JP6280738B2 - Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil - Google Patents
Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil Download PDFInfo
- Publication number
- JP6280738B2 JP6280738B2 JP2013266761A JP2013266761A JP6280738B2 JP 6280738 B2 JP6280738 B2 JP 6280738B2 JP 2013266761 A JP2013266761 A JP 2013266761A JP 2013266761 A JP2013266761 A JP 2013266761A JP 6280738 B2 JP6280738 B2 JP 6280738B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- foil
- cold rolling
- hard
- hard foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Description
この発明は、硬質箔用アルミニウム合金、アルミニウム合金硬質箔、リチウムイオン二次電池正極集電体用アルミニウム合金箔およびアルミニウム合金硬質箔の製造方法に関する。 The present invention relates to an aluminum alloy for hard foil, an aluminum alloy hard foil, an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery, and a method for producing the aluminum alloy hard foil.
近年、携帯電話、ノートパソコン等のモバイル電子機器用電源としてリチウムイオン二次電池などの二次電池が使用されている。また、ハイブリッド、電気自動車等のエコカーの車載電池へのリチウムイオン二次電池の採用も拡大されている。リチウムイオン電池の電極材は、正極板、セパレータおよび負極板で構成される。正極板は、15〜30μm程度の厚さの集電体用アルミニウム箔に、100μm程度の大きさの活物質を溶剤とともに両面に塗布する工程、塗布された溶媒を除去するための乾燥工程、さらに活物質の密度を増大させるための圧着工程を経て製造されている。このようにして製造された正極板は、負極板とセパレータを介して渦巻状に巻いた後に金属ケースに収納して密閉され電池となる。現在、上記用途のアルミニウム箔には、一般に、JIS A1085やJIS A3003アルミニウム材が用いられている。 In recent years, secondary batteries such as lithium ion secondary batteries have been used as power sources for mobile electronic devices such as mobile phones and notebook computers. In addition, the use of lithium ion secondary batteries for in-vehicle batteries of eco-cars such as hybrids and electric cars has been expanded. The electrode material of the lithium ion battery includes a positive electrode plate, a separator, and a negative electrode plate. The positive electrode plate is a step of applying an active material having a size of about 100 μm on both sides to a current collector aluminum foil having a thickness of about 15 to 30 μm together with a solvent, a drying step for removing the applied solvent, Manufactured through a crimping process for increasing the density of the active material. The positive electrode plate manufactured in this way is wound in a spiral shape via a negative electrode plate and a separator, and then housed in a metal case and sealed to form a battery. At present, JIS A1085 and JIS A3003 aluminum materials are generally used for the aluminum foils for the above applications.
ところで最近では、モバイル電子機器の使用時間の延長、電気自動車の走行距離の拡大を図るために、電池容量の増大、すなわち電池のエネルギーの高密度化が強く望まれている。そこで正極板の圧着に際し、従来と比較し荷重を大きくすることで、より高密度の電極材を作製することが試みられている。
このような観点で、高い強度と伸びとを有するアルミニウム合金硬質箔が提案されている(特許文献1、2参照)。
Recently, in order to extend the usage time of mobile electronic devices and increase the travel distance of electric vehicles, it has been strongly desired to increase the battery capacity, that is, to increase the energy density of the battery. Therefore, it has been attempted to produce a higher-density electrode material by increasing the load compared to the conventional case when the positive electrode plate is pressure-bonded.
From such a viewpoint, an aluminum alloy hard foil having high strength and elongation has been proposed (see
しかし、アルミニウム合金の薄箔を製造する場合、材料強度が上昇する程、圧延性が阻害される。これを回避するためには中間焼鈍を複数回行ったり、圧延パス数を増加させる等して対応する必要があり、その結果、生産性が低下する。生産性の低下を回避するには材料強度を下げる必要があり、高強度アルミニウム合金硬質箔として不適であるという問題がある。 However, when manufacturing a thin foil of an aluminum alloy, the rollability is inhibited as the material strength increases. In order to avoid this, it is necessary to cope by performing intermediate annealing a plurality of times or increasing the number of rolling passes, and as a result, productivity is lowered. In order to avoid a decrease in productivity, it is necessary to reduce the material strength, and there is a problem that it is not suitable as a high strength aluminum alloy hard foil.
通常、アルミニウム合金では、歪みの導入に従って引張強度が直線的に増加するが、特異的な合金成分または特異的な変形条件において、引張強度が上昇しない若しくは低下する現象の存在が知られており、この現象を加工軟化と称している。
しかしながら、特異的な条件下でしか加工軟化が発現しなかったため、工業的に使用される合金成分または製造工程への加工軟化の適用はされていない。
本願発明は、上記事情を背景としてなされたものであり、合金成分を規制することで工程途中での加工軟化を発現させることを可能にし、薄箔、広幅の高強度アルミニウム合金硬質箔を生産性を低下することなく提供することを基本的な目的とする。
Usually, in aluminum alloys, tensile strength increases linearly as strain is introduced, but it is known that there is a phenomenon in which tensile strength does not increase or decreases under specific alloy components or specific deformation conditions, This phenomenon is called process softening.
However, since work softening has occurred only under specific conditions, it has not been applied to industrially used alloy components or manufacturing processes.
The present invention has been made against the background of the above circumstances, and it is possible to express work softening in the middle of the process by regulating the alloy components, and to produce thin foils and wide high-strength aluminum alloy hard foils. The basic purpose is to provide without reducing
すなわち、本発明の硬質箔用アルミニウム合金のうち第1の本発明は、質量%で、Fe:1.00〜1.70%、Mn:0.10〜0.50%を含有し、残部がAlおよび不可避不純物からなり、Cu、Mg、Cr、Zrの合計量が0.05%以下の組成を有し、前記組成中のFeおよびMnの総量が2.0%以下であることを特徴とする。 That is, the 1st present invention among the aluminum alloys for hard foils of the present invention is mass%, contains Fe: 1.00-1.70%, Mn: 0.10-0.50%, and the remainder is It consists of Al and inevitable impurities, and the total amount of Cu, Mg, Cr and Zr has a composition of 0.05% or less, and the total amount of Fe and Mn in the composition is 2.0% or less. To do.
第2の本発明の硬質箔用アルミニウム合金は、前記第1の本発明において、前記組成中のFe/Mn比が3.5以上であることを特徴とする。 The aluminum alloy for hard foil of the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the Fe / Mn ratio in the composition is 3.5 or more.
第3の本発明のアルミニウム合金硬質箔は、前記第1または第2の本発明に記載の組成を有し、箔厚さを5〜20μmで、引張強度が200MPa以上、伸びが3.0%以上であることを特徴とする。 The aluminum alloy hard foil of the third invention has the composition described in the first or second invention, the foil thickness is 5 to 20 μm, the tensile strength is 200 MPa or more, and the elongation is 3.0%. It is the above.
第4の本発明のアルミニウム合金硬質箔は、前記第3の本発明において、最終冷間圧延前の伸びが2.0%以上であることを特徴とする。 The aluminum alloy hard foil of the fourth aspect of the present invention is characterized in that, in the third aspect of the present invention, the elongation before the final cold rolling is 2.0% or more.
第5の本発明のリチウムイオン二次電池正極集電体用アルミニウム合金箔は、前記第3または第4の発明のアルミニウム合金硬質箔からなる。 An aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery according to a fifth aspect of the present invention comprises the aluminum alloy hard foil according to the third or fourth aspect.
第6の本発明のアルミニウム合金硬質箔の製造方法は、前記第1または第2の本発明に記載の組成を有するアルミニウム合金に、仕上り温度が200〜290℃の熱間圧延、冷間圧延、最終冷間圧延を行い、熱間圧延後から最終冷間圧延後までの圧下率、冷間圧延途中に中間焼鈍を行う場合は中間焼鈍後から最終冷間圧延後までの圧下率を90.0〜99.9%にして、箔厚さ5〜20μmの箔を得ることを特徴とする。 A method for producing an aluminum alloy hard foil according to a sixth aspect of the present invention comprises hot rolling, cold rolling, or finishing with a finishing temperature of 200 to 290 ° C. on an aluminum alloy having the composition described in the first or second aspect of the present invention. When the final cold rolling is performed and the rolling reduction from hot rolling to after the final cold rolling is performed, when the intermediate annealing is performed during the cold rolling, the rolling reduction from the intermediate annealing to after the final cold rolling is set to 90.0. It is characterized by obtaining a foil having a thickness of 5 to 20 μm by ˜99.9%.
以下に、本発明で規定する条件およびその理由について説明する。なお、組成中の各含有量は質量%で示される。 Below, the conditions prescribed | regulated by this invention and the reason are demonstrated. In addition, each content in a composition is shown by the mass%.
本願発明の硬質箔用アルミニウム合金は、適切な合金成分とすることで、高い引張強度と伸び特性とが得られる。以下、説明する。 The aluminum alloy for hard foils of the present invention can have high tensile strength and elongation characteristics by using appropriate alloy components. This will be described below.
Fe:1.00〜1.70%
Feは、引張強度と伸びを確保して製造時に加工軟化をもたらす。ただし、Fe含有量が1.00%未満であると、引張強度と伸びが低下する。また、加工軟化が発現しない。一方、1.70%を超えると、強度が向上して薄箔、特に好適な箔厚である15μm以下の圧延性を阻害する。このため、Fe含有量を1.00〜1.70%に定める。同様の理由で上限を1.35%とするのが望ましい。
Fe: 1.00 to 1.70%
Fe secures tensile strength and elongation, and causes work softening during production. However, if the Fe content is less than 1.00%, the tensile strength and the elongation decrease. Moreover, processing softening does not express. On the other hand, if it exceeds 1.70%, the strength is improved and the thin foil, particularly the rollability of 15 μm or less, which is a particularly suitable foil thickness, is inhibited. For this reason, Fe content is set to 1.00-1.70%. For the same reason, the upper limit is preferably 1.35%.
Mn:0.10〜0.50%
Mnは、引張強度を確保し、Feとともに添加することで製造時に加工軟化をもたらす。ただし、Mn含有量が0.10%未満であると、引張強度が不足する。また、加工軟化が発現しない。一方、Mn含有量が0.50%を超えると、巨大晶出物が生成し、圧延時に破断する。このため、Mn含有量を0.10%〜0.50%に限定する。同様の理由で上限を0.30%とするのが望ましい。
Mn: 0.10 to 0.50%
Mn ensures tensile strength and is added together with Fe to cause work softening during production. However, if the Mn content is less than 0.10%, the tensile strength is insufficient. Moreover, processing softening does not express. On the other hand, if the Mn content exceeds 0.50%, a giant crystallized product is generated and breaks during rolling. For this reason, the Mn content is limited to 0.10% to 0.50%. For the same reason, it is desirable to set the upper limit to 0.30%.
Cu/Mg/Cr/Zr:総量で0.05%以下
Cu、Mg、Cr、Zrは、総量で0.05%を超えて含有すると、固溶体硬化が生じて加工軟化が発現せず、薄箔を得るためには生産性が低下する。なお、同様の理由で総量を0.02%以下とするのが望ましい。
Cu / Mg / Cr / Zr: 0.05% or less in total amount When Cu, Mg, Cr, Zr exceeds 0.05% in total amount, solid solution hardening occurs and work softening does not occur, and thin foil In order to obtain this, productivity decreases. For the same reason, the total amount is preferably 0.02% or less.
Fe+Mn:2.0%以下
Fe、Mnの総量が2.0%を超えると、半連続鋳造で作製した鋳塊にAl−Fe−Mn系の巨大晶出物が生成し、その晶出物を起点として圧延時に破断する場合がある。このため、Fe、Mnの総量は2.0%以下とする。なお、同様の理由で1.9%以下とするのが望ましい。
Fe + Mn: 2.0% or less When the total amount of Fe and Mn exceeds 2.0%, an Al—Fe—Mn-based giant crystallized product is generated in an ingot produced by semi-continuous casting. It may break during rolling as a starting point. For this reason, the total amount of Fe and Mn is 2.0% or less. In addition, it is desirable to set it as 1.9% or less for the same reason.
Fe/Mn比:3.5以上
Fe/Mn比が3.5未満であると、加工軟化が発現しにくくなる。また、薄箔、特に好適な箔厚である15μm以下の圧延性を阻害する。このため、Fe/Mn比は3.5以上とするのが望ましい。同様の理由でFe/Mn比は5.0以上とするのが一層望ましい。また、Mnが少なくても加工軟化が発現しにくくなるため、Fe/Mn比は8.0以下とするのが望ましい。
Fe / Mn ratio: 3.5 or more When the Fe / Mn ratio is less than 3.5, work softening is hardly exhibited. Further, the rollability of 15 μm or less, which is a thin foil, particularly a suitable foil thickness, is inhibited. For this reason, the Fe / Mn ratio is desirably 3.5 or more. For the same reason, the Fe / Mn ratio is more preferably 5.0 or more. Moreover, since it becomes difficult to express work softening even if there is little Mn, it is desirable that Fe / Mn ratio shall be 8.0 or less.
引張強度:200MPa以上
箔の加工で巻出す際に耐荷重が必要であり、また、圧延時の破断を防止する。また、リチウムイオン二次電池正極集電体用アルミニウム合金箔として使用する場合に、活物質を圧着して正極板を製造する際に破断が生じないように強度が必要とされる。これらのため、200MPa以上の引張強度が必要とされる。
Tensile strength: 200 MPa or more Load resistance is required when unwinding the foil during processing, and breakage during rolling is prevented. Moreover, when using as an aluminum alloy foil for lithium ion secondary battery positive electrode electrical power collectors, intensity | strength is required so that a fracture | rupture does not arise when crimping an active material and manufacturing a positive electrode plate. For these reasons, a tensile strength of 200 MPa or more is required.
伸び:3.0%以上
伸びが低いと破断し易く、薄箔の圧延が困難になる。また、リチウムイオン二次電池正極集電体用アルミニウム合金箔として使用する際に、折り曲げによる破断が生じにくく、電極材として小さい曲げを可能にして使い勝手をよくする。このため、伸びの下限を3.0%とするのが望ましい。同様の理由で伸びの下限を4.0%とするのが一層望ましい。
Elongation: 3.0% or more If the elongation is low, it tends to break and rolling of the thin foil becomes difficult. Further, when used as an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery, breakage due to bending is unlikely to occur, and the electrode material can be bent to improve usability. For this reason, it is desirable that the lower limit of elongation be 3.0%. For the same reason, it is more desirable to set the lower limit of elongation to 4.0%.
最終冷間圧延前の伸び:2.0%以上
冷間圧延の最後の1パスに当たる最終冷間圧延前の伸びが低いと最終冷間圧延時に破断し易く、薄箔の圧延が困難になる。このため、最終冷間圧延前の伸びの下限を2.0%とするのが望ましい。同様の理由で最終冷間圧延前の伸びの下限を4.0%とするのが一層望ましい。
Elongation before final cold rolling: 2.0% or more If the elongation before final cold rolling, which corresponds to the last pass of cold rolling, is low, it is easy to break during final cold rolling, and thin foil rolling becomes difficult. For this reason, it is desirable that the lower limit of the elongation before the final cold rolling is 2.0%. For the same reason, it is more desirable to set the lower limit of elongation before the final cold rolling to 4.0%.
また、本発明のアルミニウム合金硬質箔は、熱間圧延、冷間圧延、冷間圧延の最後の1パスである最終冷間圧延を経て、厚さ5〜20μmの箔として得ることができる。以下に、製造工程における規定について説明する。 Moreover, the aluminum alloy hard foil of the present invention can be obtained as a foil having a thickness of 5 to 20 μm through final cold rolling, which is the last pass of hot rolling, cold rolling, and cold rolling. Below, the prescription | regulation in a manufacturing process is demonstrated.
熱間圧延仕上り温度:200℃以上290℃以下
熱間圧延時の仕上り温度が200℃未満になると、低温のために安定した圧延が困難になる。また、仕上り温度が290℃を超えると、高温になり、部分再結晶が生じて伸びが不足する。このため、熱間圧延仕上り温度を200〜290℃にするのが望ましい。なお、同様の理由で仕上り温度の下限を240℃、上限を280℃とするのが一層望ましい。
Hot rolling finish temperature: 200 ° C. or more and 290 ° C. or less When the finish temperature during hot rolling is less than 200 ° C., stable rolling becomes difficult due to low temperature. On the other hand, when the finishing temperature exceeds 290 ° C., the temperature becomes high and partial recrystallization occurs, resulting in insufficient elongation. For this reason, it is desirable that the hot rolling finish temperature be 200 to 290 ° C. For the same reason, it is more desirable that the lower limit of the finishing temperature is 240 ° C. and the upper limit is 280 ° C.
圧下率:90.0〜99.9%
圧下率を適切に定めることで、中間焼鈍回数を少なくして、高い生産性で高強度アルミニウム合金硬質箔を製造することができる。圧下率を90.0%未満にすると、中間焼鈍回数が増えて、生産性が低下する。また、加工軟化が発現しない。一方、圧下率が99.9%を超えると、必要な冷間圧延回数が増えて生産性が低下する。また、引張強度の向上がほとんど見込めない上に表面割れが発生して破断し易い。このため、上記圧下率は90.0〜99.9%とするのが望ましい。なお、同様の理由で上記圧下率は、下限を98.0%とするのが一層望ましく、上限を99.7%とするのが一層望ましい。
Reduction ratio: 90.0 to 99.9%
By appropriately setting the rolling reduction, the number of intermediate annealing can be reduced, and a high-strength aluminum alloy hard foil can be manufactured with high productivity. When the rolling reduction is less than 90.0%, the number of intermediate annealing increases and productivity is lowered. Moreover, processing softening does not express. On the other hand, if the rolling reduction exceeds 99.9%, the required number of cold rolling increases and productivity decreases. Moreover, the improvement of the tensile strength can hardly be expected, and surface cracks are easily generated and easily broken. For this reason, it is desirable that the rolling reduction is 90.0 to 99.9%. For the same reason, the lower limit of the rolling reduction is more preferably 98.0%, and the upper limit is more preferably 99.7%.
箔厚:5〜20μm
箔厚が5μm未満になると、箔の加工で巻き出す際の耐荷重不足かつ、箔の製造が困難になる。また、箔を加工する際の取扱いが難しい。一方、20μmを超えると、薄箔のメリットを得にくい。また、リチウムイオン二次電池用正極集電体に使用した際の電池容量を確保するためには20μm以下が望ましい。このため、箔厚は5〜20μmとするのが望ましい。なお、同様の理由で、箔厚は、下限を6μm、上限を15μmとするのが一層望ましい。
Foil thickness: 5-20 μm
When the foil thickness is less than 5 μm, the load resistance at the time of unwinding in the processing of the foil is insufficient, and the production of the foil becomes difficult. Moreover, the handling at the time of processing foil is difficult. On the other hand, when it exceeds 20 μm, it is difficult to obtain the merit of the thin foil. Moreover, in order to ensure the battery capacity at the time of using for the positive electrode electrical power collector for lithium ion secondary batteries, 20 micrometers or less are desirable. For this reason, the foil thickness is desirably 5 to 20 μm. For the same reason, it is more desirable that the foil thickness has a lower limit of 6 μm and an upper limit of 15 μm.
以上説明したように、本発明によれば、製造時の加工軟化を利用して効率よく薄箔、広幅のアルミニウム合金硬質箔を製造することができ、しかも該アルミニウム合金硬質箔は高い引張強度と伸び特性とを有している。 As described above, according to the present invention, it is possible to efficiently produce a thin foil and a wide aluminum alloy hard foil using work softening at the time of manufacture, and the aluminum alloy hard foil has high tensile strength and high strength. It has elongation characteristics.
以下に、本発明の一実施形態を説明する。
本発明の組成としたアルミニウム合金は常法により溶製することができ、既知の半連続鋳造法や連続鋳造圧延法を採用することができる。
半連続鋳造により得られる鋳塊は、所望により均質化処理を行うことができる。均質化処理をする場合、均質温度420〜620℃、保持時間1〜12時間に制御することが望ましい。これにより、FeとMnの析出状態を薄箔の圧延により好適な状態とすることができる。
均質温度が420℃未満であると、Mnが析出しないため、加工硬化により圧延が困難になる。一方、均質温度が620℃を超えると、局部溶解が起こる場合がある。このため、均質温度は420〜620℃が望ましい。均質時間は、1時間未満ではMnが析出しないため、加工硬化により圧延が困難になる。一方、12時間を超えると、析出物が肥大化し、圧延時に破断しやすくなる。このため、均質時間は、1〜12時間とするのが望ましい。
Hereinafter, an embodiment of the present invention will be described.
The aluminum alloy having the composition of the present invention can be melted by a conventional method, and a known semi-continuous casting method or continuous casting rolling method can be employed.
The ingot obtained by semi-continuous casting can be homogenized if desired. When performing the homogenization treatment, it is desirable to control the homogenization temperature to 420 to 620 ° C and the holding time to 1 to 12 hours. Thereby, the precipitation state of Fe and Mn can be made into a suitable state by rolling of thin foil.
If the homogenous temperature is less than 420 ° C., Mn does not precipitate, so that rolling becomes difficult due to work hardening. On the other hand, when the homogeneous temperature exceeds 620 ° C., local dissolution may occur. For this reason, the homogeneous temperature is desirably 420 to 620 ° C. When the homogenization time is less than 1 hour, Mn does not precipitate, so that rolling becomes difficult due to work hardening. On the other hand, if it exceeds 12 hours, the precipitates are enlarged and easily broken during rolling. For this reason, it is desirable that the homogeneous time is 1 to 12 hours.
その後、熱間圧延を行ってアルミニウム合金材を得る。熱間圧延は常法により行うことができるが、仕上り温度を200〜290℃にするのが望ましく、240〜280℃にするのが一層望ましい。
上記アルミニウム合金材は、冷間圧延に供され、中間焼鈍を経て、再度冷間圧延、最終冷間圧延が行われる。中間焼鈍は、バッチ式焼鈍炉または連続焼鈍炉を使用し常法により行うことができる。
中間焼鈍の回数は特に限定されるものではなく、1回または2回以上行うことができる。ただし、本実施形態では、製造時に加工軟化がもたらされ、圧下率も大きく設定できるため、中間焼鈍回数を少なくすることができる。
また、本実施形態では、中間焼鈍は行わないものとしてもよい。
Thereafter, hot rolling is performed to obtain an aluminum alloy material. Although hot rolling can be performed by a conventional method, the finishing temperature is desirably 200 to 290 ° C, and more desirably 240 to 280 ° C.
The aluminum alloy material is subjected to cold rolling, subjected to intermediate annealing, and cold rolling and final cold rolling are performed again. The intermediate annealing can be performed by a conventional method using a batch annealing furnace or a continuous annealing furnace.
The number of intermediate annealing is not particularly limited, and can be performed once or twice or more. However, in this embodiment, work softening is brought about at the time of manufacture, and the rolling reduction can be set large, so that the number of intermediate annealings can be reduced.
In the present embodiment, intermediate annealing may not be performed.
圧下率は、90.0〜99.9%が望ましく、98.0〜99.7%とするのが一層望ましい。
冷間圧延、最終冷間圧延を経て、厚さが5〜20μmであるアルミニウム合金硬質箔を得ることができる。該アルミニウム合金硬質箔は、引張強度が200MPa以上である。また、伸びが3.0%以上であり、4.0%以上が一層望ましい。
なお、圧下率は板厚減少率を指し、T0を初期板厚、T1を圧延後の板厚として、(T0−T1)/T0の百分率で表す。
The rolling reduction is desirably 90.0 to 99.9%, and more desirably 98.0 to 99.7%.
An aluminum alloy hard foil having a thickness of 5 to 20 μm can be obtained through cold rolling and final cold rolling. The aluminum alloy hard foil has a tensile strength of 200 MPa or more. Further, the elongation is 3.0% or more, and more preferably 4.0% or more.
The rolling reduction refers to the sheet thickness reduction rate, and is expressed as a percentage of (T0−T1) / T0, where T0 is the initial sheet thickness and T1 is the sheet thickness after rolling.
得られたアルミニウム合金硬質箔は、各種用途に使用することができるが、リチウムイオン二次電池正極集電体用アルミニウム合金箔として、リチウムイオン二次電池の電極材に好適に用いることができる。 Although the obtained aluminum alloy hard foil can be used for various applications, it can be suitably used as an electrode material for a lithium ion secondary battery as an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery.
以下に、本発明の実施例を比較例と比較しつつ説明する。
表1に示す各種組成(残部Alおよびその他の不可避不純物)からなるアルミニウム合金の鋳塊を半連続鋳造により厚さ500mmの鋳塊に鋳造した。得られた鋳塊を、均質温度580℃、保持時間10時間で均質化処理を行った後、面削して表面の不均一層を除去した。
その後、冷却された鋳塊を520℃に再加熱し、表2に示す仕上り温度の熱間圧延にて、厚さ3.0mmの板材とした。
Examples of the present invention will be described below in comparison with comparative examples.
An ingot of aluminum alloy having various compositions shown in Table 1 (the balance Al and other inevitable impurities) was cast into a 500 mm thick ingot by semi-continuous casting. The obtained ingot was homogenized at a homogeneous temperature of 580 ° C. and a holding time of 10 hours, and then chamfered to remove the non-uniform layer on the surface.
Thereafter, the cooled ingot was reheated to 520 ° C., and was subjected to hot rolling at a finishing temperature shown in Table 2 to obtain a plate material having a thickness of 3.0 mm.
次いで冷間圧延に供し、冷間圧延途中でバッチ式焼鈍炉で350℃×3時間もしくは、連続焼鈍炉を用いて500℃×10秒の条件で中間焼鈍を行い、表2に示す圧下率で、箔厚さ12μm、幅1400mmとなるように再度冷間圧延、冷間圧延の最後の1パスである最終冷間圧延を行ってアルミニウム合金硬質箔を得た。
作製したアルミニウム合金硬質箔を供試材として以下の評価を行った。
Next, it is subjected to cold rolling, and during the cold rolling, intermediate annealing is performed at 350 ° C. for 3 hours in a batch annealing furnace or at 500 ° C. for 10 seconds using a continuous annealing furnace, and the rolling reduction shown in Table 2 is performed. Then, cold rolling and final cold rolling as the last pass of the cold rolling were performed again so that the foil thickness was 12 μm and the width was 1400 mm to obtain an aluminum alloy hard foil.
The following evaluation was performed using the produced aluminum alloy hard foil as a test material.
上記の工程により作製した試料の内、破断せずに作製できた試料を「○」、破断するなど圧延性が低いが作製できた試料を「△」、複数回破断するなど指定厚さの箔を得られない試料を「×」とし、圧延性の評価結果を表2に示した。 Of the samples prepared by the above process, “○” indicates that the sample was prepared without breaking, and “△” indicates that the sample was not rolled but has a low rolling property. Samples that could not be obtained were evaluated as “x”, and the evaluation results of rollability are shown in Table 2.
上記で作製したアルミニウム合金硬質箔から、JIS Z2241に準拠した5号試験片を作製し、引張強度、伸びおよび最終冷間圧延前の伸びを測定し、その測定結果を表2に示した。 No. 5 test piece based on JIS Z2241 was produced from the aluminum alloy hard foil produced above, and the tensile strength, the elongation and the elongation before the final cold rolling were measured. The measurement results are shown in Table 2.
上記工程で作製した試料を冷間圧延の各工程で上記引張試験を行い、引張強度が増加しない、または低下した試料を加工軟化「有」、引張強度が増加し続けた試料を加工軟化「無」として、結果を表2に示した。 Samples prepared in the above process are subjected to the above tensile tests in each cold rolling process. Samples that do not increase or decrease the tensile strength are processed softened “Yes”, samples that continue to increase tensile strength are processed softened “No” The results are shown in Table 2.
試験の結果、本実施例は、加工軟化が発現することにより圧延性を損なうことなく、薄箔、広幅のアルミニウム合金硬質箔を効率よく製造することができる。また、該アルミニウム合金硬質箔は、引張強度、伸びともに優れた特性を有していた。 As a result of the test, this example can efficiently produce a thin foil and a wide aluminum alloy hard foil without impairing the rollability due to the occurrence of work softening. The aluminum alloy hard foil had excellent properties in both tensile strength and elongation.
また、比較例No.3、6では、破断により圧延が不能であり、その他の比較例は、上記特性のいずれかで劣っていた。 Comparative Example No. In Examples 3 and 6, rolling was impossible due to breakage, and the other comparative examples were inferior in any of the above characteristics.
加工軟化の発現を具体的に示すため、実施例2と比較例7について、冷間圧延の各工程で引張強度を測定した。その結果を図1に示した。実施例では、加工軟化が明確に生じているのに対し、比較例では、加工軟化が発現せず、加工硬化し続けた。 In order to specifically show the expression of work softening, the tensile strength was measured in each step of cold rolling for Example 2 and Comparative Example 7. The results are shown in FIG. In the examples, work softening clearly occurred, whereas in the comparative example, work softening did not occur and work hardening continued.
Claims (6)
The aluminum alloy having the composition according to claim 1 or 2 is subjected to hot rolling, cold rolling, and final cold rolling at a finishing temperature of 200 to 290 ° C, from hot rolling to after final cold rolling. Reduction ratio, when performing intermediate annealing during cold rolling, obtain a foil with a thickness of 5 to 20 μm by setting the reduction ratio from after intermediate annealing to after final cold rolling to 90.0 to 99.9%. The manufacturing method of the aluminum alloy hard foil characterized by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013266761A JP6280738B2 (en) | 2013-12-25 | 2013-12-25 | Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013266761A JP6280738B2 (en) | 2013-12-25 | 2013-12-25 | Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015120968A JP2015120968A (en) | 2015-07-02 |
JP6280738B2 true JP6280738B2 (en) | 2018-02-14 |
Family
ID=53532840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013266761A Expired - Fee Related JP6280738B2 (en) | 2013-12-25 | 2013-12-25 | Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6280738B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105063429B (en) * | 2015-07-15 | 2017-08-25 | 浙江中金铝业有限公司 | A kind of preparation method of aluminum foil for lithium battery |
JP7153469B2 (en) * | 2018-05-29 | 2022-10-14 | 株式会社Uacj | Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same |
CN110496871A (en) * | 2019-08-30 | 2019-11-26 | 洛阳龙鼎铝业有限公司 | A kind of increasing Zn adds the preparation method of Zr aluminium foil used for automobile air conditioning |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5160849B2 (en) * | 2007-09-27 | 2013-03-13 | 東洋アルミニウム株式会社 | Aluminum alloy foil for current collector |
WO2010100924A1 (en) * | 2009-03-05 | 2010-09-10 | 東洋アルミニウム株式会社 | Aluminum alloy foil for current collector and method for producing the same |
JP5448929B2 (en) * | 2010-03-01 | 2014-03-19 | 三菱アルミニウム株式会社 | Aluminum alloy hard foil having excellent bending resistance and method for producing the same |
KR101612473B1 (en) * | 2011-06-21 | 2016-04-14 | 하이드로 알루미늄 롤드 프로덕츠 게엠베하 | Chemically treated current collector foil produced of aluminum or an aluminum alloy |
-
2013
- 2013-12-25 JP JP2013266761A patent/JP6280738B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015120968A (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5856076B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
JP6174012B2 (en) | Aluminum alloy foil for electrode current collector, method for producing the same, and lithium ion secondary battery | |
JP5567719B2 (en) | Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery | |
JP5848672B2 (en) | Method for producing aluminum alloy foil and aluminum alloy foil | |
JP5816285B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
JP5448929B2 (en) | Aluminum alloy hard foil having excellent bending resistance and method for producing the same | |
KR102426287B1 (en) | Rolled copper foil for negative electrode cureent collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery | |
JP5798128B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
JP5495649B2 (en) | Aluminum alloy foil for lithium ion secondary battery and method for producing the same | |
JP6220773B2 (en) | Method for producing aluminum alloy foil for electrode current collector | |
JP2012224927A (en) | Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same | |
JP5495694B2 (en) | Aluminum alloy foil for lithium ion secondary battery and method for producing the same | |
JPWO2013176038A1 (en) | Aluminum alloy foil for electrode current collector, method for producing the same, and electrode material | |
JP6280738B2 (en) | Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, and method for producing aluminum alloy hard foil | |
JP5530865B2 (en) | Aluminum alloy foil for lithium ion battery electrode material and electrode material using the same | |
JP2014114480A (en) | Electrode collector aluminum alloy foil and method for manufacturing the same | |
JP6952024B2 (en) | Aluminum alloy foil | |
JP5830100B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
WO2012117627A1 (en) | Aluminum alloy foil for lithium ion battery electrode current collectors, and method for producing same | |
JP2012140702A (en) | Aluminum-alloy foil for positive current collector of lithium-ion battery, and manufacturing method of the same | |
JPWO2017135108A1 (en) | Aluminum alloy foil and method for producing the same | |
JP2017166027A (en) | Aluminum alloy foil | |
JP6513896B2 (en) | Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same | |
WO2018043117A1 (en) | Aluminum alloy hard thin foil for secondary battery positive electrode charge collector, secondary battery positive electrode charge collector, and production method for aluminum alloy hard thin foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6280738 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |