JP5591583B2 - Aluminum alloy foil for lithium-ion battery electrode current collector - Google Patents

Aluminum alloy foil for lithium-ion battery electrode current collector Download PDF

Info

Publication number
JP5591583B2
JP5591583B2 JP2010111908A JP2010111908A JP5591583B2 JP 5591583 B2 JP5591583 B2 JP 5591583B2 JP 2010111908 A JP2010111908 A JP 2010111908A JP 2010111908 A JP2010111908 A JP 2010111908A JP 5591583 B2 JP5591583 B2 JP 5591583B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
aluminum alloy
temperature
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111908A
Other languages
Japanese (ja)
Other versions
JP2011241410A (en
Inventor
宏樹 田中
淳 日比野
浩一郎 滝口
一郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2010111908A priority Critical patent/JP5591583B2/en
Publication of JP2011241410A publication Critical patent/JP2011241410A/en
Application granted granted Critical
Publication of JP5591583B2 publication Critical patent/JP5591583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は携帯電話やノート型パーソナルコンピューター等に利用されるリチウムイオン電池電極集電体用として好適な、高強度で加工性に優れたアルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil having high strength and excellent workability, which is suitable for a lithium ion battery electrode current collector used for a mobile phone, a notebook personal computer or the like.

リチウムイオン二次電池は正極と負極がセパレータを介して捲回された極板群からなり、これを電池ケース内へ挿入することにより作製される。電池ケースの形状としては円筒型と角型があり、ケースの形状にあわせて極板群を調製し、極板群を挿入した後、非水電解液を注入して封口する。   A lithium ion secondary battery is composed of an electrode plate group in which a positive electrode and a negative electrode are wound through a separator, and is manufactured by inserting the electrode plate group into a battery case. The battery case has a cylindrical shape and a rectangular shape. An electrode plate group is prepared according to the shape of the case, and after inserting the electrode plate group, a nonaqueous electrolyte is injected and sealed.

正極活物質にはコバルト酸リチウム、リチウムニッケル複合化合物などが用いられ、負極活物質としてはコークスや黒鉛等のリチウムイオンを吸脱着できる炭素材料が用いられている。これらの正極活物質または負極活物質はポリフッ化ビニリデン等を使用したバインダーと撹拌・混合し、正極のアルミ箔や負極の銅箔に塗布して乾燥させ、乾燥後圧延を行い、圧延中もしくは圧延前後において熱処理を行って吸着力を向上させ、所定寸法に裁断してシート状に成形し、リチウムイオン二次電池の電極とする。   As the positive electrode active material, lithium cobaltate, a lithium nickel composite compound or the like is used, and as the negative electrode active material, a carbon material capable of adsorbing and desorbing lithium ions such as coke and graphite is used. These positive electrode active materials or negative electrode active materials are stirred and mixed with a binder using polyvinylidene fluoride, etc., applied to the aluminum foil of the positive electrode or the copper foil of the negative electrode, dried, rolled after drying, and rolled or rolled. Heat treatment is performed before and after to improve the adsorptive power, cut into a predetermined size and formed into a sheet shape, and used as an electrode of a lithium ion secondary battery.

正極集電体にはアルミニウム箔が用いられているが、1回以上の充電を行った後の巻回方向における破断までの伸びが3%以上のアルミニウム箔を用いることにより、負極活物質の膨張収縮の繰り返しにより充放電サイクル中に正極が劣化して破断することを防止し、サイクル特性を向上させることが提案されている。   Although the aluminum foil is used for the positive electrode current collector, the expansion of the negative electrode active material can be achieved by using an aluminum foil having an elongation to break of 3% or more after being charged once or more. It has been proposed to improve cycle characteristics by preventing the positive electrode from deteriorating and breaking during charge and discharge cycles by repeated shrinkage.

特開2007−234277号公報JP 2007-234277 A 特開2006−134762号公報JP 2006-134762 A

前記提案のように、正極集電体用アルミニウム箔については、サイクル特性を向上させるために、伸びを大きくすることが必要であるが、熱処理を行って再結晶させる場合、200℃を超える温度に加熱すると活物質によっては変質して所定の電気特性が得られなくなる。従って、正極集電体用アルミニウム箔としては、200℃以下の極力低い温度で再結晶して伸びが大きくなるものが求められている。   As described above, the aluminum foil for the positive electrode current collector needs to have a large elongation in order to improve cycle characteristics. However, when recrystallization is performed by heat treatment, the temperature exceeds 200 ° C. When heated, the active material changes in quality and predetermined electrical characteristics cannot be obtained. Accordingly, there is a demand for an aluminum foil for a positive electrode current collector that is recrystallized at a temperature as low as 200 ° C. or less to increase elongation.

一方、活物質塗布後の乾燥工程における加熱に対しては軟化することなく、次の活物質圧延工程においても十分な強度を維持する必要があり、100℃程度に加熱されても軟化しない特性も正極集電体用アルミニウム箔には求められている。   On the other hand, it is necessary to maintain sufficient strength in the next active material rolling process without softening with respect to heating in the drying process after application of the active material. There is a demand for an aluminum foil for a positive electrode current collector.

本発明は、上記従来の問題を解消して、100℃程度の温度では軟化せず、120℃程度から軟化が始まり、さらに200℃以下の極力低い温度で再結晶して伸びが大きくなるアルミニウム箔を得るために、アルミニウム箔の成分組成、組織性状、強度特性などについて検討を行った結果としてなされたものであり、その目的は、電極製造時における活物質の塗布、圧延時には十分な強度を有し、その後の120℃程度以上の昇温で軟化を開始し、200℃以下の極力低い温度で再結晶して大きな伸びが確保できるリチウムイオン電池電極集電体用アルミニウム合金箔を提供することにある。   The present invention solves the above-mentioned conventional problems, and does not soften at a temperature of about 100 ° C., starts to soften at about 120 ° C., and further recrystallizes at a temperature as low as 200 ° C. or less to increase elongation. In order to obtain an aluminum foil, the composition of the aluminum foil, the structural properties, the strength characteristics, etc. were studied, and the purpose was to have sufficient strength during the application and rolling of the active material during electrode production. And to provide an aluminum alloy foil for a lithium ion battery electrode current collector that can be softened at a subsequent temperature rise of about 120 ° C. or higher and recrystallized at a temperature as low as 200 ° C. or lower to ensure large elongation. is there.

上記目的を達成するための請求項1によるリチウムイオン電池電極集電体用アルミニウム合金箔は、質量%で、Fe:0.8%以上2.0%以下、Si:0.35%以下、Ti:0.05%以下を含有し、残部Alおよび不可避的不純物からなり、ピンホールの発生がなく、円相当直径が10〜50nmのAl−Fe系化合物が1立方μm当たり800個以上存在し、引張強さが160MPa以上で、100℃で1分のオイルバス熱処理後の引張強さが150MPa以上で、さらに120℃で1分のオイルバス熱処理後の引張強さが150MPa未満であることを特徴とする。以下、合金成分値は全て質量%で示す。 In order to achieve the above object, the aluminum alloy foil for a lithium ion battery electrode current collector according to claim 1 is in mass%, Fe: 0.8% or more, 2.0% or less, Si: 0.35% or less, Ti : 0.05% or less, consisting of the balance Al and unavoidable impurities, no occurrence of pinholes, and 800 or more Al-Fe compounds having an equivalent circle diameter of 10 to 50 nm per cubic μm, The tensile strength is 160 MPa or more, the tensile strength after oil bath heat treatment at 100 ° C. for 1 minute is 150 MPa or more, and the tensile strength after oil bath heat treatment at 120 ° C. for 1 minute is less than 150 MPa. And Hereinafter, all alloy component values are indicated by mass%.

請求項2によるリチウムイオン電池電極集電体用アルミニウム合金箔は、請求項1において、さらに、Mn:0.05%以下、Cu:0.05%以下を含有することを特徴とする。   An aluminum alloy foil for a lithium ion battery electrode current collector according to claim 2 is characterized in that, in claim 1, it further contains Mn: 0.05% or less and Cu: 0.05% or less.

本発明によれば、電極製造時の塗布、乾燥、圧延時には十分な強度を有し、その後120℃程度の低温から軟化が始まり、さらに200℃以下の極力低い温度で熱処理することにより大きな伸びが得られ、セパレータを介して正極と負極の巻回時、さらに電極として電池に組み込まれた時には、十分な延性を有するため破断し難く、電池として充放電を繰り返した場合においても、電極の膨張収縮による電極劣化や破断を防止することができ、十分なサイクル寿命を確保することを可能とするリチウムイオン電池電極集電体用アルミニウム合金箔が提供される。   According to the present invention, it has sufficient strength at the time of application, drying, and rolling during electrode production, and then begins to soften at a low temperature of about 120 ° C., and further undergoes heat treatment at a temperature as low as 200 ° C. or less, resulting in large elongation. When the positive electrode and the negative electrode are wound through a separator and further incorporated into a battery as an electrode, it has sufficient ductility and is not easily broken, and even when the battery is repeatedly charged and discharged, the electrode expands and contracts. Thus, there is provided an aluminum alloy foil for a lithium ion battery electrode current collector, which can prevent electrode deterioration and breakage due to, and can ensure a sufficient cycle life.

本発明に係るリチウムイオン集電体用アルミニウム合金箔の成分の意義および限定理由について説明する。
Fe:
本発明のリチウムイオン集電体用アルミニウム合金箔の特徴を決める重要な合金元素であり、強度を向上させ、100℃程度の加熱における軟化を防止するとともに、120℃程度の温度で軟化を開始し、さらに再結晶温度を低下させるよう機能する。これらの機能は、Feの固溶量と析出状態の双方を制御して、強度を向上させ再結晶温度を低下させることにより得ることができる。
The significance and reasons for limitation of the components of the aluminum alloy foil for a lithium ion current collector according to the present invention will be described.
Fe:
It is an important alloying element that determines the characteristics of the aluminum alloy foil for the lithium ion current collector of the present invention, which improves strength, prevents softening when heated to about 100 ° C, and starts softening at a temperature of about 120 ° C. It further functions to lower the recrystallization temperature. These functions can be obtained by controlling both the solid solution amount of Fe and the precipitation state to improve the strength and lower the recrystallization temperature.

アルミニウム合金箔中に固溶しているFeは、100℃程度の加熱時に粒径が5nm未満のAl−Fe系化合物として微細析出して転位の移動を抑制し、材料の軟化を抑える。一方、120℃程度以上の温度では、固溶しているFeの拡散速度が遅いため、Al−Fe系化合物の析出よりも加工組織の回復速度が速くなり、軟化を開始する。そこで、Al素地(マトリックス)と整合性を持たない粒径が10〜50nmのAl−Fe系微細化合物を多数分散させることにより、熱処理時に加工組織が回復し易くなり、このため再結晶温度が低下し、200℃以下の加熱処理でも大きな伸びを得ることができる。   Fe dissolved in the aluminum alloy foil is finely precipitated as an Al—Fe-based compound having a particle size of less than 5 nm when heated at about 100 ° C., thereby suppressing dislocation movement and softening of the material. On the other hand, at a temperature of about 120 ° C. or higher, the diffusion rate of the dissolved Fe is slow, so that the recovery rate of the processed structure is faster than the precipitation of the Al—Fe-based compound, and softening starts. Therefore, by dispersing a large number of Al-Fe fine compounds having a particle size of 10 to 50 nm that are not compatible with the Al substrate (matrix), the processed structure is easily recovered during heat treatment, and the recrystallization temperature is lowered. Even with heat treatment at 200 ° C. or less, large elongation can be obtained.

Feの好ましい含有量は0.8%以上2.0%以下の範囲であり、0.8%未満では、最終冷間圧延率を80%以上としても160MPa以上の引張強さが得られず、また、Feの固溶量が少なくなり、100℃程度の加熱で強度が低下し、さらに再結晶温度を200℃以下に低下させることができない。2.0%を超えると、鋳造時に数百μmを越える粗大なAl−Fe系化合物を形成して、箔圧延時にピンホール(穴あき)生成の原因となり、健全な箔材の製造が困難となる。Feのさらに好ましい含有範囲は1.2〜1.7%である。   The preferable content of Fe is in the range of 0.8% or more and 2.0% or less, and if it is less than 0.8%, a tensile strength of 160 MPa or more cannot be obtained even if the final cold rolling rate is 80% or more, In addition, the amount of Fe dissolved is reduced, the strength is lowered by heating at about 100 ° C., and the recrystallization temperature cannot be lowered to 200 ° C. or lower. If it exceeds 2.0%, a coarse Al—Fe compound exceeding several hundred μm is formed at the time of casting, which causes pinholes (holes) generation during foil rolling, and it is difficult to produce a sound foil material. Become. A more preferable content range of Fe is 1.2 to 1.7%.

Si:
不純物として含有するが、0.35%以下に規制するのが好ましい。Si含有量が0.35%を超えると、170℃付近でSi単体あるいはAl−Fe−Si系化合物の析出が促進され延性が低下する。0.1%以下に規制するのがさらに好ましい。
Si:
Although it contains as an impurity, it is preferable to regulate to 0.35% or less. When the Si content exceeds 0.35%, precipitation of Si alone or an Al—Fe—Si based compound is accelerated at around 170 ° C., and ductility is lowered. More preferably, the content is restricted to 0.1% or less.

Ti:
鋳塊組織を微細にする効果があり、量産規模での機械的特性の変動を低減するのに役立つ。Tiの好ましい含有量は0.05%以下の範囲であり、0.05%を超えて含有すると箔圧延時のピンホールの原因となることがある。Bは、Tiと共に添加して同様な効果を得ることができるが、アルミニウム合金箔中のBの含有量は同様の理由で0.01%以下とすることが好ましい。
Ti:
It has the effect of making the ingot structure fine, and helps to reduce fluctuations in mechanical properties on a mass production scale. The preferable Ti content is in the range of 0.05% or less, and if it exceeds 0.05%, it may cause pinholes during foil rolling. B can be added together with Ti to obtain the same effect, but the content of B in the aluminum alloy foil is preferably 0.01% or less for the same reason.

Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.05%以下の範囲であり、0.05%を超えて含有すると粗大なAl−Mn系化合物が形成し易くなり、ピンホールの発生が誘発される。Mnのさらに好ましい含有範囲は0.02%以下である。
Mn:
Mn functions to improve strength. The preferable content of Mn is in the range of 0.05% or less, and when it exceeds 0.05%, a coarse Al—Mn compound is easily formed, and the generation of pinholes is induced. A more preferable content range of Mn is 0.02% or less.

Cu:
強度を向上させるよう機能する。Cuの好ましい含有量は0.05%以下の範囲であり、含有量が多いと固溶Cu量が多くなり転位の移動が抑制され、その結果、200℃以下では再結晶が完了せず、大きな伸びが得られなくなる。
Cu:
Functions to improve strength. The preferable content of Cu is in the range of 0.05% or less. When the content is large, the amount of dissolved Cu increases and the movement of dislocations is suppressed. As a result, recrystallization is not completed at 200 ° C. or less, which is large. Elongation cannot be obtained.

アルミニウム合金箔中には、Mg、Zn、Ga、Ni、Cr、Sn、Pb、Vなどの不可避不純物が含有されている。Zn、Ga、Ni、Cr、Sn、Pb、Vの含有は再結晶温度を上昇させないために、それぞれ0.02%以下に規制するのが好ましい。Mgについては、含有量が多くなるとMgがアルミニウム素地とアルミニウム酸化皮膜との界面に濃縮してMgO層が形成され、このMgO層がウィークバウンダリーレイヤーとなって接着性を低下させるため0.005%以下に規制するのが好ましい。   The aluminum alloy foil contains inevitable impurities such as Mg, Zn, Ga, Ni, Cr, Sn, Pb, and V. The contents of Zn, Ga, Ni, Cr, Sn, Pb and V are preferably regulated to 0.02% or less in order not to raise the recrystallization temperature. As for Mg, as the content increases, Mg concentrates at the interface between the aluminum base and the aluminum oxide film to form an MgO layer. This MgO layer becomes a weak boundary layer and decreases the adhesiveness. It is preferable to regulate to% or less.

Al−Fe系化合物の分散状態:
0.8%以上のFeを含む状態で熱間圧延や冷間圧延を行うと、鋳造時に形成した粒径50〜100μm程度のAl−Fe系化合物が分断化され、厚さ50μm以下の箔材では粒径が50nm以下の微細な化合物となって分散する。これらの微細化合物によって、冷間圧延時に強度が上昇する。また、これらAl−Fe系化合物はAl素地と整合性を持たず、温度が上昇すると、Al−Fe系化合物とAl素地の界面が空孔の供給源となって転位の移動を容易にし、再結晶温度を下げる効果があることが見出された。なお、化合物の粒径は全て円相当直径で示す。
Dispersion state of Al-Fe compound:
When hot rolling or cold rolling is performed in a state containing Fe of 0.8% or more, the Al—Fe compound having a particle size of about 50 to 100 μm formed at the time of casting is divided, and a foil material having a thickness of 50 μm or less Then, the fine particles having a particle size of 50 nm or less are dispersed. These fine compounds increase the strength during cold rolling. In addition, these Al—Fe compounds are not compatible with the Al substrate, and when the temperature rises, the interface between the Al—Fe compound and the Al substrate becomes a source of vacancies, facilitating the movement of dislocations. It has been found that there is an effect of lowering the crystallization temperature. In addition, all the particle diameters of a compound are shown by a circle equivalent diameter.

Al−Fe系化合物の分散状態と再結晶温度の相関を詳細に調査した結果、粒径が10〜50nmの微細Al−Fe系化合物が1立方μmあたり800個以上存在すると、200℃以下で再結晶が完了することがわかった。なお、当該化合物の存在密度は透過型電子顕微鏡を用いて定量化した(透過電子顕微鏡法、諸住正太郎訳、コロナ社、568頁参照)。明視野像から化合物の数を測定し、測定エリアの面積と測定位置のサンプル厚さから単位体積あたりの化合物数を算出した。サンプル厚さは透過型電子顕微鏡で観察される消衰縞を利用して、観察される白黒の縞模様の数と消衰距離の積で厚さを算出した。   As a result of investigating the correlation between the dispersion state of the Al—Fe compound and the recrystallization temperature in detail, when 800 or more fine Al—Fe compounds having a particle size of 10 to 50 nm are present per cubic μm, the recrystallization is performed at 200 ° C. or less. Crystals were found to be complete. The abundance of the compound was quantified using a transmission electron microscope (transmission electron microscopy, translated by Shotaro Moromi, Corona, page 568). The number of compounds was measured from the bright field image, and the number of compounds per unit volume was calculated from the area of the measurement area and the sample thickness at the measurement position. The thickness of the sample was calculated from the product of the number of black and white stripes observed and the extinction distance using extinction stripes observed with a transmission electron microscope.

120℃の温度で金属組織が回復し、再結晶が開始されれば、200℃以下の熱処理で大きな伸びが得られる。このためには120℃で1分のオイルバス熱処理後の引張強さが150MPa未満であることが必要である。120℃で1分のオイルバス熱処理後の強度低下が小さく、引張強さが150MPa以上となった場合には、回復程度が遅れ、200℃以下の熱処理で大きな伸びを得ることができない。大きな伸びを得るためには、200℃を超える熱処理が必要となり、活物質の性能低下を招く。   If the metal structure recovers at a temperature of 120 ° C. and recrystallization is started, a large elongation can be obtained by a heat treatment at 200 ° C. or less. For this purpose, it is necessary that the tensile strength after oil bath heat treatment at 120 ° C. for 1 minute is less than 150 MPa. When the strength reduction after oil bath heat treatment at 120 ° C. for 1 minute is small and the tensile strength becomes 150 MPa or more, the degree of recovery is delayed and large elongation cannot be obtained by heat treatment at 200 ° C. or less. In order to obtain a large elongation, a heat treatment exceeding 200 ° C. is required, resulting in a decrease in performance of the active material.

製造工程:
本発明のリチウムイオン電池電極集電体用アルミニウム合金箔は、前記組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化処理、熱間圧延、冷間圧延、中間焼鈍、最終冷間圧延を経て製造される。均質化処理は400〜580℃の温度で行うのが好ましく、400℃未満では、量産規模の箔材において機械的性質の変動が顕著となり好ましくない。また、580℃を超えるとAl−Fe系化合物の一部が粗大化、一部が固溶消滅(いわゆるオストワルド成長)し、箔材段階でのAl−Fe系化合物の分散数が減少し、200℃以下で再結晶が完了し難くなる。保持時間は製造コストの観点から24h以下とすることが好ましい。
Manufacturing process:
The aluminum alloy foil for a lithium ion battery electrode current collector of the present invention is obtained by melting and casting an aluminum alloy having the above composition, and homogenizing the obtained ingot, hot rolling, cold rolling, intermediate annealing, final Manufactured through cold rolling. The homogenization treatment is preferably performed at a temperature of 400 to 580 ° C., and if it is less than 400 ° C., the fluctuation of mechanical properties becomes remarkable in a mass production scale foil material, which is not preferable. When the temperature exceeds 580 ° C., a part of the Al—Fe compound is coarsened, and part of the Al—Fe compound is dissolved (so-called Ostwald growth), and the number of dispersed Al—Fe compounds at the foil material stage is reduced. Recrystallization is difficult to complete below ℃. The holding time is preferably 24 hours or less from the viewpoint of manufacturing cost.

熱間圧延は、巻き取り温度を再結晶温度以下、好ましくは260℃以下とするよう行う。これは、固溶Fe量の減少を抑えることと、熱間圧延加工で導入される転位を残存させて析出サイトを増やし、中間焼鈍時における微細析出を促進させるためである。巻き取られた熱間圧延板については、中間焼鈍を行いまたは行わず、冷間圧延を行い、さらに中間焼鈍を施す。   Hot rolling is performed so that the coiling temperature is lower than the recrystallization temperature, preferably 260 ° C. or lower. This is to suppress the decrease in the amount of solid solution Fe and to leave the dislocations introduced in the hot rolling process to increase the number of precipitation sites, thereby promoting fine precipitation during intermediate annealing. The wound hot-rolled sheet is subjected to cold rolling and further intermediate annealing, with or without intermediate annealing.

冷間圧延後の中間焼鈍は、300〜340℃の温度で12h以下の時間行う。この中間熱処理は量産規模で製造する材料の機械的性質の変動を低減するために行われるもので、300℃未満ではその効果が小さく、340℃を超えると再結晶粒が粗大になって箔圧延時にピンホールの原因となる。保持時間は製造コストの観点から12h以下とすることが好ましい。より好ましくは2h以上で8h以下とする。   The intermediate annealing after the cold rolling is performed at a temperature of 300 to 340 ° C. for 12 hours or less. This intermediate heat treatment is performed to reduce fluctuations in the mechanical properties of the material to be manufactured on a mass production scale. The effect is small at less than 300 ° C, and the recrystallized grains become coarse when the temperature exceeds 340 ° C. Sometimes causes pinholes. The holding time is preferably 12 hours or less from the viewpoint of manufacturing cost. More preferably, it is 2 h or more and 8 h or less.

中間焼鈍後の最終冷間圧延における圧延率は再結晶挙動と密接に関連し、厳密な制御が必要となる。最終冷間圧延の圧延率は85%以上が好ましく、95%以上とするのがより好ましい。最終冷間圧延の圧延率が85%未満では再結晶が起こり難くなり、200℃以下の温度で熱処理しても再結晶が完了せず、大きな伸びが得られない。各冷間圧延において、材料温度が高くなると、加工組織が回復して再結晶の駆動力が低減するため、最終製品の箔について、200℃以下の温度で熱処理しても再結晶が完了せず、大きな伸びが得られない。従って、最終冷間圧延における各冷間圧延での巻き取り温度は90℃未満とするのが好ましい。   The rolling ratio in the final cold rolling after the intermediate annealing is closely related to the recrystallization behavior and requires strict control. The rolling rate of final cold rolling is preferably 85% or more, and more preferably 95% or more. When the rolling ratio of the final cold rolling is less than 85%, recrystallization hardly occurs, and even if heat treatment is performed at a temperature of 200 ° C. or less, recrystallization is not completed and large elongation cannot be obtained. In each cold rolling, if the material temperature becomes high, the work structure is recovered and the driving force for recrystallization is reduced. Therefore, even if the final product foil is heat-treated at a temperature of 200 ° C. or less, the recrystallization is not completed. , You can not get a large elongation. Accordingly, the winding temperature in each cold rolling in the final cold rolling is preferably less than 90 ° C.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、半連続鋳造法にて造塊し、得られた鋳塊について520℃で10hの均質化処理を行った。ついで、450〜230℃の温度範囲で熱間圧延を行って230℃で巻き取り、厚さ3mmの熱間圧延板を得た。さらに、得られた熱間圧延板に330℃の温度で4hの中間焼鈍を実施した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 was melted and ingot-formed by a semi-continuous casting method, and the resulting ingot was homogenized at 520 ° C. for 10 hours. Subsequently, hot rolling was performed in a temperature range of 450 to 230 ° C. and winding was performed at 230 ° C. to obtain a hot rolled plate having a thickness of 3 mm. Further, the obtained hot rolled sheet was subjected to intermediate annealing for 4 hours at a temperature of 330 ° C.

その後、厚さ0.5mmまで、巻き取り温度を90〜120℃として冷間圧延した後、310℃の温度で6hの中間焼鈍を実施した。次に、最終冷間圧延として、巻き取り温度60〜80℃で冷間圧延を繰り返し、厚さ15μmのアルミニウム合金箔を得た。中間焼鈍後の各冷間圧延においては、圧下量の調整、各冷間圧延後のコイルの温度が十分に低下してから次の圧延を行う等の調整を行うことにより、巻き取り温度が前記温度となるようにした。   Thereafter, cold rolling was performed at a winding temperature of 90 to 120 ° C. to a thickness of 0.5 mm, and then an intermediate annealing was performed at a temperature of 310 ° C. for 6 hours. Next, as the final cold rolling, cold rolling was repeated at a winding temperature of 60 to 80 ° C. to obtain an aluminum alloy foil having a thickness of 15 μm. In each cold rolling after the intermediate annealing, by adjusting the reduction amount, adjusting the coil temperature after each cold rolling sufficiently to perform the next rolling, etc., the winding temperature is It was made to become temperature.

得られたアルミニウム合金箔を試験材として、ピンホールの発生の有無を観察し、引張強さを測定した。また、前記の透過型電子顕微鏡法により、粒径が10〜50nmのAl−Fe系化合物の1立方μm当たりの数を測定した。さらに、100℃で1分のオイルバス熱処理後の引張強さを測定し、さらに前記熱処理後の試験材を、170℃で1分のオイルバス熱処理し、引張強さおよび伸びを測定した。また、前記とは別に、100℃で1分のオイルバス熱処理後の試験材を120℃で1分のオイルバス熱処理し引張強さを測定した。これらの結果を表2に示す。なお、表1〜2において、本発明の条件を外れたものには下線を付した。   Using the obtained aluminum alloy foil as a test material, the presence or absence of pinholes was observed and the tensile strength was measured. In addition, the number of Al—Fe compounds having a particle diameter of 10 to 50 nm per cubic μm was measured by the transmission electron microscopy. Furthermore, the tensile strength after an oil bath heat treatment at 100 ° C. for 1 minute was measured, and the test material after the heat treatment was further subjected to an oil bath heat treatment at 170 ° C. for 1 minute to measure the tensile strength and elongation. Separately from the above, the test material after oil bath heat treatment at 100 ° C. for 1 minute was subjected to oil bath heat treatment at 120 ° C. for 1 minute, and the tensile strength was measured. These results are shown in Table 2. In Tables 1 and 2, those outside the conditions of the present invention are underlined.

Figure 0005591583
Figure 0005591583

Figure 0005591583
Figure 0005591583

表2に示すように、本発明に従う試験材1〜6はいずれも、ピンホールの発生がなく、試験材(厚さ15μmのアルミニウム合金箔)には粒径10〜50nmのAl−Fe系化合物が800個/立方μm以上存在し、引張強さは160MPa以上で、100℃熱処理後の引張強さは150MPa以上、120℃熱処理後の引張強さは150MPa未満、170℃熱処理後の伸びは4%以上であった。   As shown in Table 2, all of the test materials 1 to 6 according to the present invention have no pinholes, and the test material (aluminum alloy foil having a thickness of 15 μm) has an Al—Fe-based compound with a particle size of 10 to 50 nm. 800 pieces / cubic μm or more, tensile strength is 160 MPa or more, tensile strength after heat treatment at 100 ° C. is 150 MPa or more, tensile strength after heat treatment at 120 ° C. is less than 150 MPa, and elongation after heat treatment at 170 ° C. is 4 % Or more.

これに対して、試験材7はFe含有量が0.8%未満のため100℃処理後に強度が低下して150MPaより低くなり、粒径10〜50nmのAl−Fe系化合物が800個/立方μm未満となって、170℃熱処理後の伸びが3%未満となった。試験材8はFe含有量が2%超えているため、鋳造時に粗大化合物が形成し、箔圧延時にピンホールが発生した。試験材9はSiが0.35%を超えて含有しているため、170℃熱処理でAl−Fe−Si系化合物の析出が促進され、伸びが3%未満となった。   On the other hand, since the test material 7 has an Fe content of less than 0.8%, the strength decreases after treatment at 100 ° C. and becomes lower than 150 MPa, and the number of Al—Fe compounds having a particle size of 10 to 50 nm is 800 / cubic. Less than μm, the elongation after heat treatment at 170 ° C. was less than 3%. Since the test material 8 had an Fe content exceeding 2%, a coarse compound was formed during casting, and pinholes were generated during foil rolling. Since the test material 9 contains Si exceeding 0.35%, precipitation of the Al—Fe—Si compound was promoted by heat treatment at 170 ° C., and the elongation was less than 3%.

試験材10はTiが0.05%より多く含有しているため粗大金属間化合物が形成し、箔圧延時にピンホールが発生した。試験材11はFe含有量が0.8%未満のため100℃処理後に強度が低下して150MPaより低くなる。また、粒径10〜50nmのAl−Fe系化合物が800個/立方μm未満となり、170℃熱処理後の伸びが3%未満となった。試験材12は、従来材の1085合金の特性であり、粒径10〜50nmのAl−Fe系化合物が800個/立方μm未満、170℃熱処理後の伸びが3%未満となった。   Since the test material 10 contained more than 0.05% Ti, a coarse intermetallic compound was formed, and pinholes were generated during foil rolling. Since the test material 11 has an Fe content of less than 0.8%, the strength decreases after treatment at 100 ° C. and becomes lower than 150 MPa. In addition, the number of Al—Fe compounds having a particle diameter of 10 to 50 nm was less than 800 / cubic μm, and the elongation after heat treatment at 170 ° C. was less than 3%. The test material 12 has the characteristics of the conventional material 1085 alloy. The Al-Fe compound having a particle size of 10 to 50 nm was less than 800 / cubic μm, and the elongation after heat treatment at 170 ° C. was less than 3%.

実施例2、比較例2
表1の合金Bの鋳塊を用いて、表3に示す製造条件で厚さ15μmのアルミニウム合金箔に製箔し、得られたアルミニウム合金箔を試験材として、実施例1と同様に、ピンホールの発生の有無を観察し、引張強さを測定し、また、前記の透過型電子顕微鏡法により、粒径が10〜50nmのAl−Fe系化合物の1立方μm当たりの数を測定した。さらに、100℃で1分のオイルバス熱処理後の引張強さを測定し、さらに前記熱処理後の試験材を、170℃で1分のオイルバス熱処理し、引張強さおよび伸びを測定した。また、前記とは別に、100℃で1分のオイルバス熱処理後の試験材を120℃で1分のオイルバス熱処理し引張強さを測定した。これらの結果を表3に示す。なお、表3において、本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 2
Using the ingot of alloy B in Table 1, an aluminum alloy foil having a thickness of 15 μm was produced under the production conditions shown in Table 3, and the obtained aluminum alloy foil was used as a test material in the same manner as in Example 1. The presence or absence of holes was observed, the tensile strength was measured, and the number of Al—Fe compounds having a particle size of 10 to 50 nm per cubic μm was measured by the transmission electron microscopy. Furthermore, the tensile strength after an oil bath heat treatment at 100 ° C. for 1 minute was measured, and the test material after the heat treatment was further subjected to an oil bath heat treatment at 170 ° C. for 1 minute to measure the tensile strength and elongation. Separately from the above, the test material after oil bath heat treatment at 100 ° C. for 1 minute was subjected to oil bath heat treatment at 120 ° C. for 1 minute, and the tensile strength was measured. These results are shown in Table 3. In Table 3, those outside the conditions of the present invention are underlined.

Figure 0005591583
Figure 0005591583

表3に示すように、本発明に従う試験材13〜15はいずれも、箔圧延時のピンホールの発生がなく、試験材(厚さ15μmのアルミニウム合金箔)には粒径10〜50nmのAl−Fe系化合物が800個/立方μm以上存在し、引張強さは160MPa以上で、100℃熱処理後の引張強さは150MPa以上、120℃熱処理後の引張強さは150MPa未満、170℃熱処理後の伸びは4%以上であった。   As shown in Table 3, none of the test materials 13 to 15 according to the present invention had pinholes during foil rolling, and the test material (aluminum alloy foil having a thickness of 15 μm) had an Al particle size of 10 to 50 nm. -Fe compounds are present in 800 pieces / cubic μm or more, tensile strength is 160 MPa or more, tensile strength after heat treatment at 100 ° C. is 150 MPa or more, tensile strength after heat treatment at 120 ° C. is less than 150 MPa, after heat treatment at 170 ° C. The elongation of 4% or more.

これに対して、試験材16は均質化処理温度が580℃を超えているため、Al−Fe系化合物のオストワルド成長が促進され、結果的に粒径10〜50nmのAl−Fe系化合物が800個/立方μm未満となり、170℃熱処理後の伸びが3%未満となった。試験材17は中間焼鈍の温度が340℃より高く長時間保持されたため、結晶粒の粗大化が生じ、箔圧延時にピンホールが発生した。   On the other hand, since the test material 16 has a homogenization treatment temperature exceeding 580 ° C., the Ostwald growth of the Al—Fe based compound is promoted, and as a result, the Al—Fe based compound having a particle size of 10 to 50 nm becomes 800 nm. The number was less than 1 piece / cubic μm, and the elongation after heat treatment at 170 ° C. was less than 3%. Since the test material 17 was maintained at a temperature higher than 340 ° C. for a long time, the crystal grains were coarsened, and pinholes were generated during foil rolling.

試験材18は最終冷間圧延の圧延率が85%未満であったため、170℃熱処理時の再結晶が遅れ、伸びが3%未満となった。試験材19は熱間圧延の巻き取り温度が再結晶温度以上の340℃であったため、粒径10〜50nmのAl−Fe系化合物が800個/立方μm未満となり、170℃熱処理後の伸びが3%未満となった。試験材20は最終冷間圧延の巻き取り温度が140℃であったため、加工組織の回復が促進されて120℃熱処理後の引張強さは150MPa以上となり、170℃熱処理時の再結晶が遅れ、伸びが3%未満となった。   Since the test material 18 had a final cold rolling reduction rate of less than 85%, recrystallization during 170 ° C. heat treatment was delayed, and the elongation was less than 3%. Since the test material 19 had a hot rolling coiling temperature of 340 ° C., which is equal to or higher than the recrystallization temperature, the number of Al—Fe compounds having a particle size of 10 to 50 nm was less than 800 / cubic μm, and the elongation after 170 ° C. heat treatment was increased. Less than 3%. Since the test material 20 had a final cold rolling coiling temperature of 140 ° C., the recovery of the processed structure was promoted, the tensile strength after 120 ° C. heat treatment was 150 MPa or more, and recrystallization during 170 ° C. heat treatment was delayed, The elongation was less than 3%.

Claims (2)

質量%で、Fe:0.8%以上2.0%以下、Si:0.35%以下、Ti:0.05%以下を含有し、残部Alおよび不可避的不純物からなり、ピンホールの発生がなく、円相当直径が10〜50nmのAl−Fe系化合物が1立方μm当たり800個以上存在し、引張強さが160MPa以上で、100℃で1分のオイルバス熱処理後の引張強さが150MPa以上で、さらに120℃で1分のオイルバス熱処理後の引張強さが150MPa未満であることを特徴とするリチウムイオン電池電極集電体用アルミニウム合金箔。 In mass%, Fe: 0.8% or more and 2.0% or less, Si: 0.35% or less, Ti: 0.05% or less, consisting of the balance Al and inevitable impurities , generation of pinholes There are not less than 800 Al-Fe compounds having an equivalent circle diameter of 10 to 50 nm per cubic μm, the tensile strength is 160 MPa or more, and the tensile strength after oil bath heat treatment at 100 ° C. for 1 minute is 150 MPa. The aluminum alloy foil for a lithium ion battery electrode current collector, further having a tensile strength after oil bath heat treatment at 120 ° C. for 1 minute of less than 150 MPa. さらに、質量%で、Mn:0.05%以下、Cu:0.05%以下を含有することを特徴とする請求項1記載のリチウムイオン電池電極集電体用アルミニウム合金箔。 The aluminum alloy foil for a lithium ion battery electrode current collector according to claim 1, further comprising, by mass%, Mn: 0.05% or less and Cu: 0.05% or less.
JP2010111908A 2010-05-14 2010-05-14 Aluminum alloy foil for lithium-ion battery electrode current collector Active JP5591583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111908A JP5591583B2 (en) 2010-05-14 2010-05-14 Aluminum alloy foil for lithium-ion battery electrode current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111908A JP5591583B2 (en) 2010-05-14 2010-05-14 Aluminum alloy foil for lithium-ion battery electrode current collector

Publications (2)

Publication Number Publication Date
JP2011241410A JP2011241410A (en) 2011-12-01
JP5591583B2 true JP5591583B2 (en) 2014-09-17

Family

ID=45408380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111908A Active JP5591583B2 (en) 2010-05-14 2010-05-14 Aluminum alloy foil for lithium-ion battery electrode current collector

Country Status (1)

Country Link
JP (1) JP5591583B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848672B2 (en) * 2011-06-07 2016-01-27 株式会社Uacj Method for producing aluminum alloy foil and aluminum alloy foil
JP6035058B2 (en) * 2012-06-13 2016-11-30 株式会社Uacj Aluminum alloy foil
JP5927614B2 (en) * 2012-08-29 2016-06-01 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
JP5959423B2 (en) * 2012-12-03 2016-08-02 株式会社Uacj Aluminum alloy foil
KR20160075604A (en) 2013-10-25 2016-06-29 가부시키가이샤 유에이씨제이 Aluminum alloy foil for electrode current collector, and method for producing same
JP6431315B2 (en) * 2014-08-14 2018-11-28 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing the same
JP6679462B2 (en) * 2016-10-21 2020-04-15 三菱アルミニウム株式会社 Aluminum alloy foil for battery current collector and method for producing the same
JP2019065312A (en) * 2017-09-28 2019-04-25 株式会社Uacj Aluminum alloy foil for power collection and manufacturing method therefor
JP6730382B2 (en) * 2018-08-13 2020-07-29 三菱アルミニウム株式会社 Aluminum foil for battery current collector and method of manufacturing the same
JP6936293B2 (en) * 2019-10-23 2021-09-15 三菱アルミニウム株式会社 Aluminum alloy foil
US20220149491A1 (en) * 2020-11-06 2022-05-12 Sk Innovation Co., Ltd. Electrode for lithium secondary battery and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889935B2 (en) * 2003-10-09 2012-03-07 昭和電工株式会社 Aluminum hard foil electrode material and lithium ion secondary battery using the same
JP5324911B2 (en) * 2008-12-26 2013-10-23 住友軽金属工業株式会社 Aluminum alloy foil for lithium-ion battery electrode current collector

Also Published As

Publication number Publication date
JP2011241410A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5591583B2 (en) Aluminum alloy foil for lithium-ion battery electrode current collector
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
US9947917B2 (en) Aluminum alloy foil for current collector of electrode, and manufacturing method thereof
JP5567719B2 (en) Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
US9715971B2 (en) Aluminum alloy foil for electrode charge collector, and method for producing same
WO2013018164A1 (en) Aluminum alloy foil for electrode collector and production method therefor
US20200365906A1 (en) Aluminum-alloy foil for current collector and method for manufacturing thereof
JP5495694B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
WO2013018165A1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP5582791B2 (en) Aluminum alloy foil for lithium-ion battery electrode current collector
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
KR101944243B1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP2012052204A (en) Aluminum alloy foil for lithium-ion battery electrode material, and electrode material using the same
WO2012117627A1 (en) Aluminum alloy foil for lithium ion battery electrode current collectors, and method for producing same
JP2015120968A (en) Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for lithium ion secondary battery positive collector and manufacturing method for aluminum alloy hard foil
JPWO2017135108A1 (en) Aluminum alloy foil and method for producing the same
JP6513896B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP6769727B2 (en) Aluminum alloy foil for battery current collector and its manufacturing method
JP2020132993A (en) Aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350