JP2012021205A - Hardened aluminum foil for battery collector - Google Patents

Hardened aluminum foil for battery collector Download PDF

Info

Publication number
JP2012021205A
JP2012021205A JP2010161583A JP2010161583A JP2012021205A JP 2012021205 A JP2012021205 A JP 2012021205A JP 2010161583 A JP2010161583 A JP 2010161583A JP 2010161583 A JP2010161583 A JP 2010161583A JP 2012021205 A JP2012021205 A JP 2012021205A
Authority
JP
Japan
Prior art keywords
foil
rolling
elongation
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010161583A
Other languages
Japanese (ja)
Other versions
JP5639398B2 (en
Inventor
Kentaro Ihara
健太郎 伊原
Kozo Hoshino
晃三 星野
Hidetoshi Umeda
秀俊 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN ALUM KOGYO KK
SUN ALUMINIUM IND
Kobe Steel Ltd
Original Assignee
SAN ALUM KOGYO KK
SUN ALUMINIUM IND
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN ALUM KOGYO KK, SUN ALUMINIUM IND, Kobe Steel Ltd filed Critical SAN ALUM KOGYO KK
Priority to JP2010161583A priority Critical patent/JP5639398B2/en
Priority to KR1020137001055A priority patent/KR101518142B1/en
Priority to PCT/JP2011/066193 priority patent/WO2012008567A1/en
Priority to CN201180034620.1A priority patent/CN103003457B/en
Publication of JP2012021205A publication Critical patent/JP2012021205A/en
Application granted granted Critical
Publication of JP5639398B2 publication Critical patent/JP5639398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hardened aluminum foil for battery collectors, which has a certain degree of strength, excellent stretch, and low electrical resistance.SOLUTION: The hardened aluminum foil for battery collectors contains 0.2-1.3% iron, 0.01-0.5% copper, and no more than 0.2% silicon by mass, with the remainder comprising aluminum and unavoidable impurities. The hardened aluminum foil has the purity of at least 98.0% by mass and subgrain sizes of at most 0.8 μm in the thickness direction and at most 45 μm in the rolling direction.

Description

本発明は、リチウムイオン二次電池の正極集電体として用いられる電池集電体用アルミニウム硬質箔に関する。   The present invention relates to an aluminum hard foil for a battery current collector used as a positive electrode current collector of a lithium ion secondary battery.

近年、携帯電話やノートパソコン等のモバイルツール用電源として、リチウムイオン二次電池が使用されている。このようなリチウムイオン二次電池の電極材は、正極材、セパレータおよび負極材で形成される。そして、正極材の製造は、15μm厚程度の集電体用アルミニウム箔(またはアルミニウム合金箔)の両面に、100μm厚程度のLiCoO等の活物質を塗布し、この塗布された活物質中の溶媒を除去するために乾燥して、活物質の密度を増やすための圧着を行い、スリット、裁断工程を経ることで行われる。この集電体の材料には、例えば特許文献1に示すような高純度アルミニウム箔材が用いられていた。 In recent years, lithium ion secondary batteries have been used as power sources for mobile tools such as mobile phones and notebook computers. The electrode material of such a lithium ion secondary battery is formed of a positive electrode material, a separator, and a negative electrode material. Then, the positive electrode material is manufactured by applying an active material such as LiCoO 2 having a thickness of about 100 μm to both sides of an aluminum foil for collector (or aluminum alloy foil) having a thickness of about 15 μm. Drying is performed to remove the solvent, and pressure bonding for increasing the density of the active material is performed, and the process is performed through a slitting and cutting process. As a material of this current collector, for example, a high-purity aluminum foil material as shown in Patent Document 1 has been used.

しかしながら近年では、電池高容量化の進展により、使用するアルミニウム箔の薄肉化を図るため、強度の高いアルミニウム合金箔が指向されている。例えば、非特許文献1に開示されているように、従来多用されていた純アルミニウムである1085,1N30等では、引張強度が172〜185MPaで、伸び値が1.4〜1.7%であるのに対し、3003合金等のようにMnを添加することにより、引張強度を270〜279MPa、伸び値を1.3〜1.8%としたアルミニウム合金箔が市販され、さらなる高強度化若しくは高伸びが指向されてきた。   However, in recent years, with the progress of battery capacity increase, high-strength aluminum alloy foils have been oriented in order to reduce the thickness of the aluminum foil used. For example, as disclosed in Non-Patent Document 1, in the case of 1085, 1N30 and the like that have been widely used in the past, the tensile strength is 172 to 185 MPa and the elongation value is 1.4 to 1.7%. On the other hand, aluminum alloy foil with a tensile strength of 270 to 279 MPa and an elongation value of 1.3 to 1.8% is commercially available by adding Mn as in 3003 alloy, etc. Growth has been directed.

また、例えば、特許文献2には、以下の提案がなされている。すなわち、硬い活物質を用いた場合、電池ケースに収納する際に、渦巻き状に巻いた(折り曲げた)電極材が小さい半径の部位で破断し易い傾向となる。そこで、Al−Mn系合金箔において、Cu含有量を多くし、冷間圧延時の所定板厚時に、連続焼鈍炉を用いて所定条件で中間焼鈍を行うことで、280〜380MPaの強度として、耐折り曲げ性を向上させる提案がなされている。
また、例えば、特許文献3には、アルミニウム合金箔にMg,Co,Zr,W等を添加して、240〜400MPaの強度とし、伸びや耐食性を得る提案もなされている。
For example, Patent Document 2 proposes the following proposal. That is, when a hard active material is used, when it is housed in a battery case, the electrode material wound (bent) in a spiral shape tends to be easily broken at a portion having a small radius. Therefore, in the Al-Mn alloy foil, by increasing the Cu content and performing intermediate annealing under predetermined conditions using a continuous annealing furnace at a predetermined plate thickness during cold rolling, as a strength of 280 to 380 MPa, Proposals for improving the bending resistance have been made.
Further, for example, Patent Document 3 proposes that Mg, Co, Zr, W, or the like is added to an aluminum alloy foil to obtain a strength of 240 to 400 MPa to obtain elongation and corrosion resistance.

一方、非特許文献2では、一般的特性として、純アルミニウムである1085においては導電率が61.5%IACSであり、Mn添加された3003合金の48.5%に比較して高い(電気抵抗値が低い)ことが開示されている。このような高い導電率に起因し、電気部品に用いるのに望ましい純アルミニウム箔は依然として多用されている。なお、導電率は合金元素や調質(加工率)により異なり、非特許文献3に開示されているように、6mm以上の厚みにおいて、純度の高い1070材等では、軟質(O)材で62%、硬質(H18)材で61%、3003合金の場合では、軟質材で50%、硬質材で40%であることが知られている。すなわち、Mn系合金では加工が加わることにより導電率が大きく低下する。   On the other hand, in Non-Patent Document 2, as a general characteristic, 1085, which is pure aluminum, has a conductivity of 61.5% IACS, which is higher than that of Mn-added 3003 alloy (48.5%). Low value). Due to such high conductivity, pure aluminum foil desirable for use in electrical components is still widely used. The electrical conductivity varies depending on the alloy element and the tempering (processing rate), and as disclosed in Non-Patent Document 3, with a thickness of 6 mm or more, a high-purity 1070 material or the like is 62 (soft (O) material). In the case of 300% alloy, 61% for hard (H18) material, 50% for soft material and 40% for hard material. That is, in the Mn-based alloy, the electrical conductivity is greatly lowered by processing.

特開平11−162470号公報(段落0023)JP 11-162470 A (paragraph 0023) 特開2008−150651号公報(段落0003、0005〜0007)Japanese Patent Laying-Open No. 2008-150651 (paragraphs 0003 and 0005 to 0007) 特開2009−64560号公報(段落0016〜0029)JP 2009-64560 A (paragraphs 0016 to 0029)

「2008最新電池技術大全」、株式会社電子ジャーナル、2008年5月1日発行、第8編第1章第7節、P243“2008 Newest Battery Technology Encyclopedia”, Electronic Journal Co., Ltd., published on May 1, 2008, Volume 8, Chapter 1, Section 7, P243 Furukawa−Sky Review、No.5、2008P5 表1、P9 図8Furuka-Sky Review, No. 5, 2008 P5 Table 1, P9 FIG. アルミニウムハンドブック、日本アルミニウム協会、2007年1月31日発行、P32、表4.2Aluminum Handbook, Japan Aluminum Association, issued January 31, 2007, P32, Table 4.2

しかし、従来のアルミニウム箔やアルミニウム合金箔においては、以下のような問題がある。
アルミニウム箔並びにアルミニウム合金箔においては、強度の上昇並びに箔厚の減少に伴い、伸び(延性)が減少することが知られている。なお、このことは、非特許文献1にも明示されている。
しかしながら、電極材製造ラインでの圧着・スリット等の工程において、高強度であっても伸びが少ないと、箔が脆い状態となり、製造ラインで箔が破断し、ラインが停止するようなトラブルが発生するという問題があり、強度も然りながら伸びが重視されてきた。
一方、高強度化のためにMnを多量に添加した合金箔材では、非特許文献2に明示されているように電気抵抗が大きいため、組立て後の電池としての使用に際して望ましくないという問題もある。
However, the conventional aluminum foil and aluminum alloy foil have the following problems.
In aluminum foil and aluminum alloy foil, it is known that elongation (ductility) decreases as strength increases and foil thickness decreases. This is also clearly shown in Non-Patent Document 1.
However, in processes such as crimping and slitting in the electrode material production line, if the elongation is low even if it is high strength, the foil becomes brittle, causing troubles that the foil breaks in the production line and the line stops. Elongation has been emphasized as well as strength.
On the other hand, the alloy foil material added with a large amount of Mn for high strength has a problem that it is not desirable for use as a battery after assembly because it has a large electric resistance as clearly shown in Non-Patent Document 2. .

本発明は、前記問題点に鑑みてなされたものであり、ある程度の強度を有し、優れた伸びを有すると共に、且つ電気抵抗の低い電池集電体用アルミニウム硬質箔を提供することを課題とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide an aluminum hard foil for a battery current collector having a certain degree of strength, excellent elongation, and low electrical resistance. To do.

前記課題を解決するために、本発明者らは、以下の事項について検討した。
箔の高強度化のためには、Mg,Mn,Cu等を添加すれば良いことは公知であり、前記従来技術での提案にも用いられている。しかし、薄肉硬質箔の延性(伸び)を増加させる手段は知られていなかった。また、純アルミニウム箔や8021合金箔では、導電率は高いが強度および伸びの点で不十分であった。
一般に、1N30等の純アルミニウム薄肉箔の製造に際して、材料の製造工程での固溶・析出制御および箔圧延条件の制御により、仕上げ箔圧延前での材料組織をサブグレイン組織とすることで、ピンホールの少ない薄箔が製造出来ることが知られていた。この組織状態は、伸びも比較的高いことから、サブグレインを微細に制御することが出来れば、比較的強度が高くても、高延性が得られるものと考えた。
In order to solve the above problems, the present inventors have examined the following matters.
In order to increase the strength of the foil, it is known that Mg, Mn, Cu or the like may be added, and it is also used for the proposal in the prior art. However, no means for increasing the ductility (elongation) of the thin hard foil has been known. In addition, pure aluminum foil and 8021 alloy foil have high electrical conductivity but are insufficient in terms of strength and elongation.
In general, when manufacturing a pure aluminum thin foil such as 1N30, the material structure before rolling the finished foil is changed to a subgrain structure by controlling solid solution / precipitation in the material manufacturing process and controlling the foil rolling conditions. It was known that thin foils with few holes could be manufactured. Since the elongation of this microstructure is relatively high, it was considered that if the subgrains can be finely controlled, high ductility can be obtained even if the strength is relatively high.

通常、透過電子顕微鏡等で箔の材料組織を観察する場合が多いが、局所的な情報しか得られず、15μm前後の厚みの箔の断面全域での観察はなされていなかった。そこで、硬質箔の伸びに及ぼす諸因子の影響につき鋭意研究した結果、厚み方向および圧延方向の結晶粒(サブグレイン)のサイズが伸びと相関することが推察され、箔の断面でのサブグレインの観察条件を新たに確立することにより、本発明に至った。すなわち、どの状態の硬質箔であっても、断面でのサブグレイン径(厚み方向および圧延方向)は不均一であることを究明した。この究明点より、本発明者等は、従来は、厚み方向および圧延方向のサブグレインのサイズが大きいために不均一な変形であり、伸びが低い状態であったこと、厚み方向および圧延方向のサブグレインのサイズが小さくなるように制御すると、引張り変形等にて均一な変形が可能であり、高い伸びが得られること、を究明し、本発明の完成に至った。サブグレインは、中間焼鈍時の結晶粒径が圧延され、薄くなった層から成長・形成されることも究明し、厚み方向および圧延方向においてサイズの小さなサブグレインを形成させるためには、中間焼鈍時の結晶粒数と固溶状態を制御することが必要条件であることも究明した。   Usually, the material structure of the foil is often observed with a transmission electron microscope or the like, but only local information can be obtained, and the observation has not been performed on the entire cross section of the foil having a thickness of about 15 μm. Therefore, as a result of earnest research on the influence of various factors on the elongation of the hard foil, it is presumed that the size of the grain (subgrain) in the thickness direction and the rolling direction correlates with the elongation. The present invention has been achieved by newly establishing the observation conditions. That is, it was clarified that the subgrain diameter (thickness direction and rolling direction) in the cross section was non-uniform in any state of the hard foil. From this investigation point, the present inventors have heretofore found that the subgrains in the thickness direction and the rolling direction have a large size, resulting in uneven deformation and low elongation, and the thickness direction and the rolling direction. By controlling the size of the subgrains to be small, it was found that uniform deformation is possible by tensile deformation or the like and high elongation is obtained, and the present invention was completed. Subgrains have also been studied to grow and form from a thinned layer by rolling the grain size during intermediate annealing, and in order to form subgrains with a small size in the thickness direction and the rolling direction, intermediate annealing is used. It was also found that controlling the number of crystal grains and the solid solution state is a necessary condition.

さらに、本発明者等は実際の箔での導電率を測定し、実際の導電率は、薄い硬質箔であることに起因して、非特許文献1、2に記載されている数値とは異なり、より低いことを究明した。
このように、従来から高強度化のために合金元素を添加した合金箔(Al純度:99.0質量%未満)が指向されてきたが、本発明は電気抵抗の低下・抑制のため純アルミニウムの範疇で、高強度・高伸び化を測ったものである。
Furthermore, the present inventors measured the electrical conductivity in an actual foil, and the actual electrical conductivity is different from the numerical values described in Non-Patent Documents 1 and 2 due to the fact that it is a thin hard foil. I found out that it was lower.
As described above, alloy foils (Al purity: less than 99.0% by mass) added with alloying elements for increasing the strength have been conventionally used, but the present invention is pure aluminum for reducing and suppressing electrical resistance. In this category, high strength and high elongation were measured.

すなわち、本発明に係る電池集電体用アルミニウム硬質箔(以下、適宜、アルミニウム箔という)は、Fe:0.2〜1.3質量%、Cu:0.01〜0.5質量%を含有し、Si:0.2質量%以下に抑制し、残部がAlおよび不可避的不純物からなり、純度が98.0質量%以上であるとともに、サブグレインのサイズが厚み方向で0.8μm以下、圧延方向で45μm以下であることを特徴とする。   That is, the aluminum hard foil for a battery current collector according to the present invention (hereinafter, appropriately referred to as an aluminum foil) contains Fe: 0.2 to 1.3% by mass, Cu: 0.01 to 0.5% by mass. Si: Suppressed to 0.2% by mass or less, the balance is made of Al and inevitable impurities, the purity is 98.0% by mass or more, and the size of the subgrain is 0.8 μm or less in the thickness direction. It is characterized by being 45 μm or less in the direction.

そして、本発明に係る電池集電体用アルミニウム硬質箔は、シングル圧延により製造された請求項1に記載の電池集電体用アルミニウム硬質箔であって、厚みが9〜20μmであり、引張強さが220MPa以上、かつ、伸びが3.0%以上であることが好ましい。
また、本発明に係る電池集電体用アルミニウム硬質箔は、重合圧延により製造された請求項1に記載の電池集電体用アルミニウム硬質箔であって、厚みが5〜20μmであり、引張強さが215MPa以上、かつ、伸びが1.0%以上であることが好ましい。
And the aluminum hard foil for battery collectors which concerns on this invention is aluminum hard foil for battery collectors of Claim 1 manufactured by single rolling, Comprising: Thickness is 9-20 micrometers, Tensile strength It is preferable that the thickness is 220 MPa or more and the elongation is 3.0% or more.
The aluminum hard foil for battery current collector according to the present invention is the aluminum hard foil for battery current collector according to claim 1 manufactured by polymerization rolling, and has a thickness of 5 to 20 μm and a tensile strength. The thickness is preferably 215 MPa or more and the elongation is 1.0% or more.

このような構成によれば、Feを所定量添加することで、中間焼鈍時に結晶粒が微細化され、Fe、Cuを所定量添加することで、アルミニウム箔の強度が向上して引張強さが、シングル圧延の場合は220MPa以上、重合圧延の場合は215MPa以上となり、アルミニウムとしては十分な強度となる。また、Cu含有量を0.5質量%以下とすることで55%以上の導電率が得られ、電池集電体として十分な特性を有するものとなる。さらに、Siを所定量以下に抑制することで、Al−Fe系の金属間化合物が粗大なα−Al−Fe−Si系の金属間化合物となりにくいため伸びが低下することなく、また結晶粒径が粗大とならず、厚み方向に十分なサブグレイン数が得られる。また、厚みを9〜20μm(シングル圧延の場合)、5〜20μm(重合圧延の場合)とすることで、電池集電体用として適したアルミニウム箔とすることができる。さらに、サブグレインの厚み方向のサイズが0.8μm以下、圧延方向に45μm以下とすることで、アルミニウム箔の伸びが向上し、伸びが、シングル圧延の場合は3.0%以上、重合圧延の場合は1.0%以上となり、アルミニウムとしては十分な伸びとなる。   According to such a configuration, by adding a predetermined amount of Fe, crystal grains are refined during intermediate annealing, and by adding a predetermined amount of Fe and Cu, the strength of the aluminum foil is improved and the tensile strength is reduced. In the case of single rolling, it is 220 MPa or more, and in the case of polymerization rolling, it is 215 MPa or more, which is sufficient for aluminum. Moreover, the electrical conductivity of 55% or more is obtained by making Cu content 0.5 mass% or less, and it has sufficient characteristics as a battery current collector. Furthermore, by suppressing Si below a predetermined amount, the Al—Fe-based intermetallic compound does not easily become a coarse α-Al—Fe—Si-based intermetallic compound, so that the elongation does not decrease and the crystal grain size is reduced. Is not coarse, and a sufficient number of subgrains can be obtained in the thickness direction. Moreover, it can be set as the aluminum foil suitable for battery collectors by making thickness into 20-20 micrometers (in the case of single rolling) and 5-20 micrometers (in the case of superposition | polymerization rolling). Furthermore, the size of the subgrains in the thickness direction is 0.8 μm or less and the rolling direction is 45 μm or less, so that the elongation of the aluminum foil is improved, and in the case of single rolling, the elongation is 3.0% or more. In this case, it becomes 1.0% or more, which is sufficient for aluminum.

本発明に係る電池集電体用アルミニウム硬質箔は、さらに、Mn:0.5質量%以下、Mg:0.05質量%以下のうち1種以上を含有することが好ましい。   The aluminum hard foil for a battery current collector according to the present invention preferably further contains one or more of Mn: 0.5% by mass or less and Mg: 0.05% by mass or less.

このような構成によれば、さらにMnとMgのいずれかの少なくとも一つを添加することによって、強度を高くすることができる。そして、その場合には、Mnを所定量以下の添加量とすることで、伸びが低下することがなく、Mgも所定量以下の添加量とすることで、伸びおよび導電率が低下することがない。   According to such a configuration, the strength can be increased by adding at least one of Mn and Mg. In that case, the elongation does not decrease by adding Mn to a predetermined amount or less, and the elongation and conductivity may decrease by adding Mg to a predetermined amount or less. Absent.

本発明に係る電池集電体用アルミニウム硬質箔は、導電率が55%(IACS)以上であることが好ましい。
このような構成によれば、電池としての使用時に、電池の効率が向上する。
The aluminum hard foil for a battery current collector according to the present invention preferably has a conductivity of 55% (IACS) or more.
According to such a structure, the efficiency of a battery improves at the time of use as a battery.

本発明に係る電池集電体用アルミニウム硬質箔は、9〜20μm(シングル圧延の場合)、5〜20μm(重合圧延の場合)の薄肉であっても、純アルミニウムとしては高強度を有するため、また電気抵抗が低いこともあり、リチウムイオン二次電池の高容量化を図ることができる。さらに、伸びも優れるため、電極材の製造工程において、箔が破断することを防止することができ、製造ラインが停止するようなトラブルの発生を防止することができる。   The aluminum hard foil for battery current collector according to the present invention has high strength as pure aluminum even if it is 9-20 μm (in the case of single rolling) and 5-20 μm (in the case of polymerization rolling), In addition, since the electric resistance is low, the capacity of the lithium ion secondary battery can be increased. Furthermore, since the elongation is excellent, it is possible to prevent the foil from being broken in the manufacturing process of the electrode material, and it is possible to prevent the trouble that the production line is stopped.

以下、本発明に係る電池集電体用アルミニウム硬質箔(以下、適宜、アルミニウム箔という)を実現するための形態について説明する。   Hereinafter, the form for implement | achieving the aluminum hard foil (henceforth an aluminum foil suitably) for battery collectors which concerns on this invention is demonstrated.

本発明に係るアルミニウム箔は、Fe、Cuを所定量含有し、Siを所定量以下に抑制し、残部がAlおよび不可避的不純物からなるものである。そして、このアルミニウム箔の厚みが9〜20μm(シングル圧延の場合)、5〜20μm(重合圧延の場合)であり、この厚み方向のサブグレインのサイズが0.8μm以下、圧延方向のサイズが45μm以下、である。さらに、引張強さを、シングル圧延により製造される場合は220MPa以上、重合圧延により製造される場合は215MPa以上、かつ伸びを、シングル圧延により製造される場合は3.0%以上、重合圧延により製造される場合は1.0%以上に規定したものである。またアルミニウム箔は、Mn、Mgのうちの一種以上を所定量含有してもよい。そして、アルミニウム箔の導電率は、55%以上となる。
以下、各構成について説明する。
The aluminum foil according to the present invention contains a predetermined amount of Fe and Cu, suppresses Si to a predetermined amount or less, and the balance is made of Al and inevitable impurities. And the thickness of this aluminum foil is 9-20 micrometers (in the case of single rolling), 5-20 micrometers (in the case of superposition | polymerization rolling), the size of the subgrain of this thickness direction is 0.8 micrometer or less, and the size of a rolling direction is 45 micrometers. Below. Furthermore, the tensile strength is 220 MPa or more when manufactured by single rolling, 215 MPa or more when manufactured by polymerization rolling, and the elongation is 3.0% or more when manufactured by single rolling. When manufactured, it is specified to be 1.0% or more. The aluminum foil may contain a predetermined amount of one or more of Mn and Mg. And the electrical conductivity of aluminum foil will be 55% or more.
Each configuration will be described below.

(Fe:0.2〜1.3質量%)
Feは、中間焼鈍時の結晶粒微細化のため、また固溶強化による強度向上のため、さらにはサブグレイン安定化のために添加する元素である。Fe含有量が0.2質量%未満では、結晶粒径が粗大となり、厚み方向および圧延方向に十分に微細化せず、また、十分な強度が得られ難い。
また、Fe含有量が 1.3質量%を超えると、導電率が低下する。
したがって、Fe含有量は、0.2〜1.3質量%とする。
(Fe: 0.2-1.3% by mass)
Fe is an element added for grain refinement during intermediate annealing, strength improvement by solid solution strengthening, and further stabilization of subgrains. When the Fe content is less than 0.2% by mass, the crystal grain size becomes coarse, and it is not sufficiently refined in the thickness direction and the rolling direction, and it is difficult to obtain sufficient strength.
Moreover, when Fe content exceeds 1.3 mass%, electrical conductivity will fall.
Therefore, the Fe content is 0.2 to 1.3% by mass.

(Cu:0.01〜0.5質量%)
Cuは固溶強化による強度向上のため添加する元素である。0.01質量%未満では強度が不十分となる。0.5質量%を超えると伸びが低下する。Cuは添加分の半分程度が晶出物や分散粒子といった第二相に入り込むため、同量のMnを添加する場合よりも導電率が高い。
(Cu: 0.01 to 0.5% by mass)
Cu is an element added for improving the strength by solid solution strengthening. If it is less than 0.01% by mass, the strength is insufficient. If it exceeds 0.5 mass%, the elongation decreases. Since about half of the added amount of Cu enters the second phase such as a crystallized product or dispersed particles, the conductivity is higher than when adding the same amount of Mn.

(Si:0.2質量%以下)
Siは、不可避的不純物として混入し易い元素である。Si含有量が0.2質量%を超えると、Al−Fe系の金属間化合物が粗大なα−Al−Fe−Si系の金属間化合物となり易く、伸びが得難い。また金属間化合物の分布密度が減少することによって結晶粒径が粗大となり、サブグレインのサイズを十分に小さくすることができない。したがって、Si含有量は、0.2質量%以下とする。なお、Siは0質量%でもよい。
(Si: 0.2% by mass or less)
Si is an element that is easily mixed as an inevitable impurity. When the Si content exceeds 0.2% by mass, the Al—Fe-based intermetallic compound tends to be a coarse α-Al—Fe—Si-based intermetallic compound, and elongation is difficult to obtain. In addition, since the distribution density of the intermetallic compound decreases, the crystal grain size becomes coarse, and the size of the subgrain cannot be sufficiently reduced. Therefore, the Si content is 0.2% by mass or less. Si may be 0% by mass.

(Mn:0.5質量%以下)
Mnも強度向上には望ましい元素であり、添加してもよい。しかし、0.5質量%を超えると導電率が低下する。したがって、添加する場合のMn含有量は0.5%質量%以下とする。
(Mn: 0.5% by mass or less)
Mn is also an element desirable for improving the strength, and may be added. However, if it exceeds 0.5 mass%, the electrical conductivity will decrease. Therefore, the Mn content when added is 0.5% by mass or less.

(Mg:0.05質量%以下)
Mgも強度向上には望ましい元素であり、添加してもよい。しかし、0.05質量%を超えると伸びが低下する。また、導電率が低下する。したがって、添加する場合のMg含有量は0.05質量%以下とする。
(Mg: 0.05% by mass or less)
Mg is also a desirable element for improving the strength, and may be added. However, when it exceeds 0.05 mass%, elongation will fall. In addition, the conductivity decreases. Therefore, the Mg content when added is 0.05% by mass or less.

その他、鋳塊組織の微細化のために、Al−Ti−B中間合金を添加する場合がある。すなわち、Ti:B=5:1あるいは5:0.2の割合とした鋳塊微細化剤を、ワッフルあるいはロッドの形態で溶湯(スラブ凝固前における、溶解炉、介在物フィルター、脱ガス装置、溶湯流量制御装置へ投入された、いずれかの段階での溶湯)へ添加してもよく、Ti量で、0.1質量%までの含有は許容される。
また、結晶粒微細化のためにCr、Zr、Vを添加する場合があるが、導電率の低下を避けるために、添加する場合のCr、Zr、Vの含有量は0.5質量%以下が望ましい。
In addition, an Al—Ti—B intermediate alloy may be added to refine the ingot structure. That is, the ingot refining agent in the ratio of Ti: B = 5: 1 or 5: 0.2 is melted in the form of a waffle or a rod (melting furnace, inclusion filter, degassing device, before slab solidification, The melt may be added to the molten metal flow rate control apparatus at any stage), and the Ti content is allowed to be up to 0.1% by mass.
In addition, Cr, Zr, V may be added for crystal grain refinement, but the content of Cr, Zr, V when added is 0.5 mass% or less in order to avoid a decrease in conductivity. Is desirable.

(残部:Alおよび不可避的不純物)
アルミニウム箔の成分は前記の他、Alおよび不可避的不純物からなるものである。そして、アルミニウムの純度は98.0質量%以上である。なお、不可避的不純物としてZnは0.1質量%までの含有は許容される。Zn量が0.1質量%を超えると耐食性が悪くなる。また、地金や中間合金に含まれている、通常知られている範囲内のGa、Ni等は、それぞれ0.05質量%までの含有は許容される。
(Balance: Al and inevitable impurities)
In addition to the above, the components of the aluminum foil are composed of Al and inevitable impurities. And the purity of aluminum is 98.0 mass% or more. As an inevitable impurity, Zn is allowed to be contained up to 0.1% by mass. If the Zn content exceeds 0.1% by mass, the corrosion resistance deteriorates. In addition, Ga, Ni, and the like within a normally known range contained in the metal and the intermediate alloy are allowed to contain up to 0.05% by mass.

(厚み:シングル圧延箔9〜20μm、重合圧延箔5〜20μm)
リチウムイオン二次電池の電池容量を大きくするためには、アルミニウム箔の厚さはできるだけ薄いほうがよいが、シングル圧延では9μm未満の高強度箔を作製することは困難であり、重合圧延では5μm未満の高強度箔を作製することは困難である。また、20μmを超えると、決められた体積のケース中に多くの電極材を入れることができず、電池容量が低下する。したがって、アルミニウム箔の厚みは、シングル圧延箔で9〜20μm、重合圧延箔で5〜20μmとする。
(Thickness: single rolled foil 9-20 μm, polymerization rolled foil 5-20 μm)
In order to increase the battery capacity of the lithium ion secondary battery, the aluminum foil should be as thin as possible, but it is difficult to produce a high strength foil of less than 9 μm by single rolling, and less than 5 μm by polymerization rolling. It is difficult to produce a high strength foil. On the other hand, if it exceeds 20 μm, a large amount of electrode material cannot be put in a case having a predetermined volume, and the battery capacity is lowered. Therefore, the thickness of the aluminum foil is 9 to 20 μm for the single rolled foil and 5 to 20 μm for the polymerized rolled foil.

(サブグレインサイズ:厚み方向0.8μm以下、圧延方向45μm以下)
9〜20μm(シングル圧延の場合)、5〜20μm(重合圧延の場合)の厚みのアルミニウム箔での伸びの増加のためには、サブグレインサイズを、厚み方向で0.8μm以下、圧延方向で45μm以下とすることが必要である。それ以上のサイズでは、アルミニウム箔の伸びが十分に得られない。また、サブグレインサイズが微細であればあるほどよく、下限は特に限定されるものではない。
(Subgrain size: thickness direction 0.8 μm or less, rolling direction 45 μm or less)
In order to increase the elongation of aluminum foil having a thickness of 9 to 20 μm (in the case of single rolling) and 5 to 20 μm (in the case of polymerization rolling), the subgrain size is 0.8 μm or less in the thickness direction and in the rolling direction. It is necessary to be 45 μm or less. If the size is larger than that, the aluminum foil cannot be sufficiently stretched. Further, the smaller the subgrain size, the better. The lower limit is not particularly limited.

次に、厚み方向および圧延方向のサブグレインのサイズの測定方法の確立について説明する。
まず、アルミニウム箔を約5×10mmに切断し、薄板基盤に、電導性テープを用いて、この切断した箔を、箔が僅かに出っ張った状態となるように貼付ける。次に、この箔の部分をFIB(Focused Ion Beam)装置で切断し、平行断面を観察出来るようにする。なお、多用されている樹脂埋め法では、SEM(走査電子顕微鏡)観察時に樹脂部がチャージアップし測定が困難である。そして、この断面について、SEMにて、観察倍率を×2000倍とし、EBSD(Electron Back Scatter Diffraction)解析を行い、方位マッピング像を得る。測定は、一つの試料につき10視野にて行えばよい。なお、通常は表面から観察するため、解析ソフトは自動的に表面から見たND面の方位マッピング像を表示するようになっている。本解析では、平行断面(RD−TD面)観察であり、RD−ND面から見たND面の方位マッピング像が得られるよう回転操作する。そして、この得られた方位マッピング像により、線分法にてサブグレインのサイズを算出する。具体的には、次のとおりである。サブグレインは、結晶粒間の傾角が0〜15°であり、傾角15°未満の境界と傾角15°以上の境界を方位マッピング上に線で角度差別に色別表示することができる。この事項をもとに、方位マッピング像(方位マッピング図)から結晶粒間の傾角と色とを肉眼にて判定し、サブグレインのサイズを測定する。
Next, establishment of a method for measuring the size of the subgrains in the thickness direction and the rolling direction will be described.
First, the aluminum foil is cut to about 5 × 10 mm, and the cut foil is pasted on a thin plate substrate using a conductive tape so that the foil is slightly protruded. Next, this foil portion is cut with a FIB (Focused Ion Beam) apparatus so that a parallel section can be observed. In the resin filling method that is frequently used, the resin part is charged up during SEM (scanning electron microscope) observation, and measurement is difficult. Then, with respect to this cross section, an observation magnification is set to × 2000 with an SEM, and EBSD (Electron Back Scatter Diffraction) analysis is performed to obtain an orientation mapping image. Measurement may be performed in 10 fields per sample. Since the observation is usually performed from the surface, the analysis software automatically displays an orientation mapping image of the ND plane viewed from the surface. In this analysis, the observation is a parallel cross section (RD-TD plane), and the rotation operation is performed so that an orientation mapping image of the ND plane viewed from the RD-ND plane is obtained. Then, the subgrain size is calculated by the line segment method from the obtained orientation mapping image. Specifically, it is as follows. The subgrains have an inclination angle between crystal grains of 0 to 15 °, and a boundary having an inclination angle of less than 15 ° and a boundary having an inclination angle of 15 ° or more can be displayed in a color-differentiated manner by lines on the orientation mapping. Based on this matter, the tilt angle and color between crystal grains are determined with the naked eye from the orientation mapping image (orientation mapping diagram), and the size of the subgrain is measured.

(引張強さ:220MPa以上(シングル圧延の場合)、215MPa以上(重合圧延の場合))
引張強さが220MPa未満では、シングル圧延により製造されたアルミニウム箔としての強度が不十分である。一方、重合圧延により製造されたアルミニウム箔の引張強度は、215MPa以上であればよい。
したがって、引張強さは、220MPa以上(シングル圧延の場合)、215MPa以上(重合圧延の場合)とする。
(Tensile strength: 220 MPa or more (in the case of single rolling), 215 MPa or more (in the case of polymerization rolling))
When the tensile strength is less than 220 MPa, the strength as an aluminum foil produced by single rolling is insufficient. On the other hand, the tensile strength of the aluminum foil produced by polymerization rolling may be 215 MPa or more.
Therefore, the tensile strength is 220 MPa or more (in the case of single rolling) and 215 MPa or more (in the case of polymerization rolling).

(伸び:3.0%以上(シングル圧延の場合)、1.0%以上(重合圧延の場合))
合金箔に比較して強度が若干劣る分、より優れた伸びが必要である。伸びが3.0%未満では、シングル圧延により製造されたアルミニウム箔としての伸びが不十分である。一方、重合圧延により製造されたアルミニウム箔の伸びは、1.0%以上であればよい。
したがって、伸びは、3.0%以上(シングル圧延の場合)、1.0%以上(重合圧延の場合)とする。なお、伸びは高ければ高い程、好ましい。
(Elongation: 3.0% or more (in the case of single rolling), 1.0% or more (in the case of polymerization rolling))
Since the strength is slightly inferior to that of the alloy foil, more excellent elongation is required. If the elongation is less than 3.0%, the elongation as an aluminum foil produced by single rolling is insufficient. On the other hand, the elongation of the aluminum foil produced by polymerization rolling may be 1.0% or more.
Accordingly, the elongation is set to 3.0% or more (in the case of single rolling) and 1.0% or more (in the case of polymerization rolling). The higher the elongation, the better.

引張強さおよび伸びの測定は、アルミニウム箔の巾方向中央部から、引張方向が圧延方向と平行になるように15mm幅×約200mm長さの短冊型試験片を切り出し、チャック間距離100mmを評点間距離として実施する。伸びはクロスヘッドの変位より算出する。試験回数は、材料1種類につき5回とする。引張強さと伸びの値は、5回のうち最大および最小の値を除いた3回の平均値とする。試験には、株式会社オリエンテック製 テンシロン万能試験機 型式:RTC−1225Aを用いることができる。   Tensile strength and elongation were measured by cutting out a strip-shaped test piece of 15 mm width x about 200 mm length from the center of the width direction of the aluminum foil so that the tensile direction was parallel to the rolling direction, and scoring the distance between chucks of 100 mm. It is implemented as a distance. The elongation is calculated from the displacement of the crosshead. The number of tests is 5 times for each material. The values of tensile strength and elongation are average values of three times excluding the maximum and minimum values among the five times. For the test, Tentecron Universal Testing Machine Model: RTC-1225A manufactured by Orientec Co., Ltd. can be used.

(導電率:55%以上)
電気部品として用いるためには電気抵抗が低いことが必要である。電気抵抗が低い、すなわち導電率が55%以上であると、電池としての使用時に効率が向上する。したがって、導電率は、55%以上とする。なお、導電率は高ければ高い程、好ましい。
なお、本発明の構成とすることで、9〜20μm厚において、55%以上の導電率が得られ、電池集電体として十分な特性を有するものとなる。測定は、アルミニウム箔の巾方向中央部付近にて行い、測定回数は、材料1種類につき4回とする。
(Conductivity: 55% or more)
In order to be used as an electrical component, it is necessary that the electrical resistance is low. When the electric resistance is low, that is, when the conductivity is 55% or more, the efficiency is improved during use as a battery. Therefore, the conductivity is 55% or more. The higher the conductivity, the better.
In addition, by setting it as the structure of this invention, in 9-20 micrometers thickness, the electrical conductivity of 55% or more is obtained, and it has a characteristic sufficient as a battery electrical power collector. The measurement is performed near the center in the width direction of the aluminum foil, and the number of measurements is 4 times for each type of material.

次に、導電率の測定(算出)方法について説明する。本測定はJIS C2525に則り、アルバック理工株式会社製 電気抵抗測定装置 TER−2000RHを用い、直流4端子法にて電気抵抗を測定することにより行うことができる。
具体的には、まず、所定厚みの箔を所定の大きさに切断し、両端にNi線をスポット溶接し、4端子法にて電気抵抗を測定する。試験片の抵抗Rは試料に流れる電流Iと電圧端子間の電位差Vから、R=V/Iにより求める。電流Iは試験片と直列に接続した標準抵抗(0.1Ω)の電圧降下から求める。試験片および標準抵抗の電圧降下とR熱電対の起電力は、検出感度±0.1μVのデジタルマルチメータを用いて求める。そして導電率は、下式にて求める。
体積抵抗ρ=R(A/L)
導電率γ(%IACS)={1.7241〔μΩ・cm〕/体積抵抗ρ〔μΩ・cm〕}×100
A:試料断面積
L:測定部長さ
1.7241〔μΩ・cm〕:標準軟銅の体積抵抗率
Next, a method for measuring (calculating) conductivity will be described. This measurement can be performed in accordance with JIS C2525 by measuring the electrical resistance by a direct current four-terminal method using an electrical resistance measuring device TER-2000RH manufactured by ULVAC-RIKO.
Specifically, first, a foil having a predetermined thickness is cut into a predetermined size, Ni wires are spot welded to both ends, and electric resistance is measured by a four-terminal method. The resistance R of the test piece is obtained by R = V / I from the current I flowing through the sample and the potential difference V between the voltage terminals. The current I is obtained from the voltage drop of a standard resistor (0.1Ω) connected in series with the test piece. The voltage drop of the test piece and the standard resistance and the electromotive force of the R thermocouple are obtained using a digital multimeter with detection sensitivity of ± 0.1 μV. The conductivity is obtained by the following formula.
Volume resistance ρ = R (A / L)
Conductivity γ (% IACS) = {1.7241 [μΩ · cm] / Volume resistance ρ [μΩ · cm]} × 100
A: Sample cross-sectional area
L: Measuring part length
1.7241 [μΩ · cm]: Volume resistivity of standard annealed copper

〔アルミニウム箔の製造方法〕
次に、アルミニウム箔の製造方法について説明する。アルミニウム箔の製造方法は、アルミニウム鋳塊を、定法により、均質化熱処理、熱間圧延を行った後、所定条件で、冷間圧延、必要に応じて中間焼鈍を行い、その後、冷間圧延、箔圧延を行うというものである。なお、箔圧延は、シングル圧延または重合圧延のいずれかの方法により行うのが一般的である。ここで、重合圧延とは、最終パスにおいてアルミニウム箔を2枚重ねてロールに供給し、圧延するものである。シングル圧延とは、最終パスまで1枚のアルミニウム箔をロールに供給し、圧延するというものである。
[Method for producing aluminum foil]
Next, the manufacturing method of aluminum foil is demonstrated. The method for producing the aluminum foil is that the aluminum ingot is subjected to homogenization heat treatment and hot rolling by a regular method, followed by cold rolling under a predetermined condition, intermediate annealing as necessary, and then cold rolling, It is to perform foil rolling. The foil rolling is generally performed by either single rolling or superposition rolling. Here, the polymerization rolling is a method in which two aluminum foils are stacked and supplied to a roll in the final pass and rolled. Single rolling is a process in which a single aluminum foil is supplied to a roll and rolled until the final pass.

アルミニウム箔において、サブグレインのサイズを小さくするためには、中間焼鈍をしないか、中間焼鈍を連続焼鈍(CAL)により急速加熱・急速冷却することにより、中間焼鈍時の結晶粒径を微細とすることが好ましい。そのため、熱間圧延後から中間焼鈍までの冷間加工率(冷延率)は高いことが好ましく、30%以上の冷延率とすることが好ましい。また、強度を向上させるためにも、30%以上の冷延率とすることが好ましい。中間焼鈍までの冷延率が85%を超えると、効果が飽和してしまい経済的ではないため、85%以下が好ましい。ただし、中間焼鈍をバッチ焼鈍で行うと、中間焼鈍時の再結晶粒径が粗大になり、中間焼鈍を行わない場合よりも伸びが低下してしまう。   In aluminum foil, in order to reduce the size of the subgrain, intermediate annealing is not performed, or intermediate annealing is rapidly heated and rapidly cooled by continuous annealing (CAL), so that the crystal grain size during intermediate annealing is made fine. It is preferable. Therefore, it is preferable that the cold working rate (cold rolling rate) from hot rolling to intermediate annealing is high, and a cold rolling rate of 30% or more is preferable. In order to improve the strength, it is preferable to set the cold rolling rate to 30% or more. If the cold rolling rate until the intermediate annealing exceeds 85%, the effect is saturated and it is not economical, so 85% or less is preferable. However, when the intermediate annealing is performed by batch annealing, the recrystallized grain size at the time of intermediate annealing becomes coarse, and the elongation is lowered as compared with the case where the intermediate annealing is not performed.

中間焼鈍後は高い冷延率でアルミニウム箔とし、サブグレイン化をより促進すると共に、特に強度を向上させる必要があるため、中間焼鈍後の冷延率、すなわち、中間焼鈍後から最終的なアルミニウム箔(最終品)とするまでのトータルの冷延率を98.5%以上とすることが好ましく、そのために、中間焼鈍時の板厚を1mm以上とすることが好ましい。なお、アルミニウム箔で高い強度を得るためにも、中間焼鈍時の板厚は1mm以上が好ましい。ただし、2mmを超える厚さで中間焼鈍を行うと、強度が高くなりすぎて箔圧延が困難となり易いため、2mm以下が好ましい。なお、箔圧延を容易にするためには、強度の絶対値は高い値であっても、100μm厚程度以下の箔厚において加工硬化は少ないことが好ましい。また、箔圧延によるサブグレイン化を促進するためには、ある程度温度上昇が必要であり、コイル巻き取り後40〜100℃程度になるように行う。箔圧延中に温度上昇が無い場合、サブグレイン化による結晶粒微細化は難しい。   After intermediate annealing, it is necessary to make aluminum foil with a high cold rolling rate to further promote sub-graining and particularly to improve the strength, so the cold rolling rate after intermediate annealing, that is, the final aluminum after intermediate annealing The total cold rolling ratio until the foil (final product) is made is preferably 98.5% or more, and for that purpose, the thickness during intermediate annealing is preferably 1 mm or more. In order to obtain high strength with the aluminum foil, the plate thickness during the intermediate annealing is preferably 1 mm or more. However, if intermediate annealing is performed at a thickness exceeding 2 mm, the strength becomes too high and foil rolling tends to be difficult, so 2 mm or less is preferable. In order to facilitate foil rolling, it is preferable that the work hardening is small at a foil thickness of about 100 μm or less even if the absolute value of the strength is high. Moreover, in order to promote subgraining by foil rolling, a temperature rise is required to some extent, and it is performed so as to be about 40 to 100 ° C. after coil winding. When there is no temperature rise during foil rolling, it is difficult to refine crystal grains by subgraining.

均質化熱処理は、均熱温度を350℃以上560℃以下の条件で行う。均熱温度が350℃未満の場合は均質化不足になりアルミニウム箔の伸びが低下する。均熱温度が560℃を超えると、分散粒子が粗大かつ疎に分布するようになり、粒界ピン止め力が低下し、微細結晶粒が得られず、アルミニウム箔の伸びが低下してしまう。分散粒子の粒界ピン止め力を増加させ、箔の結晶粒を微細化するためには、350℃以上560℃以下の均熱温度の範囲では低温側が望ましい。
中間焼鈍は、再結晶粒径を微細にし、箔のサブグレインのサイズを厚み方向で0.8μm以下、圧延方向で45μm以下とするため、連続焼鈍炉にて焼鈍する。そして、焼鈍温度(到達温度)を380℃以上550℃以下、保持時間を1分以下の条件で行う。
焼鈍温度が380℃未満では、再結晶が十分に進まず、サブグレインのサイズが大きくなると共に、固溶の程度が不十分となる。一方、550℃を超えると、再結晶並びに固溶の効果が飽和すると共に表面外観が劣化し易くなる。また、昇降温速度は、連続焼鈍における常法の範囲であればよいが、バッチ焼鈍では、常法の範囲であっても、加熱中に析出が進み、箔圧延時にサブグレインの合体・粗大化が進行してしまう。また加工硬化の程度も不十分であり、強度が低下する。なお、連続焼鈍の場合、昇温速度は、1〜100℃/秒、降温速度は、1〜500℃/秒が常法範囲である。バッチ焼鈍の場合は、昇温速度は、20〜60℃/時間、降温速度は、炉冷、放冷、強制空冷等を任意に適用し、これらの条件に従う。
そして、固溶のためには保持時間は長いことが好ましいが、連続焼鈍炉であるために、1分を超える保持は、ライン速度が著しく遅くなるため経済的に劣る。
The homogenization heat treatment is performed under conditions where the soaking temperature is 350 ° C. or higher and 560 ° C. or lower. When the soaking temperature is less than 350 ° C., homogenization is insufficient and the elongation of the aluminum foil is lowered. When the soaking temperature exceeds 560 ° C., the dispersed particles are coarsely and sparsely distributed, the grain boundary pinning force is reduced, fine crystal grains are not obtained, and the elongation of the aluminum foil is reduced. In order to increase the grain boundary pinning force of the dispersed particles and to refine the crystal grains of the foil, the lower temperature side is desirable in the range of the soaking temperature of 350 ° C. or higher and 560 ° C. or lower.
In the intermediate annealing, the recrystallized grain size is made fine, and the subgrain size of the foil is 0.8 μm or less in the thickness direction and 45 μm or less in the rolling direction, so that annealing is performed in a continuous annealing furnace. And annealing temperature (attainment temperature) is 380 degreeC or more and 550 degrees C or less, and holding time is 1 minute or less.
When the annealing temperature is less than 380 ° C., recrystallization does not proceed sufficiently, the subgrain size increases, and the degree of solid solution becomes insufficient. On the other hand, when the temperature exceeds 550 ° C., the effects of recrystallization and solid solution are saturated and the surface appearance tends to deteriorate. In addition, the temperature raising / lowering rate may be within the range of conventional methods in continuous annealing, but in batch annealing, precipitation proceeds during heating, and subgrains coalesce and become coarse during foil rolling. Will progress. In addition, the degree of work hardening is insufficient and the strength decreases. In the case of continuous annealing, the temperature increase rate is 1 to 100 ° C./second, and the temperature decrease rate is 1 to 500 ° C./second. In the case of batch annealing, the heating rate is 20 to 60 ° C./hour, and the cooling rate is arbitrarily applied to furnace cooling, standing cooling, forced air cooling, and the like.
And although it is preferable that holding time is long for solid solution, since it is a continuous annealing furnace, holding over 1 minute is economically inferior because the line speed becomes remarkably slow.

このように、厚み方向および圧延方向のサブグレインのサイズは、成分範囲、中間焼鈍時の結晶粒数、固溶状態により制御することができる。   Thus, the size of the subgrains in the thickness direction and the rolling direction can be controlled by the component range, the number of crystal grains during intermediate annealing, and the solid solution state.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔供試材作製〕
(発明例No.1〜14、比較例No.15〜25)
表1に示す組成のアルミニウムを、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、360〜550℃の範囲にて2〜4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間圧延、さらに冷間圧延を施した後、中間焼鈍を行い、その後、所定の厚さまで冷間圧延し、アルミニウム箔とした。中間焼鈍、冷間圧延の条件は、表1に示すとおりである。
なお、連続焼鈍(CAL)の場合、昇温速度は、10℃/秒、降温速度は、20℃/秒とし、バッチ焼鈍(BATCH)の場合、昇温速度は、40℃/時間、降温速度は、80℃/時間(放冷)とした。また、トータル冷延率は、およその値である。
[Sample preparation]
(Invention Examples No. 1-14, Comparative Example No. 15-25)
Aluminum having the composition shown in Table 1 was melted and cast to form an ingot, and the ingot was chamfered and then subjected to a homogenization heat treatment in the range of 360 to 550 ° C. for 2 to 4 hours. The homogenized ingot was subjected to hot rolling and further cold rolling, followed by intermediate annealing, and then cold rolled to a predetermined thickness to obtain an aluminum foil. The conditions for intermediate annealing and cold rolling are as shown in Table 1.
In the case of continuous annealing (CAL), the rate of temperature increase is 10 ° C./second and the rate of temperature decrease is 20 ° C./second. In the case of batch annealing (BATCH), the rate of temperature increase is 40 ° C./hour, the rate of temperature decrease. Was 80 ° C./hour (cooling). The total cold rolling rate is an approximate value.

シングル圧延および重合圧延によりアルミニウム箔を製造した場合の成分組成、特性、及び製造条件を表1に示す。なお、表中、本発明の範囲を満たさないもの、および、製造条件を満たさないものは、数値等に下線を引いて示す。また、表1中、熱間圧延後の板の厚さは、熱延終了厚と記し、中間焼鈍前の板の厚さは、中間焼鈍厚と記す。   Table 1 shows the component composition, characteristics, and production conditions when an aluminum foil was produced by single rolling and polymerization rolling. In the table, those not satisfying the scope of the present invention and those not satisfying the production conditions are indicated by underlining the numerical values. Moreover, in Table 1, the thickness of the plate after hot rolling is described as hot-rolled end thickness, and the thickness of the plate before intermediate annealing is described as intermediate annealing thickness.

〔サブグレインのサイズ〕
次に、アルミニウム箔の厚み方向および圧延方向におけるサブグレインのサイズを以下の方法により測定した。
まず、アルミニウム箔を約5×10mmに切断し、薄板基盤に、電導性テープを用いて、この切断した箔を、箔が僅かに出っ張った状態となるように貼付けた。次に、この箔の部分をFIB(Focused Ion Beam)装置で切断し、平行断面を観察出来るようにした。そして、この断面について、走査電子顕微鏡にて、観察倍率を×2000倍とし、EBSD(Electron Back Scatter Diffraction)解析を行い、箔の全厚にわたって方位マッピング像を得た。一試料あたり10視野で測定した。なお、通常は表面から観察するため、解析ソフトは自動的に表面から見たND面の方位マッピング像を表示するようになっている。本解析では、平行断面(RD−TD面)観察であり、RD−ND面から見たND面の方位マッピング像が得られるよう回転操作した。そして、この方位マッピング像に基づき、線分法にてサブグレインサイズを算出した。
この結果を表1に示す。
[Subgrain size]
Next, the size of the subgrains in the thickness direction and the rolling direction of the aluminum foil was measured by the following method.
First, the aluminum foil was cut to about 5 × 10 mm, and this cut foil was attached to a thin plate substrate using a conductive tape so that the foil was slightly protruding. Next, this foil portion was cut with a FIB (Focused Ion Beam) apparatus so that a parallel section could be observed. Then, this cross section was subjected to EBSD (Electron Back Scatter Diffraction) analysis with a scanning electron microscope at an observation magnification of × 2000, and an orientation mapping image was obtained over the entire thickness of the foil. Measurement was performed in 10 fields per sample. Since the observation is usually performed from the surface, the analysis software automatically displays an orientation mapping image of the ND plane viewed from the surface. In this analysis, it was parallel cross-section (RD-TD plane) observation, and it rotated so that the orientation mapping image of the ND plane seen from the RD-ND plane could be obtained. And based on this orientation mapping image, the subgrain size was calculated by the line segment method.
The results are shown in Table 1.

ここで、結晶粒間の傾角が15°以下で囲まれた領域がサブグレインであり、同一結晶方位のサブグレインは同一の色となる。なお、色と結晶方位との関係はカラーコードに示されている。また、サブグレイン間の傾角は0〜15°であるが、傾角0〜15°の境界を方位マッピング上に線で表示することができる。そして、前記事項を加味して、方位マッピング図を肉眼判定にて、サブグレインのサイズを計測した。なお、結晶粒の存在箇所は、微小領域であり、サブグレインは、場所によってサイズが異なるが、サイズの計測においては、ここでは、最も大きなサイズのサブグレインを計測した。   Here, a region surrounded by an inclination angle of 15 ° or less between crystal grains is a subgrain, and subgrains having the same crystal orientation have the same color. The relationship between color and crystal orientation is shown in the color code. The tilt angle between the subgrains is 0 to 15 °, but the boundary of the tilt angle 0 to 15 ° can be displayed as a line on the orientation mapping. Then, in consideration of the above matters, the size of the subgrain was measured by the naked eye judgment of the orientation mapping diagram. Note that the location where the crystal grains exist is a minute region, and the size of the subgrain varies depending on the location, but in the measurement of the size, the largest size subgrain was measured here.

〔導電率〕
次に、アルミニウム箔の導電率を以下の方法により測定した。本測定はJIS C2525に則り、アルバック理工株式会社製 電気抵抗測定装置 TER−2000RHを用い、直流4端子法にて電気抵抗を測定することにより行った。
具体的には、まず、所定厚みの箔を、3mm幅×80mm長さに切断し、両端にNi線をスポット溶接し、4端子法にて電気抵抗を測定した。試験片の抵抗Rは試料に流れる電流Iと電圧端子間の電位差Vから、R=V/Iにより求めた。電流Iは試験片と直列に接続した標準抵抗(0.1Ω)の電圧降下から求めた。試験片および標準抵抗の電圧降下とR熱電対の起電力は検出感度±0.1μVのデジタルマルチメータを用いて求めた。導電率は、下式にて求めた。
体積抵抗ρ=R(A/L)
導電率γ(%IACS)={1.7241〔μΩ・cm〕/体積抵抗ρ〔μΩ・cm〕}×100
A:試料断面積
L:測定部長さ
1.7241〔μΩ・cm〕:標準軟銅の体積抵抗率
〔conductivity〕
Next, the electrical conductivity of the aluminum foil was measured by the following method. This measurement was performed according to JIS C2525 by measuring the electric resistance by a direct current four-terminal method using an electric resistance measuring device TER-2000RH manufactured by ULVAC-RIKO.
Specifically, first, a foil having a predetermined thickness was cut into a length of 3 mm × 80 mm, Ni wires were spot welded to both ends, and electric resistance was measured by a four-terminal method. The resistance R of the test piece was determined by R = V / I from the current I flowing through the sample and the potential difference V between the voltage terminals. The current I was obtained from the voltage drop of a standard resistance (0.1Ω) connected in series with the test piece. The voltage drop of the test piece and the standard resistance and the electromotive force of the R thermocouple were obtained using a digital multimeter with detection sensitivity of ± 0.1 μV. The conductivity was determined by the following formula.
Volume resistance ρ = R (A / L)
Conductivity γ (% IACS) = {1.7241 [μΩ · cm] / Volume resistance ρ [μΩ · cm]} × 100
A: Sample cross-sectional area
L: Measuring part length
1.7241 [μΩ · cm]: Volume resistivity of standard annealed copper

〔評価〕
得られたアルミニウム箔にて以下の評価を行った。
(強度および伸び)
引張強さおよび伸びの測定は、軽金属協会規格 LIS AT5に準じてB型試験片を用いて実施した。すなわち、アルミニウム箔から、引張方向が圧延方向と平行になるように15mm幅×約200mm長さの短冊型試験片を切り出し、チャック間距離100mmを評点間距離として実施した。試験には、株式会社オリエンテック製 テンシロン万能試験機 型式:RTC−1225Aを用いた。この試験にて、引張強さ、および、伸びを測定した。シングル圧延により製造されたアルミニウム箔については、引張強さの合格基準は、220MPa以上、伸びの合格基準は、3.0%以上とした。一方、重合圧延により製造されたアルミニウム箔については、引張強さの合格基準は、215MPa以上、伸びの合格基準は、1.0%以上とした。
[Evaluation]
The following evaluation was performed on the obtained aluminum foil.
(Strength and elongation)
Tensile strength and elongation were measured using a B-type test piece according to the Light Metal Association Standard LIS AT5. That is, a strip-shaped test piece of 15 mm width × about 200 mm length was cut out from the aluminum foil so that the tensile direction was parallel to the rolling direction, and the distance between the chucks was 100 mm. For the test, Tentecron Universal Testing Machine Model: RTC-1225A manufactured by Orientec Co., Ltd. was used. In this test, tensile strength and elongation were measured. About the aluminum foil manufactured by single rolling, the acceptance standard of tensile strength was 220 MPa or more, and the acceptance standard of elongation was 3.0% or more. On the other hand, for the aluminum foil produced by polymerization rolling, the acceptance criteria for tensile strength was 215 MPa or more, and the acceptance criteria for elongation was 1.0% or more.

これらの結果を表1に示す。なお、表中、引張強さ、伸び、導電率が合格基準を満たさないものは、数値に下線を引いて示す。   These results are shown in Table 1. In the table, those whose tensile strength, elongation, and conductivity do not satisfy the acceptance criteria are indicated by underlining the numerical values.

Figure 2012021205
Figure 2012021205

(アルミニウム箔による評価)
表1に示すように、発明例であるNo.1〜14は、本発明の範囲を満たすため、強度および伸びが優れており、導電率も55%以上であった。
(Evaluation with aluminum foil)
As shown in Table 1, No. 1 is an invention example. Since 1-14 satisfy | fill the range of this invention, intensity | strength and elongation were excellent, and the electrical conductivity was also 55% or more.

一方、比較例であるNo.15〜25は、本発明の範囲を満たさないため、以下の結果となった。
No.15は、Si含有量が上限値を超えるため、α−Al−Fe−Si系の金属間化合物が粗大化し、破断の起点となり、伸びが劣った。
On the other hand, No. which is a comparative example. Since 15 to 25 did not satisfy the scope of the present invention, the following results were obtained.
No. In No. 15, since the Si content exceeded the upper limit, the α-Al—Fe—Si-based intermetallic compound was coarsened and became the starting point of fracture, and the elongation was inferior.

No.16は、Fe含有量が下限値未満のため、結晶粒径が粗大となり、サブグレインサイズが上限値以上となった。そのため、伸びが劣った。No.17は、Fe含有量が上限値を超えるため、圧延性に優れるが、導電率が低下した。   No. In No. 16, since the Fe content was less than the lower limit, the crystal grain size was coarse, and the subgrain size was greater than or equal to the upper limit. Therefore, the growth was inferior. No. In No. 17, since the Fe content exceeds the upper limit value, the rollability is excellent, but the conductivity is lowered.

No.18は、Cu含有量が下限値を下回ったため、強度が低下した。No.19は、Cu含有量が上限値を超えたため、伸びが低下した。No.20は、Mn含有量が上限値を超えるため、導電率が低下した。No.21はMg含有量が上限値を超えるため、導電率が低下した。また、伸びが劣った。   No. In No. 18, since the Cu content was below the lower limit, the strength decreased. No. In No. 19, since the Cu content exceeded the upper limit, the elongation decreased. No. In No. 20, the Mn content exceeded the upper limit value, so the conductivity decreased. No. In No. 21, the Mg content exceeded the upper limit, so the conductivity decreased. Also, the growth was inferior.

No.22は、サブグレインサイズが上限値以上であるとともに、均熱温度が高すぎて、分散粒子のピン止め力が得られず、箔の結晶粒が微細化しなかったため、伸びが劣った。No.23は、サブグレインサイズが上限値以上であるとともに、均熱温度が低すぎて、均質化不足を招き、伸びが劣った。No.24は、中間焼鈍がバッチ式のため、中間焼鈍時に微細な結晶粒が得られず、箔圧延時にサブグレインが成長・合体し、微細なサブグレイン組織が得られなかった。また加工硬化の程度も不十分であった。これらのため、引張強さ(引張強度)が低く、強度に劣り、また、サブグレインサイズが上限値を超え、伸びが劣った。   No. In No. 22, the subgrain size was not less than the upper limit value, the soaking temperature was too high, the pinning force of the dispersed particles could not be obtained, and the crystal grains of the foil were not refined, so the elongation was inferior. No. In No. 23, the subgrain size was not less than the upper limit, and the soaking temperature was too low, resulting in insufficient homogenization and poor elongation. No. In No. 24, since the intermediate annealing was a batch type, fine crystal grains were not obtained at the time of intermediate annealing, and subgrains were grown and coalesced at the time of foil rolling, and a fine subgrain structure was not obtained. Also, the degree of work hardening was insufficient. For these reasons, the tensile strength (tensile strength) was low, the strength was inferior, the subgrain size exceeded the upper limit value, and the elongation was inferior.

No.25は、Fe含有量が下限値未満のため、結晶粒径が粗大となり、サブグレインサイズが上限値以上となった。そのため、重合圧延した場合、引張強さが低いとともに、伸びが1.0%未満となり、劣った。   No. In No. 25, since the Fe content was less than the lower limit, the crystal grain size was coarse, and the subgrain size was not less than the upper limit. Therefore, in the case of polymerization rolling, the tensile strength was low and the elongation was less than 1.0%, which was inferior.

以上、本発明に係る電池集電体用アルミニウム硬質箔について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。   As mentioned above, although the embodiment and the Example were shown and demonstrated in detail about the aluminum hard foil for battery collectors which concerns on this invention, the meaning of this invention is not limited to an above-described content. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

Claims (5)

Fe:0.2〜1.3質量%、Cu:0.01〜0.5質量%を含有し、Si:0.2質量%以下に抑制し、残部がAlおよび不可避的不純物からなり、純度が98.0質量%以上であるとともに、サブグレインのサイズが厚み方向で0.8μm以下、圧延方向で45μm以下であることを特徴とする電池集電体用アルミニウム硬質箔。   Fe: 0.2 to 1.3% by mass, Cu: 0.01 to 0.5% by mass, Si: suppressed to 0.2% by mass or less, the balance consisting of Al and inevitable impurities, purity Is 88.0 mass% or more, and the size of the subgrain is 0.8 μm or less in the thickness direction and 45 μm or less in the rolling direction. シングル圧延により製造された請求項1に記載の電池集電体用アルミニウム硬質箔であって、
厚みが9〜20μmであり、引張強さが220MPa以上、かつ、伸びが3.0%以上であることを特徴とする電池集電体用アルミニウム硬質箔。
The aluminum hard foil for a battery current collector according to claim 1 manufactured by single rolling,
An aluminum hard foil for a battery current collector, having a thickness of 9 to 20 μm, a tensile strength of 220 MPa or more, and an elongation of 3.0% or more.
重合圧延により製造された請求項1に記載の電池集電体用アルミニウム硬質箔であって、
厚みが5〜20μmであり、引張強さが215MPa以上、かつ、伸びが1.0%以上であることを特徴とする電池集電体用アルミニウム硬質箔。
The aluminum hard foil for a battery current collector according to claim 1 manufactured by polymerization rolling,
An aluminum hard foil for a battery current collector, having a thickness of 5 to 20 μm, a tensile strength of 215 MPa or more, and an elongation of 1.0% or more.
さらに、Mn:0.5質量%以下、Mg:0.05質量%以下のうち1種以上を含有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の電池集電体用アルミニウム硬質箔。   The battery current collector according to any one of claims 1 to 3, further comprising at least one of Mn: 0.5% by mass or less and Mg: 0.05% by mass or less. Aluminum hard foil for body. 導電率が55%以上であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の電池集電体用アルミニウム硬質箔。   5. The aluminum hard foil for a battery current collector according to any one of claims 1 to 4, wherein the electrical conductivity is 55% or more.
JP2010161583A 2010-07-16 2010-07-16 Aluminum hard foil for battery current collector Active JP5639398B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010161583A JP5639398B2 (en) 2010-07-16 2010-07-16 Aluminum hard foil for battery current collector
KR1020137001055A KR101518142B1 (en) 2010-07-16 2011-07-15 Hardened aluminum foil for battery collectors
PCT/JP2011/066193 WO2012008567A1 (en) 2010-07-16 2011-07-15 Hardened aluminum foil for battery collectors
CN201180034620.1A CN103003457B (en) 2010-07-16 2011-07-15 Hardened aluminum foil for battery collectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161583A JP5639398B2 (en) 2010-07-16 2010-07-16 Aluminum hard foil for battery current collector

Publications (2)

Publication Number Publication Date
JP2012021205A true JP2012021205A (en) 2012-02-02
JP5639398B2 JP5639398B2 (en) 2014-12-10

Family

ID=45469561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161583A Active JP5639398B2 (en) 2010-07-16 2010-07-16 Aluminum hard foil for battery current collector

Country Status (4)

Country Link
JP (1) JP5639398B2 (en)
KR (1) KR101518142B1 (en)
CN (1) CN103003457B (en)
WO (1) WO2012008567A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089196A (en) * 2009-09-28 2011-05-06 Kobe Steel Ltd Aluminum alloy hard foil for battery current collector
JP2011219865A (en) * 2010-03-26 2011-11-04 Kobe Steel Ltd Pure aluminum hard foil for battery current collector
JP2012224927A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP2013014837A (en) * 2011-06-07 2013-01-24 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy foil and aluminum alloy foil
CN102978483A (en) * 2012-11-30 2013-03-20 苏州有色金属研究院有限公司 Aluminum alloy foil for lithium-ion anode current collector and manufacturing method thereof
WO2013146369A1 (en) * 2012-03-29 2013-10-03 古河スカイ株式会社 Aluminum alloy foil for electrode current collector and method for manufacturing same
JP2013218813A (en) * 2012-04-05 2013-10-24 Furukawa Sky Kk Aluminum alloy foil for secondary battery electrode and method for producing the same
WO2013161726A1 (en) 2012-04-24 2013-10-31 古河スカイ株式会社 Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
CN103397227A (en) * 2013-07-22 2013-11-20 苏州有色金属研究院有限公司 Aluminum alloy foil for lithium ion battery positive electrode current collector and preparation method thereof
JP2013256700A (en) * 2012-06-13 2013-12-26 Uacj Corp Aluminum alloy foil
WO2014021170A1 (en) * 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
WO2014034240A1 (en) * 2012-08-30 2014-03-06 住友軽金属工業株式会社 Aluminum alloy foil with excellent formability after laminating, process for producing same, and laminated foil obtained using said aluminum alloy foil
KR20140030062A (en) * 2012-08-29 2014-03-11 가부시키가이샤 고베 세이코쇼 Aluminum hard foil for battery collector
WO2014069119A1 (en) * 2012-10-30 2014-05-08 住友軽金属工業株式会社 Aluminium alloy foil
WO2014077391A1 (en) 2012-11-19 2014-05-22 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
JP2014101559A (en) * 2012-11-21 2014-06-05 Uacj Corp Aluminum alloy foil, molding package material, battery, medicine packaging container and method of manufacturing aluminum alloy foil
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2015025147A (en) * 2013-07-24 2015-02-05 株式会社Uacj Aluminum alloy bus bar
JP2015113515A (en) * 2013-12-13 2015-06-22 三菱アルミニウム株式会社 Aluminum alloy foil for lithium ion battery positive electrode collector and method of producing the same
US9118079B2 (en) 2012-12-17 2015-08-25 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolytic solution secondary battery, current collector and vehicle
WO2016158245A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Aluminum plate, and current collector for power storage device
WO2017002420A1 (en) * 2015-06-30 2017-01-05 住友電気工業株式会社 Lead conductor and power storage device
CN106311747A (en) * 2016-08-23 2017-01-11 江苏中基复合材料股份有限公司 Aluminum foil for lithium ion battery flexible package aluminum plastic film and production process for aluminum foil
JP2017110244A (en) * 2015-12-14 2017-06-22 三菱アルミニウム株式会社 Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector
WO2017155027A1 (en) * 2016-03-11 2017-09-14 株式会社Uacj Aluminum alloy foil
JP2017166027A (en) * 2016-03-16 2017-09-21 株式会社Uacj Aluminum alloy foil
JP2017226886A (en) * 2016-06-23 2017-12-28 三菱アルミニウム株式会社 Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector
WO2018043117A1 (en) * 2016-08-29 2018-03-08 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode charge collector, secondary battery positive electrode charge collector, and production method for aluminum alloy hard thin foil
CN108598358A (en) * 2018-04-24 2018-09-28 中航锂电技术研究院有限公司 A kind of preparation method of composition metal cathode of lithium
JP2019083138A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2019124530A1 (en) * 2017-12-21 2019-06-27 三菱アルミニウム株式会社 Aluminum alloy foil for cell collector
CN111601904A (en) * 2017-11-21 2020-08-28 海德鲁铝业钢材有限公司 Electrode foil for producing battery of lithium ion accumulator
JP2021504585A (en) * 2017-11-21 2021-02-15 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH High-strength battery electrode foil for the manufacture of lithium-ion storage batteries

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484725A (en) * 2012-06-12 2014-01-01 湖南省邵东县新仁铝业有限责任公司 Aluminum foil suitable for solar flat-plate heat collector, and production method thereof
JP5959423B2 (en) * 2012-12-03 2016-08-02 株式会社Uacj Aluminum alloy foil
CN103384012A (en) * 2013-06-26 2013-11-06 东莞新能源科技有限公司 Current collector structure of positive electrode of lithium ion battery and battery including structure
KR20150059518A (en) * 2013-11-22 2015-06-01 삼성에스디아이 주식회사 Secondary Battery
JP6431314B2 (en) * 2014-08-13 2018-11-28 三菱アルミニウム株式会社 Method for producing aluminum alloy foil
CN104388766B (en) * 2014-11-27 2017-01-11 广西南南铝箔有限责任公司 Production method of aluminum foil for lithium-ion battery
JP6461248B2 (en) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
JP6461249B2 (en) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
CN110157957A (en) * 2019-05-16 2019-08-23 昆山铝业有限公司 Aluminium foil and preparation method thereof for cryogenic insulating paper
CN110205524A (en) * 2019-06-26 2019-09-06 江苏鼎胜新能源材料股份有限公司 A kind of high extension power battery aluminium foil and preparation method thereof
CN112349962B (en) * 2019-08-08 2021-11-09 宁德时代新能源科技股份有限公司 Lithium ion battery
CN112635822B (en) 2019-09-24 2021-11-09 宁德时代新能源科技股份有限公司 Lithium ion battery
CN111893351B (en) * 2020-08-11 2021-12-10 华北铝业有限公司 Aluminum foil for 1235D lithium battery and preparation method thereof
CN111926202B (en) * 2020-08-31 2021-11-19 包头常铝北方铝业有限责任公司 Aluminum foil for container and preparation method thereof
EP4300651A1 (en) * 2021-03-30 2024-01-03 Ningde Amperex Technology Limited Electrolyte and electrochemical device containing electrolyte
CN113637874A (en) * 2021-07-14 2021-11-12 江苏鼎胜新能源材料股份有限公司 Special aluminum foil for power battery and processing technology thereof
CN113789461B (en) * 2021-11-15 2022-03-29 山东宏桥新型材料有限公司 Battery aluminum alloy foil, preparation method thereof and battery current collector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119659A (en) * 1984-11-16 1986-06-06 Sukai Alum Kk Manufacture of aluminum alloy material having high electric conductivity and strength
JPS6318041A (en) * 1986-07-11 1988-01-25 Furukawa Alum Co Ltd Manufacture of aluminum foil
JP2000054046A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Aluminum foil base for thin foil and its production
JP2004027353A (en) * 2002-05-07 2004-01-29 Nippon Foil Mfg Co Ltd Aluminum alloy foil, method of producing the same, and aluminum layered product
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery
JP2004339559A (en) * 2003-05-14 2004-12-02 Kobe Steel Ltd Aluminum alloy sheet for calking, and its production method
JP2010027304A (en) * 2008-07-16 2010-02-04 Furukawa-Sky Aluminum Corp Aluminum foil for positive current collector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
JP3758954B2 (en) * 2000-07-26 2006-03-22 株式会社神戸製鋼所 Aluminum alloy foil
US7459234B2 (en) * 2003-11-24 2008-12-02 The Gillette Company Battery including aluminum components
JP5083799B2 (en) * 2006-12-15 2012-11-28 三菱アルミニウム株式会社 Aluminum alloy foil for lithium ion battery electrode material excellent in bending resistance and method for producing the same
JP5324911B2 (en) * 2008-12-26 2013-10-23 住友軽金属工業株式会社 Aluminum alloy foil for lithium-ion battery electrode current collector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119659A (en) * 1984-11-16 1986-06-06 Sukai Alum Kk Manufacture of aluminum alloy material having high electric conductivity and strength
JPS6318041A (en) * 1986-07-11 1988-01-25 Furukawa Alum Co Ltd Manufacture of aluminum foil
JP2000054046A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Aluminum foil base for thin foil and its production
JP2004027353A (en) * 2002-05-07 2004-01-29 Nippon Foil Mfg Co Ltd Aluminum alloy foil, method of producing the same, and aluminum layered product
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery
JP2004339559A (en) * 2003-05-14 2004-12-02 Kobe Steel Ltd Aluminum alloy sheet for calking, and its production method
JP2010027304A (en) * 2008-07-16 2010-02-04 Furukawa-Sky Aluminum Corp Aluminum foil for positive current collector

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089196A (en) * 2009-09-28 2011-05-06 Kobe Steel Ltd Aluminum alloy hard foil for battery current collector
JP2011219865A (en) * 2010-03-26 2011-11-04 Kobe Steel Ltd Pure aluminum hard foil for battery current collector
JP2012224927A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP2013014837A (en) * 2011-06-07 2013-01-24 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy foil and aluminum alloy foil
KR102045000B1 (en) 2012-03-29 2019-11-14 가부시키가이샤 유에이씨제이 Aluminum alloy foil for electrode current collector and method for manufacturing same
WO2013146369A1 (en) * 2012-03-29 2013-10-03 古河スカイ株式会社 Aluminum alloy foil for electrode current collector and method for manufacturing same
JPWO2013146369A1 (en) * 2012-03-29 2015-12-10 株式会社Uacj Aluminum alloy foil for electrode current collector and method for producing the same
CN104220614A (en) * 2012-03-29 2014-12-17 株式会社Uacj Aluminum alloy foil for electrode current collector and method for manufacturing same
KR20140138912A (en) * 2012-03-29 2014-12-04 가부시키가이샤 유에이씨제이 Aluminum alloy foil for electrode current collector and method for manufacturing same
JP2013218813A (en) * 2012-04-05 2013-10-24 Furukawa Sky Kk Aluminum alloy foil for secondary battery electrode and method for producing the same
US9698426B2 (en) 2012-04-24 2017-07-04 Uacj Corporation Aluminum alloy foil for electrode current collector, method for manufacturing same, and lithium ion secondary battery
CN104254624A (en) * 2012-04-24 2014-12-31 株式会社Uacj Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
WO2013161726A1 (en) 2012-04-24 2013-10-31 古河スカイ株式会社 Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
JP2013256700A (en) * 2012-06-13 2013-12-26 Uacj Corp Aluminum alloy foil
EP2881478B1 (en) 2012-08-01 2017-11-15 UACJ Corporation Aluminum alloy foil and method for producing same
WO2014021170A1 (en) * 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
US9732402B2 (en) 2012-08-01 2017-08-15 Uacj Corporation Aluminum alloy foil and method for manufacturing same
JP2014047367A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Aluminum hard foil for battery collector
KR20140030062A (en) * 2012-08-29 2014-03-11 가부시키가이샤 고베 세이코쇼 Aluminum hard foil for battery collector
CN103682365A (en) * 2012-08-29 2014-03-26 株式会社神户制钢所 Aluminium hardness foil for cell current collector
WO2014034240A1 (en) * 2012-08-30 2014-03-06 住友軽金属工業株式会社 Aluminum alloy foil with excellent formability after laminating, process for producing same, and laminated foil obtained using said aluminum alloy foil
JP2014047372A (en) * 2012-08-30 2014-03-17 Uacj Corp Aluminum alloy foil excellent in moldability after laminate and manufacturing method thereof, and laminate foil using aluminum alloy foil
CN104769141A (en) * 2012-10-30 2015-07-08 株式会社Uacj Aluminium alloy foil
JP2014088598A (en) * 2012-10-30 2014-05-15 Uacj Corp Aluminum alloy foil
WO2014069119A1 (en) * 2012-10-30 2014-05-08 住友軽金属工業株式会社 Aluminium alloy foil
WO2014077391A1 (en) 2012-11-19 2014-05-22 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
JP2014101559A (en) * 2012-11-21 2014-06-05 Uacj Corp Aluminum alloy foil, molding package material, battery, medicine packaging container and method of manufacturing aluminum alloy foil
CN102978483B (en) * 2012-11-30 2016-04-06 苏州有色金属研究院有限公司 Aluminum alloy foil for lithium-ion anode current collector and manufacture method thereof
CN102978483A (en) * 2012-11-30 2013-03-20 苏州有色金属研究院有限公司 Aluminum alloy foil for lithium-ion anode current collector and manufacturing method thereof
US9118079B2 (en) 2012-12-17 2015-08-25 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolytic solution secondary battery, current collector and vehicle
JPWO2014157010A1 (en) * 2013-03-29 2017-02-16 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
CN103397227A (en) * 2013-07-22 2013-11-20 苏州有色金属研究院有限公司 Aluminum alloy foil for lithium ion battery positive electrode current collector and preparation method thereof
JP2015025147A (en) * 2013-07-24 2015-02-05 株式会社Uacj Aluminum alloy bus bar
JP2015113515A (en) * 2013-12-13 2015-06-22 三菱アルミニウム株式会社 Aluminum alloy foil for lithium ion battery positive electrode collector and method of producing the same
WO2016158245A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Aluminum plate, and current collector for power storage device
JPWO2016158245A1 (en) * 2015-03-31 2018-02-01 富士フイルム株式会社 Aluminum plate and current collector for electricity storage device
JP2017016839A (en) * 2015-06-30 2017-01-19 住友電気工業株式会社 Lead conductor and power storage device
WO2017002420A1 (en) * 2015-06-30 2017-01-05 住友電気工業株式会社 Lead conductor and power storage device
JP2017110244A (en) * 2015-12-14 2017-06-22 三菱アルミニウム株式会社 Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector
WO2017155027A1 (en) * 2016-03-11 2017-09-14 株式会社Uacj Aluminum alloy foil
JP2021139051A (en) * 2016-03-11 2021-09-16 株式会社Uacj Aluminum-alloy foil
US11255001B2 (en) 2016-03-11 2022-02-22 Uacj Corporation Aluminum-alloy foil
JP7165782B2 (en) 2016-03-11 2022-11-04 株式会社Uacj aluminum alloy foil
JPWO2017155027A1 (en) * 2016-03-11 2019-01-17 株式会社Uacj Aluminum alloy foil
US20190119790A1 (en) * 2016-03-11 2019-04-25 Uacj Corporation Aluminum-alloy foil
JP2017166027A (en) * 2016-03-16 2017-09-21 株式会社Uacj Aluminum alloy foil
JP2017226886A (en) * 2016-06-23 2017-12-28 三菱アルミニウム株式会社 Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector
CN106311747A (en) * 2016-08-23 2017-01-11 江苏中基复合材料股份有限公司 Aluminum foil for lithium ion battery flexible package aluminum plastic film and production process for aluminum foil
CN106311747B (en) * 2016-08-23 2018-03-27 江苏中基复合材料股份有限公司 Lithium ion battery flexible package aluminum plastic film aluminium foil and its production technology
JPWO2018043117A1 (en) * 2016-08-29 2019-06-24 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode current collector, secondary battery positive current collector and method for producing aluminum alloy hard thin foil
WO2018043117A1 (en) * 2016-08-29 2018-03-08 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode charge collector, secondary battery positive electrode charge collector, and production method for aluminum alloy hard thin foil
JP2019083138A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN111601904A (en) * 2017-11-21 2020-08-28 海德鲁铝业钢材有限公司 Electrode foil for producing battery of lithium ion accumulator
JP2021504585A (en) * 2017-11-21 2021-02-15 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH High-strength battery electrode foil for the manufacture of lithium-ion storage batteries
JP2021504584A (en) * 2017-11-21 2021-02-15 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Battery electrode foil for the manufacture of lithium-ion storage batteries
JP7042920B2 (en) 2017-11-21 2022-03-28 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング High-strength battery electrode foil for the manufacture of lithium-ion storage batteries
JP7312760B2 (en) 2017-11-21 2023-07-21 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Battery electrode foil for the production of lithium-ion accumulators
JP2019112659A (en) * 2017-12-21 2019-07-11 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector
WO2019124530A1 (en) * 2017-12-21 2019-06-27 三菱アルミニウム株式会社 Aluminum alloy foil for cell collector
CN108598358A (en) * 2018-04-24 2018-09-28 中航锂电技术研究院有限公司 A kind of preparation method of composition metal cathode of lithium

Also Published As

Publication number Publication date
KR20130037217A (en) 2013-04-15
CN103003457A (en) 2013-03-27
WO2012008567A1 (en) 2012-01-19
KR101518142B1 (en) 2015-05-06
CN103003457B (en) 2014-11-19
JP5639398B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5639398B2 (en) Aluminum hard foil for battery current collector
JP5927614B2 (en) Aluminum hard foil for battery current collector
JP5690183B2 (en) Pure aluminum hard foil for battery current collector
JP5532424B2 (en) Aluminum alloy hard foil for battery current collector
JP5275446B2 (en) Aluminum alloy foil for current collector and method for producing the same
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5959405B2 (en) Aluminum alloy foil
KR101912767B1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP5667681B2 (en) Method for producing aluminum alloy hard foil for battery current collector
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
KR20140053285A (en) Rolled copper foil for secondary battery collector and production method therefor
JP5405410B2 (en) Aluminum alloy hard foil for battery current collector
JPWO2013176038A1 (en) Aluminum alloy foil for electrode current collector, method for producing the same, and electrode material
JP2012140702A (en) Aluminum-alloy foil for positive current collector of lithium-ion battery, and manufacturing method of the same
JP6730382B2 (en) Aluminum foil for battery current collector and method of manufacturing the same
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP6513896B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP2012211376A (en) Copper alloy strip for battery connection tab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R150 Certificate of patent or registration of utility model

Ref document number: 5639398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250