JP2017216044A - セラミックヒータ、および、グロープラグ - Google Patents

セラミックヒータ、および、グロープラグ Download PDF

Info

Publication number
JP2017216044A
JP2017216044A JP2016107104A JP2016107104A JP2017216044A JP 2017216044 A JP2017216044 A JP 2017216044A JP 2016107104 A JP2016107104 A JP 2016107104A JP 2016107104 A JP2016107104 A JP 2016107104A JP 2017216044 A JP2017216044 A JP 2017216044A
Authority
JP
Japan
Prior art keywords
silicon nitride
average particle
ceramic heater
base portion
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016107104A
Other languages
English (en)
Other versions
JP6762763B2 (ja
Inventor
康如 青井
Yasuyuki Aoi
康如 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016107104A priority Critical patent/JP6762763B2/ja
Publication of JP2017216044A publication Critical patent/JP2017216044A/ja
Application granted granted Critical
Publication of JP6762763B2 publication Critical patent/JP6762763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】セラミックヒータにおいて、クラックの発生を低減できる技術を提供する。
【解決手段】セラミックヒータは、窒化珪素を含有する基体部と、基体部に埋め込まれた抵抗体と、を備える。抵抗体は、窒化珪素と導電性材料とを含有し、通電により発熱する発熱部と、発熱部に接続された一対のリード部と、を有し、発熱部に含有される前記窒化珪素の平均粒径は、基体部に含有される前記窒化珪素の平均粒径の1.1倍以上である。
【選択図】図5

Description

本発明は、セラミックヒータの技術に関する。
従来、絶縁性の棒状の基体部と、基体部に埋め込まれた導電性の抵抗体とを備えるセラミックヒータが知られている(例えば、特許文献1〜5)。セラミックヒータは、例えばディーゼルエンジンの燃焼室内の補助熱源として用いられる。
国際公開第2013/047849 国際公開第2014/003093 特開平10−41052号公報 特開昭60−254586号公報 特開平9−137945号公報
従来の技術では、基体部は、例えば窒化珪素と酸化エルビウムなどを含む絶縁性材料から形成され、抵抗体は、例えば窒化珪素と導電性の炭化タングステンなどを含む導電性材料から形成されている。セラミックヒータは、製造過程において焼成される。焼成時において、基体部と抵抗体との収縮挙動が異なる場合、基体部と抵抗体との間に隙間が生じる場合があった。焼成時において、隙間の部分では、窒化珪素粒子が気相成長しやすいので、基体部と抵抗体との界面近傍の緻密化が十分に進行しない場合があった。界面近傍の緻密化が十分に進行しない場合、界面近傍にクラックが生じてセラミックヒータの強度が低下する可能性がある。
焼成後のセラミックヒータである焼結体は、その後の製造工程において外周面などを研削したりすることで物理的な負荷が加えられる。また、製品として製造されたセラミックヒータは高温環境下に配置され熱的な負荷が加えられる。よって、物理的な負荷や熱的な負荷によって、セラミックヒータの隙間(強度が低い部分)を基点としてクラックが発生する場合がある。
よって、セラミックヒータにおいて、クラックの発生を低減できる技術が望まれている。
本発明は、上述の課題を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
(1)本発明の一形態によれば、セラミックヒータが提供される。このセラミックヒータは、窒化珪素を含有する基体部と、前記基体部に埋め込まれた抵抗体と、を備え、前記抵抗体は、前記窒化珪素と導電性材料とを含有し、通電により発熱する発熱部と、前記発熱部に接続された一対のリード部と、を有し、前記発熱部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.1倍以上である。この形態によれば、発熱部に含有される窒化珪素の平均粒径が、基体部に含有される窒化珪素の平均粒径の1.1倍以上であるので、セラミックヒータのうち、基体部と発熱部との界面近傍にクラックが生じる可能性を低減できる。
(2)上記形態であって、前記リード部は、前記窒化珪素と前記導電性材料とを含有し、前記リード部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.2倍以上であってもよい。この形態によれば、セラミックヒータのうち、基体部とリード部との界面近傍にクラックが生じる可能性を低減できる。
(3)上記形態であって、前記リード部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.6倍以上2.0倍以下であってもよい。この形態によれば、セラミックヒータのうち、基体部とリード部との界面近傍にクラックが生じる可能性をさらに低減できる。
(4)上記形態であって、前記発熱部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.5倍以下であってもよい。この形態によれば、セラミックヒータのうち、基体部と発熱部との界面近傍にクラックが生じる可能性をさらに低減できる。
(5)本発明の他の一形態によれば、筒状の主体金具と、前記主体金具に保持された上記形態に記載のセラミックヒータと、を備える、グロープラグが提供される。このグロープラグによれば、基体部と抵抗体との界面近傍にクラックが生じる可能性を低減したセラミックヒータを備えることができる。
なお、本発明は、種々の形態で実現することが可能であり、セラミックヒータおよびグロープラグの他に、例えば、セラミックヒータまたはグロープラグの製造方法等の態様で実現することができる。
本発明の実施形態としてのグロープラグ10の断面図である。 セラミックヒータ40の断面図である。 グロープラグ10の製造工程を示す図である。 ステップS20で行うホットプレス法について説明するための図である。 第1の評価試験の結果を表す図である。 原料を構成する窒化珪素の平均粒径D1,D2の大小関係と、抵抗体42と基体部44との収縮挙動の関係を示す図である。 図2のF2a−F2a断面のSEM画像であり、発熱部428の画像である。 第2の評価試験の結果を表す図である。 セラミックヒータ40の中間成形体である各サンプルにおける窒化珪素の平均粒径の大小関係と、抵抗体42と基体部44との収縮挙動の関係を示す図である。 第1変形例のセラミックヒータ40aを説明するための図である。
A.実施形態:
図1は、本発明の実施形態としてのグロープラグ10の断面図である。図1では、グロープラグ10の中心軸Acを一点鎖線で図示している。また、グロープラグ10において、紙面上側を後端側BSとし、紙面下側を先端側ASとする。
グロープラグ10は、主体金具20と、外筒30と、セラミックヒータ40と、リング45と、中軸50と、Oリング55と、絶縁部材60と、端子70とを備えている。
グロープラグ10は、主体金具20においてディーゼルエンジンのシリンダーヘッドに固定される。グロープラグ10がシリンダーヘッドに固定された状態において、セラミックヒータ40のうち先端側ASに位置する部分は、ディーゼルエンジンの燃焼室内に露出する。一方、グロープラグ10のうち後端側BSに位置する端子70には、プラグコードが接続され、電力が供給される。
主体金具20は、筒状である。主体金具20は、導電性を有する材料で形成される。本実施形態において、主体金具20は、金属で形成される。主体金具20は、外筒30を介してセラミックヒータ40を保持する。主体金具20の内部には、外筒30の一部と、セラミックヒータ40の一部と、リング45と、中軸50の一部と、Oリング55と、絶縁部材60の一部と、が配置される。
外筒30は、導電性を有する材料で形成される。本実施形態において、外筒30は、金属で形成される。外筒30は、主体金具20の先端に取り付けられる。その結果、外筒30は、主体金具20と電気的に接続される。
セラミックヒータ40は、後端側BSから先端側ASに延びる。セラミックヒータ40は、長手方向の中央近傍の部分Psを外筒30によって囲まれて、保持されている。セラミックヒータ40のうち、先端側ASに位置する部分および後端側BSに位置する部分は、外筒30から露出している。セラミックヒータ40は、抵抗体42と、基体部44とを備える。
基体部44は、先端部44aと後端部44bとを有し、中心軸Acに沿って延びる。基体部44は、窒化珪素(Si)を主成分として含有し、導電性材料の含有量が8体積%以下である。導電性材料の含有量が8体積%より高い場合、基体部44の絶縁性が低くなり、一対のリード部422,423間が短絡するなどの不具合が生じ得る。基体部44は、抵抗体42よりも高い抵抗値を有し、絶縁性が高い部材である。基体部44の先端部44aは、グロープラグ10の先端を構成する。つまり、基体部44の先端部44aの側と後端部44bの側との位置関係は、セラミックヒータ40の先端側ASと後端側BSとの位置関係に対応している。よって、先端部44aの側は「先端側AS」と同義であり、後端部44bの側は「後端側BS」と同義である。
抵抗体42は導電性を有する。抵抗体42は基体部44に埋め込まれている。ただし、抵抗体42は電極部425,427において基体部44の側面から露出している。抵抗体42は基体部44の側面から露出している一方の電極部427において、外筒30に電気的に接続されている。抵抗体42は基体部44の側面から露出している他方の電極部425において、リング45を介して中軸50に電気的に接続されている。抵抗体42は、外筒30や中軸50を介して電圧を印加されることにより、発熱する。
リング45は、両端に開口を有する略筒状の形状を有する。リング45は、導電性を有する材料で構成される。本実施形態において、リング45は、金属で形成される。リング45は、先端側の開口を通じて空隙内にセラミックヒータ40の後端部を受け入れ、これを保持している。また、リング45は、後端側の開口を通じて空隙内に中軸50の先端部を受け入れ、これを保持している。その結果、セラミックヒータ40と中軸50は、リング45を介して接続される。また、セラミックヒータ40の抵抗体42は、基体部44の側面から露出している箇所である電極部425において、リング45を介して中軸50に電気的に接続される。
中軸50は、導電性を有する材料で形成される。本実施形態において、中軸50は、金属で形成される。中軸50は、主体金具20の内部において、リング45を介してセラミックヒータ40の後端部と接続される。その結果、中軸50は、リング45を介してセラミックヒータ40の抵抗体42と電気的に接続される。中軸50は、絶縁部材60を介して、主体金具20に保持される。また、中軸50は、主体金具20の内部において、主体金具20の内壁とは空隙をあけて位置している。その結果、中軸50と主体金具20とは、絶縁されている。
Oリング55は、絶縁性の樹脂で形成される。Oリング55は、中軸50の外周であって、絶縁部材60の先端と接する位置に配置される。Oリング55の外周は、主体金具20の内周面と接する。その結果、主体金具20の内壁と中軸50の外周との間の空隙は、後端部側においてOリング55によって気密に封止されている。
絶縁部材60は、主体金具20の後端部において、筒状の主体金具20の空隙内に一部を配されて、固定されている。絶縁部材60の後端部は、主体金具20から露出している。絶縁部材60は、中軸50を保持している。中軸50は、絶縁部材60を貫通している。その結果、中軸50の後端部は、主体金具20から露出している。主体金具20の外部に露出している中軸50の後端部には、端子70が接続される。
端子70は、導電性を有する材料で形成される。本実施形態において、端子70は、金属で形成される。端子70は、中軸50に固定されている。その結果、端子70は、中軸50と電気的に接続されている。一方、端子70と主体金具20の間には、絶縁部材60が介在する。このため、端子70と主体金具20は、絶縁されている。
端子70に接続されたプラグコードによって、端子70と主体金具20の間に電圧が印加されることにより、端子70、中軸50、リング45、抵抗体42、外筒30、主体金具20に電流が流れ、抵抗体42が発熱する。外筒30および主体金具20は、ディーゼルエンジンのシリンダーヘッドを介して接地されている。
図2は、セラミックヒータ40の断面図である。図2において、外筒30を二点鎖線で示し、抵抗体42のリード部422,423と発熱部428との境界を破線で示している。前述のように、セラミックヒータ40は、抵抗体42と、基体部44とを備える。基体部44は、先端が曲面である略円柱状の外観形状を有する。
抵抗体42は、折り返し形状を成す発熱部428と、発熱部428に電流を導く一対のリード部422,423と、を備える。
発熱部428は、通電により発熱する。発熱部428は、窒化珪素と導電性材料とを含有する。導電性材料としては、タングステン(W)の珪化物、炭化物、及び、窒化物のうちの少なくとも一種である。本実施形態では、導電性材料は炭化タングステン(WC)である。発熱部428に含有される窒化珪素の平均粒径は、基体部44に含有される窒化珪素の平均粒径の1.1倍以上である。また、発熱部428に含有される窒化珪素の平均粒径は、基体部44に含有される窒化珪素の平均粒径の1.5倍以下であることが好ましい。この平均粒径の関係が有する効果については後述する。発熱部428は、基体部44のうち先端側ASに位置する部分に埋め込まれている。発熱部428において、自身が延びる方向と直交する断面形状は略円形である。発熱部428は、U字形状の外観形状を有する。発熱部428は、後端側BSに一対の端部428a,428bを有する。発熱部428は、リード部422,423よりも厚みが小さい(すなわち、径が小さい)ことが好ましい。言い換えれば、発熱部428の自身が延びる方向に直交する断面積は、リード部422,423の自身が延びる方向に直交する断面積よりも小さいことが好ましい。これにより、発熱部428の抵抗値をリード部422,423の抵抗値よりも高くできることから、発熱部428を発熱し易くできる。
一対のリード部422,423は、窒化珪素と導電性材料とを含有する。導電性材料としては、タングステンの珪化物、炭化物、及び、窒化物のうちの少なくとも一種(本実施形態では、炭化タングステン)である。一対のリード部422,423は、発熱部428と同一組成であってもよいし、電気抵抗を発熱部428よりも下げるために発熱部428よりも導電性材料の含有量を高くしてもよい。リード部422,423に含有される窒化珪素の平均粒径は、基体部44に含有される窒化珪素の平均粒径の1.2倍以上であることが好ましく、1.6倍以上2.0倍以下がより好ましい。この平均粒径の関係が有する効果については後述する。一対のリード部422,423は、一対の端部428a,428bから後端側BSに延びる。一対のリード部422,423はそれぞれ棒状の部材であり、基体部44の内部に配置されている。一対のリード部422,423は、互いに長手方向が平行となるように、また、それぞれの長手方向がグロープラグ10の中心軸Acと平行となるように配置されている。一対のリード部422,423において、自身が延びる方向と直交する断面形状は略円形である。リード部422,423は、後端側BS寄りの位置に電極部427,425を有する。
図3は、グロープラグ10の製造工程を示す図である。図4は、ステップS20で行うホットプレス法について説明するための図である。まず、図3に示すように抵抗体42の成形材料および基体部44の成形材料を作製する(ステップS10,S12)。本実施形態において、抵抗体42の成形材料は、それぞれが粉末状の窒化珪素、導電性材料、焼結助剤、および、添加剤とを混合粉砕し、混合粉砕後の材料にバインダーを加えた上でスプレードライによって造粒することで作製することができる。焼結助剤としては、例えば、酸化エルビウム(Er)やケイ化クロム(CrSi)や二酸化珪素(SiO)を用いることができる。添加剤としては、例えば、タングステンシリサイド(WSi)ケイ化クロム(CrSi)を用いることができる。添加剤は、主に熱膨張率の調整を目的として用いられる。なお、抵抗体42の成形材料として添加剤を用いなくてもよい。バインダーとしては、例えば、カルビトール類、セロソルブ類、酢酸エステル類、1価のアルコール類およびケトン類などを用いることができる。基体部44の成形材料は、絶縁性セラミックを主成分とする粉末状であり、例えば、それぞれが粉末状の絶縁性セラミック原料および焼結助剤を混合粉砕し、この混合粉砕後の材料にバインダーを加えた上でスプレードライによって造粒することで作製することができる。絶縁性セラミック原料としては、窒化珪素を含む。バインダーおよび焼結助剤の種類としては、抵抗体42の成形材料と同様な種類を用いることができる。
抵抗体42の中間成形体を、ステップS10で得られた造粒物を用いて作製する(ステップS14)。ステップS14では、例えば、造粒物を用いた射出成形、スクリーン印刷、シート成形、押出し成形などの方法を用いることで、所望の形状を有する抵抗体42の中間成形体を作製する。本実施形態において、「抵抗体42の中間成形体」とは、後述する脱脂や焼成等の加熱工程を経て抵抗体42となる部材を意味する。
ステップS14の次に、セラミックヒータ40の中間成形体40Aを作製する(ステップS16)。ステップS14で得られた抵抗体42の中間成形体をステップS12で作製した基体部44の粉末状の成形材料中に配置して、プレス成形することでセラミックヒータ40の中間成形体を作製する(ステップS16)。例えば、基体部44の粉末状の成形材料を圧粉することで基体部44の中間成形体の半割体を作製する。半割体は、中心軸Acに沿って延び、基体部44の中間成形体の半分を構成する。この半割体の所定位置に抵抗体42の中間成形体を載置した後、基体部44の粉末状の成形材料を抵抗体42の中間成形体を覆うように配置してプレス成形前ヒータを準備する。この状態で、プレス形成前ヒータをプレス成形することによってセラミックヒータ40の中間成形体40Aを作製する。中間成形体40Aの各部において、セラミックヒータ40の各部に対応する符号には、区別のために末尾に「A」を付す。
ステップS16の次に、セラミックヒータ40の中間成形体40Aの脱脂が行われる(ステップS18)。セラミックヒータ40の中間成形体40Aには、バインダーが含まれているので、加熱(仮焼成)することで、バインダーが取り除かれる。例えば、脱脂は、セラミックヒータ40の中間成形体40Aを、窒素雰囲気中にて800℃で60分加熱することで実行される。
ステップS18の次に、本焼成が行われる(ステップS20)。本焼成では、ステップS18の仮焼成に比べて、高温で加熱が行なわれる。本焼成において、焼成温度は1700℃〜1850℃の範囲、特に1750℃〜1830℃の範囲に設定されることが好ましく、焼成時間は30分〜180分の範囲、特に60分〜120分の範囲に設定されることが好ましい。焼成方法としては、ホットプレス法、ガス圧焼成法、熱間静水圧プレス法などの各種方法を用いることができる。図4に示すように、ホットプレス法に用いるホットプレス装置78は、一対の黒鉛製の加圧用ダイス75と、焼成炉74とを有する。ホットプレス法では、まず、一対の加圧用ダイス75にステップS18を経たセラミックヒータ40の中間成形体40Aを収容した状態で一対の加圧用ダイス75を焼成炉74内に配置する。そして、一対の加圧用ダイス75によって中間成形体40Aを図4の矢印Fの方向に挟み込んで加圧した状態で、上記の焼成温度および焼成時間で焼成する。焼成炉74の雰囲気(焼成雰囲気)は窒素雰囲気などの非酸化性雰囲気である。ステップS18により得られたセラミックヒータ40を「焼成体40B」と呼ぶ。焼成体40Bの各部において、セラミックヒータ40の各部に対応する符号には、区別のために末尾に「B」を付す。
図3に示すようにステップS20の次に、研磨加工及び切断加工が行われる(ステップS22)。この工程では、ステップS20により得られた焼成体40Bを、例えば、平面研削盤などで所望の寸法形状に研削したり、焼成体40Bの先端側AS部分を研磨加工、テーパ加工、R面加工などが行われる。研磨加工により、電極部425,427(図2)が基体部44の側面から露出する。上述したステップS10〜S22により、セラミックヒータ40が完成する。その後、図1に示すグロープラグ10の各構成部が組みつけられ(ステップS24)、グロープラグ10が完成する。なお、主体金具20等の各構成部の製造方法としては、公知の方法を採用できる。
B.平均粒径についての評価試験:
B−1.第1の評価試験:
図5は、第1の評価試験の結果を表す図である。図6は、各サンプルNo.1〜No.5の原料を構成する窒化珪素の平均粒径D1,D2の大小関係と、抵抗体42Aと基体部44Aとの収縮挙動の関係を示す図である。図7は、図2のF2a−F2a断面のSEM画像であり、発熱部428Bの画像である。図5には、図3のステップS20を経た後の焼成体40BであるサンプルNo.1〜No.5についての、窒化珪素の平均粒径A,B、平均粒径の比R、および、クラック評価を示している。比Rは、小数点第2位を四捨五入した値である。サンプルNo.1〜No.5では、基体部44Bに含有される窒化珪素の平均粒径Aと、発熱部428Bに含有される窒化珪素の平均粒径Bと、比R(平均粒径B/平均粒径A)とが異なる。焼成体40Bは、ステップS22を経てセラミックヒータ40が作製されるが、ステップS22では熱的な負荷が加えられないので、セラミックヒータ40において平均粒径A、平均粒径Bは焼成体40Bから変化しない。また、サンプルNo.1〜No.5を作製するために準備した抵抗体42の成形材料と基体部44の成形材料は、以下の通りである。なお、サンプルNo.1〜No.5は、1000本ずつ作製した。
<抵抗体42の成形材料、および、組成>
本焼成後に、窒化珪素が30質量%、炭化タングステンが63質量%、二酸化珪素が2質量%、酸化エルビウムが5質量%の配合比になるように、窒化珪素の粉末、炭化タングステンの粉末、二酸化珪素の粉末、および、酸化エルビウムの粉末を混合した。混合した粉末にバインダーを一定割合(成形材料全体の約10質量%)配合した。
<基体部44の成形材料、および、組成>
本焼成後に、エルビウム(Er)が酸化エルビウム換算で6.4質量%、クロム(Cr)がケイ化クロム換算で2.2質量%、アルミニウムが窒化アルミニウム(AlN)換算で0.6質量%となるように、酸化エルビウム粉末、タングステン化合物粉末、結晶構造がα又はβの炭化珪素粉末および二酸化珪素の粉末、窒化アルミニウムおよびアルミナのアルミ化合物粉末を混合した。混合した粉末にバインダーを一定割合(成形材料全体の約10質量%)配合した。なお、上記の配合した基体部44の成形材料を用いて作製した焼成体40Bにおいて、基体部44Bは導電性材料の含有量が8体積%以下となる。
サンプルNo.1〜No.5の製造工程において、ステップS14では、抵抗体42の成形材料を用いて射出成形によって抵抗体42の中間成形体を作製した。なお、サンプルNo.1〜No.5において、発熱部428Bの径とリード部422B,423Bの径とは略同じとした。
焼成体40Bにおいて比Rを変えたサンプルNo.1〜No.5を作製するためには、図6に示すように、成形材料として構成される前の状態における原料において、異なる平均粒径D1、D2を有する粉状の窒化珪素を用いて、本焼成における焼成温度と焼成時間を調整すればよい。一般に、原料における平均粒径D1,D2の比(D1/D2)の大小と、比Rとは相関関係を有するが、焼成温度や焼成時間を調整することで、最終的な比Rを調整できる。平均粒径D1,D2は、フィッシャー法を用いて算出した値である。図6中の「小」は、平均粒径D1,D2が0.5〜0.6μmの範囲であり、「中」は平均粒径D1,D2が0.7〜0.8μmの範囲であり、「大」は平均粒径D1,D2が1.0〜1.1μmの範囲である。
焼成体40Bにおいて、基体部44Bに含有される窒化珪素の平均粒径Aと、発熱部428Bに含有される窒化珪素の平均粒径Bとは以下のように算出した。まず、焼成体40Bを所定の断面で切断する。例えば図2のF2a−F2a断面で切断する。切断した断面を3000倍でSEM画像撮影する。図7に示すように、SEM画像に任意の5本の直線L1〜L5を引き、5本の直線L1〜L5を横切る窒化珪素粒子Pを50個選択し、選択した50個の窒化珪素粒子Pの粒径PSを測定する。粒径PSは、図7の下図に模式的に記載したように、直線(例えばL1)を横切る窒化珪素粒子Pの長さPSを粒径PSとした。50個の窒化珪素粒子Pにおける粒径PSの平均値を窒化珪素の平均粒径A,Bとして算出した。
図5に示すようにクラック評価は以下の手順で行った。まず、焼成体40Bの表面を発熱部428Bと基体部44Bとの界面の長さが最も大きくなる部分に到達するまで鏡面研磨する。そして、鏡面研磨後の焼成体40Bを光学顕微鏡を用いて界面を含む領域を目視で確認し、クラックが発生しているか否かを判定した。1000本全てにおいてクラックが発生していないサンプルについては、クラック評価を「EA」とした。1000本のうちクラックが発生した本数が1本であるサンプルについては、クラック評価を「EB」とした。1000本のうちクラックが発生した本数が2本以上であるサンプルについては、クラック評価を「EC」とした。
図5に示すように、発熱部428Bに含有される窒化珪素の平均粒径Bは、基体部44Bに含有される窒化珪素の平均粒径Aの1.1倍以上が好ましい。こうすることで、セラミックヒータ40のうち、基体部44Bと発熱部428Bとの界面近傍にクラックが生じる可能性を低減できる。クラックが生じる可能性を低減できる理由を以下に述べる。一般に、同じ種類の粒子を含む部材において、粒径が大きい粒子を含有する部材の方が、粒径が小さい粒子を含有する部材よりも、焼成中において収縮が遅く始まる。これは、粒径が小さい粒子を含む部材は表面積が大きく、表面から部材の内方に向けての物質の移動が起きやすいためであると考えられる。
ここで、図6に示すように、サンプルNo.1では、抵抗体42の成形材料(原料)に含有される窒化珪素の平均粒径D1が、基体部44の成形材料(原料)に含有される窒化珪素の平均粒径D2よりも小さい。これにより、中間成形体40Aを焼成しているときに、基体部44Aの収縮よりも抵抗体42Aの収縮が早く始まると考えられる。よって、焼成体40Bにおいて、基体部44Bと抵抗体42Bとの間に隙間が生じやすくなり、界面近傍にクラックが生じやすくなったと考えられる。一方で、サンプルNo.3〜サンプルNo.5では、抵抗体42の成形材料(原料)に含有される窒化珪素の平均粒径D1が、基体部44の成形材料(原料)に含有される窒化珪素の平均粒径D2よりも大きい。これにより、中間成形体40Aを焼成しているときに、基体部44Aの収縮よりも抵抗体42Aの収縮が遅く始まると考えられる。これにより、サンプルNo.3〜サンプルNo.5では、焼成時において、外側に位置する基体部44Aの収縮によって、発熱部428Aに対して基体部44Aから内方への圧力が加えられる。よって、焼成時において、基体部44Aが発熱部428Aに密着するため、焼成体40Bにおいて基体部44Bと発熱部428Bとの間に隙間が生じる可能性を低減できる。また、サンプルNo.2では、抵抗体42の成形材料(原料)に含有される窒化珪素の平均粒径D1が、基体部44の成形材料(原料)に含有される窒化珪素の平均粒径D2と同程度である。これにより、中間成形体40Aを焼成しているときに、基体部44Aの収縮と抵抗体42Aの収縮の開始時期が同等であるので、焼成体40Bにおいて基体部44Bと抵抗体42Bとの間に隙間が生じる可能性を低減できたと考えられる。以上のように、成形材料の原料において、抵抗体42の窒化珪素の平均粒径D1を基体部44の窒化珪素の平均粒径D2以上とすることで、抵抗体42と基本部44の焼結性を同程度、または、抵抗体42を基体部44よりも難焼結性の高い部材とすることで、焼成時における抵抗体42と基体部44との界面近傍に生じる隙間を低減できる。
なお、発熱部428Bに含有される窒化珪素の平均粒径Bは、基体部44Bに含有される窒化珪素の平均粒径Aの1.5倍以下であることが好ましい。これは、平均粒径Bが平均粒径Aの1.5倍を超えた場合、焼成時において、発熱部428の収縮が始まる時点と、基体部44の収縮が始める時点との差が大きくなり過ぎて、界面の接合の度合いが低下することに起因して、界面近傍にクラックが生じる可能性が高くなるからである。
B−2.第2の評価試験:
図8は、第2の評価試験の結果を表す図である。図9は、セラミックヒータ40の中間成形体である各サンプルにおける窒化珪素の平均粒径の大小関係と、抵抗体42と基体部44との収縮挙動の関係を示す図である。
図8には、図3のステップS20を経た後の焼成後の焼成体40BであるサンプルNo.6〜No.12についての、窒化珪素の平均粒径A,B1,B2、平均粒径の比R1,R2、および、クラック評価を示している。サンプルNo.6〜No.12では、比R1(平均粒径B1/平均粒径A)と、比R2(平均粒径B2/平均粒径A)とが異なる。比R1および比R2は、小数点第2位を四捨五入した値である。また、サンプルNo.6〜No.12を作製するために準備した抵抗体42の成形材料と基体部44の成形材料とは各材料の配合割合が異なる。発熱部428は、上記の第1の評価試験の抵抗体42で用いた成形材料および組成と同一であり、基体部44は、上記の第1の評価試験の基体部44で用いた成形材料および組成と同一である。リード部422,423に用いた成形材料および組成は以下の通りである。なお、サンプルNo.6〜No.12は、1000本ずつ作製した。
<抵抗体42のリード部422,423の成形材料、および、組成>
本焼成後に、窒化珪素が23質量%、炭化タングステンが70質量%、二酸化珪素が2質量%、酸化エルビウムが5質量%の配合比になるように、窒化珪素の粉末、炭化タングステンの粉末、二酸化珪素の粉末、および、酸化エルビウムの粉末を混合した。混合した粉末にバインダーを一定割合(成形材料全体の約10質量%)配合した。
サンプルNo.6〜No.12の製造工程において、ステップS14では、抵抗体42の成形材料を用いて射出成形によって抵抗体42の中間成形体を作製した。この射出成形は、リード部422,423の成形材料を用いて射出成形によってリード部422,423の中間成形体を作製した後に、リード部422,423の中間成形体を配置した金型内に発熱部428の成形材料を注入するインサート成形を用いた。なお、サンプルNo.6〜No.12において、発熱部428Bの径はリード部422B,423Bの径よりも大きくした。なお、サンプルNo.6〜No.12の発熱部428Bの径と、サンプルNo.1〜No.5の発熱部428Bの径とは略同じである。
焼成体40Bの比R1,R2を変えたサンプルNo.6〜No.12を作製するためには、図9に示すように、成形材料として構成される前の状態における原料において、異なる平均粒径D1a,D1b,D2を有する粉状の窒化珪素を用いて、本焼成における焼成温度と焼成時間を調整すればよい。一般に、原料における平均粒径D1a,D2の比(D1a/D2)が比R1と、原料における平均粒径D1b,D2の比(D1b/D2)が比R2とそれぞれ相関関係を有するが、焼成温度や焼成時間を調整することで、最終的な比R1,R2を調整できる。平均粒径D1a,D1b,D2は、フィッシャー法を用いて算出した値である。図6中の「小」は、平均粒径D1a,D1b,D2が0.5〜0.6μmの範囲であり、「中」は平均粒径D1a,D1b,D2が0.7〜0.8μmの範囲であり、「大」は平均粒径D1a,D1b,D2が1.0〜1.1μmの範囲である。
焼成体40Bにおいて、基体部44Bに含有される窒化珪素の平均粒径Aと、発熱部428Bに含有される窒化珪素の平均粒径B1と、リード部422B,423Bに含有される窒化珪素の平均粒径B2は、上記第1の評価試験と同様に、所定の切断面を研磨した後のSEM画像により算出した。ここで、平均粒径Aと平均粒径B1は、図2のF2a−F2a断面を切断面としたSEM画像を用いて算出し、平均粒径B2は、図2のF2b−F2b断面を切断面としたSEM画像を用いて算出した。また、図8に示すクラック評価は、第1の評価試験と同じ評価方法で行った。なお、第2の評価試験のクラック評価では、焼成体40Bの表面を抵抗体42と基体部44との界面の長さが最も大きくなる部分に到達するまで鏡面研磨する。そして、鏡面研磨したサンプルを光学顕微鏡を用いて、発熱部428Bと基体部44Bとの界面を含む第1領域と、リード部422B,423Bと基体部44Bとの界面を含む第2領域とを目視で確認し、クラックが発生しているか否かを判定した。第1領域と第2領域との少なくともいずれか一方にクラックが発生しているサンプルは、クラックが発生していると判定した。クラック評価である「EA」,「EB」,「EC」の基準は、第1の評価試験と同じ基準である。
図8に示すように、リード部422B,423Bに含有される窒化珪素の平均粒径B2は、基体部44Bに含有される窒化珪素の平均粒径Aの1.2倍以上であることが好ましく、1.6倍以上2.0倍以下がさらに好ましい。こうすることで、焼成体40Bのうち、基体部44Bと抵抗体42Bとの界面近傍にクラックが生じる可能性を低減できる。これは、上記の平均粒径A,B2の関係を有することで、焼成時において基体部44Aの収縮よりもリード部422A,423Aを含む抵抗体42Aの収縮が遅く始まることに起因すると考えられる。つまり、焼成時において、基体部44Aが抵抗体42Aに密着するため、焼成体40Bにおける基体部44Bと抵抗体42Bとの間に隙間が生じる可能性を低減できる。
C.変形例:
なお、この発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
C−1.第1変形例:
図10は、第1変形例のセラミックヒータ40aを説明するための図である。上記実施形態では、リード部422,423は窒化珪素を含有していたが、含有していなくてもよい。第1変形例のセラミックヒータ40aは、リード部422a,423aは、金属線である。金属線に用いる材料としては、タングステンや銅などが挙げられる。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…グロープラグ
20…主体金具
30…外筒
40,40a…セラミックヒータ
40A…中間成形体
44…基体部
44a…先端部
44b…後端部
45…リング
50…中軸
55…Oリング
60…絶縁部材
70…端子
74…焼成炉
75…加圧用ダイス
78…ホットプレス装置
422,422a…リード部
425、427…電極部
428…発熱部
428a…端部
A…平均粒径
AS…先端側
Ac…中心軸
BS…後端側
L1〜L5…直線
P…窒化珪素粒子
PS…粒径
Ps…部分

Claims (5)

  1. セラミックヒータであって、
    窒化珪素を含有する基体部と、
    前記基体部に埋め込まれた抵抗体と、を備え、
    前記抵抗体は、
    前記窒化珪素と導電性材料とを含有し、通電により発熱する発熱部と、
    前記発熱部に接続された一対のリード部と、を有し、
    前記発熱部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.1倍以上である、セラミックヒータ。
  2. 請求項1に記載のセラミックヒータであって、
    前記リード部は、前記窒化珪素と前記導電性材料とを含有し、
    前記リード部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.2倍以上である、セラミックヒータ。
  3. 請求項2に記載のセラミックヒータであって、
    前記リード部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.6倍以上2.0倍以下である、セラミックヒータ。
  4. 請求項1から請求項3までのいずれか一項に記載のセラミックヒータであって、
    前記発熱部に含有される前記窒化珪素の平均粒径は、前記基体部に含有される前記窒化珪素の平均粒径の1.5倍以下である、セラミックヒータ。
  5. 筒状の主体金具と、
    前記主体金具に保持された請求項1から請求項4までのいずれか一項に記載のセラミックヒータと、を備える、グロープラグ。
JP2016107104A 2016-05-30 2016-05-30 セラミックヒータ、および、グロープラグ Active JP6762763B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016107104A JP6762763B2 (ja) 2016-05-30 2016-05-30 セラミックヒータ、および、グロープラグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107104A JP6762763B2 (ja) 2016-05-30 2016-05-30 セラミックヒータ、および、グロープラグ

Publications (2)

Publication Number Publication Date
JP2017216044A true JP2017216044A (ja) 2017-12-07
JP6762763B2 JP6762763B2 (ja) 2020-09-30

Family

ID=60577156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107104A Active JP6762763B2 (ja) 2016-05-30 2016-05-30 セラミックヒータ、および、グロープラグ

Country Status (1)

Country Link
JP (1) JP6762763B2 (ja)

Also Published As

Publication number Publication date
JP6762763B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
US10309650B2 (en) Ceramic heater
JP3411498B2 (ja) セラミックヒータ、その製造方法、及びセラミックグロープラグ
KR20100109438A (ko) 세라믹 히터 및 그 제조 방법
JP6247375B2 (ja) ヒータおよびこれを備えたグロープラグ
JP4444512B2 (ja) シース型ヒーターの製造方法
KR100399114B1 (ko) 세라믹히터
KR101470781B1 (ko) 세라믹 히터 소자, 세라믹 히터 및 글로 플러그
JPH11283728A (ja) セラミックヒータ及びその製造方法
JP2003040678A (ja) セラミックヒータ及びその製造方法
JPH0712969B2 (ja) アルミナ磁器および点火プラグ
JP4562029B2 (ja) セラミックヒータ及びその製造方法並びにグロープラグ
JP6762763B2 (ja) セラミックヒータ、および、グロープラグ
JP5357628B2 (ja) セラミックヒータの製造方法
JP4803651B2 (ja) セラミックヒータの製造方法およびグロープラグの製造方法
EP2914057A1 (en) Heater and glow plug equipped with same
JP6869839B2 (ja) セラミックヒータ、及びグロープラグ
CN104396342B (zh) 加热器及具备该加热器的电热塞
JP6623200B2 (ja) スパークプラグ
JP6786412B2 (ja) セラミックヒータ及びグロープラグ
JP4064277B2 (ja) セラミックヒータ
JP6654818B2 (ja) セラミックヒータ及びその製造方法、並びにグロープラグ及びその製造方法
JP3115254B2 (ja) セラミックヒータ
KR0148449B1 (ko) 나선형 발열체 팁을 갖는 세라믹 글로우 플러그
JP5751968B2 (ja) ヒータおよびこれを備えたグロープラグ
JP2019129120A (ja) セラミックヒータ及びグロープラグ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250