JP5567719B2 - Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery - Google Patents
Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery Download PDFInfo
- Publication number
- JP5567719B2 JP5567719B2 JP2013146897A JP2013146897A JP5567719B2 JP 5567719 B2 JP5567719 B2 JP 5567719B2 JP 2013146897 A JP2013146897 A JP 2013146897A JP 2013146897 A JP2013146897 A JP 2013146897A JP 5567719 B2 JP5567719 B2 JP 5567719B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- secondary battery
- lithium ion
- alloy foil
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011888 foil Substances 0.000 title claims description 124
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 87
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 31
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 24
- 238000005097 cold rolling Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 238000000265 homogenisation Methods 0.000 claims description 3
- 238000011282 treatment Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 description 26
- 239000010949 copper Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229910002551 Fe-Mn Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 229910018131 Al-Mn Inorganic materials 0.000 description 2
- 229910018461 Al—Mn Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Description
本発明は、リチウムイオン二次電池正極集電体用アルミニウム合金箔の製造方法およびリチウムイオン二次電池正極集電体用アルミニウム合金箔とリチウムイオン二次電池に関する。 The present invention relates to a method for producing an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery, an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery, and a lithium ion secondary battery.
リチウムイオン二次電池正極用の集電体はA1085、A1N30、A3003などのアルミニウム合金からなる箔が使用されている。近年、スマートフォンや自動車用途の二次電池に対する高エネルギー高密度化が強く望まれ、単位体積あたりの電池容量を大きくする目的で、電極材は従来よりも高密度に巻きつけられる傾向にある。
しかし、正極材料においては集電体用アルミニウム合金箔の材料強度が低いと、電極材巻きつけの際に材料の引張りによって破断してしまう場合がある。よって、最近ではA3003よりも高強度のアルミニウム合金材料の使用が検討されている。
As the current collector for the positive electrode of the lithium ion secondary battery, a foil made of an aluminum alloy such as A1085, A1N30, A3003 or the like is used. In recent years, high energy and high density for secondary batteries for smartphones and automobiles have been strongly desired, and electrode materials tend to be wound at higher density than before for the purpose of increasing battery capacity per unit volume.
However, in the positive electrode material, if the material strength of the aluminum alloy foil for the current collector is low, the electrode material may be broken by tension of the material when the electrode material is wound. Therefore, recently, use of an aluminum alloy material having higher strength than A3003 has been studied.
集電体用アルミニウム合金箔として、純アルミニウム箔に比べて耐食性の低下を抑制しつつ箔の厚みを15μm以下に加工しても電極の製造工程において破断することのない材料開発の流れから、従来、0.1〜1.5質量%以下のMnと、0.5〜1.8質量%のFeと、0.01〜0.5質量%のMgを含み、残部Alの組成を有するアルミニウム合金箔が研究されている(特許文献1参照)。 As an aluminum alloy foil for current collectors, the conventional development of materials that does not break in the electrode manufacturing process even if the foil thickness is reduced to 15 μm or less while suppressing a decrease in corrosion resistance compared to pure aluminum foil. An aluminum alloy containing 0.1 to 1.5% by mass or less of Mn, 0.5 to 1.8% by mass of Fe, and 0.01 to 0.5% by mass of Mg, the balance being Al A foil has been studied (see Patent Document 1).
集電体用アルミニウム合金箔の材料強度を大きくするためには、CuあるいはMgなど、固溶体強化が可能な元素を添加して合金鋳塊とし、所定厚さまで圧延して作製するのが通常である。ところが、Cu、Mgなど、Al中に固溶する元素は添加量の増加に伴い圧延性を阻害するので、12〜25μm程度の厚さのアルミニウム合金箔は常法で製造できても、今後求められる更なる薄肉化の要求に対して圧延パス回数の増加や箔コイルを再加熱するなどの追加工程が必要となるので生産性が低下する課題がある。
このような事案に対して、リチウムイオン二次電池正極集電体用として好適な薄いアルミニウム合金箔を圧延性を阻害せずに常法で製造でき、電極材巻き付けの際にも破断を生じ難い強度を有するリチウムイオン二次電池正極用アルミニウム集電体箔の製造方法の提供を目的の1つとする。また、該製造方法により得られたリチウムイオン二次電池正極集電体用アルミニウム合金箔の提供を目的の1つとする。
また、両面光沢箔(2B)で8〜25μm、片面光沢箔(1B)で5〜15μmの厚みのアルミニウム合金箔の提供を目的の1つとする。
In order to increase the material strength of the aluminum alloy foil for the current collector, it is usually produced by adding an element capable of solid solution strengthening such as Cu or Mg to form an alloy ingot, and rolling it to a predetermined thickness. . However, elements such as Cu and Mg, which are solid-solved in Al, impair the rollability as the amount of addition increases, so that an aluminum alloy foil having a thickness of about 12 to 25 μm can be produced in the future even if it can be produced by a conventional method. In response to the demand for further thinning, additional processes such as an increase in the number of rolling passes and reheating of the foil coil are required, resulting in lower productivity.
For such a case, a thin aluminum alloy foil suitable for use as a positive electrode current collector for a lithium ion secondary battery can be produced in a conventional manner without impairing the rollability, and it is difficult to cause breakage when winding an electrode material. An object of the present invention is to provide a method for producing an aluminum current collector foil for a lithium ion secondary battery positive electrode having strength. Another object is to provide an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery obtained by the production method.
Another object is to provide an aluminum alloy foil having a thickness of 8 to 25 μm for the double-sided glossy foil (2B) and 5 to 15 μm for the single-sided glossy foil (1B).
以上の背景に基づき、本発明者らは、二次電池に適用される正極箔を構成するアルミニウム合金箔について組成の見直し、並びに、製造時の条件の見直しを進めた結果、特別な組成のアルミニウム合金によって正極箔を作製すると、通常は軟化して材料強度が低下するとされている熱処理結果に反し、強度を向上させることができるリチウムイオン二次電池正極集電体用アルミニウム合金箔の製造方法を提供できることを知見し、本願発明に到達した。 Based on the above background, the inventors have reviewed the composition of the aluminum alloy foil constituting the positive electrode foil applied to the secondary battery and the review of the conditions at the time of manufacturing. A method for producing an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery that can improve the strength of a positive electrode foil made of an alloy is contrary to a heat treatment result that is usually softened and decreases the material strength. We have found that it can be provided and have arrived at the present invention.
本発明の一形態は、Mn:0.26〜0.56質量%、Fe:1.17〜1.46質量%を含有し、MnとFeの合計が1.43〜2.02質量%、更に、CuとMgの一方または両方を含み、Cuを含む場合は、Cu:0.01〜0.03質量%、Mgを含む場合は、Mg:0.01〜0.02質量%、CuとMgの一方または両方を含むいずれの場合であっても、Cu量、Mg量、または、Cu量とMg量の合計が0.02〜0.13質量%で残部がAlおよび不可避不純物からなる鋳塊に均質化処理を施した後、熱間圧延、冷間圧延、中間焼鈍、冷間圧延を施し、中間焼鈍後の圧下率を95%以上とした厚さ5〜25μmのアルミニウム合金箔を素材として、75〜200℃で15分以上の熱処理を行うことで合金箔素材のままと比較して8.4%以上材料強度を上昇させることを特徴とする。 One form of this invention contains Mn: 0.26-0.56 mass%, Fe: 1.17-1.46 mass%, and the sum total of Mn and Fe is 1.43-2.02 mass%, Furthermore, when Cu is included including one or both of Cu and Mg, Cu: 0.01 to 0.03 mass%, and when Mg is included, Mg: 0.01 to 0.02 mass%, Cu and In any case including one or both of Mg, the casting is composed of Cu amount, Mg amount, or the total amount of Cu amount and Mg amount of 0.02 to 0.13% by mass with the balance being Al and inevitable impurities. After the lump is homogenized, it is subjected to hot rolling, cold rolling, intermediate annealing, cold rolling, and a 5-25 μm thick aluminum alloy foil with a reduction ratio of 95% or more after intermediate annealing As compared with the alloy foil material by performing heat treatment at 75-200 ° C. for 15 minutes or more Characterized in that to increase the 8.4% or more material strength and.
本発明は、先に記載の製造方法により得られたリチウムイオン二次電池正極集電体用アルミニウム合金箔に関する。
本発明の一形態において、先に記載の製造方法により得られたリチウムイオン二次電池正極集電体用アルミニウム合金箔を使用したリチウムイオン二次電池に関する。
The present invention relates to an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery obtained by the production method described above .
One form of this invention is related with the lithium ion secondary battery which uses the aluminum alloy foil for lithium ion secondary battery positive electrode collectors obtained by the manufacturing method as described previously .
本発明に係るリチウムイオン二次電池正極集電体用アルミニウム合金箔の製造方法によれば、熱処理を経た後であっても、材料強度が高く、リチウムイオン二次電池正極集電体用として厚さ5〜25μmであっても強度の高いアルミニウム合金箔を提供できる。 According to the method for producing an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery according to the present invention, the material strength is high even after heat treatment, and it is thick for a positive electrode current collector of a lithium ion secondary battery. Even when the thickness is 5 to 25 μm, an aluminum alloy foil having high strength can be provided.
以下、本発明の具体的な実施形態について説明する。
本実施形態に係るアルミニウム合金箔は、正極集電体としてリチウムイオン二次電池に収容され、その一面側に正極合剤層(正極活物質含有層)が配置されて正極が構成され、この正極に隣接するようにセパレータを介し負極が配置され、これら正極と負極を電解質を満たした筐体に収容してリチウムイオン二次電池が構成される。
本実施形態において負極は、銅箔などからなる負極集電体の一面側にカーボンなどからなる負極合剤層(負極活物質含有層)を積層して構成され、負極は負極合剤層をセパレータに密着させて前記構造の正極と一体化される。
Hereinafter, specific embodiments of the present invention will be described.
The aluminum alloy foil according to the present embodiment is accommodated in a lithium ion secondary battery as a positive electrode current collector, and a positive electrode mixture layer (positive electrode active material-containing layer) is arranged on one side thereof to constitute a positive electrode. A negative electrode is disposed so as to be adjacent to the separator, and a lithium ion secondary battery is configured by housing the positive electrode and the negative electrode in a casing filled with an electrolyte.
In this embodiment, the negative electrode is configured by laminating a negative electrode mixture layer (negative electrode active material-containing layer) made of carbon or the like on one surface side of a negative electrode current collector made of copper foil or the like. And is integrated with the positive electrode having the above structure.
<正極>
正極集電体を構成するアルミニウム合金箔の厚みは出来るだけ薄い方が望ましいが、5〜25μmの厚みが好ましく、6〜20μmの厚みを有していることがより好ましい。厚みが5μm未満であると強度不足な上に、現状の圧延技術でアルミニウム箔自身を製造することが難しく、また、厚みが25μmを超えると電池内部の体積に占める正極集電体の割合が増加し、電池容量が低下するからである。なお、正極は、正極集電体とその一面側の正極合剤層とを含めて一例として20〜300μm程度の厚さを有する。
<Positive electrode>
The aluminum alloy foil constituting the positive electrode current collector is desirably as thin as possible, but preferably has a thickness of 5 to 25 μm, more preferably 6 to 20 μm. If the thickness is less than 5 μm, the strength is insufficient, and it is difficult to produce the aluminum foil itself with the current rolling technology. If the thickness exceeds 25 μm, the proportion of the positive electrode current collector in the volume inside the battery increases. This is because the battery capacity decreases. In addition, a positive electrode has thickness of about 20-300 micrometers as an example including a positive electrode electrical power collector and the positive mix layer on the one surface side.
以下に正極集電体を構成するアルミニウム合金箔の組成について説明する。
本実施形態のアルミニウム合金箔を構成するアルミニウム合金は、質量%でMn:0.10〜1.50質量%、Fe:0.20〜1.50質量%を含有し、MnとFeの合計が1.30〜2.10質量%で残部がAlおよび不可避不純物からなるアルミニウム合金であることが好ましい。また、前記アルミニウム合金が、前記組成に加え、さらに質量%でCuとMgの合計が0.15質量%以下、含有する組成であっても良い。
The composition of the aluminum alloy foil constituting the positive electrode current collector will be described below.
The aluminum alloy constituting the aluminum alloy foil of this embodiment contains Mn: 0.10 to 1.50% by mass and Fe: 0.20 to 1.50% by mass, and the total of Mn and Fe is The aluminum alloy is preferably 1.30 to 2.10% by mass with the balance being Al and inevitable impurities. In addition to the above composition, the aluminum alloy may further include a composition containing 0.15% by mass or less of Cu and Mg by mass%.
「Mn:0.10〜1.50質量%」
Mnの添加はAl−Mn、Al−Fe−Mnの晶析出物を形成し、リチウムイオン二次電池集電体用の箔として耐食性を低下させることなく材料強度を増大させる作用がある。また、本実施形態のアルミニウム合金箔において重要な添加元素であり、アルミニウム合金箔の圧延と組合せて0.10質量%以上、1.50質量%以下の範囲になるように含有させて最適な熱処理を行うとアルミニウム合金箔の材料強度が上昇する事を本発明者は確認している。一方、Mn:0.10質量%未満の組成では熱処理後の強度向上効果は小さい。Mnの添加量が1.50質量%を超える条件に対しても熱処理に伴うアルミニウム合金箔の強度上昇は確認できるが、アルミニウム合金箔の圧延性が低下して所望の箔厚さを定法で作製する事が困難となるため、Mn添加量は0.10〜1.50質量%の範囲が好ましい。
「Fe:0.20〜1.50質量%」
Feの添加は0.20質量%以上、1.50質量%以下の範囲とする。FeはAl−Fe、Al−Fe−Mn系の晶析出物を形成する。Feは、Al合金中の不可避不純物であるので、0.20質量%未満に規制するとアルミニウム合金箔の製造に高純度地金を使用する必要がありコストアップとなるので0.20質量%以上とする。一方、Fe添加量が1.50質量%を超えるとアルミニウム合金箔の圧延性を阻害し、20μm以下、例えば、10μm程度の薄箔を作製する事が困難となるのでFeは0.20質量%以上、1.50質量%以下の範囲とすることが好ましい。
“Mn: 0.10 to 1.50 mass%”
The addition of Mn forms Al—Mn and Al—Fe—Mn crystal precipitates, and has the effect of increasing the material strength without lowering the corrosion resistance as a foil for a lithium ion secondary battery current collector. Further, it is an important additive element in the aluminum alloy foil of the present embodiment, and is combined with the rolling of the aluminum alloy foil so as to be contained in a range of 0.10% by mass to 1.50% by mass and optimal heat treatment The present inventor has confirmed that the material strength of the aluminum alloy foil is increased by performing. On the other hand, when the composition is Mn: less than 0.10% by mass, the effect of improving the strength after heat treatment is small. Even when the amount of Mn added exceeds 1.50% by mass, an increase in the strength of the aluminum alloy foil accompanying the heat treatment can be confirmed, but the rollability of the aluminum alloy foil is lowered and a desired foil thickness is produced by a regular method. Therefore, the amount of Mn added is preferably in the range of 0.10 to 1.50 mass%.
“Fe: 0.20 to 1.50 mass%”
Fe is added in the range of 0.20 mass% or more and 1.50 mass% or less. Fe forms Al—Fe and Al—Fe—Mn crystal precipitates. Since Fe is an inevitable impurity in the Al alloy, if it is regulated to less than 0.20% by mass, it is necessary to use high-purity metal for the production of the aluminum alloy foil, which increases the cost. To do. On the other hand, if the Fe addition amount exceeds 1.50 mass%, the rollability of the aluminum alloy foil is hindered, and it becomes difficult to produce a thin foil of 20 μm or less, for example, about 10 μm, so Fe is 0.20 mass%. As mentioned above, it is preferable to set it as the range of 1.50 mass% or less.
「1.30質量%≦Mn+Fe≦2.10質量%」
Mn+Fe添加量は1.30質量%以上、2.10質量%以下の範囲内とする。Mn+Feの合計量が2.10質量%を超えるようであると、半連続鋳造で作製した鋳塊にAl6(Fe,Mn)の巨大晶出物を生成するので、その晶出相粒子を起点としてアルミニウム合金箔の圧延時に破断する場合がある。一方、Mn+Feの合計量が1.30質量%未満である場合に、熱処理に伴うアルミニウム合金箔の強度上昇が発現しないので本実施形態で規定する条件に該当しない。
“1.30 mass% ≦ Mn + Fe ≦ 2.10 mass%”
The amount of Mn + Fe added is in the range of 1.30% by mass to 2.10% by mass. If the total amount of Mn + Fe exceeds 2.10% by mass, a large crystallized product of Al 6 (Fe, Mn) is generated in the ingot produced by semi-continuous casting. In some cases, the aluminum alloy foil may break during rolling. On the other hand, when the total amount of Mn + Fe is less than 1.30% by mass, an increase in strength of the aluminum alloy foil accompanying the heat treatment does not appear, so the condition defined in this embodiment is not met.
「Cu+Mg:≦0.15質量%」
本実施形態のアルミニウム合金箔にCu、Mgを添加する場合、合計0.15質量%以下に規制する。Cu、Mgを添加すると固溶体強化によってアルミニウム合金の材料強度が増大するが、アルミニウム合金箔の圧延性が低下し所望の薄箔を得ることが困難となる。例えば、両面光沢箔(2B)で厚さ8〜25μm、片面光沢箔(1B)で5〜15μmの薄箔を製造することが困難となる。
“Cu + Mg: ≦ 0.15 mass%”
When adding Cu and Mg to the aluminum alloy foil of this embodiment, the total amount is restricted to 0.15% by mass or less. When Cu and Mg are added, the material strength of the aluminum alloy increases due to the solid solution strengthening, but the rollability of the aluminum alloy foil is lowered and it becomes difficult to obtain a desired thin foil. For example, it becomes difficult to produce a thin foil having a thickness of 8 to 25 μm with the double-sided glossy foil (2B) and 5 to 15 μm with the single-sided glossy foil (1B).
以上構成のアルミニウム合金箔の製造工程の一例を示すと、前記組成を有するアルミニウム合金を半連続鋳造法により溶解鋳造して得られた鋳塊を均質化処理した後、面削などを行って表面を清浄化する。この後、鋳塊に、熱間圧延、冷間圧延、仕上げの最終冷間圧延をこの順に施して板状、シート状から箔状になるまで厚さを順次減じ、アルミニウム合金箔を製造することができる。
なお、冷間圧延途中に中間熱処理を実施しても良い。これらの工程において、半連続鋳造と、均質化処理と、熱間圧延と、冷間圧延と、仕上げの最終冷間圧延をこの順に施す工程はアルミニウム合金箔の製造工程において特別なものではなく定法に相当する。
均質化処理は、550〜600℃の温度範囲において数時間〜20時間程度加熱することにより実施できる。
まず、均質化処理したアルミニウム合金の鋳塊をシート状に熱間圧延し、得られたシートを冷間で圧延する。これら熱間圧延及び冷間圧延の温度、圧延率等は特に限定されるものではなく、定法に従えばよい。本実施形態では冷間圧延途中で中間熱処理を実施後、さらに冷間圧延を行って、8〜25μm厚のアルミニウム箔を得ることができる。また、冷間圧延の最終パス前に箔を重ね合わせ(ダブリング)、重合圧延を行いセパレートすることで5〜15μmのアルミニウム箔を得ることができる。
このアルミニウム合金箔に対し後述する熱処理を施すことにより強度を向上させることができ、リチウムイオン二次電池用として優れた強度のアルミニウム合金箔を製造できる。
An example of the manufacturing process of the aluminum alloy foil having the above-described structure is as follows. The ingot obtained by melting and casting the aluminum alloy having the above composition by a semi-continuous casting method is homogenized and then subjected to chamfering or the like. To clean. Thereafter, the ingot is subjected to hot rolling, cold rolling, and final final cold rolling in this order to sequentially reduce the thickness from a plate shape, a sheet shape to a foil shape, thereby producing an aluminum alloy foil. Can do.
An intermediate heat treatment may be performed during the cold rolling. In these processes, the semi-continuous casting, homogenization treatment, hot rolling, cold rolling, and final cold rolling finishing are performed in this order, and are not special in the production process of aluminum alloy foil. It corresponds to.
The homogenization treatment can be performed by heating for about several hours to 20 hours in a temperature range of 550 to 600 ° C.
First, a homogenized aluminum alloy ingot is hot-rolled into a sheet, and the obtained sheet is cold-rolled. The temperature of the hot rolling and cold rolling, the rolling rate, and the like are not particularly limited, and may be according to a regular method. In this embodiment, after performing an intermediate heat treatment in the middle of cold rolling, cold rolling is further performed to obtain an aluminum foil having a thickness of 8 to 25 μm. In addition, an aluminum foil having a thickness of 5 to 15 μm can be obtained by stacking (doubling) the foil before the final pass of cold rolling, separating by performing polymerization rolling.
The aluminum alloy foil can be improved in strength by performing a heat treatment described later, and an aluminum alloy foil having excellent strength for a lithium ion secondary battery can be produced.
「70〜200℃で10分以上の熱処理」
リチウムイオン二次電池の製造工程において、正極集電体用のアルミニウム合金箔にスラリー(正極活物質)を塗工した後の熱処理として、通常、100〜250℃で30分程度乾燥する工程として行われる。
正極集電体用のアルミニウム合金箔に添加する添加元素を上述の組成範囲のように適切に管理する事で、この乾燥工程の加熱を利用し、アルミニウム合金箔の強度上昇に利用することができる。
本実施形態において規定した組成を持つアルミニウム合金箔を使用して、70〜200℃で10分以上の熱処理、より好ましい範囲として、100〜175℃で15分以上の熱処理を行うことで、溶媒の乾燥とアルミニウム合金箔の強度上昇とを同時に達成する事ができる。
通常、Al−Mn、Al−Fe−Mn組成のアルミニウム合金に上述のような熱処理を行うと、回復を生じて材料強度が低下するとの知見が一般的であるが、前述の組成範囲のアルミニウム合金箔に強加工に相当する圧延を行った材料の回復挙動は従来知見と異なる。
“Heat treatment at 70 to 200 ° C. for 10 minutes or more”
As a heat treatment after applying the slurry (positive electrode active material) to the aluminum alloy foil for the positive electrode current collector in the production process of the lithium ion secondary battery, it is usually performed as a step of drying at 100 to 250 ° C. for about 30 minutes. Is called.
By appropriately managing the additive elements added to the aluminum alloy foil for the positive electrode current collector as in the composition range described above, the heating of this drying process can be used to increase the strength of the aluminum alloy foil. .
By using the aluminum alloy foil having the composition defined in the present embodiment, heat treatment at 70 to 200 ° C. for 10 minutes or more, more preferably, heat treatment at 100 to 175 ° C. for 15 minutes or more, Drying and an increase in strength of the aluminum alloy foil can be achieved simultaneously.
Generally, it is generally known that when an aluminum alloy having an Al-Mn or Al-Fe-Mn composition is subjected to the above heat treatment, recovery occurs and the material strength decreases. The recovery behavior of a material obtained by rolling a foil corresponding to strong processing is different from the conventional knowledge.
「圧下率95%以上」
本実施形態のアルミニウム合金箔を製造する工程において行う中間焼鈍後の箔の圧下率は95%以上とする。本実施形態においては合金成分を前述の範囲に適切に管理する以外に、アルミニウム合金箔の圧延に相当する95%以上の強加工によって、高い転位密度状態とした上で後に行う熱処理により強度上昇が発現すると考えている。
上述のように適切な条件で熱処理を行うことで、アルミニウム合金箔の材料強度が増大し、リチウムイオン二次電池の正極用集電体用として好適な厚さ範囲、例えば、6〜20μmの厚さであっても、望ましいアルミニウム合金箔として利用できる。ここで圧下率とは、toを初期の板厚、tを圧延後の板厚とした場合、{(to−t)/to}×100の関係式で示される圧下率(%)のことを意味する。
"A reduction rate of 95% or more"
The rolling reduction of the foil after the intermediate annealing performed in the process of manufacturing the aluminum alloy foil of the present embodiment is 95% or more. In the present embodiment, in addition to appropriately managing the alloy components within the above-mentioned range, the strength is increased by a heat treatment performed after a high dislocation density state is obtained by a strong work of 95% or more corresponding to the rolling of the aluminum alloy foil. We think that it expresses.
By performing heat treatment under appropriate conditions as described above, the material strength of the aluminum alloy foil is increased, and a thickness range suitable for a positive electrode current collector of a lithium ion secondary battery, for example, a thickness of 6 to 20 μm. Even so, it can be used as a desirable aluminum alloy foil. Here, the rolling reduction is the rolling reduction (%) represented by the relational expression {(to-t) / to} × 100, where to is the initial thickness and t is the thickness after rolling. means.
現状の二次電池用途として、正極集電体用アルミニウム合金箔は、12〜20μm程度の厚さを要求されるが、今後、10μmあるいは更に薄いアルミニウム合金箔を要求される可能性がある。これらの厚さにおいて、この用途のアルミニウム合金箔には熱処理により強度向上する以前において200MPa以上の強度を示すことが好ましく、熱処理による強度向上の結果220MPa以上の強度を示すことが好ましい。
上述の厚さ範囲で熱処理後において220MPa以上のアルミニウム合金箔体であるならば、正極を破断なく高密度に巻きつけることができるのでリチウムイオン二次電池用途の正極集電体として望ましい特性を有する。
As a current secondary battery application, the aluminum alloy foil for the positive electrode current collector is required to have a thickness of about 12 to 20 μm, but there is a possibility that an aluminum alloy foil of 10 μm or thinner will be required in the future. At these thicknesses, the aluminum alloy foil for this application preferably exhibits a strength of 200 MPa or more before the strength is improved by the heat treatment, and preferably exhibits a strength of 220 MPa or more as a result of the strength improvement by the heat treatment.
If it is an aluminum alloy foil body of 220 MPa or more after heat treatment in the above-mentioned thickness range, the positive electrode can be wound with high density without breaking, and thus has desirable characteristics as a positive electrode current collector for lithium ion secondary battery applications. .
以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
以下の表1に示すようにMn含有量とFe含有量とCu含有量とMg含有量とMn+Fe量とCu+Mg量をそれぞれ変量した厚さ500mmのアルミニウム合金の鋳塊を作製した。これら鋳塊の表面を面削し、580℃で10時間均質化処理後、室温まで冷却した。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
As shown in Table 1 below, an ingot of aluminum alloy having a thickness of 500 mm in which the Mn content, the Fe content, the Cu content, the Mg content, the Mn + Fe content, and the Cu + Mg content were varied was produced. The surfaces of these ingots were chamfered, homogenized at 580 ° C. for 10 hours, and then cooled to room temperature.
続いて、前記各鋳塊を520℃に再度加熱した後、熱間圧延で厚さ3.0mmの板材を得た。その後、冷間圧延を施し、板厚を順次薄くなるように圧延し、板厚0.12〜1.0mmで中間焼鈍(バッチ炉で350℃で3時間、もしくは連続焼鈍炉を用いて450℃で10秒)を行い、冷間圧延、箔圧延を行い、幅1000mm、長さ5000m超の厚さ8μmのアルミニウム合金箔を作製した(参考例1〜6、実施例1〜3)。また、参考例1、2、実施例1と同じ箔地を使用して箔圧延の最終パス前に箔を重ね合わせ、重合圧延を行い5μmのアルミニウム箔を作製した(参考例7、実施例4、参考例8)。
上述の工程により箔圧延によって厚さ8μmと5μmの箔を作製できた試料は箔圧延性に問題がない試料として以下の表1に○印で示し、箔圧延中に複数回破断するなど、箔圧延が困難であった試料には△印、箔圧延時の破断により指定厚さの箔を作製できなかった試料を×印として各々表1に結果を記載した。
Subsequently, each of the ingots was heated again to 520 ° C., and then a plate material having a thickness of 3.0 mm was obtained by hot rolling. Then, it cold-rolls and it rolls so that plate | board thickness may become thin one by one, and intermediate annealing (350 degreeC in a batch furnace at 350 degreeC for 3 hours, or 450 degreeC using a continuous annealing furnace). 10 seconds), and cold rolling and foil rolling were performed to produce an aluminum alloy foil having a width of 1000 mm and a length of more than 5000 m and a thickness of 8 μm ( Reference Examples 1 to 6 and Examples 1 to 3 ). Further, using the same foil as in Reference Examples 1 and 2 and Example 1 , the foils were overlapped before the final pass of foil rolling, and polymerization rolling was performed to produce a 5 μm aluminum foil ( Reference Examples 7 and 4). Reference Example 8 ).
Samples that were able to produce foils having thicknesses of 8 μm and 5 μm by foil rolling according to the above-described processes are indicated by circles in Table 1 below as samples having no problem in foil rollability, and the foil was broken several times during foil rolling. The results are shown in Table 1, with Δ marks for samples that were difficult to roll, and X marks for samples that could not produce a foil with the specified thickness due to fracture during foil rolling.
次に、箔圧延性の評価が○であった8μmと5μmのアルミニウム合金箔に対し、日本アルミニウム協会規格 LIS AT5に準じてB型試験片を作製し、このB型試験片を用いて引張試験を実施した。その後、75℃、150℃、200℃のいずれかの温度で15分、1時間、24時間熱処理後、アルミニウム合金箔の材料強度を測定し、熱処理に伴うアルミニウム合金箔の強度上昇率を確認した。一方、本発明範囲外の65℃で1時間、200℃で8分、220℃で1時間の熱処理条件では、アルミニウム箔の強度上昇はほとんどなく、多くの試料で材料強度が低下した。
以上の結果をまとめて表1、表2に記載する。
Next, B-type test pieces were prepared according to the Japan Aluminum Association Standard LIS AT5 for aluminum alloy foils of 8 μm and 5 μm whose evaluation of foil rollability was ○, and tensile tests were performed using the B-type test pieces. Carried out. Thereafter, after heat treatment at 75 ° C., 150 ° C., or 200 ° C. for 15 minutes, 1 hour, or 24 hours, the material strength of the aluminum alloy foil was measured, and the strength increase rate of the aluminum alloy foil accompanying the heat treatment was confirmed. . On the other hand, under the heat treatment conditions outside the scope of the present invention at 65 ° C. for 1 hour, 200 ° C. for 8 minutes, and 220 ° C. for 1 hour, the strength of the aluminum foil hardly increased and the material strength decreased in many samples.
The above results are summarized in Tables 1 and 2.
本発明に係る試料である実施例1〜4は、熱処理により確かにアルミニウム合金箔の強度上昇効果が確認できた。特に、150℃で15分〜24時間加熱した試料は、圧延のままの素材に比べて9.6〜26.9%材料強度が向上した。
この現象を利用してリチウムイオン二次電池用集電体箔を作成するとスラリーの塗工後に乾燥工程を施すと、材料強度が上昇する事で、薄肉化と高い材料強度を両立させたリチウムイオン二次電池正極集電体用アルミニウム合金箔を提供できることがわかった。
In Examples 1 to 4 which are samples according to the present invention, the effect of increasing the strength of the aluminum alloy foil could be confirmed by heat treatment. In particular, the sample heated at 150 ° C. for 15 minutes to 24 hours improved in material strength by 9.6 to 26.9% compared to the raw material as rolled.
Using this phenomenon to create a current collector foil for lithium ion secondary batteries, when applying a drying process after slurry application, the material strength increases, resulting in lithium ion that achieves both thinning and high material strength. It was found that an aluminum alloy foil for a secondary battery positive electrode current collector can be provided.
これらに対し比較例1の試料はCu+Mgの含有量を好ましい範囲に管理したが、Mn量、Fe量を少なくし、Mn+Fe量を1.30質量%より少なくした試料であり、熱処理後に大幅に軟化が進行し、アルミニウム合金箔の引張強さが著しく低下した。
比較例2の試料はFe、Mn+Fe、Cu+Mgの含有量を好ましい範囲としたが、Mnの含有量を0.10質量%より少なくした試料であるので、熱処理後に大幅に軟化が進行し、アルミニウム合金箔の引張強さが著しく低下した。
比較例3の試料はFe、Cu+Mgの含有量を好ましい範囲としたが、Mnの含有量を1.50質量%より多くした試料であるので、圧延途中で数回破断して圧延が困難であった。
比較例4の試料はFe、Cu+Mgの含有量を好ましい範囲としたが、Mnの含有量を0.10質量%より少なくし、Mn+Fe量を1.30質量%より少なくした試料であるので、熱処理後に軟化が若干進行し、アルミニウム合金箔の引張強さが箔素材と比較して低下した。また、高強度のリチウムイオン二次電池正極集電体用アルミニウム合金箔として200MPa以上の引張強さは必要であると思われる。
比較例5の試料はFe含有量を好ましい範囲より多くしてMn+Fe量を2.10質量%よりも大きくした試料であるが、箔圧延時に多数回破断した。
On the other hand, in the sample of Comparative Example 1, the Cu + Mg content was controlled within a preferable range, but the Mn content and Fe content were reduced, and the Mn + Fe content was less than 1.30% by mass. As a result, the tensile strength of the aluminum alloy foil was significantly reduced.
In the sample of Comparative Example 2, the content of Fe, Mn + Fe, Cu + Mg was within a preferable range, but since the Mn content was less than 0.10% by mass, the softening proceeded greatly after the heat treatment, and the aluminum alloy The tensile strength of the foil was significantly reduced.
In the sample of Comparative Example 3, the content of Fe and Cu + Mg was set within a preferable range. However, since the Mn content was more than 1.50% by mass, the sample was broken several times during the rolling and was difficult to roll. It was.
In the sample of Comparative Example 4, the content of Fe and Cu + Mg was within a preferable range, but the Mn content was less than 0.10% by mass and the Mn + Fe content was less than 1.30% by mass. Later, the softening proceeded slightly, and the tensile strength of the aluminum alloy foil decreased compared to the foil material. Further, it seems that a tensile strength of 200 MPa or more is necessary as an aluminum alloy foil for a high-strength lithium ion secondary battery positive electrode current collector.
The sample of Comparative Example 5 was a sample in which the Fe content was increased from the preferred range and the Mn + Fe content was greater than 2.10% by mass, but it broke many times during foil rolling.
比較例6の試料はFe含有量、Mn+Fe含有量を好ましい範囲よりも少なくした試料であるが、アルミニウム合金箔の引張強さが著しく低下した。
比較例7の試料はMn含有量を好ましい範囲よりも多くし、Mn+Feを好ましい範囲よりも多くした試料であるが、箔圧延途中で多数回破断した。
比較例8の試料はMn+Fe量を好ましい範囲よりも多くした試料であるが、箔圧延途中で多数回破断した。
比較例9の試料はMn+Fe量を好ましい範囲より少なくした試料であるが、アルミニウム合金箔の引張強さが著しく低下した。
比較例10の試料はCu含有量を多くし過ぎた試料、比較例11の試料はMg含有量を多くし過ぎた試料であるがいずれも箔圧延時に多数回破断した。
比較例12、13の試料は箔圧延時の圧下率を低くした試料であるが、いずれにおいても熱処理後に軟化を生じた。
これらの結果を勘案すると、本願発明で規定したMn量範囲、Fe量範囲、Cu量範囲、Mg量範囲、Mn+Fe量範囲、Cu+Mg量範囲を管理した上に、箔圧延時の圧下率を望ましい範囲とすることが重要であるとわかる。
The sample of Comparative Example 6 was a sample in which the Fe content and Mn + Fe content were less than the preferred ranges, but the tensile strength of the aluminum alloy foil was significantly reduced.
The sample of Comparative Example 7 was a sample in which the Mn content was greater than the preferred range and Mn + Fe was greater than the preferred range, but it broke many times during foil rolling.
The sample of Comparative Example 8 was a sample in which the amount of Mn + Fe was larger than the preferred range, but it broke many times during foil rolling.
The sample of Comparative Example 9 was a sample in which the amount of Mn + Fe was less than the preferred range, but the tensile strength of the aluminum alloy foil was significantly reduced.
The sample of Comparative Example 10 was a sample in which the Cu content was excessively increased, and the sample of Comparative Example 11 was a sample in which the Mg content was excessively increased.
The samples of Comparative Examples 12 and 13 were samples in which the rolling reduction during foil rolling was low, but in both cases, softening occurred after heat treatment.
Taking these results into consideration, the Mn content range, Fe content range, Cu content range, Mg content range, Mn + Fe content range, and Cu + Mg content range specified in the present invention are managed, and the reduction ratio during foil rolling is a desirable range. It is understood that it is important.
次に、参考例1、実施例1の合金及び比較例1、2の合金を用いて4時間熱処理を行う条件において熱処理温度を50、75、100、125、150、175、200℃にそれぞれ設定した場合に得られるアルミニウム合金箔の引張強さを測定した結果を図1に示す。
図1に示す結果から、比較例1、2の合金は熱処理を行うことにより明らかに強度が低下している。これは一般的なアルミニウム合金材料に通常見られる加熱処理による軟化現象であり、アルミニウム材料が鈍って強度が低下する現象である。
これらに対し、参考例1、実施例1の合金からなるアルミニウム箔は50℃での熱処理では熱処理前の圧延のままの試料に対し強度向上効果が見られないものの、75℃以上で加熱する熱処理条件であるならば、明らかに強度が向上している。
Next, the heat treatment temperatures were set to 50, 75, 100, 125, 150, 175, and 200 ° C. under the conditions of performing heat treatment for 4 hours using the alloys of Reference Example 1 and Example 1 and Comparative Examples 1 and 2, respectively. The results of measuring the tensile strength of the aluminum alloy foil obtained in this case are shown in FIG.
From the results shown in FIG. 1, the strengths of the alloys of Comparative Examples 1 and 2 are clearly reduced by heat treatment. This is a softening phenomenon caused by heat treatment usually found in general aluminum alloy materials, and is a phenomenon in which the aluminum material becomes dull and the strength decreases.
On the other hand, the aluminum foil made of the alloy of Reference Example 1 and Example 1 is not heat-treated at 50 ° C., but heat-treated at 75 ° C. or higher, although the effect of improving the strength is not observed with respect to the rolled sample before heat treatment. If the condition is satisfied, the strength is clearly improved.
図2は、参考例1、実施例1の合金を用いて一定の温度(150℃)で加熱して熱処理する場合、熱処理時間を0.2、0.3、0.5、1.0、3、10、20、30、60時間にそれぞれ変更した場合に得られる引張強さを測定した結果を示す。
図2に示す結果から、150℃加熱の場合、熱処理時間0.2時間あたりまでは強度向上効果が見られないが、0.3時間熱処理することで強度向上効果が明瞭に発現し、その後、60時間熱処理する条件までいずれの時間条件であっても引張強さの向上効果が見られた。
以上のように本発明に係るアルミニウム合金材料において、熱間圧延、冷間圧延後に箔の状態で圧延し、転位を高密度で導入したアルミニウム合金箔が加熱により強度向上することは、従来のこの種のアルミニウム合金箔には見られない知見であり、このため、本発明に係るアルミニウム合金箔は、リチウムイオン二次電池正極集電体として、薄く、強度が高い特徴を得ることができる。
FIG. 2 shows the heat treatment times of 0.2, 0.3, 0.5, 1.0 when the heat treatment is performed by heating at a constant temperature (150 ° C.) using the alloys of Reference Example 1 and Example 1 . The result of having measured the tensile strength obtained when changing to 3, 10, 20, 30, 60 hours, respectively is shown.
From the results shown in FIG. 2, in the case of heating at 150 ° C., the effect of improving the strength is not seen until the heat treatment time is around 0.2 hours, but the effect of improving the strength is clearly manifested by heat treatment for 0.3 hours, The effect of improving the tensile strength was observed under any time condition up to the condition of heat treatment for 60 hours.
As described above, in the aluminum alloy material according to the present invention, the strength of the aluminum alloy foil that is rolled in the state of foil after hot rolling and cold rolling and introduced with dislocations at a high density is improved by heating. This is a finding that is not found in various types of aluminum alloy foils. For this reason, the aluminum alloy foil according to the present invention can provide a thin, high-strength characteristic as a positive electrode current collector for a lithium ion secondary battery.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013146897A JP5567719B2 (en) | 2012-07-26 | 2013-07-12 | Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012165877 | 2012-07-26 | ||
JP2012165877 | 2012-07-26 | ||
JP2013146897A JP5567719B2 (en) | 2012-07-26 | 2013-07-12 | Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014040659A JP2014040659A (en) | 2014-03-06 |
JP5567719B2 true JP5567719B2 (en) | 2014-08-06 |
Family
ID=50393128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013146897A Expired - Fee Related JP5567719B2 (en) | 2012-07-26 | 2013-07-12 | Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5567719B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6456654B2 (en) * | 2014-10-21 | 2019-01-23 | 三菱アルミニウム株式会社 | Aluminum flexible foil and method for producing the same |
JP6797201B2 (en) * | 2015-10-15 | 2020-12-09 | ノベリス・インコーポレイテッドNovelis Inc. | Highly formed multi-layer aluminum alloy package |
WO2017155027A1 (en) | 2016-03-11 | 2017-09-14 | 株式会社Uacj | Aluminum alloy foil |
CN112771188A (en) | 2018-07-23 | 2021-05-07 | 诺维尔里斯公司 | Highly formable recycled aluminum alloy and method for manufacturing same |
CN112571001B (en) * | 2020-12-25 | 2022-09-06 | 镇江龙源铝业有限公司 | Aluminum material forming method for power battery cover plate |
CN113564425A (en) * | 2021-08-09 | 2021-10-29 | 江苏鼎胜新能源材料股份有限公司 | Aluminum foil for 1N00 lithium battery and preparation method thereof |
CN114703404B (en) * | 2022-03-02 | 2023-07-21 | 江苏鼎胜新能源材料股份有限公司 | Aluminum foil material for low-density pinhole current collector of new energy lithium battery and preparation method of aluminum foil material |
CN114725393B (en) * | 2022-04-07 | 2024-04-09 | 江苏鼎胜新能源材料股份有限公司 | Preparation method of aluminum foil for lithium battery anode current collector with high surface cleaning Gao Maohua |
CN114774723B (en) * | 2022-05-25 | 2023-08-01 | 神隆宝鼎新材料有限公司 | Battery aluminum foil with high mechanical property and high conductivity and production method thereof |
CN114976037A (en) * | 2022-06-23 | 2022-08-30 | 华星先进科学技术应用研究(天津)有限公司 | Aluminum-based negative electrode plate for lithium ion battery and lithium ion secondary battery |
CN116005041B (en) * | 2023-01-09 | 2024-08-27 | 江苏鼎胜新能源材料股份有限公司 | Aluminum foil material for oxidation-resistant easy-to-mold new energy lithium ion soft package battery and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1167220A (en) * | 1997-08-18 | 1999-03-09 | Showa Alum Corp | Aluminum alloy material for lithium battery and manufacture of electrode material for lithium battery using this aluminum alloy material |
JP4889935B2 (en) * | 2003-10-09 | 2012-03-07 | 昭和電工株式会社 | Aluminum hard foil electrode material and lithium ion secondary battery using the same |
JP4870359B2 (en) * | 2004-01-09 | 2012-02-08 | 昭和電工株式会社 | Degreasing method of aluminum foil |
JP5495694B2 (en) * | 2009-09-30 | 2014-05-21 | 株式会社Uacj製箔 | Aluminum alloy foil for lithium ion secondary battery and method for producing the same |
JP5448929B2 (en) * | 2010-03-01 | 2014-03-19 | 三菱アルミニウム株式会社 | Aluminum alloy hard foil having excellent bending resistance and method for producing the same |
KR101202998B1 (en) * | 2010-03-26 | 2012-11-20 | 토요 알루미늄 치바 가부시키가이샤 | Pure aluminum hard foil for battery collector |
JP5405410B2 (en) * | 2010-08-05 | 2014-02-05 | 株式会社神戸製鋼所 | Aluminum alloy hard foil for battery current collector |
-
2013
- 2013-07-12 JP JP2013146897A patent/JP5567719B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014040659A (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5567719B2 (en) | Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery | |
JP5856076B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
US9698426B2 (en) | Aluminum alloy foil for electrode current collector, method for manufacturing same, and lithium ion secondary battery | |
US9543588B2 (en) | Aluminum alloy foil for electrode collectors and production method therefor | |
JP5591583B2 (en) | Aluminum alloy foil for lithium-ion battery electrode current collector | |
EP2658017B1 (en) | Aluminum alloy foil for electrode current collectors and manufacturing method thereof | |
JP2012224927A (en) | Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same | |
JP5495649B2 (en) | Aluminum alloy foil for lithium ion secondary battery and method for producing the same | |
WO2012169570A1 (en) | Aluminum alloy foil and method for manufacturing same | |
WO2013176038A1 (en) | Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material | |
JP2019077891A (en) | Rolled copper foil for secondary battery negative electrode power collection body, secondary battery negative electrode and secondary battery using the same, and manufacturing method of rolled copper foil for secondary battery negative electrode power collection body | |
JP2017186630A (en) | Aluminum alloy foil for battery power collection body and manufacturing method therefor | |
JP5530865B2 (en) | Aluminum alloy foil for lithium ion battery electrode material and electrode material using the same | |
JP5582791B2 (en) | Aluminum alloy foil for lithium-ion battery electrode current collector | |
US9666867B2 (en) | Aluminum alloy foil for electrode collector and production method therefor | |
WO2012117627A1 (en) | Aluminum alloy foil for lithium ion battery electrode current collectors, and method for producing same | |
JP6280738B2 (en) | Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil | |
JP6513896B2 (en) | Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same | |
JP2022057593A (en) | Aluminum alloy foil for collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140512 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5567719 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |