JP2017186629A - Aluminum alloy foil for battery power collection body and manufacturing method therefor - Google Patents

Aluminum alloy foil for battery power collection body and manufacturing method therefor Download PDF

Info

Publication number
JP2017186629A
JP2017186629A JP2016077573A JP2016077573A JP2017186629A JP 2017186629 A JP2017186629 A JP 2017186629A JP 2016077573 A JP2016077573 A JP 2016077573A JP 2016077573 A JP2016077573 A JP 2016077573A JP 2017186629 A JP2017186629 A JP 2017186629A
Authority
JP
Japan
Prior art keywords
elongation
aluminum alloy
heat treatment
mass
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016077573A
Other languages
Japanese (ja)
Other versions
JP6769727B2 (en
Inventor
貴史 鈴木
Takashi Suzuki
貴史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016077573A priority Critical patent/JP6769727B2/en
Publication of JP2017186629A publication Critical patent/JP2017186629A/en
Application granted granted Critical
Publication of JP6769727B2 publication Critical patent/JP6769727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make properties of strength and elongation of an aluminum alloy foil for battery powder collection body good and maintain these properties good even in a heat treatment at a low temperature.SOLUTION: Ab aluminum alloy foil has a composition containing Si:0.2 mass% to 0.8 mass%, Fe:0.15 mass% and 0.7 mass% with Si content/Fe content of 0.7 to 2.5 and the balance Al with inevitable impurities, if desired, with limitation of Mn to 0.05 mass% or less in the inevitable impurities and has properties of tensile strength after rolling of 180 MPa or more and elongation at thickness of the foil of 12 μm of 3.0% or more and maintaining the elongation property even after a low temperature heat treatment.SELECTED DRAWING: None

Description

この発明は、電池集電体用アルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil for a battery current collector.

近年、リチウムイオン電池の高容量化を目的として、電極集電体であるアルミニウム箔や銅箔、そしてセパレータの薄肉化が要求されている。正極の集電体として使用されるアルミニウム箔は薄肉化される事で、電池製造ライン中での破断を生じやすくなる。その為、アルミ箔を薄肉化する際は、破断を抑制する為、高強度化や高伸び化が求められるのが一般的である。
電池の電極製造中には集電体に熱が加わる工程があり、例えばリチウムイオン電池の製造では、電極スラリーを集電体に塗布した後に100〜200℃程度の比較的低温で熱乾燥を行うのが一般的である。特許文献1や特許文献2では、低温熱処理時に箔の強度が低下し、電池製造工程中に不具合が生じる事を防ぐため、熱処理後の箔の強度を確保する内容を提案している。
In recent years, for the purpose of increasing the capacity of a lithium ion battery, it has been required to reduce the thickness of an aluminum foil, a copper foil, and a separator as electrode collectors. The aluminum foil used as the current collector for the positive electrode is thinned, and thus breaks easily in the battery production line. For this reason, when the aluminum foil is thinned, it is generally required to increase the strength and increase the elongation in order to suppress breakage.
There is a process in which heat is applied to the current collector during the production of the battery electrode. For example, in the production of a lithium ion battery, the electrode slurry is applied to the current collector and then thermally dried at a relatively low temperature of about 100 to 200 ° C. It is common. Patent Document 1 and Patent Document 2 propose the content of securing the strength of the foil after the heat treatment in order to prevent the strength of the foil from being lowered during the low-temperature heat treatment and causing problems during the battery manufacturing process.

特許5798128号明細書Japanese Patent No. 5798128 特開2014−114480号公報JP 2014-114480 A 特開2014−47367号公報JP 2014-47367 A 特開2012−224927号公報JP 2012-224927 A

浅野 他,軽金属,64(2014),279p−284pAsano et al., Light Metal, 64 (2014), 279p-284p

しかし、我々はアルミニウム箔に関して化学成分や製造工程によっては、低温熱処理時に伸びが極端に低下する現象を見出している。極端に伸びが低下した箔は脆く、電極製造工程中の例えば熱乾燥後のプレス工程等で破断するリスクが高まる為、電極集電体には熱乾燥後でも伸びが高い事が重要である。
このアルミニウム箔における低温熱処理での伸び低下現象について、我々は化学成分としてFeがある程度添加されている場合に顕著に生じる事を発見した。例えば特許文献3や特許文献4にある通り、高伸びを意識した文献は結晶粒の微細化添加元素としてFeを意図して添加しているが、このような箔は低温熱処理時に伸びが極端に低下してしまう可能性が高い。
However, we have found a phenomenon in which the elongation of an aluminum foil is extremely lowered during low-temperature heat treatment depending on the chemical composition and the manufacturing process. Since the foil having extremely reduced elongation is brittle and increases the risk of breakage, for example, during the pressing process after heat drying in the electrode manufacturing process, it is important that the electrode current collector has high elongation even after heat drying.
We have found that the elongation reduction phenomenon caused by low-temperature heat treatment in this aluminum foil occurs remarkably when Fe is added to some extent as a chemical component. For example, as disclosed in Patent Document 3 and Patent Document 4, in literature that is conscious of high elongation, Fe is intentionally added as an element for adding crystal grain refinement, but such a foil has an extremely large elongation during low-temperature heat treatment. There is a high possibility that it will decline.

そもそもの現象である、アルミニウム箔の低温熱処理時の伸び低下に関して、明確なメカニズムは未だ明らかとなっていない。箔のように高い冷間圧延で製作した材料中では、SiはもとよりAlマトリックス中での拡散速度の小さいFeも低温熱処理で拡散や析出を生じる事が知られている。非特許文献1では、FeやSiの粒界への偏析が伸び低下の要因であるとの報告もあり、低温熱処理後のミクロ組織にFeやSiが何らかの影響を及ぼしていると推測される。   In the first place, a clear mechanism for the decrease in elongation of aluminum foil during low-temperature heat treatment has not yet been clarified. In materials manufactured by high cold rolling such as foil, it is known that Fe, which has a low diffusion rate in an Al matrix as well as Si, diffuses and precipitates during low-temperature heat treatment. In Non-Patent Document 1, there is a report that segregation of Fe or Si to grain boundaries is a factor of elongation reduction, and it is presumed that Fe or Si has some influence on the microstructure after low-temperature heat treatment.

非特許文献1においてはFeやSiの積極的な添加は、熱処理時のアルミニウム箔の伸び低下を助長するとも受け取れるが、我々は高伸びを達成する為にFeはある程度添加しつつ、Fe添加量に応じてあえてSiを一定の比率以上で添加する事で低温熱処理時の伸び低下を大幅に抑制出来る事を見出した。   In Non-Patent Document 1, it can be accepted that the positive addition of Fe or Si promotes the decrease in elongation of the aluminum foil during the heat treatment, but we added Fe to some extent in order to achieve high elongation, while adding Fe Accordingly, it has been found that the decrease in elongation during low-temperature heat treatment can be significantly suppressed by intentionally adding Si at a certain ratio or more.

本願発明は、上記事情を背景としてなされたものであり、強度と伸びの特性に優れた電池集電体用アルミニウム合金箔を提供することを目的の一つとする。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide an aluminum alloy foil for a battery current collector excellent in strength and elongation characteristics.

本発明の電池集電体用アルミニウム合金箔のうち、第1の形態は、Si:0.2質量%以上0.8質量%以下、Fe:0.15質量%以上0.7質量%未満を含有し、Si含有量/Fe含有量比が0.7以上2.5以下であることを特徴とする、残部がAlと不可避不純物からなる組成を有する。   Among the aluminum alloy foils for battery current collectors of the present invention, the first form is Si: 0.2 mass% or more and 0.8 mass% or less, Fe: 0.15 mass% or more and less than 0.7 mass%. And the balance of Si content / Fe content is 0.7 or more and 2.5 or less, and the balance is composed of Al and inevitable impurities.

第2の形態の電池集電体用アルミニウム合金箔は、前記形態の本発明において、不可避不純物中のMnを0.05質量%以下に規制した組成を有することを特徴とする。   The aluminum alloy foil for battery current collectors of the second form is characterized in that, in the present invention of the above form, Mn in inevitable impurities is regulated to 0.05% by mass or less.

他の形態の電池集電体用アルミニウム合金箔は、前記形態の本発明において、圧延後の引張強さが180MPa以上、箔の厚さ12μmでの伸びが3.0%以上であることを特徴とする。   Another form of the aluminum alloy foil for a battery current collector is characterized in that, in the present invention of the above form, the tensile strength after rolling is 180 MPa or more, and the elongation at a thickness of 12 μm is 3.0% or more. And

他の形態の電池集電体用アルミニウム合金箔は、100〜200℃で30分〜10時間の低温熱処理を行った後でも、箔の厚さ12μmでの伸びが3.0%以上である事を特徴とする。   Another form of the aluminum alloy foil for a battery current collector is that the elongation at a foil thickness of 12 μm is 3.0% or more even after low-temperature heat treatment at 100 to 200 ° C. for 30 minutes to 10 hours. It is characterized by.

以下に、本発明で規定した技術的事項について説明する。
・Fe:0.15〜0.7%未満
Feは材料の結晶粒組織を微細化し、伸びを向上させることのできる元素である。0.15%未満では結晶粒微細化が不十分となり、箔の伸びが低下する。一方0.7%以上では、圧延後の伸びは向上するものの、後述するSiを添加しても低温熱処理時の伸び低下が生じてしまう。同様の理由で、Fe含有量について、下限を0.25%、上限を0.45%とするのが望ましい。
Below, the technical matter prescribed | regulated by this invention is demonstrated.
Fe: 0.15 to less than 0.7% Fe is an element that can refine the grain structure of the material and improve elongation. If it is less than 0.15%, crystal grain refinement becomes insufficient, and the elongation of the foil decreases. On the other hand, if it is 0.7% or more, the elongation after rolling is improved, but even if Si described later is added, the elongation is lowered during the low-temperature heat treatment. For the same reason, it is desirable that the lower limit of the Fe content is 0.25% and the upper limit is 0.45%.

・Si:0.2〜0.8%
Siは箔の強度を向上させ、またFeと共に添加する事で低温熱処理時の伸び低下を抑制出来る元素である。0.2%未満では低温熱処理時の伸び低下抑制の効果が小さい。0.8%を超えるとAl−Fe−Si系の金属間化合物の粗大化、またはSi単体の析出により圧延時の破断等の原因となり圧延性が低下する懸念がある。同様の理由で、Si含有量について、下限を0.30%、上限を0.60%とするのが望ましい。
・ Si: 0.2-0.8%
Si is an element that improves the strength of the foil and can suppress a decrease in elongation during low-temperature heat treatment when added together with Fe. If it is less than 0.2%, the effect of suppressing elongation reduction during low-temperature heat treatment is small. If it exceeds 0.8%, the Al—Fe—Si intermetallic compound is coarsened, or precipitation of Si alone may cause breakage during rolling and the rollability may be lowered. For the same reason, it is desirable that the lower limit of the Si content is 0.30% and the upper limit is 0.60%.

・Si含有量/Fe含有量比が0.7以上2.5以下
上述のFeとSiの含有量範囲を順守した上で、Si含有量/Fe含有量比を0.7以上とする事で低温熱処理時の伸び低下を抑制する事が出来る。0.7未満、つまりFe含有量が相対的に多い場合は熱処理前の伸び値は高いものの、熱処理後の伸び低下が顕著になる。2.5を超えるとFe含有量に対しSi含有量が相対的に多くなり、晶出相の粗大化やSiの単体析出を生じ、伸びの低下だけでなく圧延性の低下も招く。Siを添加する事でFeの固溶・析出状態が変化していると推測しているが、詳細なメカニズムはまだ明らかとなっていない。なお、同様の理由で上記比について、下限を1.0、上限を2.0とするのが望ましい。
-Si content / Fe content ratio is 0.7 or more and 2.5 or less By keeping the above-mentioned Fe and Si content range, the Si content / Fe content ratio is 0.7 or more. It is possible to suppress a decrease in elongation during low-temperature heat treatment. When it is less than 0.7, that is, when the Fe content is relatively high, the elongation value before the heat treatment is high, but the elongation decrease after the heat treatment becomes remarkable. If it exceeds 2.5, the Si content is relatively increased with respect to the Fe content, resulting in coarsening of the crystallization phase and precipitation of Si alone, leading to not only a decrease in elongation but also a decrease in rolling properties. Although it is presumed that the solid solution / precipitation state of Fe is changed by adding Si, the detailed mechanism has not been clarified yet. For the same reason, it is desirable to set the lower limit to 1.0 and the upper limit to 2.0 for the above ratio.

・Mnの含有量を0.05%以下に規制
MnはFeと同様に結晶粒を微細化する効果があり、箔の伸び向上には有効な元素である。ただしMnは熱処理時の転位移動を妨げ、アルミニウム箔の回復・再結晶を阻害する。この材料の回復を抑制する影響が原因であるかどうかは定かではないが、Mnを添加する事で低温熱処理時の伸びの低下が極めて顕著になる。このため、不可避不純物としてMnを含有する場合、その含有量を0.05%以下に規制する事でこの伸びの低下を抑制するのが望ましい。さらに、上限を0.02%とするのが一層望ましい。
-Restricting Mn content to 0.05% or less Mn has the effect of refining crystal grains like Fe, and is an effective element for improving the elongation of foil. However, Mn hinders dislocation movement during heat treatment and inhibits recovery and recrystallization of the aluminum foil. Although it is not certain whether the effect of suppressing the recovery of this material is the cause, the addition of Mn makes the reduction in elongation during low-temperature heat treatment extremely remarkable. For this reason, when Mn is contained as an inevitable impurity, it is desirable to suppress this decrease in elongation by regulating its content to 0.05% or less. Furthermore, it is more desirable that the upper limit be 0.02%.

・引張強さ180MPa以上、厚さ12μmでの伸びが3.0%以上
引張強さを180MPa以上、伸び3.0%以上とする事で電池製造ライン中での破断を抑制出来る。尚、伸びについては箔の厚さによって値が変わる為、厚さ12μmを基準として用いる。厚さが12μm以上であれば同じ合金であっても伸びは高くなる。
-Tensile strength of 180 MPa or more and elongation at a thickness of 12 μm is 3.0% or more. By setting the tensile strength to 180 MPa or more and elongation of 3.0% or more, breakage in the battery production line can be suppressed. In addition, since a value changes with thickness of foil about elongation, 12 micrometers in thickness is used as a standard. If the thickness is 12 μm or more, the elongation is high even with the same alloy.

・低温熱処理を行った後でも、箔の厚さ12μmでの伸び値として3.0%以上
低温熱処理を含む電池製造工程中での伸び低下が抑制されることで、電池特性に対して箔の高い伸び特性を生かす事が出来る。また最低でも厚さ12μmでの伸び値が3.0%以上保たれる事で、製造工程途中での破断を抑制出来る。
低温熱処理としては、100〜200℃×10時間を基準とすることができる。ただし、低温熱処理の条件がこれに限定されるものではなく、例えば100〜200℃で30分〜10時間の処理を示すことができる。温度が100℃未満では乾燥など所望の効果が不十分又は遅過ぎるため、通常の工程では採用されない。一方200℃を超える処理は、箔の軟化が急激に起こるため、同様に採用不可である。また通常、低温熱処理ラインでは箔コイル全体の特性均一化のため30分以上の処理がなされる。なお10時間を超える処理は、スラリー乾燥など所望の効果が飽和するため、非経済的であり現実的でない。
・ Even after low temperature heat treatment, the elongation value when the foil thickness is 12 μm is 3.0% or more. By suppressing the decrease in elongation in the battery manufacturing process including low temperature heat treatment, High elongation characteristics can be utilized. In addition, since the elongation value at a thickness of 12 μm is kept at 3.0% or more at least, breakage during the manufacturing process can be suppressed.
The low temperature heat treatment can be based on 100 to 200 ° C. × 10 hours. However, the conditions for the low-temperature heat treatment are not limited to this, and for example, treatment at 100 to 200 ° C. for 30 minutes to 10 hours can be shown. If the temperature is less than 100 ° C., a desired effect such as drying is insufficient or too slow, and thus it is not adopted in a normal process. On the other hand, the treatment exceeding 200 ° C. cannot be adopted because the foil softens rapidly. In general, the low temperature heat treatment line is processed for 30 minutes or more in order to make the characteristics of the entire foil coil uniform. The treatment exceeding 10 hours is not economical and practical because a desired effect such as slurry drying is saturated.

本発明によれば、強度に優れ、なおかつ伸び特性に優れる電池集電体用アルミニウム箔を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum foil for battery collectors which is excellent in intensity | strength and is excellent in an elongation characteristic can be obtained.

本発明の組成としたアルミニウム合金は常法により溶製することができ、既知の半連続鋳造法や連続鋳造圧延法を採用することができる。
半連続鋳造により得られる鋳塊は、所望により均質化処理を行うことができる。均質化処理をする場合、均質温度420〜620℃、保持時間1〜12時間に制御することが望ましい。これにより、鋳造時の合金元素の偏析を解消し、組織を均一化することで薄箔の圧延により好適な状態とすることができる。
均質温度が420℃未満であると、局部的な偏析を解消しきれない恐れがあり、不均一な加工硬化により圧延が困難になる。一方、均質温度が620℃を超えると、局部溶解が起こる場合がある。このため、均質温度は420〜620℃が望ましい。均質時間は、1時間未満ではその効果が十分でなく、やはり不均一な加工硬化により圧延が困難になる。一方、12時間を超えると、析出物が肥大化し、圧延時に破断しやすくなる。このため、均質時間は、1〜12時間とするのが望ましい。
The aluminum alloy having the composition of the present invention can be melted by a conventional method, and a known semi-continuous casting method or continuous casting rolling method can be employed.
The ingot obtained by semi-continuous casting can be homogenized if desired. When performing the homogenization treatment, it is desirable to control the homogenization temperature to 420 to 620 ° C and the holding time to 1 to 12 hours. Thereby, the segregation of the alloy element at the time of casting can be eliminated, and a structure can be made uniform by rolling the thin foil by making the structure uniform.
If the homogeneous temperature is less than 420 ° C., local segregation may not be eliminated, and rolling becomes difficult due to uneven work hardening. On the other hand, when the homogeneous temperature exceeds 620 ° C., local dissolution may occur. For this reason, the homogeneous temperature is desirably 420 to 620 ° C. If the homogeneous time is less than 1 hour, the effect is not sufficient, and rolling is difficult due to non-uniform work hardening. On the other hand, if it exceeds 12 hours, the precipitates are enlarged and easily broken during rolling. For this reason, it is desirable that the homogeneous time is 1 to 12 hours.

その後、熱間圧延を行ってアルミニウム合金材を得る。熱間圧延は常法により行うことができるが、仕上り温度を200〜290℃にするのが望ましく、240〜280℃にするのが一層望ましい。
上記アルミニウム合金材は、冷間圧延に供され、中間焼鈍を経て、再度冷間圧延、最終冷間圧延が行われる。中間焼鈍は、バッチ式焼鈍炉または連続焼鈍炉を使用し常法により行うことができる。また、本実施形態では、中間焼鈍は行わないものとしてもよい。
Thereafter, hot rolling is performed to obtain an aluminum alloy material. Although hot rolling can be performed by a conventional method, the finishing temperature is desirably 200 to 290 ° C, and more desirably 240 to 280 ° C.
The aluminum alloy material is subjected to cold rolling, subjected to intermediate annealing, and cold rolling and final cold rolling are performed again. The intermediate annealing can be performed by a conventional method using a batch annealing furnace or a continuous annealing furnace. In the present embodiment, intermediate annealing may not be performed.

冷間圧延における圧下率は、95.0〜99.98%が望ましく、98.0〜99.7%とするのが一層望ましい。
冷間圧延、最終冷間圧延を経て、厚さが5〜20μmであるアルミニウム合金箔を得ることができる。該アルミニウム合金箔は、引張強度が180MPa以上である。また、箔の厚さ12μmにおいて伸びが3.0%以上である。
The rolling reduction in cold rolling is desirably 95.0 to 99.98%, and more desirably 98.0 to 99.7%.
An aluminum alloy foil having a thickness of 5 to 20 μm can be obtained through cold rolling and final cold rolling. The aluminum alloy foil has a tensile strength of 180 MPa or more. Further, the elongation is 3.0% or more at a foil thickness of 12 μm.

なお、圧下率は、熱処理後の圧下率を示しており、冷間圧延中に中間焼鈍を行うのであれば中間焼鈍時の板厚が、行わないのであれば熱間圧延時の板厚が出発材となる。   The reduction ratio indicates the reduction ratio after the heat treatment. If intermediate annealing is performed during cold rolling, the thickness at intermediate annealing starts. If not, the thickness at hot rolling starts. Become a material.

得られたアルミニウム合金箔は、電池集電体用に用いられる。特に、リチウムイオンなどの二次電池に好適に用いることができる。電池用集電体としては、正極、負極のどちらにも用いることができるが、主として正極に用いられる。
電池集電体では、電極スラリーを集電体に塗布した後に、100〜200℃で30分〜10時間で熱乾燥を行うなどの熱履歴を受ける。この熱履歴の後においても、上記した伸びの特性が維持される。
The obtained aluminum alloy foil is used for a battery current collector. In particular, it can be suitably used for a secondary battery such as lithium ion. The battery current collector can be used for either the positive electrode or the negative electrode, but is mainly used for the positive electrode.
In the battery current collector, after applying the electrode slurry to the current collector, the battery current collector receives a thermal history such as heat drying at 100 to 200 ° C. for 30 minutes to 10 hours. Even after this thermal history, the above-described elongation characteristics are maintained.

以下に、本発明の実施例を説明する。
表1に示す各組成(残部Alおよびその他の不可避不純物)からなるアルミニウム合金の鋳塊を550℃で4時間の均質化処理した後に、仕上がり温度270℃での熱間圧延にて4.5mmの板材とした。その後、冷間圧延、中間焼鈍、最終冷間圧延を経て、厚み12μm、幅1200mmのアルミニウム合金箔の試料を作製した。中間焼鈍は連続焼鈍ライン(CAL)を用いて、1.0mmの板厚で行った。CALの条件は昇温速度:70℃/秒、加熱温度:500℃、保持時間:3秒、冷却速度:50/秒とした。
Examples of the present invention will be described below.
An ingot of aluminum alloy composed of each composition shown in Table 1 (the balance Al and other inevitable impurities) was homogenized at 550 ° C. for 4 hours, and then hot rolled at a finishing temperature of 270 ° C. to 4.5 mm. A plate was used. Thereafter, a sample of an aluminum alloy foil having a thickness of 12 μm and a width of 1200 mm was produced through cold rolling, intermediate annealing, and final cold rolling. Intermediate annealing was performed using a continuous annealing line (CAL) with a plate thickness of 1.0 mm. The CAL conditions were temperature rising rate: 70 ° C./second, heating temperature: 500 ° C., holding time: 3 seconds, and cooling rate: 50 / second.

Figure 2017186629
Figure 2017186629

(熱処理)
電極製造工程中では箔に対して100〜200℃の熱処理が行われる。この際に高い伸び特性を有するAl−Fe系合金の箔では伸び特性が急激に低下する恐れがある。実施例では熱処理前(圧延後)と100、150、200℃の各温度で10時間熱処理した際の機械的性質の変化を測定した。なお熱処理時間は、想定される範囲内において伸び低下の影響を最も大きく受ける長時間側(:10時間)とした。
(Heat treatment)
During the electrode manufacturing process, heat treatment at 100 to 200 ° C. is performed on the foil. At this time, in the case of an Al—Fe alloy foil having a high elongation characteristic, the elongation characteristic may be abruptly lowered. In the examples, changes in mechanical properties were measured before heat treatment (after rolling) and after heat treatment at 100, 150, and 200 ° C. for 10 hours. The heat treatment time was set to the long time side (10 hours) that is most affected by the decrease in elongation within the assumed range.

(引張り強度、伸び率)
引張り強度と伸び率は、JIS Z2241に準拠し、試料からJIS5号試験片を採取し、万能引張試験機(島津製作所製)で引張り速度2mm/sにて測定を行った。
(Tensile strength, elongation)
Tensile strength and elongation were measured in accordance with JIS Z2241, by taking a JIS No. 5 test piece from the sample and measuring it with a universal tensile tester (manufactured by Shimadzu Corporation) at a pulling speed of 2 mm / s.

(圧延性)
圧延性は、幅1200mmを超える広幅の圧延において、最終パス(圧下率)で破断することなく圧延できたものを○、最終パスで1コイル(約10000m)につき3回以下の破断が生じた場合は△、3回を超える破断もしくは硬過ぎる等の理由で圧延継続が難しいと判断されたものについては×とした。○が好ましいが、△以上(約10000mの最終パスで破断が3回以内)であれば製造上は問題ない。
(Rollability)
Rollability is a wide rolling with a width exceeding 1200 mm, when the final pass (rolling rate) was able to be rolled without breaking, and when the final pass was broken 3 times or less per coil (about 10,000 m) △ was marked as x for those judged to be difficult to continue rolling for reasons such as breaking more than 3 times or being too hard. ○ is preferable, but if it is Δ or more (with a final pass of about 10000 m within 3 breaks), there is no problem in production.

Figure 2017186629
Figure 2017186629

上記試験結果を表2に示した。表から明らかなように、本発明の実施例では、100℃、150℃の低温熱処理の後でも、伸び特性に優れていた。比較例では、低温熱処理後において、伸び特性が優れているものはなかった。   The test results are shown in Table 2. As is apparent from the table, the examples of the present invention were excellent in elongation characteristics even after low-temperature heat treatment at 100 ° C. and 150 ° C. In the comparative example, none of the elongation characteristics was excellent after the low temperature heat treatment.

Claims (4)

Si:0.2質量%以上0.8質量%以下、Fe:0.15質量%以上0.7質量%未満を含有し、Si含有量/Fe含有量比が0.7以上2.5以下であることを特徴とする、残部がAlと不可避不純物からなる組成を有する電池集電体用アルミニウム合金箔。   Si: 0.2 mass% or more and 0.8 mass% or less, Fe: 0.15 mass% or more and less than 0.7 mass%, Si content / Fe content ratio is 0.7 or more and 2.5 or less An aluminum alloy foil for a battery current collector having a composition comprising the balance of Al and inevitable impurities. 不可避不純物中のMnを0.05質量%以下に規制した組成を有することを特徴とする請求項1に記載の電池集電体用アルミニウム合金箔。   The aluminum alloy foil for a battery current collector according to claim 1, having a composition in which Mn in inevitable impurities is regulated to 0.05 mass% or less. 圧延後の引張強さが180MPa以上、箔の厚さ12μmでの伸びが3.0%以上であることを特徴とする請求項1または2に記載の電池集電体用アルミニウム合金箔。   The aluminum alloy foil for a battery current collector according to claim 1 or 2, wherein the tensile strength after rolling is 180 MPa or more, and the elongation at a thickness of 12 µm is 3.0% or more. 最終冷間圧延後に100〜200℃で30分〜10時間の低温熱処理を行った場合でも、箔の厚さ12μmでの伸びが3.0%以上であることを特徴とする請求項1〜3のいずれかに記載の電池集電体用アルミニウム合金箔。   The elongation at a thickness of 12 µm is 3.0% or more even when a low temperature heat treatment is performed at 100 to 200 ° C for 30 minutes to 10 hours after the final cold rolling. An aluminum alloy foil for a battery current collector according to any one of the above.
JP2016077573A 2016-04-07 2016-04-07 Aluminum alloy foil for battery current collector and its manufacturing method Expired - Fee Related JP6769727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077573A JP6769727B2 (en) 2016-04-07 2016-04-07 Aluminum alloy foil for battery current collector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077573A JP6769727B2 (en) 2016-04-07 2016-04-07 Aluminum alloy foil for battery current collector and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017186629A true JP2017186629A (en) 2017-10-12
JP6769727B2 JP6769727B2 (en) 2020-10-14

Family

ID=60046224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077573A Expired - Fee Related JP6769727B2 (en) 2016-04-07 2016-04-07 Aluminum alloy foil for battery current collector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6769727B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014837A (en) * 2011-06-07 2013-01-24 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy foil and aluminum alloy foil
JP2013108146A (en) * 2011-11-23 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for current collector and method of manufacturing the same
WO2013161726A1 (en) * 2012-04-24 2013-10-31 古河スカイ株式会社 Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
JP2014056728A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014088598A (en) * 2012-10-30 2014-05-15 Uacj Corp Aluminum alloy foil
JP2014109057A (en) * 2012-12-03 2014-06-12 Uacj Corp Aluminum alloy foil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014837A (en) * 2011-06-07 2013-01-24 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy foil and aluminum alloy foil
JP2013108146A (en) * 2011-11-23 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for current collector and method of manufacturing the same
WO2013161726A1 (en) * 2012-04-24 2013-10-31 古河スカイ株式会社 Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
JP2014056728A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014088598A (en) * 2012-10-30 2014-05-15 Uacj Corp Aluminum alloy foil
JP2014109057A (en) * 2012-12-03 2014-06-12 Uacj Corp Aluminum alloy foil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
50周年記念事業実行委員会 記念出版部会, アルミニウムの製品と製造技術, JPN6015048144, 31 October 2001 (2001-10-31), pages 408 - 411, ISSN: 0004159801 *

Also Published As

Publication number Publication date
JP6769727B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6674826B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP5567719B2 (en) Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery
JP6567293B2 (en) Aluminum alloy foil with excellent elongation characteristics
WO2019214243A1 (en) 1100 alloy aluminum foil for lithium battery and manufacturing method therefor
JP5848672B2 (en) Method for producing aluminum alloy foil and aluminum alloy foil
JP5591583B2 (en) Aluminum alloy foil for lithium-ion battery electrode current collector
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP2013256700A (en) Aluminum alloy foil
JP2016041835A (en) Aluminum alloy foil and production method therefor
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP6580332B2 (en) Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil
JP6496490B2 (en) Aluminum alloy soft foil and manufacturing method thereof
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP2009079271A (en) Ca-CONTAINING Mg ALLOY ROLLED MATERIAL
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP6280738B2 (en) Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
JP6029296B2 (en) Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP2017186629A (en) Aluminum alloy foil for battery power collection body and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees