JP6775335B2 - Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector - Google Patents

Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector Download PDF

Info

Publication number
JP6775335B2
JP6775335B2 JP2016124320A JP2016124320A JP6775335B2 JP 6775335 B2 JP6775335 B2 JP 6775335B2 JP 2016124320 A JP2016124320 A JP 2016124320A JP 2016124320 A JP2016124320 A JP 2016124320A JP 6775335 B2 JP6775335 B2 JP 6775335B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
current collector
electrode current
less
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016124320A
Other languages
Japanese (ja)
Other versions
JP2017226886A (en
Inventor
貴史 鈴木
貴史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016124320A priority Critical patent/JP6775335B2/en
Publication of JP2017226886A publication Critical patent/JP2017226886A/en
Application granted granted Critical
Publication of JP6775335B2 publication Critical patent/JP6775335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

この発明は、電極集電体に用いられるアルミニウム合金箔および該アルミニウム合金箔の製造方法に関する。 The present invention relates to an aluminum alloy foil used for an electrode current collector and a method for producing the aluminum alloy foil.

従来、リチウムイオン電池などに用いられる電極集電体として、例えば、厚さ15μm程度のアルミニウム合金箔が使用されている。近年、モバイル機器向けを中心に電池の高容量化が進み、電極集電体に用いるアルミニウム合金箔を薄肉化することが要求されている。アルミニウム合金箔の薄肉化に伴って発生する電池の製造過程の不具合を防ぐため、電極集電体用アルミニウム合金箔は、高強度・高伸び化が重要である。また、アルミニウム合金箔の薄肉化に伴い、箔の圧延が困難となり、穴傷やピンホールの発生リスクも増大するため圧延性に優れていることが重要である。 Conventionally, an aluminum alloy foil having a thickness of about 15 μm has been used as an electrode current collector used in a lithium ion battery or the like. In recent years, the capacity of batteries has been increasing mainly for mobile devices, and it is required to thin the aluminum alloy foil used for the electrode current collector. In order to prevent defects in the battery manufacturing process that occur due to the thinning of the aluminum alloy foil, it is important for the aluminum alloy foil for the electrode current collector to have high strength and high elongation. Further, as the thickness of the aluminum alloy foil becomes thinner, it becomes difficult to roll the foil, and the risk of hole scratches and pinholes increases. Therefore, it is important to have excellent rollability.

例えば、特許文献1では、アルミニウム合金に、Fe、Si、Cuを添加し、連続鋳造圧延法などで添加元素を過飽和に固溶させてアルミニウム合金箔の高強度化を達成し、また晶出物を微細化することでピンホールの発生を抑制している。
特許文献2では、アルミニウム合金に、Fe、Si、Cuを添加し、均質化処理などにおいて適切な熱処理を行うことで、添加元素を固溶させてアルミニウム合金箔の高強度化を達成している。
特許文献3では、アルミニウム合金に、Mn、Fe、Cuを添加し、箔の厚さ方向のサブグレイン数を30個以上とすることによってアルミニウム合金箔の高強度・高伸び化を達成している。
特許文献4では、アルミニウム合金にFe、Cuを添加し、サブグレインのサイズを厚み方向で0.8μm以下、圧延方向で45μm以下とすることによって高強度・高伸び化を達成している。
For example, in Patent Document 1, Fe, Si, and Cu are added to an aluminum alloy, and the added elements are solid-dissolved to supersaturation by a continuous casting and rolling method or the like to achieve high strength of the aluminum alloy foil, and a crystallized product. The occurrence of pinholes is suppressed by miniaturizing.
In Patent Document 2, Fe, Si, and Cu are added to an aluminum alloy, and an appropriate heat treatment is performed in a homogenization treatment or the like to dissolve the added elements to achieve high strength of the aluminum alloy foil. ..
In Patent Document 3, Mn, Fe, and Cu are added to the aluminum alloy to increase the number of subgrains in the thickness direction of the foil to 30 or more, thereby achieving high strength and high elongation of the aluminum alloy foil. ..
In Patent Document 4, Fe and Cu are added to the aluminum alloy to reduce the size of the subgrain to 0.8 μm or less in the thickness direction and 45 μm or less in the rolling direction to achieve high strength and high elongation.

特許5791719号Patent No. 5791719 国際公開番号2013−018162号公報International Publication No. 2013-018162 特開2011−89196号公報Japanese Unexamined Patent Publication No. 2011-89196 特開2012−21205号公報Japanese Unexamined Patent Publication No. 2012-21205

軽金属Vol.65 (2015) No.4 p.131−136Light metal Vol. 65 (2015) No. 4 p. 131-136

しかし、特許文献1のように各添加元素を連続鋳造法で過飽和に固溶させた場合、箔圧延が極めて困難であり、厚さ15μm以下のような薄箔の電極集電体の製造は困難である。
また、特許文献2では添加元素の高い固溶量を維持するために特別な熱処理が必要とされ、その際に一般的な条件での中間焼鈍の実施が制限されている。このため薄箔の圧延が極めて困難である。
特許文献3では、元素の添加においてMnを比較的多く添加している。我々の研究によりAl−Fe−Mn系合金箔は、圧延後に室温で強度の上昇と伸びの低下が生じるため、生産上の管理が困難であることがわかっている。また電極製造過程で行われる熱処理によっても強度の上昇と伸びの極端な低下が生じるため、箔の破断を招く恐れがある(焼鈍硬化現象、非特許文献1参照)。
特許文献4では、Feが少ない場合はサブグレインの微細化は出来ても、後述するような結晶粒微細化は困難で実際に高伸びを得ることは難しい。
However, when each additive element is supersaturated and solid-solved by a continuous casting method as in Patent Document 1, foil rolling is extremely difficult, and it is difficult to manufacture a thin foil electrode current collector having a thickness of 15 μm or less. Is.
Further, in Patent Document 2, a special heat treatment is required to maintain a high solid solution amount of the additive element, and at that time, the implementation of intermediate annealing under general conditions is restricted. Therefore, it is extremely difficult to roll a thin foil.
In Patent Document 3, a relatively large amount of Mn is added in the addition of elements. Our research has shown that Al-Fe-Mn-based alloy foils are difficult to control in production because the strength increases and the elongation decreases at room temperature after rolling. In addition, the heat treatment performed in the electrode manufacturing process also causes an increase in strength and an extreme decrease in elongation, which may lead to fracture of the foil (anneal curing phenomenon, see Non-Patent Document 1).
In Patent Document 4, when the amount of Fe is small, the subgrain can be miniaturized, but it is difficult to miniaturize the crystal grains as described later, and it is difficult to actually obtain high elongation.

本発明は、上記事情を背景としてなされたものであり、高強度・高伸び化が達成され、圧延性に優れた電極集電体用アルミニウム合金箔および電極集電体用アルミニウム合金箔の製造方法を提供することを目的の一つとする。 The present invention has been made in the context of the above circumstances, and is a method for producing an aluminum alloy foil for an electrode current collector and an aluminum alloy foil for an electrode current collector, which have achieved high strength and high elongation and are excellent in rollability. One of the purposes is to provide.

すなわち、第1の本発明の電極集電体用アルミニウム合金箔は、質量%で、Fe:0.56%以上0.95%以下、Cu:0.12%以上0.18%以下、Si:0.01%以上0.10%以下、Mn:0.10%以下を含有し、残部がAlと不可避不純物とからなる組成を有し、箔の厚さ方向の結晶粒径が平均で0.8μm以下であり、引張強さ261MPa以上、伸びが最終冷間圧延直後で2.5%以上であり、且つ最終冷間圧延後、60日経過後においても2.5%以上であることを特徴とする。 That is, the first aluminum alloy foil for an electrode current collector of the present invention has Fe: 0.56 % or more and 0.95 % or less, Cu: 0.12 % or more and 0.18 % or less, Si: 0.10% 0.01% or less, Mn: contains 0.10% or less, have a composition the balance of Al and unavoidable impurities, the crystal grain size in the thickness direction of the foil is on average 0. It is characterized by having a tensile strength of 261 MPa or more, an elongation of 2.5% or more immediately after the final cold rolling, and 2.5% or more even 60 days after the final cold rolling. To do.

の本発明の電極集電体用アルミニウム合金箔は、第1本発明において、箔の厚さが15μm以下であることを特徴とする。 Electrode current collector aluminum alloy foil of the second present invention, in the first invention, wherein the thickness of the foil is 15μm or less.

の本発明の電極集電体用アルミニウム合金箔の製造方法は、第1の本発明の電極集電体用アルミニウム合金箔を製造する方法であり、第1の本発明の組成を有するアルミニウム合金鋳塊を、450〜580℃で4時間以上保持する均質化処理を行い、その後、冷間圧延における最終冷間圧延率を98.3%以上とする冷間圧延を行うことを特徴とする。 The third method for producing the aluminum alloy foil for the electrode current collector of the present invention is the first method for producing the aluminum alloy foil for the electrode current collector of the present invention, and the aluminum having the composition of the first invention. The alloy ingot is homogenized by holding it at 450 to 580 ° C. for 4 hours or more, and then cold rolling is performed so that the final cold rolling ratio in cold rolling is 98.3% or more. ..

以下に、本発明で規定する組成等の限定理由および製造条件の限定理由を説明する。なお、以下における各成分の含有量はいずれも質量%で示されている。 The reasons for limiting the composition and the like specified in the present invention and the reasons for limiting the production conditions will be described below. The content of each component in the following is shown in mass%.

Fe:0.5%以上1.0%以下
Feは固溶強化、そして結晶粒の微細化に寄与する元素である。Feの含有量が0.5%未満では、厚さ方向に微細な結晶粒が得られず、1.0%を超えると、Al−Fe系の金属間化合物が粗大化し、箔の圧延性を低下させ、ピンホール発生のリスクが増大する。
さらに我々は1.0%を超えてFeを添加すると、圧延後に室温で伸びが低下しやすくなる事を見出している。なお、同様の理由で、Fe含有量は下限を0.6%とするのが望ましく、上限を0.8%とするのが望ましい。
Fe: 0.5% or more and 1.0% or less Fe is an element that contributes to solid solution strengthening and finer crystal grains. If the Fe content is less than 0.5%, fine crystal grains cannot be obtained in the thickness direction, and if it exceeds 1.0%, the Al—Fe-based intermetallic compound becomes coarse and the foil rollability is improved. It reduces and increases the risk of pinholes.
Furthermore, we have found that when Fe is added in excess of 1.0%, the elongation tends to decrease at room temperature after rolling. For the same reason, it is desirable that the lower limit of the Fe content is 0.6% and the upper limit is 0.8%.

Cu:0.05%以上0.25%以下
Cuは固溶強化により箔の強度を向上させる。0.05%未満では、その効果が十分ではなく、0.20%を超えると箔の強度が高すぎることから、圧延性が低下し、圧延時にサイドクラックが発生する。また0.25%を超えての添加は箔の伸びを著しく低下させる。なお、同様の理由で、Cu含有量は下限を0.10%とするのが望ましく、上限を0.20%とするのが望ましい。
Cu: 0.05% or more and 0.25% or less Cu improves the strength of the foil by strengthening the solid solution. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.20%, the strength of the foil is too high, so that the rollability is lowered and side cracks occur during rolling. Further, the addition of more than 0.25% significantly reduces the elongation of the foil. For the same reason, it is desirable that the lower limit of the Cu content is 0.10% and the upper limit is 0.20%.

Si:0.01%以上0.10%以下
Siは適切な添加量であればFeの析出を促進し、圧延性を向上させ、また伸び特性も向上する。0.01%未満では上記の作用が十分でない。0.10%を超えるとFeの析出を促進し、その結果として箔圧延における加工軟化を生じさせてしまい、高強度が得られなくなる。またAl−Fe−Si系の晶出物が粗大化し、伸びの低下を生じる。なお、同様の理由で、Si含有量は下限を0.03%、上限を0.08%とするのが望ましい。
Si: 0.01% or more and 0.10% or less Si promotes the precipitation of Fe if it is added in an appropriate amount, improves rollability, and also improves elongation characteristics. If it is less than 0.01%, the above action is not sufficient. If it exceeds 0.10%, the precipitation of Fe is promoted, and as a result, work softening in foil rolling occurs, and high strength cannot be obtained. In addition, Al-Fe-Si-based crystals become coarse and the elongation is lowered. For the same reason, it is desirable that the lower limit of the Si content is 0.03% and the upper limit is 0.08%.

Mn:0.10%以下
Mnは、固溶強化、そして結晶粒の微細化に寄与する元素である。Feと共に添加することによって結晶粒をより微細化できるが、添加量が多いと圧延後の室温で機械的性質が変化し、電池製造工程中での熱処理によっても極端な伸び低下が生じてしまう。Mnの含有量を0.10%以下に規制することによって上記問題を避けることができる。なお、同様の理由で、上限を0.05%とするのが望ましい。室温での伸び低下を生じさせる為積極的に添加する必要はないが、0.01%以上添加する事で最終冷間圧延直後の伸びを若干向上させる事が出来る。
Mn: 0.10% or less Mn is an element that contributes to solid solution strengthening and finer crystal grains. Crystal grains can be made finer by adding them together with Fe, but if the amount added is large, the mechanical properties change at room temperature after rolling, and heat treatment during the battery manufacturing process also causes an extreme decrease in elongation. The above problem can be avoided by limiting the Mn content to 0.10% or less. For the same reason, it is desirable to set the upper limit to 0.05%. It is not necessary to add it positively because it causes a decrease in elongation at room temperature, but by adding 0.01% or more, the elongation immediately after the final cold rolling can be slightly improved.

箔の厚さ方向の結晶粒径が平均で0.8μm以下
例えば、15μm以下の厚さの薄箔では、局部変形によるくびれが生じた途端に破断してしまう。つまり、結晶粒経が微細化することで高伸びが得られる。結晶粒径を測定するうえでは、結晶粒間の境界である結晶粒界を定義する必要がある。ここでいう結晶粒界とは粒間の方位差が15°以上を有する大傾角粒界を指す。方位差0°〜15°未満の亜結晶粒も高伸びに寄与するが、結晶粒と比較して、その度合いは極めて小さい。厚さ方向の結晶粒径を平均で0.8μm以下とすることで、厚さ15μm以下のアルミニウム合金箔の高伸びが達成される。
The average crystal grain size in the thickness direction of the foil is 0.8 μm or less. For example, a thin foil having a thickness of 15 μm or less breaks as soon as a constriction occurs due to local deformation. That is, high elongation can be obtained by making the grain diameter finer. In measuring the crystal grain size, it is necessary to define the grain boundaries, which are the boundaries between the crystal grains. The crystal grain boundaries referred to here refer to large tilt angle grain boundaries having an orientation difference of 15 ° or more between grains. Sub-crystal grains with an orientation difference of 0 ° to less than 15 ° also contribute to high elongation, but the degree is extremely small compared to the crystal grains. By setting the average crystal grain size in the thickness direction to 0.8 μm or less, high elongation of an aluminum alloy foil having a thickness of 15 μm or less is achieved.

引張強さ250MPa以上、厚さ12μmでの伸びが最終冷間圧延直後で2.5%以上であり、且つ最終冷間圧延後少なくとも60日経過後においても2.5%以上
引張強さが250MPa未満では強度が不足し、電極集電体の薄肉化は難しい。また、伸びが2.5%未満の場合、製造ライン中で不具合が発生する懸念がある。そして箔の高伸び特性は電極製造ラインに負荷される時点で有している必要がある。硬質箔は合金成分や、その製造工程によっては、最終冷間圧延後60日以内に急激に伸びが低下する場合がある。なお、厚さ12μmは、特性値を示すためのものであり、箔の厚さを規定するものではない。
なお、引張強さは、さらに270MPa以上が望ましく、厚さ12μmでの伸びが3.0%以上であるのがいっそう望ましい。
Tensile strength of 250 MPa or more, elongation at a thickness of 12 μm is 2.5% or more immediately after the final cold rolling, and at least 60 days after the final cold rolling, the tensile strength is less than 250 MPa. However, the strength is insufficient, and it is difficult to thin the electrode current collector. Further, if the growth is less than 2.5%, there is a concern that a defect may occur in the production line. And the high elongation property of the foil needs to be possessed at the time when it is loaded on the electrode production line. Depending on the alloy component and the manufacturing process of the hard foil, the elongation may decrease sharply within 60 days after the final cold rolling. The thickness of 12 μm is for indicating a characteristic value and does not specify the thickness of the foil.
The tensile strength is more preferably 270 MPa or more, and the elongation at a thickness of 12 μm is more preferably 3.0% or more.

最終冷間圧延率98.3%以上
アルミニウム合金は圧延を行うだけで結晶粒が分断し微細化することが知られている(grain subdivision)。圧延率が高いほど結晶粒の微細化が進むため、冷間圧延時の最終冷間圧延率を98.3%以上とすることで高伸びを達成することができる。
ここで、最終冷間圧延とは、中間焼鈍を行う場合、最後に行った中間焼鈍後の圧延をいい、中間焼鈍を行わない場合は、冷間圧延開始後の圧延をいう。
It is known that in an aluminum alloy having a final cold rolling ratio of 98.3% or more, crystal grains are divided and made finer just by rolling (grain subdivision). Since the higher the rolling ratio, the finer the crystal grains, the higher the elongation can be achieved by setting the final cold rolling ratio at the time of cold rolling to 98.3% or more.
Here, the final cold rolling means the rolling after the last intermediate annealing when the intermediate annealing is performed, and the rolling after the start of the cold rolling when the intermediate annealing is not performed.

すなわち、本発明によれば、高強度・高伸び化が達成され、圧延性に優れた電極集電体用アルミニウム合金箔および電極集電体用アルミニウム合金箔の製造方法を得ることができる。 That is, according to the present invention, it is possible to obtain a method for producing an aluminum alloy foil for an electrode current collector and an aluminum alloy foil for an electrode current collector, which have achieved high strength and high elongation and are excellent in rollability.

以下に、本発明の一実施形態を説明する。
アルミニウム合金箔の材料となるアルミニウム合金は、本発明の成分範囲となるFe:0.5%以上1.0%以下、Cu:0.05%以上0.25%以下、Si:0.01%以上0.10%以下、Mn:0.10%以下を含有し、残部がAlと不可避不純物とからなる組成が得られるように溶製する。溶製の方法は特に限定されるものではなく、既知の半連続鋳造法などを用いることができる。得られた鋳塊は、例えば450〜580℃で4時間以上保持する均質化処理を行い、その後熱間圧延に供される。
An embodiment of the present invention will be described below.
The aluminum alloy used as the material of the aluminum alloy foil has Fe: 0.5% or more and 1.0% or less, Cu: 0.05% or more and 0.25% or less, and Si: 0.01%, which are the component ranges of the present invention. It is melted so as to have a composition containing 0.10% or less and Mn: 0.10% or less and the balance being Al and unavoidable impurities. The melting method is not particularly limited, and a known semi-continuous casting method or the like can be used. The obtained ingot is subjected to a homogenization treatment of holding it at, for example, 450 to 580 ° C. for 4 hours or more, and then subjected to hot rolling.

その後冷間圧延を行って、例えば最終厚みが10〜20μmのアルミニウム合金箔とする。冷間圧延の途中には1回または2回以上の中間焼鈍を行うことができる。中間焼鈍とはコイルを炉に投入し、一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により、材料を急加熱・急冷する2種類の方式がある。本発明においてはいずれの方式でもよいが、CAL焼鈍の方が急加熱・急冷による結晶粒の微細化や溶質元素の固溶量増加により、最終材である箔の強度が向上する。 After that, cold rolling is performed to obtain, for example, an aluminum alloy foil having a final thickness of 10 to 20 μm. During the cold rolling, intermediate annealing can be performed once or more than once. What is intermediate annealing? There are two types of methods: batch annealing, in which the coil is placed in a furnace and held for a certain period of time, and continuous annealing line (hereinafter referred to as CAL annealing), in which the material is rapidly heated and cooled. is there. In the present invention, any method may be used, but in CAL annealing, the strength of the foil as the final material is improved by making the crystal grains finer by rapid heating and quenching and increasing the solid solution amount of the solute element.

バッチ焼鈍の条件としては、例えば350〜450℃で3時間以上が目安となる。温度350℃未満、あるいは時間3時間未満では再結晶が完了しないおそれがあり、温度450℃超では二次再結晶による結晶粒の粗大化の危険がある。CAL焼鈍は、昇温温度:10〜250℃/秒、加熱温度:400〜550℃、保持時間:なし〜5秒、冷却速度:20〜200℃/秒の条件が挙げられる。
また、本発明としては、中間焼鈍を行わないものであってもよい。
冷間圧延では、最終冷間圧延率を98%以上とする。最終冷間圧延率は中間焼鈍を行う場合、最後に行った中間焼鈍後の圧延率で示す。また、中間焼鈍を行わない場合は、冷間圧延開始後の圧延率で示す。
As a guideline for batch annealing, for example, at 350 to 450 ° C. for 3 hours or more. If the temperature is less than 350 ° C. or the time is less than 3 hours, recrystallization may not be completed, and if the temperature exceeds 450 ° C., there is a risk of coarsening of crystal grains due to secondary recrystallization. Examples of the CAL annealing include conditions of a temperature rise temperature of 10 to 250 ° C./sec, a heating temperature of 400 to 550 ° C., a holding time of none to 5 seconds, and a cooling rate of 20 to 200 ° C./sec.
Further, in the present invention, intermediate annealing may not be performed.
In cold rolling, the final cold rolling ratio is 98% or more. When intermediate annealing is performed, the final cold rolling ratio is indicated by the rolling ratio after the final intermediate annealing. When intermediate annealing is not performed, the rolling ratio after the start of cold rolling is shown.

本発明のアルミニウム合金箔は、厚さ方向の結晶粒径が平均で1.0μm以下、引張強さが250MPa以上、厚さ12μmでの伸びが2.5%以上の特性を有している。且つ最終冷間圧延後少なくとも60日経過後においても2.5%以上を維持している。また、本発明のアルミニウム合金箔は、二次電池電極集電体に用いることができ、特にリチウムイオン二次電池に好適に用いることができる。電極集電体としては、正極、負極のどちらにも用いることができるが、主として正極に用いられる。 The aluminum alloy foil of the present invention has characteristics such that the crystal grain size in the thickness direction is 1.0 μm or less on average, the tensile strength is 250 MPa or more, and the elongation at a thickness of 12 μm is 2.5% or more. Moreover, 2.5% or more is maintained even after at least 60 days have passed after the final cold rolling. Further, the aluminum alloy foil of the present invention can be used for a secondary battery electrode current collector, and can be particularly preferably used for a lithium ion secondary battery. The electrode current collector can be used for both the positive electrode and the negative electrode, but is mainly used for the positive electrode.

表1に示す各組成(残部Alおよびその他の不可避不純物)からなるアルミニウム合金の鋳塊を520℃で10時間の均質化処理を施し、厚さ4.5mmまで熱間圧延を行なった。その後、厚さ2.5mm(No.9は1.0mm、No.10は0.6mm)まで冷間圧延を行い、No.12を除いて中間焼鈍を実施し、最終冷間圧延を経て、厚さ12μmのアルミニウム合金箔の試料を作成した。
中間焼鈍は、No.11を除き連続焼鈍ライン(CAL焼鈍)を用いて行った。CAL焼鈍の条件は昇温温度:70℃/秒、加熱温度:500℃、保持時間:なし、冷却速度:50℃/秒で行なった。No.11の中間焼鈍は360℃×4h時間のバッチ焼鈍で行った。各材料の圧延率は表1に示した。
An ingot of an aluminum alloy having each composition (remaining Al and other unavoidable impurities) shown in Table 1 was homogenized at 520 ° C. for 10 hours and hot-rolled to a thickness of 4.5 mm. After that, cold rolling was performed to a thickness of 2.5 mm (1.0 mm for No. 9 and 0.6 mm for No. 10), and No. Intermediate annealing was carried out except for No. 12, and a sample of an aluminum alloy foil having a thickness of 12 μm was prepared through final cold rolling.
Intermediate annealing is No. Except for No. 11, a continuous annealing line (CAL annealing) was used. The conditions for CAL annealing were a heating temperature: 70 ° C./sec, a heating temperature: 500 ° C., a holding time: none, and a cooling rate: 50 ° C./sec. No. The intermediate annealing of No. 11 was carried out by batch annealing at 360 ° C. for 4 hours. The rolling ratio of each material is shown in Table 1.

(厚さ方向の結晶粒径測定)
アルミニウム合金箔のRD―ND面をCP(cross section polisher)にて切断し、この切断面をSEM−EBSD法にて解析を行った。倍率×2000倍で箔の厚さ全体を、実際に粒径を測定する際は×5000倍で観察を行った。得られた方位マッピング像において、方位差が15°以上の粒界を表示したgrain mapより、線分法で箔の厚み方向の結晶粒径を算出した。尚、×5000倍の観察は一つの試料で3視野行い、結晶粒径はその平均値とした。測定結果は表1に示した。
(Measurement of crystal grain size in the thickness direction)
The RD-ND surface of the aluminum alloy foil was cut by CP (cross section polisher), and this cut surface was analyzed by the SEM-EBSD method. The entire thickness of the foil was observed at a magnification of × 2000 times, and when the particle size was actually measured, it was observed at × 5000 times. In the obtained orientation mapping image, the crystal grain size in the thickness direction of the foil was calculated by the line segment method from the grain map displaying the grain boundaries having an orientation difference of 15 ° or more. In addition, the observation of × 5000 times was carried out in three fields of view with one sample, and the crystal grain size was taken as the average value. The measurement results are shown in Table 1.

(機械的性質)
機械的性質は引張試験にて測定を行った。箔の圧延方向と平行にJIS5号形状の試験片を打ち抜き加工にて作成し、オートグラフ(島津製作所AGS−X 10kN)にて試験速度2mm/minでn=3で試験を実施した。
(mechanical nature)
The mechanical properties were measured by a tensile test. A JIS No. 5 shape test piece was prepared by punching in parallel with the rolling direction of the foil, and the test was carried out at an autograph (Shimadzu AGS-X 10 kN) at a test speed of 2 mm / min at n = 3.

(圧延性)
圧延性は、幅1200mmを超える広幅の圧延において、最終パス(圧下率)で破断することなく圧延できたものを○、最終パスで1コイル(約10000m)につき3回以下の破断が生じた場合は△、3回を超える破断もしくは硬過ぎる等の理由で圧延継続が難しいと判断されたものについては×とした。○が好ましいが、△以上(約10000mの最終パスで破断が3回以内)であれば製造上は問題ない。
(Rollability)
The rollability is as follows: In wide rolling with a width of more than 1200 mm, the one that can be rolled without breaking in the final pass (rolling ratio) is ○, and when the final pass breaks 3 times or less per coil (about 10000 m). Is marked with Δ, and marked with × for those judged to be difficult to continue rolling due to breakage exceeding 3 times or too hard. ◯ is preferable, but if it is Δ or more (breaking is within 3 times in the final pass of about 10000 m), there is no problem in manufacturing.

Figure 0006775335
Figure 0006775335

Figure 0006775335
Figure 0006775335

Claims (3)

質量%で、Fe:0.56%以上0.95%以下、Cu:0.12%以上0.18%以下、Si:0.01%以上0.10%以下、Mn:0.10%以下を含有し、残部がAlと不可避不純物とからなる組成を有し、箔の厚さ方向の結晶粒径が平均で0.8μm以下であり、引張強さ261MPa以上、伸びが最終冷間圧延直後で2.5%以上であり、且つ最終冷間圧延後、60日経過後においても2.5%以上であることを特徴とする電極集電体用アルミニウム合金箔。 By mass%, Fe: 0.56 % or more and 0.95 % or less, Cu: 0.12 % or more and 0.18 % or less, Si: 0.01% or more and 0.10% or less, Mn: 0.10% or less containing, possess the balance consisting of Al and unavoidable impurities, the crystal grain size in the thickness direction of the foil is 0.8μm or less in average, the tensile strength of 261MPa or more, immediately after elongation final cold rolling An aluminum alloy foil for an electrode current collector, which is 2.5% or more, and is 2.5% or more even after 60 days have passed after the final cold rolling . の厚さが15μm以下であることを特徴とする請求項1記載の電極集電体用アルミニウム合金箔。 The aluminum alloy foil for an electrode current collector according to claim 1 , wherein the thickness of the foil is 15 μm or less. 請求項1記載の電極集電体用アルミニウム合金箔を製造する方法であり、請求項1記載の組成を有するアルミニウム合金鋳塊を、450〜580℃で4時間以上保持する均質化処理を行い、その後、冷間圧延における最終冷間圧延率を98.3%以上とする冷間圧延を行うことを特徴とする電極集電体用アルミニウム合金箔の製造方法。 The method for producing an aluminum alloy foil for an electrode current collector according to claim 1 , wherein an aluminum alloy ingot having the composition according to claim 1 is homogenized at 450 to 580 ° C. for 4 hours or more. After that, a method for producing an aluminum alloy foil for an electrode current collector, which comprises performing cold rolling in which the final cold rolling ratio in cold rolling is 98.3% or more.
JP2016124320A 2016-06-23 2016-06-23 Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector Expired - Fee Related JP6775335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124320A JP6775335B2 (en) 2016-06-23 2016-06-23 Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124320A JP6775335B2 (en) 2016-06-23 2016-06-23 Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector

Publications (2)

Publication Number Publication Date
JP2017226886A JP2017226886A (en) 2017-12-28
JP6775335B2 true JP6775335B2 (en) 2020-10-28

Family

ID=60891287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124320A Expired - Fee Related JP6775335B2 (en) 2016-06-23 2016-06-23 Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector

Country Status (1)

Country Link
JP (1) JP6775335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252072B (en) * 2018-10-15 2020-10-16 威海海鑫新材料有限公司 High-precision aluminum foil blank and preparation process thereof
CN111893351B (en) * 2020-08-11 2021-12-10 华北铝业有限公司 Aluminum foil for 1235D lithium battery and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799903B2 (en) * 2005-05-09 2011-10-26 住友軽金属工業株式会社 Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
JP5639398B2 (en) * 2010-07-16 2014-12-10 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
WO2012086448A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP6035058B2 (en) * 2012-06-13 2016-11-30 株式会社Uacj Aluminum alloy foil
JP6475404B2 (en) * 2013-04-12 2019-02-27 株式会社Uacj Aluminum alloy foil for electrode current collector and method for producing the same

Also Published As

Publication number Publication date
JP2017226886A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6758746B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
JP6567293B2 (en) Aluminum alloy foil with excellent elongation characteristics
WO2021079979A1 (en) Aluminum alloy foil and method for producing same
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP5871443B1 (en) Copper alloy sheet and manufacturing method thereof
JP2015166480A (en) Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP6674826B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
JP6580332B2 (en) Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP6545779B2 (en) Aluminum alloy foil for battery current collector
JP6080822B2 (en) Titanium copper for electronic parts and manufacturing method thereof
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
KR101610360B1 (en) Magnesium alloy sheet, method for manufacturing the same
JP7213086B2 (en) Copper alloy sheet material and manufacturing method thereof
JP6730382B2 (en) Aluminum foil for battery current collector and method of manufacturing the same
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor
CN115210395A (en) Aluminum alloy foil
JPWO2016056240A1 (en) Aluminum alloy plate for superplastic forming and manufacturing method thereof
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
JP6769727B2 (en) Aluminum alloy foil for battery current collector and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees