JP2014088598A - Aluminum alloy foil - Google Patents

Aluminum alloy foil Download PDF

Info

Publication number
JP2014088598A
JP2014088598A JP2012239312A JP2012239312A JP2014088598A JP 2014088598 A JP2014088598 A JP 2014088598A JP 2012239312 A JP2012239312 A JP 2012239312A JP 2012239312 A JP2012239312 A JP 2012239312A JP 2014088598 A JP2014088598 A JP 2014088598A
Authority
JP
Japan
Prior art keywords
foil
less
aluminum alloy
alloy foil
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012239312A
Other languages
Japanese (ja)
Other versions
JP5959405B2 (en
Inventor
Hiroki Tanaka
宏樹 田中
Shingo Iwamura
信吾 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012239312A priority Critical patent/JP5959405B2/en
Priority to KR1020157011234A priority patent/KR20150070201A/en
Priority to CN201380056002.6A priority patent/CN104769141B/en
Priority to MYPI2015701320A priority patent/MY182959A/en
Priority to DE112013005208.3T priority patent/DE112013005208T5/en
Priority to PCT/JP2013/075077 priority patent/WO2014069119A1/en
Publication of JP2014088598A publication Critical patent/JP2014088598A/en
Application granted granted Critical
Publication of JP5959405B2 publication Critical patent/JP5959405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy foil capable of allowing strength to be further improved without seriously impairing conductivity.SOLUTION: An aluminum alloy foil includes 0.1-0.6 mass% of Si and 0.2-1.0 mass% of Fe as chemical composition, and is composed of Al and inevitable impurities as the residue. In the aluminum alloy foil, a foil thickness is 20 μm or less, an area ratio of subgrains with a crystal grain size of 2 μm or less is 40% or more if a boundary of which a difference in orientation is 5° ± 0.2° between neighboring crystal orientation measuring points is defined as a crystal grain boundary, a tensile strength is 210 MPa or more, and resistivity measured in liquid nitrogen is 0.45-0.7 μΩ cm.

Description

本発明は、アルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil.

従来より、アルミニウム合金箔は様々な分野において使用されている。近年では、アルミニウム合金箔は、薄くて導電性があるなどの観点から、例えば、リチウムイオン電池等の二次電池や電気二重層コンデンサの集電体などとして使用されている。具体的には、リチウムイオン電池の場合、特許文献1、2に開示されるように、集電体としてのアルミニウム合金箔の一方の面に正極活物質およびバインダーを含む層を塗工し、乾燥させた後、正極活物質の密度向上と箔への密着性を向上させるために圧延を行うことによって正極が製造されている。   Conventionally, aluminum alloy foil has been used in various fields. In recent years, aluminum alloy foil has been used as a secondary battery such as a lithium ion battery or a current collector of an electric double layer capacitor from the viewpoint of being thin and conductive. Specifically, in the case of a lithium ion battery, as disclosed in Patent Documents 1 and 2, a layer containing a positive electrode active material and a binder is applied to one surface of an aluminum alloy foil as a current collector and dried. Then, the positive electrode is manufactured by rolling in order to improve the density of the positive electrode active material and the adhesion to the foil.

上記アルミニウム合金箔としては、例えば、特許文献3には、Si:0.01〜0.60質量%、Fe:0.2〜1.0質量%、Cu:0.05〜0.50質量%、Mn:0.5〜1.5質量%を含有し、残部がAlおよび不可避不純物からなり、引張強さが240MPa以上であり、n値が0.1以上であるリチウムイオン電池用のアルミニウム合金箔が開示されている。   As said aluminum alloy foil, for example, in patent document 3, Si: 0.01-0.60 mass%, Fe: 0.2-1.0 mass%, Cu: 0.05-0.50 mass% , Mn: Aluminum alloy for lithium ion batteries containing 0.5 to 1.5 mass%, the balance being Al and inevitable impurities, tensile strength is 240 MPa or more, and n value is 0.1 or more A foil is disclosed.

なお、特許文献4には、リチウムイオン電池用のアルミニウム合金箔ではないが、Si:0.05〜0.30質量%、Fe:0.15〜0.60質量%、Cu:0.01〜0.20質量%を含有し、残部がAlおよび不可避的不純物からなり、引張強さが186〜212N/mm程度、箔厚が30μm〜100μm程度の多孔加工用のアルミニウム合金箔が開示されている。 In addition, although it is not aluminum alloy foil for lithium ion batteries in patent document 4, Si: 0.05-0.30 mass%, Fe: 0.15-0.60 mass%, Cu: 0.01- Disclosed is an aluminum alloy foil for porous processing containing 0.20% by mass, the balance being made of Al and inevitable impurities, a tensile strength of about 186 to 212 N / mm 2 , and a foil thickness of about 30 μm to 100 μm. Yes.

特開2007−234277号公報JP 2007-234277 A 特開平11−67220号公報Japanese Patent Laid-Open No. 11-67220 特開2011−26656号公報JP 2011-26656 A 特開2006−283114号公報JP 2006-283114 A

しかしながら、従来のアルミニウム合金箔は、以下の点で問題がある。すなわち、上述したように、アルミニウム合金箔は、電池電極等の箔使用部材の製造時において、圧延等により圧縮力を受ける。そのため、アルミニウム合金箔は、このような圧縮力に対して不必要な変形や破損を生じないように十分な強度が求められる。近年では、さらなる箔の薄肉化が求められており、これに対応するためにさらなる強度の向上が望まれている。   However, the conventional aluminum alloy foil has problems in the following points. That is, as described above, the aluminum alloy foil receives a compressive force by rolling or the like when manufacturing a foil-use member such as a battery electrode. Therefore, the aluminum alloy foil is required to have sufficient strength so as not to cause unnecessary deformation and breakage against such a compressive force. In recent years, further thinning of the foil has been demanded, and in order to cope with this, further improvement in strength is desired.

箔の高強度化を図るための代表的な手法として、アルミニウム合金成分を調整する方法がある。しかしながら、単なる合金成分の調整だけでは、Al以外の合金成分の添加によって箔の比抵抗が大きくなり、導電性が低下する。このように、従来のアルミニウム合金箔は、導電性を大きく損なうことなく、さらなる強度の向上を図ることが困難であるという問題がある。   As a typical method for increasing the strength of the foil, there is a method of adjusting an aluminum alloy component. However, by simply adjusting the alloy components, the specific resistance of the foil increases due to the addition of alloy components other than Al, and the conductivity decreases. Thus, the conventional aluminum alloy foil has a problem that it is difficult to further improve the strength without greatly impairing the conductivity.

本発明は、このような背景に鑑みてなされたものであり、導電性を大きく損なうことなく、さらなる強度の向上を図ることが可能なアルミニウム合金箔を提供しようとして得られたものである。   The present invention has been made in view of such a background, and has been obtained in an attempt to provide an aluminum alloy foil capable of further improving the strength without greatly impairing electrical conductivity.

本発明の一態様は、化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.0%以下を含有し、残部がAlおよび不可避的不純物からなり、箔厚が20μm以下であり、隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界と規定した場合、結晶粒径2μm以下のサブグレインの面積率が40%以上であり、引張強さが210MPa以上であり、液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔にある(請求項1)。   In one embodiment of the present invention, the chemical component includes, by mass, Si: 0.1% to 0.6%, Fe: 0.2% to 1.0%, and the balance is Al and inevitable Subgrains with a crystal grain size of 2 μm or less, when a boundary consisting of impurities and having a foil thickness of 20 μm or less and an orientation difference between adjacent crystal orientation measurement points of 5 ° ± 0.2 ° is defined as a grain boundary The aluminum alloy foil is characterized by having an area ratio of 40% or more, a tensile strength of 210 MPa or more, and a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm. (Claim 1).

上記アルミニウム合金箔は、上記特定の構成を有しているので、導電性を大きく損なうことなく、さらなる強度の向上を図ることができる。上記アルミニウム合金箔は、さらなる強度の向上により十分な強度を発揮することができるので、例えば、電池電極等の箔使用部材の製造時に圧延等による圧縮力が加えられた場合でも、不必要な塑性変形を抑制することができ、箔の薄肉化も実現しやすくなる。また、上記アルミニウム合金箔は、強度向上によっても導電性が大きく損なわれず良好な導電性を確保することができる。そのため、上記アルミニウム合金箔を例えば、リチウムイオン電池等の二次電池等における電極の集電体として用いれば、電池の高密度・高エネルギー化に寄与することができる。   Since the said aluminum alloy foil has the said specific structure, the improvement of the further intensity | strength can be aimed at, without impairing electroconductivity largely. Since the aluminum alloy foil can exhibit sufficient strength by further improving the strength, for example, unnecessary plasticity even when a compressive force is applied by rolling or the like when manufacturing a foil-use member such as a battery electrode. Deformation can be suppressed, and thinning of the foil can be easily realized. Moreover, the said aluminum alloy foil can ensure favorable electroconductivity, without impairing electroconductivity largely by strength improvement. Therefore, if the said aluminum alloy foil is used as an electrical power collector of an electrode in secondary batteries, such as a lithium ion battery, for example, it can contribute to the high density and high energy of a battery.

実施例1における試験材E11について、SEM/EBSD法にて結晶粒径2μm以下のサブグレインの面積率を測定した結果を示した図である。It is the figure which showed the result of having measured the area ratio of the subgrain with a crystal grain diameter of 2 micrometers or less by SEM / EBSD method about the test material E11 in Example 1. FIG. 実施例1における試験材C1について、SEM/EBSD法にて結晶粒径2μm以下のサブグレインの面積率を測定した結果を示した図である。It is the figure which showed the result of having measured the area ratio of the subgrain with a crystal grain diameter of 2 micrometers or less by SEM / EBSD method about the test material C1 in Example 1. FIG.

上記アルミニウム合金箔における特定の化学成分(単位は質量%、以下の化学成分の説明では単に「%」と略記)の意義および限定理由は以下の通りである。   The significance and reason for limitation of the specific chemical component (unit is mass%, in the description of the chemical component below, simply abbreviated as “%”) in the aluminum alloy foil are as follows.

Si:0.1%以上0.6%以下
Siは、箔強度の向上を図るために必要な元素である。箔製造時にアルミニウム合金の温度が350℃を超えると、固溶していたSiおよびFeがAl−Fe−Si系化合物として析出し、これにより冷間圧延時の加工硬化性が低減して箔強度が低下しやすい。そのため、箔製造時に高温での均質化処理を行わず、350℃以下の条件で熱間圧延を行うことが望ましいが、この条件下で箔強度を高め、箔の比抵抗を低減して導電性を確保するためには、Si含有量を0.1%以上0.6%以下とする必要がある。Si含有量が0.1%未満になると、箔の比抵抗は低減するが、箔の強度が向上しない。Si含有量が0.6%を超えると、さらなる箔強度の向上が困難となり、粗大なSi単相粒子が形成されて20μm以下の箔厚ではピンホールや箔切れの問題が生じやすくなる。Si含有量は、好ましくは0.12%以上であるとよい。Si含有量は、好ましくは0.4%以下であるとよい。
Si: 0.1% to 0.6% Si is an element necessary for improving the foil strength. When the temperature of the aluminum alloy exceeds 350 ° C. during the production of the foil, the dissolved Si and Fe are precipitated as Al—Fe—Si based compounds, thereby reducing the work hardenability during cold rolling and reducing the foil strength. Is prone to decline. For this reason, it is desirable to perform hot rolling under conditions of 350 ° C. or lower without performing homogenization at a high temperature during foil production. However, it is possible to increase the foil strength and reduce the specific resistance of the foil under these conditions. In order to ensure this, the Si content needs to be 0.1% or more and 0.6% or less. When the Si content is less than 0.1%, the specific resistance of the foil is reduced, but the strength of the foil is not improved. When the Si content exceeds 0.6%, it is difficult to further improve the foil strength, and coarse Si single-phase particles are formed. If the foil thickness is 20 μm or less, the problem of pinholes and foil breakage tends to occur. The Si content is preferably 0.12% or more. The Si content is preferably 0.4% or less.

Fe:0.2%以上1.0%以下
Feは、Siに次いで箔強度の向上を図るために必要な元素である。箔製造時にアルミニウム合金の温度が350℃を超えると、固溶していたSiおよびFeがAl−Fe−Si系化合物として析出し、冷間圧延時の加工硬化性が低減して箔強度が低下しやすい。そのため、箔製造時に350℃を超える高温で均質化処理を行わず、350℃以下の条件で熱間圧延を行うことが望ましいが、この条件下で箔強度を高め、箔の比抵抗を低減して導電性を確保するためには、Fe含有量を0.2%以上1.0%以下とする必要がある。Fe含有量が0.2%未満になると、箔の比抵抗は低減するが、箔の強度が向上しない。Fe含有量が1.0%を超えると、さらなる箔強度の向上が困難となり、粗大なAl−Fe系晶出物が鋳造時に形成される。上記の通り、アルミニウム合金鋳塊に対して350℃を超える高温で均質化処理を行わない場合には、鋳造時に形成されたAl−Fe系晶出物は粗大な状態のまま最終箔厚まで残存することになる。そのため、20μm以下の箔厚ではピンホールや箔切れの問題が生じやすくなる。また、必要以上のFe添加は、製造コスト増加の原因にもなる。Fe含有量は、好ましくは0.30%以上であるとよい。Fe含有量は、好ましくは0.80%以下であるとよい。
Fe: 0.2% or more and 1.0% or less Fe is an element necessary for improving the foil strength after Si. When the temperature of the aluminum alloy exceeds 350 ° C. during the foil production, the dissolved Si and Fe are precipitated as Al—Fe—Si compounds, and the work hardenability during cold rolling is reduced and the foil strength is lowered. It's easy to do. For this reason, it is desirable to perform hot rolling under conditions of 350 ° C. or lower without performing homogenization at a high temperature exceeding 350 ° C. during foil production, but under these conditions, the foil strength is increased and the specific resistance of the foil is reduced. In order to ensure conductivity, the Fe content needs to be 0.2% or more and 1.0% or less. When the Fe content is less than 0.2%, the specific resistance of the foil is reduced, but the strength of the foil is not improved. When the Fe content exceeds 1.0%, it is difficult to further improve the foil strength, and a coarse Al—Fe crystallized product is formed during casting. As described above, when the homogenization treatment is not performed on the aluminum alloy ingot at a temperature higher than 350 ° C., the Al—Fe crystallized product formed at the time of casting remains in a coarse state up to the final foil thickness. Will do. Therefore, the problem of pinholes and foil breakage tends to occur at a foil thickness of 20 μm or less. Moreover, addition of Fe more than necessary also causes an increase in manufacturing cost. The Fe content is preferably 0.30% or more. The Fe content is preferably 0.80% or less.

上記化学成分は、質量%で、Cu:0.01%以上0.25%以下をさらに含有することができる(請求項2)。この場合の意義および限定理由は以下の通りである。   The said chemical component can further contain Cu: 0.01% or more and 0.25% or less by the mass% (Claim 2). The significance and reasons for limitation in this case are as follows.

Cu:0.01%以上0.25%以下
Cuは、箔の強度向上に寄与する元素である。その効果を得るため、Cu含有量は0.01%以上とすることが好ましい。なお、0.01%未満のCuは、不可避的不純物として含まれていてもよい。一方、Cu含有量が過大になると箔の強度が増加するが比抵抗も増加する。そのため、Cu含有量は0.25%以下とすることが好ましい。Cu含有量は、好ましくは0.02%以上であるとよい。Cu含有量は、好ましくは0.18%以下であるとよい。
Cu: 0.01% or more and 0.25% or less Cu is an element that contributes to improving the strength of the foil. In order to obtain the effect, the Cu content is preferably 0.01% or more. Note that Cu of less than 0.01% may be included as an inevitable impurity. On the other hand, when the Cu content is excessive, the strength of the foil increases, but the specific resistance also increases. Therefore, the Cu content is preferably 0.25% or less. The Cu content is preferably 0.02% or more. The Cu content is preferably 0.18% or less.

上記化学成分は、不可避的不純物としてMn、Mg、Cr、Zn、Ni、Ga、V、Tiなどの元素を含有することができる。但し、Mn、Mgは、過剰に含まれると箔の比抵抗を増加させ、導電率を劣化させるおそれがある。そのため、Mn含有量は0.01%以下、Mg含有量は0.01%以下とすることが好ましい。Cr、Zn、Ni、Ga、V、Tiなどの他の元素は、比較的、比抵抗増大に寄与しない元素であるので、各元素の含有量はそれぞれ0.05%以下とすることが好ましい。また、全体の不可避的不純物の合計含有量は、0.15%以下であれば、さらなる箔強度の向上や導電性に実質的な影響を及ぼすことがないので許容することができる。   The chemical component can contain elements such as Mn, Mg, Cr, Zn, Ni, Ga, V, and Ti as inevitable impurities. However, if Mn and Mg are excessively contained, the specific resistance of the foil is increased and the electrical conductivity may be deteriorated. Therefore, it is preferable that the Mn content is 0.01% or less and the Mg content is 0.01% or less. Since other elements such as Cr, Zn, Ni, Ga, V, and Ti are elements that do not contribute to the increase in specific resistance, the content of each element is preferably 0.05% or less. Further, if the total content of inevitable impurities as a whole is 0.15% or less, it can be tolerated because it does not substantially affect the foil strength and conductivity.

上記アルミニウム合金箔において、箔厚は20μm以下である。箔厚が20μmを超えると、近年要求されることが多い箔の薄肉化(箔厚ゲージダウン)に対応することができない。上記アルミニウム合金箔は、箔厚が20μm以下であるので、例えば、箔の薄肉化の要求が大きい電池電極の集電体用途に特に好適である。上記アルミニウム合金箔において、箔厚は、薄肉化、電池等の小型化へ寄与できるなどの観点から、好ましくは20μm未満、より好ましくは19μm以下、さらに好ましくは、18μm以下、さらにより好ましくは17μm以下とすることができる。一方、箔厚は、例えば、電池製造時等の箔使用部材の製造時における取扱容易性などの観点から、好ましくは8μm以上、より好ましくは9μm以上、さらに好ましくは10μm以上とすることができる。   In the aluminum alloy foil, the foil thickness is 20 μm or less. If the foil thickness exceeds 20 μm, it cannot cope with the thinning of the foil (foil thickness gauge down), which is often required in recent years. Since the aluminum alloy foil has a foil thickness of 20 μm or less, the aluminum alloy foil is particularly suitable for use as a current collector for battery electrodes, for example, where there is a great demand for thin foil. In the aluminum alloy foil, the thickness of the foil is preferably less than 20 μm, more preferably 19 μm or less, still more preferably 18 μm or less, and even more preferably 17 μm or less, from the viewpoint of reducing the thickness and contributing to downsizing of the battery. It can be. On the other hand, the thickness of the foil is preferably 8 μm or more, more preferably 9 μm or more, and even more preferably 10 μm or more, for example, from the viewpoint of ease of handling at the time of manufacturing a foil-use member such as a battery.

上記アルミニウム合金箔において、隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界と規定した場合、結晶粒径2μm以下のサブグレインの面積率は40%以上である。具体的には、上記サブグレインの面積率は、走査電子顕微鏡/電子線後方散乱回折(Electron Back Scatter Diffraction)法(SEM/EBSD法)を用いて、ステップサイズ(結晶方位測定点間の距離)0.1μmにて箔表面900μmのエリアを分析し、隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界とみなし、上記測定エリアの面積に占める結晶粒径2μm以下のサブグレインの面積の割合(%)を算出することにより求められる。 In the aluminum alloy foil, when a boundary where the orientation difference between adjacent crystal orientation measurement points is 5 ° ± 0.2 ° is defined as a crystal grain boundary, the area ratio of subgrains having a crystal grain size of 2 μm or less is 40%. That's it. Specifically, the area ratio of the subgrain is determined by using a scanning electron microscope / Electron Back Scatter Diffraction method (SEM / EBSD method) and a step size (distance between crystal orientation measurement points). The area of the foil surface of 900 μm 2 is analyzed at 0.1 μm, and the boundary where the orientation difference between adjacent crystal orientation measurement points is 5 ° ± 0.2 ° is regarded as a crystal grain boundary and occupies the area of the measurement area. It is obtained by calculating the ratio (%) of the area of subgrains having a crystal grain size of 2 μm or less.

上記サブグレインの面積率が40%未満になると、箔の引張強さが低下し、箔の強度が低下する。上記サブグレインの面積率は、さらなる強度向上の観点から、好ましくは45%以上、より好ましくは50%以上、さらに好ましくは55%以上とすることができる。なお、上記サブグレインの面積率は、その値が高いほど好ましく、理想的には100%であると良いが、実製造上の観点からその上限は80%以下とすることができる。   When the area ratio of the subgrains is less than 40%, the tensile strength of the foil is lowered and the strength of the foil is lowered. The area ratio of the subgrains is preferably 45% or more, more preferably 50% or more, and further preferably 55% or more, from the viewpoint of further improving the strength. The area ratio of the subgrain is preferably as high as possible, and ideally 100%, but the upper limit can be 80% or less from the viewpoint of actual manufacturing.

上記アルミニウム合金箔において、引張強さは210MPa以上である。引張強さが210MPa未満ではさらなる強度の向上が図られているとはいえない。また、引張強さが210MPa未満では、例えば、薄肉化の際、箔に対して圧延等による圧縮力を加えたときに不必要な塑性変形を生じやすくなる。上記引張強さは、好ましくは213MPa以上、より好ましくは215MPa以上、さらに好ましくは220MPa以上であるとよい。なお、引張強さの上限は、特に限定されるものではないが、比抵抗とのバランスなどを考慮して最適な範囲に決定することができる。引張強さは、例えば、330MPa程度以下とすることができる。なお、引張強さは、JIS Z2241に準拠して測定される値である。   In the aluminum alloy foil, the tensile strength is 210 MPa or more. If the tensile strength is less than 210 MPa, it cannot be said that the strength is further improved. Further, if the tensile strength is less than 210 MPa, unnecessary plastic deformation is likely to occur when a compressive force by rolling or the like is applied to the foil during thinning. The tensile strength is preferably 213 MPa or more, more preferably 215 MPa or more, and further preferably 220 MPa or more. The upper limit of the tensile strength is not particularly limited, but can be determined within an optimum range in consideration of the balance with the specific resistance. The tensile strength can be, for example, about 330 MPa or less. The tensile strength is a value measured according to JIS Z2241.

上記アルミニウム合金箔において、比抵抗は0.45μΩ・cm以上0.7μΩ・cm以下である。なお、上記比抵抗は、液体窒素中で測定される値である。液体窒素中にて比抵抗を測定するのは、測定雰囲気温度の影響を除去するためである。   In the aluminum alloy foil, the specific resistance is 0.45 μΩ · cm or more and 0.7 μΩ · cm or less. The specific resistance is a value measured in liquid nitrogen. The specific resistance is measured in liquid nitrogen in order to remove the influence of the measurement ambient temperature.

比抵抗は、合金成分であるSi、Feの固溶量と相関がある。比抵抗が上記範囲内にある場合は、導電性を大きく損なうことなく、さらなる強度の向上を図りやすくなる。比抵抗が0.45μΩ・cm未満になると、箔製造時の加工硬化による強度向上が図られ難くなり、引張強さを210MPa以上とし難くなる。比抵抗は、好ましくは0.50μΩ・cm以上、より好ましくは0.55μΩ・cm以上とすることができる。一方、比抵抗が高くなると、箔製造時の加工硬化により強度向上が図られるが、比抵抗が上昇し、導電性が低下する傾向が見られる。そのため、比抵抗は、比較的高強度のアルミニウム合金箔とされる3003系アルミニウム合金箔の比抵抗の約60%である0.7μΩ・cm程度とするのがよい。比抵抗は、好ましくは0.69μΩ・cm以下、より好ましくは0.68μΩ・cm以下とすることができる。なお、比抵抗は、JIS H0505に準拠し、ダブルブリッジ法により測定することができる。   The specific resistance correlates with the solid solution amount of Si and Fe as alloy components. When the specific resistance is within the above range, it is easy to further improve the strength without greatly impairing the conductivity. When the specific resistance is less than 0.45 μΩ · cm, it is difficult to improve the strength by work hardening at the time of manufacturing the foil, and it becomes difficult to set the tensile strength to 210 MPa or more. The specific resistance is preferably 0.50 μΩ · cm or more, more preferably 0.55 μΩ · cm or more. On the other hand, when the specific resistance is increased, the strength is improved by work hardening at the time of manufacturing the foil, but the specific resistance increases and the conductivity tends to decrease. Therefore, the specific resistance is preferably about 0.7 μΩ · cm, which is about 60% of the specific resistance of the 3003 series aluminum alloy foil, which is a relatively high strength aluminum alloy foil. The specific resistance is preferably 0.69 μΩ · cm or less, more preferably 0.68 μΩ · cm or less. The specific resistance can be measured by a double bridge method in accordance with JIS H0505.

上記アルミニウム合金箔は、電池電極の集電体用として用いることができる(請求項3)。この場合は、集電体としてのアルミニウム合金箔の表面に電極活物質が付けられる。具体的には、この場合は、アルミニウム合金箔の表面に、電極活物質を含む層が塗工され、乾燥後に圧延等による圧縮力が加えられる。このような場合であっても、上記アルミニウム合金箔は、圧縮力により不必要な塑性変形が生じ難いので、電極活物質が剥離し難く、その上、良好な導電性も確保できる。また、上記アルミニウム合金箔は、箔強度があるため、箔の薄肉化の要求にも対応しやすい。そのため、この場合は、リチウムイオン電池等の二次電池等の高密度・高エネルギー化に寄与することができる。   The aluminum alloy foil can be used as a current collector for battery electrodes. In this case, an electrode active material is attached to the surface of the aluminum alloy foil as a current collector. Specifically, in this case, a layer containing an electrode active material is applied to the surface of the aluminum alloy foil, and a compressive force by rolling or the like is applied after drying. Even in such a case, the aluminum alloy foil is unlikely to undergo unnecessary plastic deformation due to the compressive force, so that the electrode active material is difficult to peel off, and good electrical conductivity can be secured. Moreover, since the said aluminum alloy foil has foil strength, it is easy to respond to the request | requirement of foil thinning. Therefore, in this case, it can contribute to high density and high energy of secondary batteries such as lithium ion batteries.

上記アルミニウム合金箔は、例えば、次のようにして製造することができる。すなわち、上記アルミニウム合金箔は、上記特定の化学成分からなるアルミニウム合金鋳塊を熱間圧延した後、箔圧延を含む冷間圧延を行うことにより得ることができる。   The aluminum alloy foil can be produced, for example, as follows. That is, the aluminum alloy foil can be obtained by hot rolling an aluminum alloy ingot composed of the specific chemical component and then performing cold rolling including foil rolling.

この際、アルミニウム合金鋳塊は高温での均質化処理を行うことなく熱間圧延するとよい。熱間圧延は、350℃以下の温度に加熱してから開始し、熱間圧延の開始時、熱間圧延の途中および熱間圧延の終了時における温度をいずれも350℃以下とすることができる。熱間圧延の開始温度に到達してからの保持時間は特に限定されるものではないが、Al−Fe−Si系化合物の析出を抑制しやすくなるなどの観点から、12時間以内とすることができる。なお、熱間圧延は、一回で行ってもよいし、粗圧延後に仕上圧延を行う等、複数回に分けて行ってもよい。   At this time, the aluminum alloy ingot is preferably hot-rolled without performing homogenization at a high temperature. Hot rolling starts after heating to a temperature of 350 ° C. or lower, and the temperature at the start of hot rolling, during hot rolling, and at the end of hot rolling can be 350 ° C. or lower. . Although the holding time after reaching the hot rolling start temperature is not particularly limited, it may be within 12 hours from the viewpoint of facilitating the precipitation of the Al—Fe—Si compound. it can. Note that the hot rolling may be performed once, or may be performed in a plurality of times, such as finish rolling after rough rolling.

また、冷間圧延は、途中で焼鈍を行うことなく、箔厚を20μm以下とする。途中焼鈍を行うと、Al−Fe−Si系化合物の析出が促進され、冷間圧延時の加工硬化性が低下して箔強度の低下を招くからである。なお、冷間圧延終了後の最終焼鈍も途中焼鈍と同様の理由により行わないことが好ましい。冷間圧延における最終圧延率は、箔強度の向上などの観点から、好ましくは、90%以上、より好ましくは、95%以上とすることができる。最終圧延率は、100×(冷間圧延前の熱間圧延板の板厚−最終の冷間圧延後のアルミニウム合金箔の箔厚)/(冷間圧延前の熱間圧延板の板厚)から算出される値である。また、厚み200μm以下の箔圧延においては、箔圧延前の箔の温度や圧下率、圧延速度、圧延油による冷却等を調整し、箔圧延時の温度を120℃以下とするとよい。上述した結晶粒径2μm以下のサブグレインの面積率が40%以上となりやすいからである。   In the cold rolling, the foil thickness is set to 20 μm or less without annealing in the middle. When annealing is performed in the middle, precipitation of the Al—Fe—Si-based compound is promoted, and work hardening at the time of cold rolling is lowered, resulting in a decrease in foil strength. In addition, it is preferable not to perform the final annealing after completion | finish of cold rolling for the same reason as intermediate annealing. The final rolling rate in the cold rolling is preferably 90% or more, and more preferably 95% or more, from the viewpoint of improving the foil strength. Final rolling rate is 100 × (plate thickness of hot rolled plate before cold rolling−foil thickness of aluminum alloy foil after final cold rolling) / (plate thickness of hot rolled plate before cold rolling) It is a value calculated from In foil rolling with a thickness of 200 μm or less, it is preferable to adjust the temperature of the foil before foil rolling, the rolling reduction, the rolling speed, cooling with rolling oil, etc., and the temperature during foil rolling is 120 ° C. or less. This is because the area ratio of the subgrains having the crystal grain size of 2 μm or less is likely to be 40% or more.

実施例に係るアルミニウム合金箔について、以下に説明する。   The aluminum alloy foil according to the example will be described below.

(実施例1)
表1に示す化学成分のアルミニウム合金を半連続鋳造法にて造塊し面削することにより、アルミニウム合金鋳塊を準備した。なお、表1に示す化学成分のアルミニウム合金のうち、合金A〜Kが実施例に適する化学成分のアルミニウム合金であり、合金L〜Qが比較例としての化学成分のアルミニウム合金である。
Example 1
An aluminum alloy ingot was prepared by ingot forming and chamfering an aluminum alloy having chemical components shown in Table 1 by a semi-continuous casting method. Of the aluminum alloys having chemical components shown in Table 1, alloys A to K are aluminum alloys having chemical components suitable for the examples, and alloys L to Q are aluminum alloys having chemical components as comparative examples.

上記準備したアルミニウム合金鋳塊を、均質化処理を施すことなく熱間圧延し、厚さ2mmの熱間圧延板を得た。この際、熱間圧延は、粗圧延と仕上圧延を連続して行った。また、上記熱間圧延において、粗圧延に供する前のアルミニウム合金鋳塊は、350℃に加熱して6時間保持することによって粗圧延の開始温度(熱間圧延の開始温度)を350℃とした。また、粗圧延の終了温度(熱間圧延の途中温度)は320℃、仕上圧延の終了温度(熱間圧延の終了温度)は278℃とした。このように本例では、上記熱間圧延の開始温度および終了温度だけでなく、熱間圧延の途中温度である粗圧延の終了温度、つまり、仕上圧延の開始温度も350℃以下とした。   The prepared aluminum alloy ingot was hot-rolled without subjecting it to a homogenization treatment to obtain a hot-rolled plate having a thickness of 2 mm. At this time, in hot rolling, rough rolling and finish rolling were continuously performed. In the hot rolling, the aluminum alloy ingot before being subjected to the rough rolling is heated to 350 ° C. and held for 6 hours to set the rough rolling start temperature (hot rolling start temperature) to 350 ° C. . The end temperature of rough rolling (temperature during hot rolling) was 320 ° C., and the end temperature of finish rolling (end temperature of hot rolling) was 278 ° C. In this way, in this example, not only the hot rolling start temperature and end temperature, but also the rough rolling end temperature, which is the intermediate temperature of hot rolling, that is, the finish rolling start temperature, is set to 350 ° C. or less.

次いで、途中で焼鈍を行うことなく箔圧延を含む冷間圧延を繰り返し行い、箔厚12μmのアルミニウム合金箔を得た。この際、200μm以下の箔圧延工程では、箔圧延の終了温度を全て120℃以下になるように調整した。なお、上記冷間圧延における最終圧延率は、100×(冷間圧延前の熱間圧延板の板厚2000μm−最終の冷間圧延後のアルミニウム合金箔の箔厚12μm)/(冷間圧延前の熱間圧延板の板厚2000μm)=99.4%である。   Subsequently, cold rolling including foil rolling was repeatedly performed without performing annealing in the middle to obtain an aluminum alloy foil having a foil thickness of 12 μm. At this time, in the foil rolling step of 200 μm or less, the end temperature of the foil rolling was all adjusted to 120 ° C. or less. The final rolling rate in the cold rolling is 100 × (the thickness of the hot rolled sheet before cold rolling is 2000 μm−the thickness of the aluminum alloy foil after the final cold rolling is 12 μm) / (before the cold rolling) The thickness of the hot-rolled sheet is 2000 μm) = 99.4%.

次に、得られたアルミニウム合金箔を試験材として、引張強さ、耐力および伸び、比抵抗(電気抵抗率)、結晶粒径2μm以下のサブグレインの面積率の測定を行った。具体的には、引張強さ、耐力および伸びは、JIS Z2241準拠し、試験材からJIS5号試験片を採取して測定した。比抵抗は、JIS H0505に準拠し、ダブルブリッジ法により測定した。なお、雰囲気温度の影響を除去するため、比抵抗の測定は液体窒素中で行った。結晶粒径2μm以下のサブグレインの面積率は、試料表面を電解研磨(−5℃に冷却した過塩素酸エタノール中で、10V−90秒の電解研磨)で仕上げした後、SEM/EBSD法を用いて、ステップサイズ0.1μmにて試料表面900μmのエリアを分析し、隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界とみなし、上記測定エリアの面積に占める結晶粒径2μm以下のサブグレインの面積の割合(%)を算出することにより求めた。また、箔圧延状況について調査するため、試験材の背面から照明を当て、光のもれの有無によりピンホールの発生状況もあわせて調査した。結果を表2に示す。また、図1に、試験材E11について、SEM/EBSD法にて結晶粒径2μm以下のサブグレインの面積率を測定した結果を示す。図2に、試験材C1について、SEM/EBSD法にて結晶粒径2μm以下のサブグレインの面積率を測定した結果を示す。両図中、結晶粒径2μm以下のサブグレインは灰色で示されている部分である。なお、試験材E1〜E11が実施例であり、試験材C1〜C4が比較例である。 Next, using the obtained aluminum alloy foil as a test material, tensile strength, yield strength and elongation, specific resistance (electrical resistivity), and area ratio of subgrains having a crystal grain size of 2 μm or less were measured. Specifically, the tensile strength, proof stress and elongation were measured in accordance with JIS Z2241, by collecting a JIS No. 5 test piece from the test material. The specific resistance was measured by a double bridge method according to JIS H0505. In order to remove the influence of the ambient temperature, the specific resistance was measured in liquid nitrogen. The area ratio of subgrains with a crystal grain size of 2 μm or less is determined by the SEM / EBSD method after finishing the sample surface by electrolytic polishing (electropolishing for 10 V-90 seconds in ethanol perchlorate cooled to −5 ° C.). Using this, the area of the sample surface of 900 μm 2 is analyzed at a step size of 0.1 μm, and the boundary where the orientation difference between adjacent crystal orientation measurement points is 5 ° ± 0.2 ° is regarded as the crystal grain boundary, and the above measurement is performed. It calculated | required by calculating the ratio (%) of the area of the subgrain with a crystal grain diameter of 2 micrometers or less to the area of an area. In addition, in order to investigate the foil rolling situation, lighting was applied from the back of the test material, and the occurrence of pinholes was also investigated according to the presence or absence of light leakage. The results are shown in Table 2. FIG. 1 shows the results of measuring the area ratio of subgrains having a crystal grain size of 2 μm or less by the SEM / EBSD method for the test material E11. FIG. 2 shows the results of measuring the area ratio of subgrains having a crystal grain size of 2 μm or less by the SEM / EBSD method for the test material C1. In both figures, subgrains having a crystal grain size of 2 μm or less are shown in gray. Note that the test materials E1 to E11 are examples, and the test materials C1 to C4 are comparative examples.

これらの結果に示されるように、試験材C1は、Si含有量が0.1%未満、Fe含有量が0.2%未満の合金Lを用いており、また、結晶粒径2μm以下のサブグレインの面積率が25%と低い。そのため、試験材C1は、さらなる強度向上の効果が得られず、引張強さが210MPa未満と低かった。   As shown in these results, the test material C1 uses an alloy L having an Si content of less than 0.1% and an Fe content of less than 0.2%, and has a sub-grain size of 2 μm or less. Grain area ratio is as low as 25%. Therefore, the test material C1 did not have the effect of further improving the strength, and the tensile strength was as low as less than 210 MPa.

試験材C2は、Si含有量が0.6%を超える合金Mを用いたため、粗大なSi単相粒子が形成され、これによるピンホールが発生した。   Since the test material C2 used the alloy M having a Si content exceeding 0.6%, coarse Si single-phase particles were formed, and pinholes were generated thereby.

試験材C3は、Fe含有量が0.2%未満の合金Nを用いており、また、結晶粒径2μm以下のサブグレインの面積率が40%未満と低い。そのため、試験材C3は、さらなる強度向上の効果が得られず、引張強さが210MPa未満と低かった。   The test material C3 uses an alloy N having an Fe content of less than 0.2%, and the area ratio of subgrains having a crystal grain size of 2 μm or less is as low as less than 40%. Therefore, the test material C3 did not have the effect of further improving the strength, and the tensile strength was as low as less than 210 MPa.

試験材C4は、Fe含有量が1.0%を超える合金Oを用いたため、粗大なAl−Fe系粒子が形成され、これによるピンホールが発生した。   Since the test material C4 used the alloy O in which the Fe content exceeds 1.0%, coarse Al—Fe-based particles were formed, and pinholes were thereby generated.

これらに対して、試験材E1〜E11は、いずれも上述した特定の化学成分を有する合金A〜Kからなり、箔厚が20μm以下、結晶粒径2μm以下のサブグレインの面積率が40%以上、引張強さが210MPa以上となっている。また、試験材E1〜E11は、いずれも液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下となっており、導電性が大きく低下していないことがわかる。   On the other hand, the test materials E1 to E11 are all made of the alloys A to K having the specific chemical components described above, and the area ratio of subgrains having a foil thickness of 20 μm or less and a crystal grain size of 2 μm or less is 40% or more. The tensile strength is 210 MPa or more. Moreover, all of the test materials E1 to E11 have a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm or more and 0.7 μΩ · cm or less, and it can be seen that the conductivity is not greatly reduced.

したがって、本例によれば、導電性を大きく損なうことなく、さらなる強度の向上を図ることが可能なアルミニウム合金箔を提供することができる。このようなアルミニウム合金箔が得られたのは、95%以上の冷間圧延を行い、箔厚20μm以下とした際に、組織の回復が遅れ、微細なサブグレイン組織を呈したことによる効果が大きかったものと考えられる。また、上記アルミニウム合金箔は、薄肉化を図っても高強度であり、ピンホールや箔切れ等の問題も回避することもできる。   Therefore, according to this example, it is possible to provide an aluminum alloy foil capable of further improving the strength without greatly impairing the conductivity. The reason why such an aluminum alloy foil was obtained was that the cold rolling of 95% or more was performed, and when the foil thickness was 20 μm or less, the recovery of the structure was delayed, and the effect of exhibiting a fine subgrain structure was obtained. It is thought that it was big. Moreover, the aluminum alloy foil has high strength even if it is thinned, and problems such as pinholes and foil breakage can also be avoided.

(実施例2)
表1に示す化学成分のアルミニウム合金Bを半連続鋳造法にて造塊し面削することにより、アルミニウム合金鋳塊を準備した。また、表1に示す従来合金の1050合金(合金P)、3003合金(合金Q)を半連続鋳造法にて造塊し面削することにより、比較としてのアルミニウム合金鋳塊もあわせて準備した。
(Example 2)
An aluminum alloy ingot was prepared by ingot forming and chamfering aluminum alloy B having chemical components shown in Table 1 by a semi-continuous casting method. In addition, a comparative aluminum alloy ingot was also prepared by ingoting and chamfering 1050 alloy (alloy P) and 3003 alloy (alloy Q) of conventional alloys shown in Table 1 by a semi-continuous casting method. .

上記準備したアルミニウム合金鋳塊を用いて、表3に示す製造条件にて箔厚12μmのアルミニウム合金箔を製造した。得られたアルミニウム合金箔について、実施例1と同様にして、引張強さ、耐力および伸び、比抵抗(電気抵抗率)、結晶粒径2μm以下のサブグレインの面積率の測定し、箔圧延状況(ピンポール発生の有無)を調査した。その結果を表4に示す。なお、試験材E12、E13が実施例であり、試験材C5〜C12が比較例である。   Using the prepared aluminum alloy ingot, an aluminum alloy foil having a foil thickness of 12 μm was produced under the production conditions shown in Table 3. About the obtained aluminum alloy foil, the tensile strength, the proof stress and the elongation, the specific resistance (electrical resistivity), and the area ratio of subgrains having a crystal grain size of 2 μm or less were measured in the same manner as in Example 1, and the foil rolling situation (Existence of occurrence of pin pole) was investigated. The results are shown in Table 4. Note that the test materials E12 and E13 are examples, and the test materials C5 to C12 are comparative examples.

表4に示すように、試験材C5〜C7は、熱間圧延時における熱間圧延の開始温度が350℃を超えていたため、結晶粒径2μm以下のサブグレインの面積率が40%未満となり、引張強さが210MPa未満と低くなった。   As shown in Table 4, the test materials C5 to C7 had a hot rolling start temperature at the time of hot rolling exceeding 350 ° C., so that the area ratio of subgrains having a crystal grain size of 2 μm or less was less than 40%, The tensile strength was as low as less than 210 MPa.

試験材C8は、熱間圧延の開始前に520℃で均質化処理を行って作製されたものである。そのため、試験材C8は、Al−Fe−Si系化合物が形成され、Si、Feの固溶量が減少し、結晶粒径2μm以下のサブグレインの面積率が40%未満となり、引張強さが210MPa未満と低くなった。   Test material C8 was produced by performing a homogenization treatment at 520 ° C. before the start of hot rolling. Therefore, in the test material C8, an Al—Fe—Si-based compound is formed, the amount of solid solution of Si and Fe is reduced, the area ratio of subgrains having a crystal grain size of 2 μm or less is less than 40%, and the tensile strength is It was as low as less than 210 MPa.

試験材C9は、冷間圧延の途中、板厚1mmのときに380℃で途中焼鈍を行って作製されている。そのため、試験材C9は、Al−Fe−Si系化合物の析出が促進され、結晶粒径2μm以下のサブグレインの面積率が40%未満となり、引張強さが210MPa未満と低くなった。   The test material C9 is manufactured by performing annealing at 380 ° C. in the middle of cold rolling, when the plate thickness is 1 mm. Therefore, in the test material C9, precipitation of the Al—Fe—Si compound was promoted, the area ratio of subgrains having a crystal grain size of 2 μm or less was less than 40%, and the tensile strength was lowered to less than 210 MPa.

試験材C10は、その製造時に冷間圧延の終了温度が130℃であった。そのため、 試験材C10は、結晶粒径2μm以下のサブグレインの面積率が40%未満となり、引張強さが210MPa未満と低くなった。   The test material C10 had a cold rolling end temperature of 130 ° C. during its production. Therefore, in the test material C10, the area ratio of the subgrains having a crystal grain size of 2 μm or less was less than 40%, and the tensile strength was as low as less than 210 MPa.

試験材C11、C12は、従来合金である1050合金(合金P)、3003合金(合金Q)を用い、さらに熱間圧延の開始前に350℃を超える500℃という高温で均質化処理を行って作製されている。そのため、試験材C11は、化学成分が従来合金である1050合金(合金P)と同じであるので、引張強さが210MPaに到達せず、また、結晶粒径2μm以下のサブグレインの面積率も40%未満となった。試験材C12は、化学成分が従来合金である3003合金(合金Q)と同じであるので、比抵抗が1.2μΩ・cm以上と極めて高く、導電性に劣っていた。   As the test materials C11 and C12, 1050 alloy (alloy P) and 3003 alloy (alloy Q), which are conventional alloys, are used, and further homogenized at a high temperature of 500 ° C. exceeding 350 ° C. before the start of hot rolling. Have been made. Therefore, since the test material C11 has the same chemical composition as the conventional alloy 1050 alloy (alloy P), the tensile strength does not reach 210 MPa, and the area ratio of subgrains having a crystal grain size of 2 μm or less is also present. Less than 40%. Since the test material C12 has the same chemical composition as the conventional alloy 3003 alloy (alloy Q), the specific resistance is as extremely high as 1.2 μΩ · cm or more, and the conductivity is inferior.

これらに対して、試験材E12、E13は、いずれも上述した特定の化学成分を有する合金Bからなり、箔厚が20μm以下、結晶粒径2μm以下のサブグレインの面積率が40%以上、引張強さが210MPa以上となっている。また、試験材E12、E13は、いずれも液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下となっており、導電性が大きく低下していないことがわかる。   On the other hand, the test materials E12 and E13 are both made of the alloy B having the specific chemical component described above, and the area ratio of the subgrains having a foil thickness of 20 μm or less and a crystal grain size of 2 μm or less is 40% or more. The strength is 210 MPa or more. Moreover, as for the test materials E12 and E13, the specific resistance measured in liquid nitrogen is 0.45 microhm * cm or more and 0.7 microohm * cm or less, and it turns out that electroconductivity does not fall large.

したがって、本例によれば、導電性を大きく損なうことなく、さらなる強度の向上を図ることが可能なアルミニウム合金箔を提供することができる。   Therefore, according to this example, it is possible to provide an aluminum alloy foil capable of further improving the strength without greatly impairing the conductivity.

以上、実施例について説明したが、本発明は、上記実施例により限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変形を行うことができる。   As mentioned above, although the Example was described, this invention is not limited by the said Example, A various deformation | transformation can be performed within the range which does not impair the meaning of this invention.

Claims (3)

化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.0%以下を含有し、残部がAlおよび不可避的不純物からなり、
箔厚が20μm以下であり、
隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界と規定した場合、結晶粒径2μm以下のサブグレインの面積率が40%以上であり、
引張強さが210MPa以上であり、
液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔。
The chemical component is, by mass%, Si: 0.1% or more and 0.6% or less, Fe: 0.2% or more and 1.0% or less, and the balance consists of Al and inevitable impurities,
The foil thickness is 20 μm or less,
When a boundary where the orientation difference between adjacent crystal orientation measurement points is 5 ° ± 0.2 ° is defined as a crystal grain boundary, the area ratio of subgrains having a crystal grain size of 2 μm or less is 40% or more,
The tensile strength is 210 MPa or more,
An aluminum alloy foil characterized by having a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm.
請求項1に記載のアルミニウム合金箔において、
上記化学成分が、質量%で、Cu:0.01%以上0.25%以下をさらに含有することを特徴とするアルミニウム合金箔。
In the aluminum alloy foil according to claim 1,
The aluminum alloy foil, wherein the chemical component further contains Cu: 0.01% or more and 0.25% or less by mass%.
請求項1または2に記載のアルミニウム合金箔は、電池電極の集電体用であることを特徴とするアルミニウム合金箔。   The aluminum alloy foil according to claim 1 or 2 is used for a current collector of a battery electrode.
JP2012239312A 2012-10-30 2012-10-30 Aluminum alloy foil Expired - Fee Related JP5959405B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012239312A JP5959405B2 (en) 2012-10-30 2012-10-30 Aluminum alloy foil
KR1020157011234A KR20150070201A (en) 2012-10-30 2013-09-18 Aluminium alloy foil
CN201380056002.6A CN104769141B (en) 2012-10-30 2013-09-18 Aluminium alloy foil
MYPI2015701320A MY182959A (en) 2012-10-30 2013-09-18 Aluminum alloy foil
DE112013005208.3T DE112013005208T5 (en) 2012-10-30 2013-09-18 Aluminum alloy foil
PCT/JP2013/075077 WO2014069119A1 (en) 2012-10-30 2013-09-18 Aluminium alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239312A JP5959405B2 (en) 2012-10-30 2012-10-30 Aluminum alloy foil

Publications (2)

Publication Number Publication Date
JP2014088598A true JP2014088598A (en) 2014-05-15
JP5959405B2 JP5959405B2 (en) 2016-08-02

Family

ID=50627035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239312A Expired - Fee Related JP5959405B2 (en) 2012-10-30 2012-10-30 Aluminum alloy foil

Country Status (6)

Country Link
JP (1) JP5959405B2 (en)
KR (1) KR20150070201A (en)
CN (1) CN104769141B (en)
DE (1) DE112013005208T5 (en)
MY (1) MY182959A (en)
WO (1) WO2014069119A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002420A1 (en) * 2015-06-30 2017-01-05 住友電気工業株式会社 Lead conductor and power storage device
CN107217181A (en) * 2017-06-08 2017-09-29 合肥工业大学 A kind of use microalloying and warm-pressing technology are compound to prepare the method that high-strength Al Si casts wrought alloy
JP2017186629A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Aluminum alloy foil for battery power collection body and manufacturing method therefor
US11258123B2 (en) * 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388766B (en) * 2014-11-27 2017-01-11 广西南南铝箔有限责任公司 Production method of aluminum foil for lithium-ion battery
CN108779519A (en) * 2016-03-11 2018-11-09 株式会社Uacj Alloy foil
JP6461249B2 (en) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
EP3714077B1 (en) * 2017-11-21 2024-01-24 Speira GmbH Battery electrode foil for the production of lithium-ion accumulators
CN109252072B (en) * 2018-10-15 2020-10-16 威海海鑫新材料有限公司 High-precision aluminum foil blank and preparation process thereof
CN110016591A (en) * 2019-04-09 2019-07-16 上海华峰铝业股份有限公司 A kind of high conductivity collector alloy foil and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283114A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Aluminum foil for multi-hole machining, and its manufacturing method
JP2012021205A (en) * 2010-07-16 2012-02-02 Kobe Steel Ltd Hardened aluminum foil for battery collector
JP2012075454A (en) * 2010-09-30 2012-04-19 Sanyo Product Co Ltd Game machine
JP2013146369A (en) * 2012-01-19 2013-08-01 T K Kikaku:Kk Device for retarding aging
WO2013146369A1 (en) * 2012-03-29 2013-10-03 古河スカイ株式会社 Aluminum alloy foil for electrode current collector and method for manufacturing same
JP2014507706A (en) * 2010-12-30 2014-03-27 フェイスブック,インク. Apparatus and method for composite term index of graph data
JP5848672B2 (en) * 2011-06-07 2016-01-27 株式会社Uacj Method for producing aluminum alloy foil and aluminum alloy foil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283114A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Aluminum foil for multi-hole machining, and its manufacturing method
JP2012021205A (en) * 2010-07-16 2012-02-02 Kobe Steel Ltd Hardened aluminum foil for battery collector
JP2012075454A (en) * 2010-09-30 2012-04-19 Sanyo Product Co Ltd Game machine
JP2014507706A (en) * 2010-12-30 2014-03-27 フェイスブック,インク. Apparatus and method for composite term index of graph data
JP5848672B2 (en) * 2011-06-07 2016-01-27 株式会社Uacj Method for producing aluminum alloy foil and aluminum alloy foil
JP2013146369A (en) * 2012-01-19 2013-08-01 T K Kikaku:Kk Device for retarding aging
WO2013146369A1 (en) * 2012-03-29 2013-10-03 古河スカイ株式会社 Aluminum alloy foil for electrode current collector and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002420A1 (en) * 2015-06-30 2017-01-05 住友電気工業株式会社 Lead conductor and power storage device
JP2017016839A (en) * 2015-06-30 2017-01-19 住友電気工業株式会社 Lead conductor and power storage device
JP2017186629A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Aluminum alloy foil for battery power collection body and manufacturing method therefor
US11258123B2 (en) * 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
US11820104B2 (en) 2016-12-28 2023-11-21 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
CN107217181A (en) * 2017-06-08 2017-09-29 合肥工业大学 A kind of use microalloying and warm-pressing technology are compound to prepare the method that high-strength Al Si casts wrought alloy

Also Published As

Publication number Publication date
KR20150070201A (en) 2015-06-24
DE112013005208T5 (en) 2015-09-03
WO2014069119A1 (en) 2014-05-08
JP5959405B2 (en) 2016-08-02
MY182959A (en) 2021-02-05
CN104769141A (en) 2015-07-08
CN104769141B (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5959405B2 (en) Aluminum alloy foil
JP5848672B2 (en) Method for producing aluminum alloy foil and aluminum alloy foil
JP5639398B2 (en) Aluminum hard foil for battery current collector
TWI460914B (en) Aluminum alloy foil for electrode current collector and method of manufacturing the same
JP5959423B2 (en) Aluminum alloy foil
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5927614B2 (en) Aluminum hard foil for battery current collector
JP6220773B2 (en) Method for producing aluminum alloy foil for electrode current collector
JP7165782B2 (en) aluminum alloy foil
JP2011026656A (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP5582791B2 (en) Aluminum alloy foil for lithium-ion battery electrode current collector
KR101944243B1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP2019112659A (en) Aluminum alloy foil for battery collector
JPWO2017135108A1 (en) Aluminum alloy foil and method for producing the same
JP2017166027A (en) Aluminum alloy foil
JP2017186636A (en) Aluminum alloy foil and manufacturing method therefor
JP2018066051A (en) Aluminum alloy foil for battery collector and method for producing the same
JP2015113515A (en) Aluminum alloy foil for lithium ion battery positive electrode collector and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5959405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees