のWa〜Wdはいずれも、同じ硬化温度の熱硬化型塗料を使用して最上層および下層を形成し、最上層および下層に同時に加熱処理を施して硬化させて得られた積層塗膜(比較例1)に比べて低下し、実施例1〜2の積層塗膜は光沢、肌ともに比較例1の積層塗膜よりも向上していることが確認された。   As is apparent from the results shown in Table 2, a lower layer is formed using a thermosetting paint that cures at a lower temperature than the uppermost layer as in the present invention, and the lower layer is cured by heat treatment at a low temperature. Next, Wa to Wd of the laminated coating films (Examples 1 and 2) obtained by performing the heat treatment at a high temperature to cure the uppermost layer are all formed using the thermosetting paint having the same curing temperature. The lower and upper layers and lower layers are simultaneously heat-treated and cured to lower the thickness of the multilayer coating film (Comparative Example 1). Both were confirmed to be improved over the laminated coating film of Comparative Example 1.

また、熱処理による硬化反応において収縮しないイソシアネート硬化型クリア塗料を最上層に使用した積層塗膜(実施例1〜2)のWa〜Wdはいずれも、熱処理により脱ブロック反応を伴う硬化反応が起こり、収縮する熱硬化型クリア塗料を最上層に使用した積層塗膜(比較例2)に比べて低下し、実施例1〜2の積層塗膜は光沢、肌ともに比較例2の積層塗膜よりも向上していることが確認された。   In addition, all of Wa to Wd of the laminated coating film (Examples 1 and 2) using an isocyanate curable clear coating that does not shrink in a curing reaction by heat treatment (Examples 1 and 2) undergo a curing reaction accompanied by a deblocking reaction by heat treatment, Compared to the multilayer coating film (Comparative Example 2) using a shrinkable thermosetting clear paint as the uppermost layer, the multilayer coating film of Examples 1 and 2 are both glossy and skin better than the multilayer coating film of Comparative Example 2. It was confirmed that there was an improvement.

図2に示すように、低温加熱処理で実施例1〜2の積層塗膜は揮発分濃度Vがそれぞれ約4質量%、約3質量%まで低下したのに対して比較例1〜2の積層塗膜は約5質量%までしか低下しなかった。その結果、高温加熱処理において比較例1〜2では揮発分濃度Vが約5質量%も減少したのに対して、実施例1〜2では揮発分濃度Vの減少がそれぞれ約4質量%、約3質量%に抑えられた。なお、比較例2における揮発分濃度Vは140℃での熱処理による脱ブロック反応で生成する揮発分を含むものである。   As shown in FIG. 2, the laminated coating films of Examples 1 and 2 were subjected to low-temperature heat treatment, and the volatile component concentrations V were reduced to about 4% by mass and about 3% by mass, respectively. The coating film decreased only to about 5% by mass. As a result, in the high-temperature heat treatment, the volatile component concentration V was reduced by about 5% by mass in Comparative Examples 1 and 2, whereas in Examples 1 and 2, the decrease in the volatile component concentration V was about 4% by mass and about It was suppressed to 3% by mass. The volatile matter concentration V in Comparative Example 2 includes the volatile matter produced by the deblocking reaction by heat treatment at 140 ° C.

図2および表2に示した結果から明らかなように、140℃での熱処理の際の揮発分濃度Vの減少量が小さい積層塗膜(実施例1〜2)は、140℃での熱処理の際の揮発分濃度Vの減少量が大きい積層塗膜(比較例1〜2)に比べて、Wa〜Wdがいずれも小さいものであり、光沢および肌に優れるものであることが確認された。   As is clear from the results shown in FIG. 2 and Table 2, the laminated coating films (Examples 1 and 2) having a small decrease in the volatile component concentration V during the heat treatment at 140 ° C. were subjected to the heat treatment at 140 ° C. Compared with the laminated coating film (Comparative Examples 1 and 2) in which the amount of decrease in the volatile component concentration V was large, it was confirmed that Wa to Wd were all small and excellent in gloss and skin.

実施例1〜2および比較例1〜2の積層塗膜においては、いずれも140℃での熱処理によりクリア塗料が硬化を開始する(比較例2の場合においても素早く脱ブロック反応が起こり、即座に実施例1と同様の硬化反応が起こる。)が、熱硬化型クリア塗料の層の流動性が硬化により著しく低下した後には、この高温加熱処理による揮発分濃度Vの減少量に相当する分の積層塗膜の収縮が起こる。したがって、高温加熱処理の際の揮発分濃度Vの減少量が小さい実施例1〜2の積層塗膜は、揮発分濃度Vの減少量が大きい比較例1〜2の積層塗膜に比べて高温加熱処理による収縮が確実に抑えられ、その結果、積層塗膜表面の凹凸の形成(顕在化)が抑制され、Wa〜Wdがいずれも小さくなり、光沢および肌が比較例1〜2の積層塗膜よりも向上することが確認された。   In the laminated coating films of Examples 1 and 2 and Comparative Examples 1 and 2, the clear paint starts to cure by heat treatment at 140 ° C. (In the case of Comparative Example 2 as well, the deblocking reaction occurs quickly and immediately. The same curing reaction as in Example 1 occurs.) However, after the fluidity of the thermosetting clear coating layer is significantly reduced by curing, the amount corresponding to the decrease in the volatile concentration V by this high-temperature heat treatment Shrinkage of the laminated coating occurs. Therefore, the laminated coating film of Examples 1-2 in which the decrease amount of the volatile component concentration V during the high-temperature heat treatment is small is higher than the laminated coating film of Comparative Examples 1-2 in which the decrease amount of the volatile component concentration V is large. Shrinkage due to heat treatment is surely suppressed, and as a result, formation (prominence) of unevenness on the surface of the laminated coating film is suppressed, Wa to Wd are all reduced, and gloss and skin are laminated coatings of Comparative Examples 1 and 2 It was confirmed that the film was improved over the film.

(実施例3)
最上層用塗料として調製例3で調製したイソシアネート硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、熱硬化型中塗り塗料として硬化温度Tが80℃のイソシアネート硬化型(2液型)の溶剤型中塗り塗料A(関西ペイント社製、商品名「SFX5333」)を使用した。また、熱硬化型ベース塗料として実施例1で使用したブロックイソシアネート硬化型ベース塗料A(硬化温度=80℃)を使用した。なお、前記イソシアネート硬化型クリア塗料Aおよび前記イソシアネート硬化型中塗り塗料Aはイソシアネート化合物の付加反応により硬化するため、揮発性生成物は実質的に生成しない。また、前記ブロックイソシアネート硬化型ベース塗料Aはブロックイソシアネートの脱ブロック反応で生成するイソシアネート化合物の付加反応により硬化するが、この脱ブロック反応において揮発性のブロック剤が生成する。前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記イソシアネート硬化型中塗り塗料Aおよび前記ブロックイソシアネート硬化型ベース塗料Aの相対損失弾性率は、それぞれ17s−2および0.60s−2であった。
(Example 3)
The isocyanate curable clear coating A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0% by mass) prepared in Preparation Example 3 was used as the uppermost layer coating, and the curing temperature T was used as the thermosetting intermediate coating. An isocyanate curable (two-component) solvent-type intermediate coating material A (trade name “SFX5333” manufactured by Kansai Paint Co., Ltd.) having an U of 80 ° C. was used. Further, the blocked isocyanate curable base coating A (curing temperature = 80 ° C.) used in Example 1 was used as the thermosetting base coating. The isocyanate-curable clear coating material A and the isocyanate-curable intermediate coating material A are cured by an addition reaction of an isocyanate compound, so that a volatile product is not substantially generated. The blocked isocyanate-curable base coating material A is cured by an addition reaction of an isocyanate compound generated by the deblocking reaction of the blocked isocyanate, and a volatile blocking agent is generated in the deblocking reaction. The relative loss elastic modulus of the isocyanate-curable clear coating painted in the isocyanate-curable at gelation initiation of A paint A and the blocked isocyanate-curable base coating material A was respectively 17s -2 and 0.60S -2 .

電着塗装板(神東ハーバーツ社製、商品名「サクセード80V グレー」)の表面に1層目の下層として前記イソシアネート硬化型中塗り塗料Aを熱処理後の膜厚が20μmになるように塗装し、60℃で10分間加熱して有機溶剤などを揮発させ、このイソシアネート硬化型中塗り塗料Aの層の上に2層目の下層として前記ブロックイソシアネート硬化型ベース塗料A(硬化温度=80℃)を熱処理後の膜厚が15μmになるように塗装し、このブロックイソシアネート硬化型ベース塗料Aの層の上に前記イソシアネート硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を熱処理後の膜厚が35μmになるように塗装した以外は実施例1と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。   The isocyanate-curing intermediate coating A is applied to the surface of an electrodeposition coating plate (made by Shinto Herberts Co., Ltd., trade name “Sucsade 80V Gray”) as a first lower layer so that the film thickness after heat treatment is 20 μm. The organic solvent is volatilized by heating at 60 ° C. for 10 minutes, and the blocked isocyanate curable base coating material A (curing temperature = 80 ° C.) is heat-treated as a second lower layer on the isocyanate curable intermediate coating material A layer. After coating so that the film thickness becomes 15 μm, the isocyanate-curable clear coating A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0 mass on the block isocyanate-curable base coating A layer. %) Was applied in the same manner as in Example 1 except that the film thickness was 35 μm after the heat treatment, and V and Wa to Wd were measured.

得られた積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

(実施例4)
前記イソシアネート硬化型中塗り塗料Aの代わりに実施例3で使用したイソシアネート硬化型中塗り塗料A(2液型(硬化剤:イソシアネート化合物))の主剤を非硬化型の溶剤型中塗り塗料として用いた以外は実施例3と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記非硬化型中塗り塗料は硬化反応しないため、硬化反応による揮発性生成物を生成しない。また、前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記非硬化型中塗り塗料の相対損失弾性率は12.5s−2であった。
Example 4
Instead of the isocyanate curable intermediate coating material A, the main component of the isocyanate curable intermediate coating material A (two-component type (curing agent: isocyanate compound)) used in Example 3 was used as a non-curable solvent-based intermediate coating material. A laminated coating film was produced in the same manner as in Example 3 except that V and Wa to Wd were measured. Note that the non-curing intermediate coating does not undergo a curing reaction, and therefore does not generate a volatile product due to the curing reaction. The relative loss elastic modulus of the non-curing intermediate coating at the start of gelation of the isocyanate-curable clear coating A was 12.5 s −2 .

得られた積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

(実施例5)
最上層用塗料として調製例3で調製したイソシアネート硬化型クリア塗料A(硬化温度=140℃、重量減少率(140℃)=0質量%)を使用し、熱硬化型中塗り塗料として硬化温度Tが90℃のブロックイソシアネート硬化型の溶剤型中塗り塗料B(関西ペイント社製、商品名「SFX3300CD」)を使用した。また、熱硬化型ベース塗料として硬化温度Tが90℃のブロックイソシアネート硬化型の溶剤型ベース塗料C(関西ペイント社製、商品名「SFX420」)を使用した。なお、前記イソシアネート硬化型クリア塗料Aはイソシアネート化合物の付加反応により硬化するため、揮発性生成物は実質的に生成しない。また、前記ブロックイソシアネート硬化型中塗り塗料Bおよびブロックイソシアネート硬化型ベース塗料Cはブロックイソシアネートの脱ブロック反応で生成するイソシアネート化合物の付加反応により硬化するが、この脱ブロック反応において揮発性のブロック剤が生成する。前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記ブロックイソシアネート硬化型中塗り塗料Bおよび前記ブロックイソシアネート硬化型ベース塗料Cの相対損失弾性率は、それぞれ0.70s−2および0.09s−2であった。
(Example 5)
The isocyanate curable clear coating A (curing temperature = 140 ° C., weight reduction rate (140 ° C.) = 0% by mass) prepared in Preparation Example 3 was used as the uppermost layer coating, and the curing temperature T was used as the thermosetting intermediate coating. A blocked isocyanate-curing solvent-type intermediate coating material B (trade name “SFX3300CD” manufactured by Kansai Paint Co., Ltd.) having a U of 90 ° C. was used. Further, solvent-based blocked isocyanate curing type curing temperature T U as thermosetting base paint 90 ° C. base paint C was used (tradename, Kansai Paint Co. "SFX420"). In addition, since the said isocyanate curable clear coating material A hardens | cures by the addition reaction of an isocyanate compound, a volatile product is not produced | generated substantially. The blocked isocyanate curable intermediate coating material B and the blocked isocyanate curable base coating material C are cured by an addition reaction of an isocyanate compound generated by the deblocking reaction of the blocked isocyanate. In this deblocking reaction, a volatile blocking agent is used. Generate. The relative loss elastic moduli of the blocked isocyanate curable intermediate coating B and the blocked isocyanate curable base coating C at the start of gelation of the isocyanate curable clear coating A are 0.70 s −2 and 0.09 s −2 , respectively. Met.

1層目の下層用熱硬化型塗料としてイソシアネート硬化型中塗り塗料A(硬化温度=80℃)の代わりに前記ブロックイソシアネート硬化型中塗り塗料Bを使用し、2層目の下層用熱硬化型塗料としてブロックイソシアネート硬化型ベース塗料A(硬化温度=80℃)の代わりに前記ブロックイソシアネート硬化型ベース塗料Cを使用し、1段目の加熱条件を100℃、10分間に変更した以外は実施例3と同様にして積層塗膜を作製し、VおよびWa〜Wdを測定した。   The block isocyanate curable intermediate coating B is used in place of the isocyanate curable intermediate coating A (curing temperature = 80 ° C.) as the first lower layer thermosetting coating, and the second lower layer thermosetting coating is used as the lower layer thermosetting coating. Example 3 except that the blocked isocyanate curable base coating material C was used in place of the blocked isocyanate curable base coating material A (curing temperature = 80 ° C.), and the first heating condition was changed to 100 ° C. for 10 minutes. Similarly, a laminated coating film was prepared, and V and Wa to Wd were measured.

得られた積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

(比較例3)
1層目の下層用熱硬化型塗料としてイソシアネート硬化型中塗り塗料A(硬化温度=80℃)の代わりに調製例1で調製したメラミン硬化型水性中塗り塗料a(硬化温度=140℃)を使用し、2層目の下層用熱硬化型塗料としてブロックイソシアネート硬化型ベース塗料A(硬化温度=80℃)の代わりに調製例2で調製したメラミン硬化型水性ベース塗料a(硬化温度=140℃)を使用した以外は実施例3と同様にして2段の加熱処理(90℃および140℃)を実施して積層塗膜を作製し、VおよびWa〜Wdを測定した。なお、前記メラミン硬化型ベース塗料aおよび前記メラミン硬化型中塗り塗料aはアクリル樹脂の水酸基とメラミン樹脂とが縮合反応して硬化が進行し、この縮合反応において揮発性のアルコールや水が生成する。また、前記イソシアネート硬化型クリア塗料Aのゲル化開始時における前記メラミン硬化型水性中塗り塗料aおよび前記メラミン硬化型水性ベース塗料aの相対損失弾性率は、それぞれ7.5s−2および1.1.s−2であった。
(Comparative Example 3)
The melamine curable aqueous intermediate coating material a (curing temperature = 140 ° C.) prepared in Preparation Example 1 is used in place of the isocyanate curable intermediate coating material A (curing temperature = 80 ° C.) as the thermosetting paint for the lower layer of the first layer. The melamine curable aqueous base paint a (curing temperature = 140 ° C.) prepared in Preparation Example 2 instead of the blocked isocyanate curable base paint A (curing temperature = 80 ° C.) as the second layer thermosetting paint for the lower layer A two-stage heat treatment (90 ° C. and 140 ° C.) was carried out in the same manner as in Example 3 except that it was used to produce a laminated coating film, and V and Wa to Wd were measured. In the melamine curable base coating material a and the melamine curable intermediate coating material a, the hydroxyl group of the acrylic resin and the melamine resin undergo a condensation reaction, and the curing proceeds. In this condensation reaction, volatile alcohol or water is generated. . The relative loss elastic moduli of the melamine curable aqueous intermediate coating material a and the melamine curable aqueous base coating material a at the start of gelation of the isocyanate curable clear coating material A are 7.5 s -2 and 1.1, respectively. . s- 2 .

得られた積層塗膜のWa〜Wdを表3に示す。また、熱処理中におけるVとWaとの関係を図3に示す。   Table 3 shows Wa to Wd of the obtained multilayer coating film. Further, FIG. 3 shows the relationship between V and Wa during the heat treatment.

Figure 2009034668
Figure 2009034668

表3に示した結果から明らかなように、本発明のように下層用熱硬化型塗料として最上層よりも低い温度で硬化する熱硬化型塗料を使用し、低温で加熱処理を施して下層を硬化させ、次いで高温で加熱処理を施して最上層を硬化させて得られた積層塗膜(実施例3〜5)のWa〜Wdはいずれも、最上層および下層について同じ硬化温度の熱硬化型塗料を使用し、最上層および下層に同時に加熱処理を施して硬化させて得られた積層塗膜(比較例3)に比べて低下し、実施例3〜5の積層塗膜は光沢、肌ともに比較例3の積層塗膜よりも向上していることが確認された。   As is apparent from the results shown in Table 3, a thermosetting paint that cures at a lower temperature than the uppermost layer is used as the lower layer thermosetting paint as in the present invention, and the lower layer is subjected to heat treatment at a low temperature. Each of Wa to Wd of the laminated coating films (Examples 3 to 5) obtained by curing and then heating at a high temperature to cure the uppermost layer is a thermosetting type having the same curing temperature for the uppermost layer and the lower layer. Compared to the multilayer coating film (Comparative Example 3) obtained by applying and curing the top layer and the lower layer at the same time using the paint, the multilayer coating films of Examples 3 to 5 are both glossy and skin. It was confirmed that the improvement was higher than the laminated coating film of Comparative Example 3.

図3に示すように、低温加熱処理で実施例3〜4の積層塗膜は揮発分濃度Vが約3質量%まで、実施例5の積層塗膜は約2質量%まで低下したのに対して比較例3の積層塗膜は約6質量%までしか低下しなかった。その結果、高温加熱処理において比較例3では揮発分濃度Vが約6質量%も減少したのに対して、実施例3〜4では揮発分濃度Vの減少が約3質量%、実施例5では約2質量%に抑えられた。この高温加熱処理による揮発分濃度Vの減少は積層塗膜の収縮に相当する。したがって、実施例3〜5の積層塗膜は比較例3の積層塗膜に比べて高温加熱処理による収縮が確実に抑えられ、その結果、積層塗膜表面の凹凸の形成(顕在化)が抑制され、Wa〜Wdがいずれも小さくなり、光沢および肌が比較例3の積層塗膜よりも向上していることが確認された。   As shown in FIG. 3, the laminated coating films of Examples 3 to 4 were reduced to a volatile content concentration V of about 3% by mass and the laminated coating film of Example 5 was reduced to about 2% by mass by low-temperature heat treatment. Thus, the laminated coating film of Comparative Example 3 was reduced only to about 6% by mass. As a result, in the high-temperature heat treatment, the volatile component concentration V was reduced by about 6% by mass in Comparative Example 3, whereas the decrease in the volatile component concentration V was about 3% by mass in Examples 3 to 4 and in Example 5. It was suppressed to about 2% by mass. The decrease in the volatile content concentration V due to the high temperature heat treatment corresponds to the shrinkage of the laminated coating film. Therefore, the multilayer coating films of Examples 3 to 5 are surely suppressed from shrinkage due to high-temperature heat treatment as compared with the multilayer coating film of Comparative Example 3, and as a result, the formation of unevenness (prominence) on the surface of the multilayer coating film is suppressed. As a result, Wa to Wd were all reduced, and it was confirmed that gloss and skin were improved as compared with the laminated coating film of Comparative Example 3.

なお、実施例と比較例における積層塗膜の収縮量の違いは以下のようにして起こるものと推察される。最上層および下層について同じ硬化温度で縮合反応により硬化する熱硬化型塗料を使用した比較例1〜3の積層塗膜では最上層用塗料の流動性が硬化反応により著しく低下する高温加熱処理により最上層および下層が同時に硬化し、この硬化の際にアクリル樹脂の水酸基とメラミン樹脂とが縮合して揮発性のアルコールや水が生成して揮発する。これに対して、下層用熱硬化型塗料として硬化温度が最上層用熱硬化型塗料よりも低い熱硬化型塗料を使用した実施例1〜5の積層塗膜では低温加熱処理により下層が硬化し、高温加熱処理により最上層が硬化する。このとき、下層用熱硬化型塗料として、熱処理により揮発性生成物を実質的に生成しない熱硬化型塗料、または低温加熱処理による硬化時にはブロック剤や縮合生成物などの揮発性生成物を生成して揮発するがその後の高温加熱処理時(特に、最上層用塗料の流動性が硬化反応により著しく低下する時)に揮発性生成物の生成が比較的少ない熱硬化型塗料を使用しているため、高温加熱処理による最上層の硬化時における揮発性生成物の揮発は実質的に減少する。その結果、比較例1〜3では最上層の硬化時の揮発性生成物の生成および揮発により塗膜が収縮するのに対して実施例1〜5では最上層の硬化時に揮発性生成物の揮発が少ないため塗膜の収縮が少なくなると推察される。   In addition, it is guessed that the difference in the shrinkage | contraction amount of the laminated coating film in an Example and a comparative example arises as follows. In the laminated coating films of Comparative Examples 1 to 3 using a thermosetting paint that is cured by a condensation reaction at the same curing temperature for the uppermost layer and the lower layer, the fluidity of the paint for the uppermost layer is greatly reduced by a high-temperature heat treatment that significantly decreases due to the curing reaction. The upper layer and the lower layer are simultaneously cured, and during this curing, the hydroxyl group of the acrylic resin and the melamine resin are condensed to generate and volatilize volatile alcohol and water. On the other hand, in the laminated coating films of Examples 1 to 5 using a thermosetting paint having a lower curing temperature than the uppermost layer thermosetting paint as the lower layer thermosetting paint, the lower layer was cured by the low-temperature heat treatment. The uppermost layer is cured by heat treatment. At this time, as the thermosetting paint for the lower layer, a thermosetting paint that does not substantially generate a volatile product by heat treatment, or a volatile product such as a blocking agent or a condensation product is generated at the time of curing by low-temperature heat treatment. Because it uses a thermosetting paint that generates relatively little volatile product during the subsequent high-temperature heat treatment (especially when the fluidity of the paint for the top layer is significantly reduced by the curing reaction) The volatilization of volatile products during the curing of the top layer by high temperature heat treatment is substantially reduced. As a result, in Comparative Examples 1 to 3, the coating film shrinks due to the formation and volatilization of the volatile product when the uppermost layer is cured, whereas in Examples 1 to 5, the volatilization of the volatile product occurs when the uppermost layer is cured. It is presumed that the shrinkage of the coating film is reduced due to the small amount of the film.

以上説明したように、本発明によれば、2種類以上の塗料をウェットオンウェットで積層して焼き付けて少なくとも最上層を硬化させても、最上層表面の凹凸が少ない積層塗膜を得ることができる。これにより、肌(表面平滑性)や光沢など外観品質に優れた塗装体を得ることができる。   As described above, according to the present invention, even when at least the uppermost layer is cured by laminating and baking two or more kinds of paints on a wet-on-wet basis, it is possible to obtain a laminated coating film with less unevenness on the surface of the uppermost layer. it can. Thereby, the coating body excellent in appearance quality, such as skin (surface smoothness) and gloss, can be obtained.

したがって、本発明は、2種類以上の塗料をウェットオンウェットで積層して焼き付ける場合においても外観品質に優れた塗装体を得ることができる塗装方法として有用であり、特に乗用車、トラック、バス、オートバイなどの自動車用車体やその部品の塗装方法として有用である。   Therefore, the present invention is useful as a coating method capable of obtaining a coated body excellent in appearance quality even when two or more kinds of paints are laminated and baked by wet-on-wet, and particularly, passenger cars, trucks, buses, motorcycles. It is useful as a painting method for automobile bodies and parts thereof.

相対貯蔵弾性率(Er’)の経時変化を模式的に示すグラフである。It is a graph which shows typically a time-dependent change of relative storage elastic modulus (Er '). 実施例1〜2および比較例1〜2で作製した積層塗膜の熱処理中における揮発分濃度Vとウェーブスキャン値Waとの関係を示すグラフである。It is a graph which shows the relationship between the volatile matter density | concentration V and the wave scan value Wa in the heat processing of the laminated coating film produced in Examples 1-2 and Comparative Examples 1-2. 実施例3〜5および比較例3で作製した積層塗膜の熱処理中における揮発分濃度Vとウェーブスキャン値Waとの関係を示すグラフである。It is a graph which shows the relationship between the volatile matter density | concentration V and the wave scan value Wa in the heat processing of the laminated coating film produced in Examples 3-5 and Comparative Example 3. FIG.

符号の説明Explanation of symbols

P…変曲点、t…時間、t…最上層用塗料について相対貯蔵弾性率の測定を開始してからゲル化が開始するまでの時間。 P ... inflection point, t ... time, t d ... time from the start of measurement of the relative storage elastic modulus for the uppermost layer-coating material until gelation starts.

Claims (5)

基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を形成する塗装方法であって、
前記最上層を形成するための最上層用塗料として硬化温度Tが40℃以上200℃以下であり且つ熱処理による硬化反応において揮発性生成物を生成しない熱硬化型塗料を準備し、且つ、前記下層を形成するための下層用塗料のうちの少なくとも1種類として硬化温度Tが下記式(1)
≦T−30 (1)
(式(1)中、Tは下層用熱硬化型塗料の硬化温度[℃]を示し、Tは最上層用熱硬化型塗料の硬化温度[℃]を示す。)
を満たす下層用熱硬化型塗料を準備する工程と、
前記基材上に前記下層用塗料及び前記最上層用塗料をウェットオンウェットで積層して未硬化積層塗膜を形成する工程と、
下記式(2)
−20≦T≦T−30 (2)
および下記式(3)
−20≦T≦T+40 (3)
(式(2)および(3)中、Tは低温加熱温度[℃]を示し、Tは高温加熱温度[℃]を示し、TおよびTは式(1)中のTおよびTと同義である。)
を満たす加熱温度TおよびTを設定する工程と、
前記未硬化積層塗膜に前記温度Tで熱処理を施して少なくとも前記下層用熱硬化型塗料を硬化させて最上層が未硬化の積層塗膜を形成し、次いで、最上層が未硬化の前記積層塗膜に前記温度Tで熱処理を施して最上層用熱硬化型塗料を硬化させる工程と、
を含むことを特徴とする塗装方法。
A coating method for forming a laminated coating film comprising at least one lower layer formed on a substrate and an uppermost layer formed on the lower layer,
Preparing a thermosetting coating material having a curing temperature T T of 40 ° C. or more and 200 ° C. or less and forming no volatile product in a curing reaction by heat treatment as the uppermost layer coating material for forming the uppermost layer; the curing temperature T U is the following formula as at least one of the lower layer coating material for forming the lower layer (1)
T U ≦ T T -30 (1)
(In the formula (1), T U represents a curing temperature [℃] of the lower layer for thermosetting paint, T T denotes the curing temperature of the uppermost layer-thermosetting coating material [℃].)
A step of preparing a thermosetting paint for the lower layer satisfying
A step of laminating the lower layer coating material and the uppermost layer coating material on the substrate by wet-on-wet to form an uncured laminated coating film;
Following formula (2)
T U −20 ≦ T L ≦ T T −30 (2)
And the following formula (3)
T T -20 ≦ T H ≦ T T +40 (3)
(In the formula (2) and (3), T L represents the low heating temperature [℃], T H represents a high-temperature heating temperature [° C.], T U and T T is T U and in the formula (1) it is synonymous with the T T.)
Setting the heating temperatures T L and T H to satisfy
The uncured laminated coating film is subjected to a heat treatment at the temperature TL to cure at least the thermosetting paint for the lower layer to form an uncured laminated coating film, and then the uppermost layer is uncured. curing the uppermost layer-thermosetting coating material is subjected to heat treatment at the temperature T H in the multilayer coating film,
The coating method characterized by including.
前記最上層用熱硬化型塗料が、前記温度Tにおける重量減少率が0.5質量%以下の塗料であることを特徴とする請求項1に記載の塗装方法。 The coating method according to claim 1, wherein the thermosetting paint for the uppermost layer is a paint having a weight reduction rate of 0.5 mass% or less at the temperature T T. 前記下層が2層以上であり、前記下層を形成するための下層用塗料のすべてが前記下層用熱硬化型塗料であることを特徴とする請求項1または2に記載の塗装方法。   The coating method according to claim 1 or 2, wherein the lower layer has two or more layers, and all of the lower layer paints for forming the lower layer are the lower layer thermosetting paints. 最上層が未硬化の前記積層塗膜の揮発分濃度を4質量%以下に低減した後、最上層が未硬化の前記積層塗膜に前記温度Tで熱処理を施して前記最上層用塗料を硬化させることを特徴とする請求項1〜3のうちのいずれか一項に記載の塗装方法。 After the top layer is reduced volatiles concentration of the multilayer coating film of the uncured 4 wt% or less, the uppermost layer-coating material by subjecting the top layer to heat treatment at the temperature T H in the multilayer coating film of the uncured Curing is performed. The coating method according to any one of claims 1 to 3. 基材上に形成された少なくとも1層の下層と前記下層上に形成された最上層とを備える積層塗膜を有する塗装体であって、請求項1〜4のうちのいずれか一項に記載の塗装方法により得られたものであることを特徴とする塗装体。   It is a coating body which has a laminated coating film provided with the at least 1 lower layer formed on the base material, and the uppermost layer formed on the said lower layer, Comprising: It is a coating body as described in any one of Claims 1-4. Painted body obtained by the coating method of
JP2008175088A 2007-07-06 2008-07-03 Coating method, and coated object prepared by the same Pending JP2009034668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175088A JP2009034668A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007178686 2007-07-06
JP2008175088A JP2009034668A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by the same

Publications (1)

Publication Number Publication Date
JP2009034668A true JP2009034668A (en) 2009-02-19

Family

ID=40437093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175088A Pending JP2009034668A (en) 2007-07-06 2008-07-03 Coating method, and coated object prepared by the same

Country Status (1)

Country Link
JP (1) JP2009034668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167615A (en) * 2010-02-17 2011-09-01 Mazda Motor Corp Laminated coating film forming method
WO2013039066A1 (en) * 2011-09-13 2013-03-21 本田技研工業株式会社 Double-layer coating film formation method and double-layer coating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568932A (en) * 1991-09-17 1993-03-23 Mazda Motor Corp Painting method
JP2002153806A (en) * 2000-11-20 2002-05-28 Nippon Paint Co Ltd Method for forming coating film, and multilayer coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568932A (en) * 1991-09-17 1993-03-23 Mazda Motor Corp Painting method
JP2002153806A (en) * 2000-11-20 2002-05-28 Nippon Paint Co Ltd Method for forming coating film, and multilayer coating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167615A (en) * 2010-02-17 2011-09-01 Mazda Motor Corp Laminated coating film forming method
WO2013039066A1 (en) * 2011-09-13 2013-03-21 本田技研工業株式会社 Double-layer coating film formation method and double-layer coating film
JPWO2013039066A1 (en) * 2011-09-13 2015-03-26 本田技研工業株式会社 Method for forming multilayer coating film and multilayer coating film

Similar Documents

Publication Publication Date Title
US8795835B2 (en) Coating method and coated article obtained by the same
JP2009034667A (en) Coating method, and coated object prepared by above method
JP5260255B2 (en) Coating method and coated body obtained thereby
JP5261061B2 (en) Coating method and coated body obtained thereby
JP5513726B2 (en) Coating method and coated body obtained thereby
JP2009034668A (en) Coating method, and coated object prepared by the same
JP2007283271A (en) Method for forming multilayer coating film
JP5280069B2 (en) Coating method and coated body obtained thereby
JP4235391B2 (en) Multilayer coating film forming method and aqueous intermediate coating composition
CN105939791B (en) Coating method and coated article obtained by said method
CN105960290B (en) Coating method and coated article obtained by said method
JP5120952B2 (en) Coating method and coated body obtained thereby
JP2017218527A (en) Isocyanate curable coating composition and coating method using the same
JP4612177B2 (en) Coating method
JP5342457B2 (en) Multi-layer coating formation method
JP6499538B2 (en) Painting method
JP2002126627A (en) Method for forming multilayered coating film, multilayered coating film and water-based intermediate coating material composition
JP3286014B2 (en) Coating method using coating composition having improved interlayer adhesion, and multilayer coating
JP2009155396A (en) Clear coating composition, and method of forming multilayered coating film
JP2002248413A (en) Coating film forming method and coating film
JP2002285044A (en) Thermosetting coating composition and method for forming coating film by using the same
JP2001058156A (en) Partial repairing method for coating film
JP2002126625A (en) Method for forming coating film and coating film
JP2011167617A (en) Laminated coating film forming method
JP2002172359A (en) Coating film formation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120921