JP6545779B2 - Aluminum alloy foil for battery current collector - Google Patents

Aluminum alloy foil for battery current collector Download PDF

Info

Publication number
JP6545779B2
JP6545779B2 JP2017245278A JP2017245278A JP6545779B2 JP 6545779 B2 JP6545779 B2 JP 6545779B2 JP 2017245278 A JP2017245278 A JP 2017245278A JP 2017245278 A JP2017245278 A JP 2017245278A JP 6545779 B2 JP6545779 B2 JP 6545779B2
Authority
JP
Japan
Prior art keywords
less
mass
foil
rolling
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017245278A
Other languages
Japanese (ja)
Other versions
JP2019112659A (en
Inventor
貴史 鈴木
貴史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017245278A priority Critical patent/JP6545779B2/en
Priority to PCT/JP2018/047147 priority patent/WO2019124530A1/en
Publication of JP2019112659A publication Critical patent/JP2019112659A/en
Application granted granted Critical
Publication of JP6545779B2 publication Critical patent/JP6545779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、リチウムイオン電池の正極集電体等として用いられる電池集電体用アルミニウム合金箔に関する。   The present invention relates to an aluminum alloy foil for a battery current collector used as a positive electrode current collector or the like of a lithium ion battery.

近年、リチウムイオン電池の高容量化を目的として、電極集電体であるアルミニウム箔や銅箔、そしてセパレータの薄肉化が要求されている。正極の集電体として使用されるアルミニウム箔は薄肉化される事で、電池製造ライン中での破断を生じやすくなる。その為アルミニウム箔を薄肉化する際は、破断を抑制する為、高強度化や高伸び化が求められるのが一般的である。   In recent years, for the purpose of increasing the capacity of a lithium ion battery, thinning of an aluminum foil or copper foil as an electrode current collector and a separator has been required. By thinning the aluminum foil used as the current collector of the positive electrode, breakage easily occurs in the battery production line. Therefore, when thinning an aluminum foil, in order to suppress breakage, it is generally required that high strength and high elongation be required.

電池の電極製造工程中には、集電体であるアルミニウム箔に熱が加わる工程がある。例えばリチウムイオン電池の製造では、電極スラリーを集電体に塗布した後に200℃程度で熱乾燥を行うのが一般的である。アルミニウム箔は、この熱乾燥等の熱処理によって機械的性質が変化するが、熱処理前後で高い伸びを有する箔が求められる場合が多い。熱処理前の段階で伸びが低いと、製造ライン中で箔が破断する、あるいは破断にまでは至らずともシワが入る事がある。また熱処理後の箔にも高い伸びが求められる。電池の充放電時に電極合材の膨張収縮によってアルミニウム箔が破断したり、シワが入ったりすることを防ぐには、熱処理後でも箔が高伸びであることが重要である。   During the electrode manufacturing process of the battery, there is a process in which heat is applied to the aluminum foil which is a current collector. For example, in the production of a lithium ion battery, it is general to perform thermal drying at about 200 ° C. after applying an electrode slurry to a current collector. The aluminum foil changes its mechanical properties by heat treatment such as this thermal drying, but in many cases, a foil having high elongation before and after heat treatment is required. If the elongation is low before the heat treatment, the foil may break in the production line or wrinkles may occur even if the break does not occur. Also, high elongation is required for the foil after heat treatment. In order to prevent the aluminum foil from being broken or wrinkles due to expansion and contraction of the electrode mixture during charge and discharge of the battery, it is important that the foil has high elongation even after heat treatment.

特許文献1には、Fe:0.8〜2.0%(質量%、以下同じ)、Ti:0.02%以下(0%を含まず、 以下同じ)を含有し、不純物としてのSiを0.15%以下、Cuを0.05%以下に規制し、残部Alおよびその他の不可避不純物からなるアルミニウム合金箔であって、引張強度が160MPa以上で、ダブルブリッジ法により液体窒素中で測定した電気抵抗が0 .55μΩcm以下であるリチウムイオン電池電極集電体用アルミニウ ム合金箔が開示されている。また、強度と低温熱処理(170℃で5分間)後の十分な伸びを確保するために、熱間圧延を400〜450℃で開始し、200〜250℃で終了するのが好ましいとされ、低温熱処理後の伸びが3%以上であることが記載されている。   Patent Document 1 contains Fe: 0.8 to 2.0% (mass%, the same below), Ti: 0.02% or less (not including 0%, the same below), and contains Si as an impurity. An aluminum alloy foil containing 0.15% or less of Cu, 0.05% or less of Cu, and the balance of Al and other unavoidable impurities, having a tensile strength of 160 MPa or more and measured in liquid nitrogen by the double bridge method The electrical resistance is 0. An aluminum alloy foil for a lithium ion battery electrode current collector having a size of 55 μΩcm or less is disclosed. Also, in order to ensure strength and sufficient elongation after low temperature heat treatment (5 minutes at 170 ° C.), it is preferable to start hot rolling at 400 to 450 ° C. and finish at 200 to 250 ° C. It is described that the elongation after heat treatment is 3% or more.

特許文献2には、質量%で、Fe:0.8%以上2.0%以下、Si:0.35%以下、Ti:0.05% 以下を含有し、残部Alおよび不可避的不純物からなり、ピンホールの発生がなく、円相当直径が10〜50nmのAl−Fe系化合物が1立方μm当たり800個以上存在し、 引張強さが160MPa以上で、100℃で1分のオイルバス熱処理後の引張強さが150MPa以上で、さらに120℃で1分のオイルバス熱処理後の引張強さが150MPa未満であるリチウムイオン電池電極集電体用アルミニウム合金箔が開示されている。   Patent Document 2 contains, by mass%, Fe: 0.8% or more and 2.0% or less, Si: 0.35% or less, Ti: 0.05% or less, and consists of the balance Al and unavoidable impurities. There are 800 or more Al-Fe-based compounds with equivalent circle diameter of 10 to 50 nm per cubic μm without generation of pinholes, and after oil bath heat treatment at 100 ° C for 1 minute with a tensile strength of 160 MPa or more An aluminum alloy foil for a lithium ion battery electrode current collector having a tensile strength of at least 150 MPa and a tensile strength of less than 150 MPa after oil bath heat treatment at 120 ° C. for one minute is disclosed.

特開2010−150637号公報JP, 2010-150637, A 特開2011−241410号公報JP 2011-241410 A

本発明は、圧延性をさらに向上させ、熱処理前後で高い延性を有する電池集電体用アルミニウム合金箔の提供を目的とする。   An object of the present invention is to provide an aluminum alloy foil for a battery current collector, which further improves the rollability and has high ductility before and after heat treatment.

アルミニウム箔は圧延によって製造されるが、その圧延性は箔の厚みが薄い程低下する。その為、一般的に厚みの薄い箔を製造する際は、箔を2枚重ねて圧延する重合圧延が行われている。重合圧延は目標とする箔厚みに対し、圧延時にはその2倍の厚さで圧延が出来る為、1枚圧延であるシングル圧延に比べ圧延性が良好である。重合圧延によって得られるアルミニウム箔は、圧延の際に箔同士が接触した内側の面が光沢の無い艶消し面となり、一方、圧延ロールと接した表面は高い光沢を有する光沢面となる。この艶消し面の表面は光沢面に比べ平滑でなく凹凸を有している。この凹凸の影響で、シングル圧延で得られた両面光沢箔と比較し、箔の伸び特性は低下する傾向にある。その為、リチウムイオン電池の集電体のような高い伸び特性を要求されることの多い製品においては、重合圧延はあまり用いられていない。また、この表面の凹凸は箔のピンホールの原因となる為、やはり品質の厳しい製品では用いにくいとされている。
本発明では、このような重合圧延箔においても高い伸びを確保すべく、以下の構成の電池終電体用アルミニウム合金箔とした。
Aluminum foil is manufactured by rolling, but its rollability decreases as the thickness of the foil decreases. Therefore, when producing a thin foil in general, polymerization rolling is performed in which two foils are stacked and rolled. In the case of polymerization rolling, rolling can be performed at twice the thickness during rolling with respect to a target foil thickness, and therefore, the rollability is better than single rolling, which is single-sheet rolling. In the aluminum foil obtained by polymerization rolling, the inner surface with which the foils are in contact during rolling is a matte surface without gloss, while the surface in contact with the rolling roll is a glossy surface with high gloss. The surface of this matte surface is not smooth and has irregularities as compared to the glossy surface. Due to the effect of the unevenness, the elongation property of the foil tends to be reduced as compared to the double-sided glossy foil obtained by single rolling. Therefore, polymerization rolling is not often used in products that often require high elongation characteristics such as current collectors of lithium ion batteries. In addition, since the unevenness of the surface causes a pinhole of the foil, it is considered that it is difficult to use in a product of severe quality.
In the present invention, in order to ensure high elongation even in such a polymerized rolled foil, the aluminum alloy foil for a battery final conductor of the following constitution was used.

すなわち、本発明の電池集電体用アルミニウム合金箔は、Fe:1.0質量%以上1.8質量%以下、Si:0.01質量%以上0.06質量%以下、Cu:0.006質量%以上0.015質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、引張強さが180MPa以上、伸びが6.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下のシングル圧延箔であり、200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが14%以上であり、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下である。 That is, the aluminum alloy foil for a battery current collector of the present invention comprises: Fe: 1.0% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.06% by mass or less, Cu: 0.006 contains more mass% 0.015 mass% or less, have the balance consisting of Al and unavoidable impurities, the tensile strength of more than 180 MPa, elongation Ri der to 6.0%, in the thickness direction the grain Single-rolled foil with a gap of 1.0 μm or less, and the tensile strength after heat treatment at 200 ° C for 12 hours is 100 MPa or more, 0.2% proof stress is 60 MPa or more, elongation is 14% or more, average crystal particle size 6μm or less, Ru der and the ratio of the maximum crystal grain diameter / average crystal grain size of 3.0 or less.

また、本発明の電池集電体用アルミニウム合金箔は、Fe:1.0質量%以上1.8質量%以下、Si:0.01質量%以上0.06質量%以下、Cu:0.006質量%以上0.015質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、引張強さが180MPa以上、伸びが5.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下の重合圧延箔であり、200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが12%以上であり、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下であIn addition, the aluminum alloy foil for a battery current collector of the present invention comprises: Fe: 1.0% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.06% by mass or less, Cu: 0.006 It has a composition containing not less than mass% and not more than 0.015 mass%, with the balance being composed of Al and unavoidable impurities, having a tensile strength of 180 MPa or more, an elongation of 5.0% or more, and grain boundaries in the thickness direction interval following polymerization rolled foil der 1.0μm of Ri, 2 00 ° C. for 12 hours heat-treated after the tensile strength of more than 100 MPa, 0.2% proof stress than 60 MPa, and an elongation of 12% or more, average crystal grain size is 6μm or less, Ru der and the ratio of the maximum crystal grain diameter / average crystal grain size of 3.0 or less.

本発明の電池集電体用アルミニウム合金箔は、圧延性が向上し、熱処理前後で高い延性を有する。   The rollability is improved and the aluminum alloy foil for battery current collectors of the present invention has high ductility before and after heat treatment.

以下、本発明に係る電池集電体用アルミニウム合金箔の実施形態について説明する。   Hereinafter, an embodiment of an aluminum alloy foil for a battery current collector according to the present invention will be described.

この電池集電体用アルミニウム合金箔は、Fe:1.0質量%以上1.8質量%以下、Si:0.01質量%以上0.06質量%以下、Cu:0.006質量%以上0.015質量%以下を含有し、残部がAlと不可避不純物からなる組成を有する。これら元素の添加理由は以下の通りである。   The aluminum alloy foil for a battery current collector includes: Fe: 1.0% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.06% by mass or less, Cu: 0.006% by mass or more 0 It has a composition containing not more than 015% by mass and the balance being Al and unavoidable impurities. The reasons for adding these elements are as follows.

・Fe:1.0質量%以上1.8質量%以下
Feは、鋳造時にAl−Fe系金属間化合物として晶出し、それが核となって結晶粒を微細化する効果がある。1.0%未満ではその微細化の効果が乏しく、熱処理前後共に結晶粒サイズが大きくなり高伸びを得にくい。1.8%を超えるとAl−Fe系の粗大金属間化合物が生成しやすくなり、伸びや圧延性が低下する。またこの粗大金属間化合物は重合圧延で得られる片面艶箔のピンホールの原因にもなる。
-Fe: 1.0% by mass or more and 1.8% by mass or less Fe is crystallized as an Al-Fe-based intermetallic compound at the time of casting and has an effect of becoming nuclei and refining crystal grains. If it is less than 1.0%, the effect of the refinement is scarce, and the grain size becomes large before and after heat treatment, making it difficult to obtain high elongation. When it exceeds 1.8%, a coarse intermetallic compound of Al-Fe system is easily formed, and the elongation and the rollability are reduced. In addition, this coarse intermetallic compound is also a cause of pinholes in one-side gloss foil obtained by polymerization rolling.

・Si:0.01質量%以上0.06質量%以下
Siを0.06%以下に規制する事で、熱処理後の結晶粒サイズが均一且つ微細化され、高い伸び特性を得る事が出来る。またFeの析出の抑制にもつながり、冷間圧延中の過度な加工軟化を抑制する事が出来る。またSiを低減する事でAl−Fe―Si系の粗大な金属間化合物の生成が抑制され、薄箔におけるピンホールの抑制も期待できる。さらに本発明者はSiの規制により、Al−Fe合金を重合圧延した際の艶消し面の凹凸を抑制する効果を見出しており、重合圧延で製造された片面艶箔の延性向上や、圧延時の破断抑制にもつながっている。Siの含有量が0.06質量%を超えるとAl−Fe系の金属間化合物が粗大化し伸びが低下する。さらに粗大な金属間化合物は重合圧延時の艶消し面の表面粗さを増加させる為、重合圧延箔の伸びが特に低下する。一方、Siの含有量が0.01質量%未満であるとFeの析出が過度に抑えられてしまう為、加工硬化が大きくなる事で箔の伸びと圧延性が低下する。また再結晶の核生成サイトになりうるある程度の大きさの金属間化合物の密度が低下し、また再結晶阻害によって中間焼鈍時の再結晶粒径が粗大且つ不均一化し最終的な箔の伸びの低下を招く恐れがある。また製造時にSiを0.01質量%未満に抑えるには非常に純度の高いAl地金を使用する必要があり、製造コストが極めて高くなる。その為Siを0.01質量%以上添加する事が望ましい。
Si: 0.01% by mass or more and 0.06% by mass or less By regulating Si to 0.06% or less, the crystal grain size after heat treatment can be made uniform and refined, and high elongation characteristics can be obtained. Moreover, it leads to suppression of precipitation of Fe, and can suppress excessive work softening during cold rolling. In addition, the reduction of Si suppresses the formation of coarse intermetallic compounds of the Al-Fe-Si system, and the suppression of pinholes in thin foils can also be expected. Furthermore, the inventor has found an effect of suppressing the unevenness of the matte surface when polymerizing and rolling an Al-Fe alloy according to the regulation of Si, and the ductility improvement of one-side glossy foil manufactured by polymerization rolling and rolling It also leads to the suppression of breakage. When the content of Si exceeds 0.06% by mass, the Al-Fe-based intermetallic compound becomes coarse and the elongation decreases. Furthermore, since the coarse intermetallic compounds increase the surface roughness of the matte surface during polymerization rolling, the elongation of the polymerization rolled foil is particularly reduced. On the other hand, if the content of Si is less than 0.01% by mass, the precipitation of Fe is excessively suppressed, so that the work hardening is increased and the elongation and the rollability of the foil are reduced. In addition, the density of the intermetallic compound of a certain size that can be a nucleation site of recrystallization is reduced, and recrystallization inhibition causes coarse and uneven recrystallization grain size at the time of intermediate annealing, and the elongation of the final foil is It may cause a decline. In addition, in order to reduce Si to less than 0.01% by mass at the time of manufacture, it is necessary to use very pure Al base metal, and the manufacturing cost becomes extremely high. Therefore, it is desirable to add Si 0.01% by mass or more.

・Cu:0.006質量%以上0.015質量%以下
Cuは硬質箔の強度を増加させる元素である。0.006%未満の場合、冷間圧延時に過度な加工軟化を生じる可能性が高まり、最終的に得られた箔について引張強さが大幅に低下するリスクがある。圧延途中で過剰な加工軟化を生じた場合、熱処理前後での結晶粒組織が不均一・粗大化し、伸びの低下も生じる。Cuを0.006%以上添加する事で冷間圧延におけるこの過度な加工軟化を抑制し、安定した機械的性質を得る事が出来る。ただし0.015%を超えて添加すると箔の高強度化により伸びが大きく低下する。また再結晶温度が上がり、200℃で12時間の熱処理を行っても再結晶を生じず高延性を得る事が困難となる。また高い含有率のCuは圧延時にサイドクラックが発生しやすくなり、重合圧延であっても圧延性が低下する。
-Cu: 0.006 mass% or more and 0.015 mass% or less Cu is an element which increases the strength of a hard foil. If it is less than 0.006%, there is an increased possibility of causing excessive work-softening during cold rolling, and there is a risk that the tensile strength of the finally obtained foil may be significantly reduced. If excessive work softening occurs during rolling, the grain structure becomes uneven and coarse before and after heat treatment, and the elongation also decreases. By adding 0.006% or more of Cu, it is possible to suppress this excessive work softening in cold rolling and obtain stable mechanical properties. However, if it exceeds 0.015%, the elongation is greatly reduced due to the high strength of the foil. Further, the recrystallization temperature rises, and even if heat treatment is performed at 200 ° C. for 12 hours, recrystallization does not occur and it is difficult to obtain high ductility. In addition, Cu having a high content tends to cause side cracks at the time of rolling, and the rollability is lowered even in polymerization rolling.

以上の組成を有する電池集電体用アルミニウム合金箔において、電池集電体用アルミニウム合金箔では、シングル圧延により製造されたシングル圧延箔と、重合圧延により製造された重合圧延箔とがある。   Among the aluminum alloy foils for battery current collectors having the above composition, the aluminum alloy foils for battery current collectors include single rolled foils manufactured by single rolling and polymerized rolled foils manufactured by polymerization rolling.

(重合圧延箔)
重合圧延箔では、常温(25℃)における引張強さが175MPa以上、伸びが5.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下である。また、200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが12%以上である。
このような構成とするのは以下の理由による。
(Polymerized rolling foil)
In the polymerized rolled foil, the tensile strength at normal temperature (25 ° C.) is 175 MPa or more, the elongation is 5.0% or more, and the distance between crystal grain boundaries in the thickness direction is 1.0 μm or less. The tensile strength after heat treatment at 200 ° C. for 12 hours is 100 MPa or more, the 0.2% proof stress is 60 MPa or more, and the elongation is 12% or more.
The reason for this configuration is as follows.

・引張強さが180MPa以上、伸びが5.0%以上
製造ライン中での箔の破断を防ぐ為に、最終冷間圧延後の箔の引張強さは180MPa以上必要である。また伸びは高い程好ましい。重合圧延で製造された伸び特性として不利な片面艶箔であっても、伸びが5.0%以上を有する事で不具合を防止できる。
-Tensile strength of 180 MPa or more, elongation of 5.0% or more In order to prevent the foil from breaking in the production line, the tensile strength of the foil after final cold rolling needs to be 180 MPa or more. The higher the elongation, the better. Even if it is a single-sided luster foil which is disadvantageous as an elongation characteristic manufactured by polymerization rolling, a fault can be prevented by having 5.0% or more of elongation.

・圧延後の箔の厚さ方向の結晶粒界の間隔が1.0μm以下
本発明者は圧延後の硬質箔において、箔の厚さ方向の結晶粒界の数が多い程延性が向上する傾向を見出している。結晶粒界の間隔1.0μmを境にして極端に伸びが変わる事はないが、厚さの薄い箔の場合は厚さ方向の粒界間隔が1.0μm以下となる事で、安定した高い伸びを得る事が出来る。
-The distance between grain boundaries in the thickness direction of the rolled foil is 1.0 μm or less In the hard foil after rolling, the ductility tends to improve as the number of grain boundaries in the thickness direction of the foil increases. Have found. Elongation does not change extremely at boundaries of grain boundaries of 1.0 μm, but in the case of thin foils, the grain boundary spacing in the thickness direction is 1.0 μm or less, so it is stable and high You can get growth.

・200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが12%以上
電極スラリーを集電体に塗布した後の熱乾燥を想定した熱処理後において、箔の引張強さが100MPa、0.2%耐力が60MPa、伸びが12%のいずれかを下回ると、電池製造ライン中で強度不足やシワによる箔の破断を生じるリスクが高くなるため、熱処理後の引張強さ等が上記範囲であることが望ましい。ただし、実際の集電体の熱処理の条件が上記に限定されるものではない。
前述のようにSiやCuを規定する事で、延性に優れ、且つ伸び特性が非常に優れた箔を得る事が出来る。
・ The tensile strength is 100MPa or more after heat treatment at 200 ° C for 12 hours, the 0.2% proof stress is 60MPa or more, the elongation is 12% or more After heat treatment assuming heat drying after applying the electrode slurry to the current collector If the tensile strength of the foil is less than 100MPa, 0.2% proof stress is less than 60MPa, and the elongation is less than 12%, the risk of causing breakage of the foil due to insufficient strength or wrinkles in the battery production line increases. It is desirable that the subsequent tensile strength and the like be in the above range. However, the conditions of the heat treatment of an actual current collector are not limited to the above.
As described above, by defining Si and Cu, it is possible to obtain a foil excellent in ductility and very excellent in elongation characteristics.

・200℃で12時間熱処理した後の平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下
電極スラリーを集電体に塗布した後の熱乾燥を想定した熱処理後においても、結晶粒径を微細化する事で材料が均一に変形し易くなり、伸び特性が向上する。しかし微細な結晶粒の中に粗大な結晶粒が混在した場合、変形時に応力集中を生じ早期にくびれが発生し破断に至る。平均結晶粒径が6μm以下で且つ最大結晶粒径/平均結晶粒径の比を3.0以下とした微細且つ均一な結晶粒組織を成す事で、熱処理後に安定した高延性が確保できる。
The average crystal grain size after heat treatment at 200 ° C. for 12 hours is 6 μm or less, and the ratio of the maximum crystal grain size / the average crystal grain size is 3.0 or less. Assumes thermal drying after applying the electrode slurry to the current collector. Even after the heat treatment, the material is easily deformed uniformly by refining the crystal grain size, and the elongation property is improved. However, when coarse crystal grains are mixed in fine crystal grains, stress concentration occurs at the time of deformation and constriction occurs at an early stage, leading to breakage. By forming a fine and uniform crystal grain structure in which the average crystal grain size is 6 μm or less and the ratio of the maximum crystal grain size / average crystal grain size is 3.0 or less, stable high ductility after heat treatment can be ensured.

(シングル圧延箔)
シングル圧延箔は重合圧延箔に比べて伸びを大きくすることができ、伸びを6.0%以上とすることができる。すなわち、シングル圧延箔では、常温(25℃)における引張強さが175MPa以上、伸びが6.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下である。また、200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが14%以上であり、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下である。
(Single rolled foil)
The single-rolled foil can increase the elongation compared to the polymerized rolled foil, and can make the elongation 6.0% or more. That is, in a single-rolled foil, the tensile strength at normal temperature (25 ° C.) is 175 MPa or more, the elongation is 6.0% or more, and the distance between crystal grain boundaries in the thickness direction is 1.0 μm or less. The tensile strength after heat treatment at 200 ° C for 12 hours is 100 MPa or more, the 0.2% proof stress is 60 MPa or more, the elongation is 14% or more, the average grain size is 6 μm or less, and the maximum grain size / average grain size The ratio of crystal grain sizes is 3.0 or less.

この電池集電体用アルミニウム合金箔の厚みとしては、特に制限されないが、6μm以上30μm以下の範囲とすることが好ましい。アルミニウム合金箔の厚みが6μm未満の場合、電気抵抗が増加して電池特性が低下するおそれがある。また、圧延により厚さ6μm未満のアルミニウム箔を製造するのは重合圧延であっても難しく、工程の追加を余儀なくされるおそれがある。アルミニウム合金箔の厚みが30μmを超える場合、電池内に巻き込めるアルミニウム合金箔の枚数が減り、電池容量が低下するおそれもある。厚さの好ましい範囲は10μm以上30μm以下である。   The thickness of the aluminum alloy foil for a battery current collector is not particularly limited, but is preferably in the range of 6 μm to 30 μm. If the thickness of the aluminum alloy foil is less than 6 μm, the electrical resistance may increase and the battery characteristics may be degraded. Also, it is difficult to produce an aluminum foil having a thickness of less than 6 μm by rolling, even if it is polymerization rolling, and there is a risk that additional steps will be required. When the thickness of the aluminum alloy foil exceeds 30 μm, the number of aluminum alloy foils that can be wound into the battery may be reduced, and the battery capacity may be reduced. The preferred range of thickness is 10 μm or more and 30 μm or less.

以上のような組成、特性を有する電池集電体用アルミニウム合金箔は以下のようにして製造される。
まず、前述した所定の組成範囲としたアルミニウム合金を、既知の半連続鋳造法や連続鋳造圧延法などの常法により溶製する。
その鋳塊を500℃以上580℃以下の温度で4〜16時間の条件で均質化処理した後、熱間圧延してアルミニウム合金板とする。この熱間圧延の仕上がり温度は280℃以下とする。次に、必要に応じて中間焼鈍を行った後、冷間圧延を行うことにより、所望の厚みのアルミニウム合金箔を得ることができる。冷間圧延における最終冷間圧延率は98.2%以上とするのが好ましい。
以下、これらの条件について説明する。
The aluminum alloy foil for battery current collectors having the above composition and characteristics is manufactured as follows.
First, the aluminum alloy having the predetermined composition range described above is melted and produced by a known method such as a semi-continuous casting method or a continuous casting and rolling method.
The ingot is homogenized at a temperature of 500 ° C. to 580 ° C. for 4 to 16 hours, and then hot rolled to form an aluminum alloy sheet. The finish temperature of this hot rolling is 280 ° C. or less. Next, intermediate annealing is performed as required, and cold rolling is performed to obtain an aluminum alloy foil having a desired thickness. The final cold rolling reduction in cold rolling is preferably 98.2% or more.
Hereinafter, these conditions will be described.

・均質化処理:500℃以上580℃以下の温度で4〜16時間
温度が500℃未満の均質化処理ではFeの析出が過度に促進され、Feの固溶量が低下するため、圧延時に加工軟化が生じ引張強さが低下する、また低温熱処理で軟化する要因となる。また580℃を超えるとAl−Fe系晶出物が粗大化するおそれがあり、結晶粒の粗大化や箔の圧延性が低下するリスクがあり望ましくない。加えて高温ではFeの析出も十分ではなく、最終圧延後に箔を200℃で12時間熱処理を行っても再結晶を生じず高延性を得る事が難しい。また4時間未満の保持では均質化処理としては不十分であり、箔の特性や製造コストの観点からも16時間を超える処理は意味が薄い。このため、均質化処理の条件を上記範囲に定めるのが望ましい。より望ましい温度の下限は540℃、上限は580℃である。
Homogenization: 4 to 16 hours at a temperature of 500 ° C. to 580 ° C. In the homogenization treatment at a temperature of less than 500 ° C., the precipitation of Fe is excessively promoted and the solid solution amount of Fe is reduced. Softening occurs to reduce tensile strength, and also causes softening at low temperature heat treatment. If the temperature exceeds 580 ° C., there is a possibility that the Al—Fe-based crystallized product may be coarsened, and there is a risk that the coarsening of crystal grains and the rolling property of the foil may be deteriorated. In addition, at high temperatures, precipitation of Fe is not sufficient, and even if the foil is heat treated at 200 ° C. for 12 hours after final rolling, recrystallization does not occur and it is difficult to obtain high ductility. In addition, holding for less than 4 hours is not sufficient as homogenization treatment, and treatment for more than 16 hours is not meaningful from the viewpoint of foil characteristics and manufacturing cost. Therefore, it is desirable to set the conditions of the homogenization treatment in the above range. The lower limit of the more desirable temperature is 540 ° C., and the upper limit is 580 ° C.

・熱間圧延仕上がり温度280℃以下
熱間圧延の仕上がり温度は、巻取り後の再結晶を出来るだけ抑制する為280℃以下とする事が好ましい。巻取り圧延後に280℃を超えると部分的に再結晶を生じ、未再結晶領域と混在した結晶粒組織となるリスクがある。そうなった場合には中間焼鈍後、ひいては最終圧延後の結晶粒組織の不均一化を招き延性が低下する懸念がある。
Hot Roll Finishing Temperature: 280 ° C. or Less The finish temperature of hot rolling is preferably 280 ° C. or less in order to suppress recrystallization after winding as much as possible. If the temperature exceeds 280 ° C. after winding and rolling, there is a risk that partial recrystallization will occur and grain structure mixed with the non-recrystallized region. In such a case, there is a concern that the grain structure may become nonuniform after intermediate annealing and eventually after final rolling, and the ductility may be reduced.

・中間焼鈍条件
本実施形態のアルミニウム合金は良好な圧延性を有しており、冷間圧延途中での中間焼鈍は不要であるが、所望により実施しても良い。中間焼鈍には、コイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍する場合、本発明ではいずれの方法でも良いが、圧延後の強度と伸びを重視するならばCAL焼鈍、200℃熱処理後の伸びを重視するならばバッチ焼鈍が好ましい。バッチ焼鈍を採用する場合は、300〜450℃で3〜6時間の保持を実施することが望ましい。
Intermediate Annealing Condition The aluminum alloy of the present embodiment has good rollability, and intermediate annealing during cold rolling is not necessary, but may be performed if desired. There are two types of intermediate annealing: batch annealing in which the coil is placed in a furnace and held for a fixed time, and rapid heating and quenching of the material by a continuous annealing line (hereinafter referred to as CAL annealing). . In the case of intermediate annealing, any method may be used in the present invention, but CAL annealing is preferred if strength and elongation after rolling are important, and batch annealing is preferred if elongation after heat treatment at 200 ° C. is important. When employing batch annealing, it is desirable to carry out holding at 300 to 450 ° C. for 3 to 6 hours.

・最終冷間圧延率:98.2%以上
アルミニウム合金は圧延を行うだけで結晶粒が分断し微細化することが知られている(grain subdivision)。圧延率が高いほど結晶粒の微細化が進むため、冷間圧延時の最終冷間圧延率を98.2%以上とすることで、箔の厚さ方向の結晶粒界の間隔が狭くなり、より高い伸び特性を得ることができる。なお、ここでいう最終冷間圧延率とは、圧延工程中の中間焼鈍を行った場合は、中間焼鈍時の厚みから最終厚みまでの冷間圧延率であり、中間焼鈍を行わない場合は、冷間圧延直前の板厚から最終厚みまでの冷間圧延率であり、それぞれ[{(圧延前板厚−圧延後板厚)÷圧延前板厚}×100]により算出することができる。シングル圧延、重合圧延とも、最終冷間圧延率として98.2%以上が好ましい。
最終冷間圧延の圧延率が大きくなるに従って、製造されるアルミニウム合金箔の引張強度と伸びが同時に増加する傾向がある。
-Final cold rolling ratio: 98.2% or more It is known that grain division and refinement of aluminum alloy occur only by rolling (grain subdivision). Since the finer the crystal grain proceeds as the rolling ratio becomes higher, by setting the final cold rolling ratio during cold rolling to at least 98.2%, the distance between the grain boundaries in the thickness direction of the foil becomes narrow, Higher elongation properties can be obtained. In addition, the final cold-rolling rate here is a cold-rolling rate from the thickness at the time of intermediate annealing to the final thickness when performing intermediate annealing in a rolling process, and when not performing intermediate annealing, It is a cold rolling rate from the plate thickness immediately before cold rolling to the final thickness, and can be calculated by [{(plate thickness before rolling−plate thickness after rolling) / plate thickness before rolling} × 100]. For both single rolling and polymerization rolling, the final cold rolling reduction is preferably 98.2% or more.
As the final cold rolling reduction ratio increases, the tensile strength and the elongation of the produced aluminum alloy foil tend to simultaneously increase.

・重合圧延の際の圧下率:10%以上50%以下
圧下率が10%未満では良好な艶消し面が得られず、50%を超えると艶消し面の表面粗さが大幅に大きくなり、伸びの低下を招く。圧下率は、1回の圧延パスにおける圧延率である。
The rolling reduction during polymerization rolling: 10% to 50% When the rolling reduction is less than 10%, a good matte surface can not be obtained, and when it exceeds 50%, the surface roughness of the matte surface becomes significantly large, It causes a decrease in growth. The rolling reduction is a rolling reduction in one rolling pass.

この場合、このアルミニウム合金は伸び特性が良いので、シングル圧延、重合圧延のいずれをも採用することができる。
また、最終冷間圧延後のアルミニウム合金箔の厚さは特に限定されないが、前述の如く、6μm以上30μm以下(より好適には10μm以上30μm以下)の範囲の厚みとすることが好ましい。
以上の工程により、リチウムイオン電池の集電体用アルミニウム合金箔を製造することができる。シングル圧延箔の場合は、両面光沢面となるが、重合圧延箔の場合は片面が光沢面、反対面が艶消し面となる。この重合圧延箔の艶消し面における凹凸は、算術平均粗さRaで0.20μm以下が好ましい。
以上のように製造された電池集電体用アルミニウム合金箔は、圧延性が向上し、熱処理前後で高い延性を有する。
In this case, since this aluminum alloy has good elongation characteristics, either single rolling or polymerization rolling can be employed.
The thickness of the aluminum alloy foil after final cold rolling is not particularly limited, but as described above, the thickness is preferably in the range of 6 μm to 30 μm (more preferably 10 μm to 30 μm).
According to the above steps, an aluminum alloy foil for a current collector of a lithium ion battery can be manufactured. In the case of a single-rolled foil, a double-sided glossy surface is obtained, but in the case of a polymerized rolled foil, one side is a glossy surface and the opposite surface is a matte surface. As for the unevenness | corrugation in the matte side of this polymerization rolling foil, 0.20 micrometer or less is preferable by arithmetic mean roughness Ra.
The aluminum alloy foil for a battery current collector manufactured as described above has improved rollability and high ductility before and after heat treatment.

以上、本発明に係る電池集電体用アルミニウム合金箔の実施形態について説明したが、上述の実施形態は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。   As mentioned above, although embodiment of the aluminum alloy foil for battery collectors concerning this invention was described, the above-mentioned embodiment is an example, Comprising: It can change suitably in the range which does not deviate from the range of this invention.

以下に、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

表1に示す組成(残部Alおよび不可避不純物)からなるアルミニウム合金の鋳塊を半連続鋳造により鋳造した。得られた鋳塊を均質化処理した後に熱間圧延、冷間圧延により、最終箔厚が各々12μmのアルミニウム合金箔を得た。熱間圧延後に中間焼鈍したものも作製した。この均質化処理、熱間圧延、中間焼鈍、冷間圧延の各条件は表1に示す通りとした。重合圧延の場合は、シングル圧延で厚さ17.2μmまで圧延した後に、2枚を重ね合わせて(総厚み34.4μm)圧延し、24μmの厚みとした。1枚の箔は12μmの厚みである。圧下率は30%である。   An ingot of an aluminum alloy having the composition shown in Table 1 (remainder Al and unavoidable impurities) was cast by semi-continuous casting. The obtained ingot was homogenized, hot rolled and cold rolled to obtain an aluminum alloy foil having a final foil thickness of 12 μm each. What was intermediately annealed after hot rolling was also produced. The conditions of the homogenization treatment, hot rolling, intermediate annealing, and cold rolling were as shown in Table 1. In the case of polymerization rolling, after being rolled to a thickness of 17.2 μm by single rolling, two sheets were stacked and rolled (total thickness 34.4 μm) and rolled to a thickness of 24 μm. One foil has a thickness of 12 μm. The rolling reduction is 30%.

Figure 0006545779
Figure 0006545779

作製したアルミニウム合金箔について、引張強さ、伸び等の以下の項目を測定した。
(引張強さ・0.2%耐力・伸び)
機械的性質は、JIS Z2241に準拠し、試料からJIS5号試験片を採取し、万能引張試験機(島津製作所製)で引張り速度2mm/秒にて測定を行った。
(表面粗さ)
重合圧延で得られた片面艶箔の艶消し面の表面形状をJIS B0633:2001に基づいて触針式の表面粗さ測定機(東京精密製)を用いて測定し、JIS B0601:2001の定義に基づいて算術平均粗さRaを求めた。
The following items, such as tensile strength and elongation, were measured about the produced aluminum alloy foil.
(Tensile strength · 0.2% proof stress · Elongation)
Mechanical properties were measured in accordance with JIS Z2241 by collecting a JIS No. 5 test piece from the sample and using a universal tensile tester (manufactured by Shimadzu Corporation) at a tensile speed of 2 mm / sec.
(Surface roughness)
The surface shape of the matte surface of one-side gloss foil obtained by polymerization rolling is measured using a stylus type surface roughness measuring device (manufactured by Tokyo Seimitsu Co., Ltd.) based on JIS B0633: 2001, and the definition of JIS B0601: 2001 Arithmetic mean roughness Ra was determined based on.

(厚さ方向の結晶粒径測定)
アルミニウム合金箔のRD―ND面をCP(cross section polisher)にて切断し、この切断面をSEM−EBSD法にて解析を行った。倍率×2000倍で箔の厚さ全体を、実際に粒径を測定する際は×3000倍で観察を行った。得られた方位マッピング像において、方位差が15°以上の粒界を表示したgrain mapより、線分法で箔の厚み方向の結晶粒径を算出した。尚、×3000倍の観察は一つの試料で3視野行い、結晶粒径はその平均値とした。
(Measurement of crystal grain size in thickness direction)
The RD-ND side of the aluminum alloy foil was cut by CP (cross section polisher), and the cut surface was analyzed by SEM-EBSD method. The entire thickness of the foil was observed at a magnification of × 2000, and when actually measuring the particle size, observation was performed at × 3000. In the obtained orientation mapping image, the grain size in the thickness direction of the foil was calculated by the line segment method from the grain map in which the grain boundary having an orientation difference of 15 ° or more was displayed. In addition, observation of × 3000 was performed in three fields of view with one sample, and the crystal grain size was taken as the average value.

(平均結晶粒径及び最大結晶粒径/平均結晶粒径の比)
箔表面を電解研磨した後、SEM(Scanning Electron Microscope)−EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の結晶粒界をHAGBs(大傾角粒界)と規定し、HAGBsで囲まれた結晶粒の大きさを測定した。倍率×1000で視野サイズ45×90μmを3視野測定し、平均結晶粒径、及び最大粒径/平均粒径を算出した。一つ一つの結晶粒径は円相当径にて算出し、平均結晶粒径の算出にはEBSDのArea法(Average by Area Fraction Method)を用いた。尚、解析にはTSL Solutions社のOIM Analysisを使用した。
表2はシングル圧延箔、表3は重合圧延箔についての評価結果である。
(Average grain size and ratio of maximum grain size / average grain size)
After electrolytic polishing of the foil surface, crystal orientation analysis is performed by SEM (Scanning Electron Microscope) -EBSD, and crystal grain boundaries between crystal grains of 15 ° or more are defined as HAGBs (high angle grain boundaries), The size of the grain surrounded by HAGBs was measured. The field size of 45 × 90 μm was measured in three fields of view at a magnification of × 1000, and the average crystal grain size and the maximum grain size / average grain size were calculated. The grain size of each crystal was calculated using the equivalent circle diameter, and the Area method (Average by Area Fraction Method) of EBSD was used to calculate the average grain size. For analysis, OIM Analysis from TSL Solutions was used.
Table 2 shows the evaluation results for the single-rolled foil and Table 3 for the polymerized rolled foil.

Figure 0006545779
Figure 0006545779

Figure 0006545779
Figure 0006545779

実施例のアルミニウム合金箔は、優れた引張強さと伸びを有することが確認された。また、いずれの実施例も、圧延時に破断することなく、圧延性も良好であった。   The aluminum alloy foils of the examples were confirmed to have excellent tensile strength and elongation. In addition, in any of the examples, the rollability was also good without breaking during rolling.

Claims (2)

Fe:1.0質量%以上1.8質量%以下、Si:0.01質量%以上0.06質量%以下、Cu:0.006質量%以上0.015質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、引張強さが180MPa以上、伸びが6.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下のシングル圧延箔であり、
200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが14%以上であり、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下である事を特徴とする電池集電体用アルミニウム合金箔。
Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.01 mass% or more and 0.06 mass% or less, Cu: 0.006 mass% or more and 0.015 mass% or less, and the balance is has a composition of Al and inevitable impurities, tensile strength more than 180 MPa, elongation is 6.0% or more, Ri single rolled foil der spacing of the crystal grain boundary following 1.0μm thickness direction,
Tensile strength after heat treatment at 200 ° C for 12 hours is 100MPa or more, 0.2% proof stress is 60MPa or more, elongation is 14% or more, average grain size is 6μm or less, and maximum grain size / average grain size Aluminum alloy foil for battery current collector characterized in that diameter ratio is 3.0 or less .
Fe:1.0質量%以上1.8質量%以下、Si:0.01質量%以上0.06質量%以下、Cu:0.006質量%以上0.015質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、引張強さが180MPa以上、伸びが5.0%以上であり、厚さ方向の結晶粒界の間隔が1.0μm以下の重合圧延箔であり、  Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.01 mass% or more and 0.06 mass% or less, Cu: 0.006 mass% or more and 0.015 mass% or less, and the balance is A polymerized rolled foil having a composition of Al and unavoidable impurities, having a tensile strength of 180 MPa or more, an elongation of 5.0% or more, and a distance between crystal grain boundaries in the thickness direction of 1.0 μm or less,
200℃で12時間熱処理した後の引張強さが100MPa以上、0.2%耐力が60MPa以上、伸びが12%以上であり、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径の比が3.0以下である事を特徴とする電池集電体用アルミニウム合金箔。  Tensile strength after heat treatment at 200 ° C for 12 hours is 100MPa or more, 0.2% proof stress is 60MPa or more, elongation is 12% or more, average grain size is 6μm or less, and maximum grain size / average grain size Aluminum alloy foil for battery current collector characterized in that diameter ratio is 3.0 or less.
JP2017245278A 2017-12-21 2017-12-21 Aluminum alloy foil for battery current collector Expired - Fee Related JP6545779B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017245278A JP6545779B2 (en) 2017-12-21 2017-12-21 Aluminum alloy foil for battery current collector
PCT/JP2018/047147 WO2019124530A1 (en) 2017-12-21 2018-12-21 Aluminum alloy foil for cell collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245278A JP6545779B2 (en) 2017-12-21 2017-12-21 Aluminum alloy foil for battery current collector

Publications (2)

Publication Number Publication Date
JP2019112659A JP2019112659A (en) 2019-07-11
JP6545779B2 true JP6545779B2 (en) 2019-07-17

Family

ID=66992673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245278A Expired - Fee Related JP6545779B2 (en) 2017-12-21 2017-12-21 Aluminum alloy foil for battery current collector

Country Status (2)

Country Link
JP (1) JP6545779B2 (en)
WO (1) WO2019124530A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730382B2 (en) * 2018-08-13 2020-07-29 三菱アルミニウム株式会社 Aluminum foil for battery current collector and method of manufacturing the same
WO2022138620A1 (en) * 2020-12-25 2022-06-30 Maアルミニウム株式会社 Aluminum alloy foil
WO2022168852A1 (en) * 2021-02-08 2022-08-11 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639398B2 (en) * 2010-07-16 2014-12-10 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
JP5795895B2 (en) * 2011-07-22 2015-10-14 株式会社Uacj製箔 Positive electrode for secondary battery using current collector made of aluminum alloy, and method for producing positive electrode for secondary battery
JP6035058B2 (en) * 2012-06-13 2016-11-30 株式会社Uacj Aluminum alloy foil
US9947917B2 (en) * 2013-10-25 2018-04-17 Uacj Corporation Aluminum alloy foil for current collector of electrode, and manufacturing method thereof
JP6567293B2 (en) * 2015-02-25 2019-08-28 三菱アルミニウム株式会社 Aluminum alloy foil with excellent elongation characteristics

Also Published As

Publication number Publication date
JP2019112659A (en) 2019-07-11
WO2019124530A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6154565B1 (en) Cu-Ni-Si-based copper alloy sheet and manufacturing method
KR101518142B1 (en) Hardened aluminum foil for battery collectors
JP7042920B2 (en) High-strength battery electrode foil for the manufacture of lithium-ion storage batteries
WO2019214243A1 (en) 1100 alloy aluminum foil for lithium battery and manufacturing method therefor
JP5189715B1 (en) Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same
JP7312760B2 (en) Battery electrode foil for the production of lithium-ion accumulators
JP5959405B2 (en) Aluminum alloy foil
WO2021079979A1 (en) Aluminum alloy foil and method for producing same
JP5927614B2 (en) Aluminum hard foil for battery current collector
JP2021520059A (en) Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors
JPWO2011068124A1 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP6545779B2 (en) Aluminum alloy foil for battery current collector
JP6869119B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP2010236055A (en) Aluminum alloy foil for lithium ion secondary battery, and method for producing the same
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6730382B2 (en) Aluminum foil for battery current collector and method of manufacturing the same
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
WO2017135108A1 (en) Aluminum alloy foil and method for producing same
JP2007138234A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP6513896B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP2018168450A (en) Aluminum alloy foil for electrode collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6545779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees