JP2017184393A - インバータ制御装置 - Google Patents

インバータ制御装置 Download PDF

Info

Publication number
JP2017184393A
JP2017184393A JP2016066612A JP2016066612A JP2017184393A JP 2017184393 A JP2017184393 A JP 2017184393A JP 2016066612 A JP2016066612 A JP 2016066612A JP 2016066612 A JP2016066612 A JP 2016066612A JP 2017184393 A JP2017184393 A JP 2017184393A
Authority
JP
Japan
Prior art keywords
control
current
inverter
torque
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016066612A
Other languages
English (en)
Other versions
JP6610381B2 (ja
Inventor
有礼 島田
Arinori Shimada
有礼 島田
スブラタ サハ
Suburata Saha
スブラタ サハ
宰徳 全
Che Dok Chong
宰徳 全
陽明 白村
Hiroaki Shiromura
陽明 白村
裕樹 杉山
Hiroki Sugiyama
裕樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2016066612A priority Critical patent/JP6610381B2/ja
Publication of JP2017184393A publication Critical patent/JP2017184393A/ja
Application granted granted Critical
Publication of JP6610381B2 publication Critical patent/JP6610381B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】インバータの動作中に、インバータと直流電源との電気的接続が遮断された場合に、インバータを適切に制御する。【解決手段】インバータ制御装置は、回転電機の回転中にコンタクタが開放状態となった場合に、アクティブショートサーキット制御を開始し、アクティブショートサーキット制御の開始後、予め規定された動作条件を満たした場合に、ゼロトルク制御を開始する。【選択図】図3

Description

本発明は、直流電源と交流の回転電機に接続されて直流と複数相の交流との間で電力を変換するインバータを制御するインバータ制御装置に関する。
特開2013−13198号公報(特許文献1)には、直流電源(3)にコンタクタ(2)を介して接続されると共に交流の回転電機(MG)に接続されたインバータ(5)を制御する制御装置(10)が開示されている(背景技術の説明において括弧内に示す符号は、特許文献1のもの。)。この制御装置(10)は、回転電機(MG)が回転しているときに、コンタクタ(2)が閉状態から開状態となって、インバータ(5)と直流電源(3)との電気的接続が遮断された場合に、高損失制御を含むゼロトルク制御を実行する(特許文献1:[0032]〜[0033]、図2等)。ゼロトルク制御とは、回転電機(MG)の目標トルクをゼロに設定して、回転電機(MG)のトルクがゼロとなるようにインバータ(5)を制御する制御形態である。具体的には、トルクに寄与する成分の電流(q軸電流)がゼロとなるように制御する制御形態である。高損失制御はトルクに寄与しない成分の電流(d軸電流)を多く流して損失を増加させてエネルギーを消費させる制御である。
特許文献1では、回転電機(MG)のトルクがゼロとなった後(q軸電流がゼロとなった後)には、トルクに寄与しない成分の電流(d軸電流)をゼロにする収束処理や、全てのスイッチング素子をオフ状態に制御するシャットダウン制御が実施される(特許文献1の[0046]〜)[0049]等)。しかし、例えばシャットダウン制御が行われた場合には、回転電機(MG)から回生されるエネルギーが、インバータ(5)の直流側に接続されている平滑コンデンサ(Q2)を充電することになる。これにより、平滑コンデンサ(Q2)の端子間電圧(インバータ(5)の直流側の電圧)が急上昇するおそれがある。平滑コンデンサ(Q2)やインバータ(5)を構成するスイッチング素子の耐圧が問題となるおそれがある。コンタクタが開放状態になった時などに行われるフェールセーフ制御にはゼロトルク制御の他にも制御方式が存在し、各方式には回転電機やインバータの動作状態に応じてそれぞれ適用に好適な場面がある。従って、上述したようなゼロトルク制御や高損失制御に限定されることなく、インバータを適切に制御することが望まれる。
特開2013−13198号公報
上記背景に鑑みて、直流電源に接続されると共に交流の回転電機に接続されるインバータの動作中に、インバータと直流電源との電気的接続が遮断された場合に、インバータの直流側の電圧の急上昇やインバータに流れる電流の大幅な上昇などを抑制できるように、インバータを適切に制御することが望まれる。
上記に鑑みたインバータ制御装置は、1つの態様として、直流電源にコンタクタを介して接続されると共に交流の回転電機に接続されて直流と複数相の交流との間で電力変換を行うインバータであって、交流1相分のアームが上段側スイッチング素子と下段側スイッチング素子との直列回路により構成され、直流側の電圧である直流リンク電圧を平滑化する平滑コンデンサが接続された当該インバータを制御対象とし、
前記回転電機の回転に同期して回転する2軸の直交座標系において、当該直交座標系の各軸に沿った界磁電流と駆動電流との合成ベクトルである電機子電流を制御して前記インバータを構成するスイッチング素子をスイッチング制御するインバータ制御装置であって、
前記回転電機の回転中に前記コンタクタが開放状態となった場合に、複数相の前記アームの前記上段側スイッチング素子及び前記下段側スイッチング素子の何れか一方の前記スイッチング素子の全てをオン状態に制御し、他方の前記スイッチング素子の全てをオフ状態に制御するアクティブショートサーキット制御を開始し、
前記アクティブショートサーキット制御の開始後、予め規定された動作条件を満たした場合に、前記回転電機のトルクがゼロとなるようにトルク指令を設定して前記駆動電流をゼロ状態まで減少させると共に、当該トルク指令に基づく前記トルクを維持した状態で前記電機子電流が増加するように前記界磁電流を増加させるゼロトルク制御を開始する。
回転電機が回転中に、コンタクタが開放状態となった場合に、例えばインバータの全てのスイッチング素子をオフ状態に制御すると、直流電源との接続が遮断されているために、回転電機から回生される電力が平滑コンデンサを充電し、直流リンク電圧を上昇させる。しかし、アクティブショートサーキット制御では、回転電機とインバータとの間で電流が還流するので、平滑コンデンサを充電することはなく、そのような電圧上昇を抑制することができる。但し、アクティブショートサーキット制御では、単純に電流を還流させているだけであるから、回転電機を制御することはできない。本構成では、アクティブショートサーキット制御からゼロトルク制御へと制御方式を切り換えることで、回転電機のトルクを制御した状態で平滑コンデンサを充電するエネルギーを消費させることができる。即ち、本構成によれば、直流電源に接続されると共に交流の回転電機に接続されるインバータの動作中に、インバータと直流電源との電気的接続が遮断された場合に、インバータの直流側の電圧の急上昇やインバータに流れる電流の大幅な上昇などを抑制できるように、インバータを適切に制御することができる。
インバータ制御装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
回転電機駆動装置のシステム構成を模式的に示すブロック図 回転電機のトルクマップ 制御モードの遷移例を示すフローチャート 制御モードの遷移例を電流の電流ベクトル空間上で模式的に示す説明図 アクティブショートサーキット制御開始時のd軸電流及びq軸電流の波形図 アクティブショートサーキット制御における通流経路の一例を示す図 パーシャルシャットダウン制御における通流経路の一例を示す図 制御モードの別の遷移例を示すフローチャート
以下、インバータ制御装置の実施形態を図面に基づいて説明する。インバータ制御装置20は、図1に示すように、インバータ10を介して回転電機80を駆動制御する。本実施形態では、インバータ10と後述する直流リンクコンデンサ4(平滑コンデンサ)とを備えて、回転電機駆動装置1が構成されており、インバータ制御装置20は、回転電機駆動装置1を介して回転電機80を駆動制御するということもできる。駆動対象の回転電機80は、例えばハイブリッド自動車や電気自動車等の車両の駆動力源となる回転電機である。車両の駆動力源としての回転電機80は、複数相の交流(ここでは3相交流)により動作する回転電機であり、電動機としても発電機としても機能することができる。
車両には、回転電機80を駆動するための電力源としてニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどの直流電源が搭載されている。本実施形態では、回転電機80に電力を供給するための大電圧大容量の直流電源として、例えば電源電圧が200〜400[V]の高圧バッテリ11(直流電源)が備えられている。回転電機80は、交流の回転電機であるから、高圧バッテリ11と回転電機80との間には、直流と交流(ここでは3相交流)との間で電力を変換するインバータ10が備えられている。インバータ10の直流側の正極電源ラインPと負極電源ラインNとの間の電圧は、以下“直流リンク電圧Vdc”と称する。高圧バッテリ11は、インバータ10を介して回転電機80に電力を供給可能であると共に、回転電機80が発電して得られた電力を蓄電可能である。
インバータ10と高圧バッテリ11との間には、インバータ10の直流側の正負両極間電圧(直流リンク電圧Vdc)を平滑化する平滑コンデンサ(直流リンクコンデンサ4)が備えられている。直流リンクコンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。直流リンクコンデンサ4と高圧バッテリ11との間には、直流リンクコンデンサ4から回転電機80までの回路と、高圧バッテリ11との電気的な接続を切り離すことが可能なコンタクタ9が備えられている。本実施形態において、このコンタクタ9は、車両の最も上位の制御装置の1つである車両ECU(Electronic Control Unit)90からの指令に基づいて開閉するメカニカルリレーであり、例えばシステムメインリレー(SMR:System Main Relay)と称される。コンタクタ9は、車両のイグニッションスイッチ(IGスイッチ)やメインスイッチがオン状態(有効状態)の際にSMRの接点が閉じて導通状態(接続状態)となり、IGキーがオフ状態(非有効状態)の際にSMRの接点が開いて非導通状態(開放状態)となる。インバータ10は、高圧バッテリ11と回転電機80との間にコンタクタ9を介して介在され、コンタクタ9が接続状態において高圧バッテリ11とインバータ10(及び回転電機80)とが電気的に接続され、コンタクタ9が開放状態において高圧バッテリ11とインバータ10(及び回転電機80)との電気的接続が遮断される。
インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC−SIT(SiC - Static Induction Transistor)、GaN−MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子3としてIGBTが用いられる。
インバータ10は、よく知られているように複数相(ここでは3相)のそれぞれに対応する数のアーム3Aを有するブリッジ回路により構成される。つまり、図1に示すように、インバータ10の直流正極側(直流電源の正極側の正極電源ラインP)と直流負極側(直流電源の負極側の負極電源ラインN)との間に2つのスイッチング素子3が直列に接続されて1つのアーム3Aが構成される。3相交流の場合には、この直列回路(1つのアーム3A)が3回線(3相)並列接続される。つまり、回転電機80のU相、V相、W相に対応するステータコイル8のそれぞれに一組の直列回路(アーム3A)が対応したブリッジ回路が構成される。
各相のスイッチング素子3による直列回路(アーム3A)の中間点、つまり、正極電源ラインPの側のスイッチング素子3(上段側スイッチング素子3H(31,33,35):図6等参照)と負極電源ラインN側のスイッチング素子3(下段側スイッチング素子3L(32,34,36):図6等参照)との接続点は、回転電機80のステータコイル8(8u,8v,8w:図6等参照)にそれぞれ接続される。尚、各スイッチング素子3には、負極“N”から正極“P”へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にフリーホイールダイオード5が備えられている。スイッチング素子3と同様に、上段側と下段側とで区別する場合には、上段側フリーホイールダイオード5H((51,53,55):図6等参照)、下段側フリーホイールダイオード5L((52,54,56):図6等参照)と称する。
図1に示すように、インバータ10は、インバータ制御装置20により制御される。インバータ制御装置20は、マイクロコンピュータ等の論理回路を中核部材として構築されている。例えば、インバータ制御装置20は、車両ECU90等の他の制御装置等から提供される回転電機80の目標トルクTMに基づいて、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出され、インバータ制御装置20はその検出結果を取得する。また、回転電機80のロータの各時点での磁極位置は、例えばレゾルバなどの回転センサ13により検出され、インバータ制御装置20はその検出結果を取得する。インバータ制御装置20は、電流センサ12及び回転センサ13の検出結果を用いて、電流フィードバック制御を実行する。インバータ制御装置20は、電流フィードバック制御のために種々の機能部を有して構成されており、各機能部は、マイクロコンピュータ等のハードウエアとソフトウエア(プログラム)との協働により実現される。
車両には、高圧バッテリ11の他に、高圧バッテリ11とは絶縁され、高圧バッテリ11よりも低電圧の電源である低圧バッテリ(不図示)も搭載されている。低圧バッテリの電源電圧は、例えば12〜24[V]である。低圧バッテリは、インバータ制御装置20や車両ECU90に、例えば電圧を調整するレギュレータ回路等を介して電力を供給する。車両ECU90やインバータ制御装置20などの電源電圧は、例えば5[V]や3.3[V]である。
ところで、インバータ10を構成する各スイッチング素子3の制御端子(IGBTの場合はゲート端子)は、ドライバ回路30を介してインバータ制御装置20に接続されており、それぞれ個別にスイッチング制御される。回転電機80を駆動するための高圧系回路と、マイクロコンピュータなどを中核とするインバータ制御装置20などの低圧系回路とは、動作電圧(回路の電源電圧)が大きく異なる。このため、各スイッチング素子3に対する駆動信号(スイッチング制御信号)の駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継するドライバ回路30(制御信号駆動回路)が備えられている。低圧系回路のインバータ制御装置20により生成されたスイッチング制御信号は、ドライバ回路30を介して高圧回路系の駆動信号としてインバータ10に供給される。ドライバ回路30は、例えばフォトカプラやトランスなどの絶縁素子やドライバICを利用して構成される。
インバータ制御装置20は、インバータ10を構成するスイッチング素子3のスイッチングパターンの形態(電圧波形制御の形態)として、少なくともパルス幅変調(PWM:Pulse Width Modulation)制御と矩形波制御(1パルス制御)との2つの制御形態を有している。また、インバータ制御装置20は、ステータの界磁制御の形態として、モータ電流に対して最大トルクを出力する最大トルク制御や、モータ電流に対して最大効率でモータを駆動する最大効率制御などの通常界磁制御、及び、トルクに寄与しない界磁電流(d軸電流Id)を流して界磁磁束を弱める弱め界磁制御や、逆に界磁磁束を強める強め界磁制御などの界磁調整制御を有している。
上述したように、本実施形態では、回転電機80の回転に同期して回転する2軸の直交ベクトル空間(直交座標系)における電流ベクトル制御法を用いた電流フィードバック制御を実行して回転電機80を制御する。電流ベクトル制御法では、例えば、永久磁石による界磁磁束の方向に沿ったd軸(界磁電流軸、界磁軸)と、このd軸に対して電気的にπ/2進んだq軸(駆動電流軸、駆動軸)との2軸の直交ベクトル空間(d−q軸ベクトル空間)において電流フィードバック制御を行う。インバータ制御装置20は、制御対象となる回転電機80の目標トルクTMに基づいてトルク指令Tを決定し、d軸電流指令Id及びq軸電流指令Iqを決定する。
そして、インバータ制御装置20は、これらの電流指令(Id,Iq)と回転電機80のU相、V相、W相の各相のコイルを流れる実電流(Iu,Iv,Iw)との偏差を求めて比例積分制御演算(PI制御演算)や比例積分微分制御演算(PID制御演算)を行い、最終的に3相の電圧指令を決定する。この電圧指令に基づいて、スイッチング制御信号が生成される。回転電機80の実際の3相空間と2軸の直交ベクトル空間との間の相互の座標変換は、回転センサ13により検出された磁極位置θに基づいて行われる。また、回転電機80の回転速度ω(角速度)や回転数NR[rpm]は、回転センサ13の検出結果より導出される。
ところで、上述したように、本実施形態では、インバータ10のスイッチング形態には、PWM制御モードと矩形波制御モードとがある。PWM制御は、U相、V相、W相の各相のインバータ10の出力電圧波形であるPWM波形が、上段側スイッチング素子3Hがオン状態となるハイレベル期間と、下段側スイッチング素子3Lがオン状態となるローレベル期間とにより構成されるパルスの集合で構成されると共に、その基本波成分が一定期間で正弦波状となるように、各パルスのデューティーが設定される制御である。公知の正弦波PWM(SPWM : Sinusoidal PWM)や、空間ベクトルPWM(SVPWM : Space Vector PWM)、過変調PWM制御などが含まれる。本実施形態においては、PWM制御では、直交ベクトル空間の各軸に沿った界磁電流(d軸電流Id)と駆動電流(q軸電流Iq)との合成ベクトルである電機子電流を制御してインバータ10を駆動制御する。つまり、インバータ制御装置20は、d−q軸ベクトル空間における電機子電流の電流位相角(q軸電流ベクトルと電機子電流ベクトルとの為す角)を制御してインバータ10を駆動制御する。従って、PWM制御は、電流位相制御とも称される。
これに対して、矩形波制御(1パルス制御)は、3相交流電力の電圧位相を制御してインバータ10を制御する方式である。3相交流電力の電圧位相とは、3相の電圧指令値の位相に相当する。本実施形態では、矩形波制御は、インバータ10の各スイッチング素子3のオン及びオフが回転電機80の電気角1周期に付き1回ずつ行われ、各相について電気角1周期に付き1パルスが出力される回転同期制御である。本実施形態においては、矩形波制御は、3相電圧の電圧位相を制御することによってインバータ10を駆動するので、電圧位相制御と称される。
また、上述したように、本実施形態では界磁制御の形態として、通常界磁制御と、界磁調整制御(弱め界磁制御、強め界磁制御)とを有している。最大トルク制御や最大効率制御などの通常界磁制御は、回転電機80の目標トルクTMに基づいて設定される基本的な電流指令値(d軸電流指令Id、q軸電流指令Iq)を用いた制御形態である。これに対して、弱め界磁制御とは、ステータからの界磁磁束を弱めるために、この基本的な電流指令値の内のd軸電流指令Idを調整する制御形態である。また、強め界磁制御とは、ステータからの界磁磁束を強めるために、この基本的な電流指令値の内のd軸電流指令Idを調整する制御形態である。弱め界磁制御や強め界磁制御などの際には、このようにd軸電流Idが調整されるが、ここでは、この調整値を界磁調整電流と称する。
上述したように、回転電機80は、目標トルクTMに応じてPWM制御や矩形波制御により駆動制御される。ところで、回転電機80が駆動中に車両のIGスイッチ(メインスイッチ)がオフ状態となったり、車両の安全を確保する必要が生じたりした場合には、SMRの接点が開放されて(コンタクタ9が開放されて)、高圧バッテリ11とインバータ10との電気的接続が遮断される。
このため、コンタクタ9が開放状態となった場合には、インバータ10を構成するスイッチング素子3の全てをオフ状態とするシャットダウン制御(SD制御)が実施される場合がある。シャットダウン制御が実施された場合、ステータコイル8に蓄積された電力が、フリーホイールダイオード5を介して直流リンクコンデンサ4を充電する。このため、直流リンクコンデンサ4の端子間電圧(直流リンク電圧Vdc)が短時間で急激に上昇するおそれがある。直流リンク電圧Vdcの上昇に備えて直流リンクコンデンサ4を大容量化、高耐圧化すると、コンデンサの体格の増大につながる。また、スイッチング素子3の高耐圧化も必要となる。これは、回転電機駆動装置1の小型化の妨げとなり、部品コスト、製造コスト、製品コストにも影響する。
本実施形態のインバータ制御装置20は、後述するようにシャットダウン制御、アクティブショートサーキット制御、ゼロトルク制御などを行うことによって、回生電力を抑制しつつ、回転電機80に流れる電流を適切にゼロ状態にする制御を実行する点に特徴を有する。ここで、「ゼロ状態」とはゼロを含む±数[A]の範囲を含む状態をいう。また、例えば、トルクに対して「ゼロ状態」と称する場合には、ゼロを含む±数[Nm]の範囲を含む状態をいう。その他の物理量についても特に明記しない限り同様である。ここでは、回転電機80が図2及び図3に示す第1動作点P1のように、高トルク高回転速度で回生運転中であり、その回生電力がインバータ10を介して高圧バッテリ11の方向へ回生されている状態で、コンタクタ9が開放状態となった場合を例として説明する。
以下、図3〜図5も参照して、ゼロトルク制御及びアクティブショートサーキット制御について説明する。図3のフローチャートは、制御モードの遷移例を示している。また、図4は、制御モードの遷移例を電流の電流ベクトル空間(直交座標系)において模式的に示している。図4において、符号“100”(101〜103)は、それぞれ回転電機80が、あるトルクを出力する電機子電流のベクトル軌跡を示す等トルク線である。等トルク線101よりも等トルク線102の方が低トルクであり、さらに等トルク線102よりも等トルク線103の方が低トルクである。
曲線“300”は電圧速度楕円(電圧制限楕円)を示している。電圧速度楕円は、電流ベクトル空間(直交座標系)における、回転電機80の回転速度ω及びインバータ10の直流電源の電圧である直流電圧(直流リンク電圧Vdc)の値に応じて設定可能な電機子電流の範囲の外縁を示すベクトル軌跡である。電圧速度楕円300の大きさは、直流リンク電圧Vdcと回転電機80の回転速度ω(又は回転数NR)とに基づいて定まる。具体的には、電圧速度楕円300の径は直流リンク電圧Vdcに比例し、回転電機80の回転速度ωに反比例する。電流指令(Id,Iq)は、このような電流ベクトル空間において電圧速度楕円300内に存在する等トルク線100の線上の動作点における値として設定される。後述する電流指令マップは、このような電流ベクトル空間に基づいて規定されたマップである。
図2及び図3に示すように、インバータ制御装置20は、通常動作として回転電機80をトルクモード(目標トルクTMに応じたPWM制御や矩形波制御)で制御している(#10)。この時の、電流ベクトル空間における回転電機80の動作点は、図4に示す第1動作点P1である。換言すれば、回転電機80は、等トルク線101上の第1動作点P1において、通常動作としてのトルクモードで回生動作している(図3の#10)。
ここで、図3のステップ#20に例示すように、コンタクタ9(SMR)が開放状態となった場合、インバータ制御装置20は、図3のステップ#40以下(図8のステップ#30以下)に示すような制御を実施する。上述したように、コンタクタ9は、車両のイグニッションスイッチ(メインスイッチ)がオン状態(有効状態)の際に接続状態となり、IGキーがオフ状態(非有効状態)の際に開放状態となる。例えば、車両のユーザーによって操作されるイグニッションスイッチの状態に応じて、車両ECU90により、コンタクタ9が開放状態に制御される。
しかし、イグニッションスイッチがオン状態の場合に、コンタクタ9が開放状態となる場合もある。例えば、車両ECU90がインバータ10(或いは回転電機80)と高圧バッテリ11とを切り離す必要があると判定した場合に、コンタクタ9が開放状態に制御される。車両ECU90は、車両ECU90以外の制御装置、例えばインバータ制御装置20やそれ以外の制御装置から通知される開放要求に基づいて開放の要否を判定してコンタクタ9を開放状態に制御してもよい。また、車両ECU90による制御がなくても、電気系統の不具合や車両への大きな衝撃等によって、コンタクタ9が開放状態となる場合もある。例えば、コンタクタ9への電源供給が遮断された場合、コンタクタ9の駆動回路に不具合が生じた場合、コンタクタ9の周辺の回路に断線が生じた場合、コンタクタ9が振動・衝撃等によって機械的に動いた場合、等にコンタクタ9が開放状態となる場合がある。
コンタクタ9が開放状態となると、高圧バッテリ11からインバータ10側への電力の供給は遮断される。同様に、回転電機80からインバータ10を介して高圧バッテリ11へ電力が回生されることも遮断される。回転電機80は慣性により回転を続け、ステータコイル8に蓄積された電力は、インバータ10を介して直流リンクコンデンサ4を充電する。これによって、直流リンクコンデンサ4の端子間電圧(直流リンク電圧Vdc)が短時間で上昇する場合がある。直流リンク電圧Vdcの上昇に備えて直流リンクコンデンサ4を大容量化、高耐圧化すると、コンデンサの体格の増大につながる。また、インバータ10の高耐圧化も必要となる。その結果、回転電機駆動装置1の小型化の妨げとなり、部品コスト、製造コスト、製品コストにも影響する。
このため、本実施形態では、コンタクタ9が開放状態となった場合に、複数相(ここでは3相)全てのアーム3Aの上段側スイッチング素子3Hをオン状態に制御する上段側アクティブショートサーキット制御、及び、複数相(3相)全てのアーム3Aの下段側スイッチング素子3Lをオン状態に制御する下段側アクティブショートサーキット制御の何れかのアクティブショートサーキット制御(ASC制御)が実行される(#40)。アクティブショートサーキット制御が実行されると、ステータコイル8に蓄積された電力は、ステータコイル8とインバータ10のスイッチング素子3との間で還流する。電流(還流電流)の有するエネルギーは、スイッチング素子3やステータコイル8などにおいて、例えば熱として消費される。
インバータ制御装置20は、アクティブショートサーキット制御などのフェールセーフ制御を、コンタクタ9を開放する車両ECU90からの通知に基づいて開始してもよいが、コンタクタ9の開放を検出して開始すると好適である。上述したように、コンタクタ9が開放状態となると直流リンク電圧Vdcが直ぐに上昇する。従って、インバータ制御装置20は、コンタクタ9が開放状態となったことを迅速に判定して、フェールセーフ制御を開始することが望ましい。1つの態様として、インバータ制御装置20は、電圧センサ14による直流リンク電圧Vdcの検出結果に基づいて、コンタクタ9が開放状態となったことを判定する(検出する)と好適である。また、別の態様として、インバータ制御装置20は、高圧バッテリ11と直流リンクコンデンサ4との間に設けられたバッテリ電流センサ15により検出された高圧バッテリ11の電流(バッテリ電流)の急激な変化に基づいてコンタクタ9が開放状態となったことを判定(検出)してもよい。コンタクタ9が開放状態となると、高圧バッテリ11と、その後段の回路(直流リンクコンデンサ4、インバータ10、回転電機80等)との電気的な接続状態が急激に変化する。このため、高圧バッテリ11に対する入出力電流も急激に変化する。この場合も、車両ECU90経由でコンタクタ9の状態を取得するよりも、インバータ制御装置20は、コンタクタ9が開放状態となったことを迅速に判定することができる。
アクティブショートサーキット制御は、インバータ10のスイッチング素子3の状態を固定しており、図4に示す電流ベクトル空間において電流を制御することができない。アクティブショートサーキット制御の開始後、q軸電流Iq及びd軸電流Idは、安定しない状態で、動作点が電圧速度楕円300の中心(第5動作点P5)に向かうように変化する。特にアクティブショートサーキット制御の開始時には、q軸電流Iq及びd軸電流Idの乱れも大きく、図5に示すように、波形は大きく振動する。図5における時刻t1は、コンタクタ9が開放状態となった時刻、或いは、アクティブショートサーキット制御を開始した時刻である。但し、このように大きな波形の乱れは、時間の経過と共に収束し、定常状態となる。
電流が定常状態となるまでの経過時間(安定化時間T1)は、電圧方程式から導かれる時定数τによって与えられる。電機子抵抗(ステータコイル8の抵抗成分)を“R”、ベクトル空間におけるd軸インダクタンスを“Ld”、q軸インダクタンスを“Lq”とすると、時定数τは下記式(1)で示される。
Figure 2017184393
図5から明らかなように、時刻t1からd軸電流Id及びq軸電流Iqの絶対値は減少しているが、時刻t2では定常状態となってほとんど減少していない。つまり、図4に示す動作点で考えると、動作点は、第1動作点P1から電圧速度楕円300の中心(第5動作点P5)の方向へ、時刻t1から移動を始めるが、電流が定常状態となる時刻t2には、第2動作点P2においてほぼ停止する。このため、インバータ制御装置20は、アクティブショートサーキット制御から次の制御へとインバータ10の制御形態を遷移させる。
図3に示すように、インバータ制御装置20は、アクティブショートサーキット制御の開始後、予め規定された動作条件(ゼロトルク制御開始条件)を満たした場合に、ゼロトルク制御を開始する(#45,#50)。ゼロトルク制御開始条件は、例えば、d軸電流Idの波高値(PPd)及びq軸電流Iqの波高値(PPq)(又は振幅)が、予め規定された波高値しきい値PTh(振幅しきい値)以下となることである。尚、このしきい値は、d軸電流Idとq軸電流Iqとで異なる値(d軸電流波高値しきい値Thd、q軸電流波高値しきい値Thq)であっても良いし、同じ値であってもよい。また、ここでは、図5を例示して、d軸電流Idとq軸電流Iqの振幅を判定対象としているが、複数相の交流電流(例えば、Iu,Iv,Iw)の振幅を判定対象としてもよい。また、ゼロトルク制御開始条件は、アクティブショートサーキット制御の開始からの経過時間が、ベクトル空間におけるインダクタンス(Ld,Lq)と電機子抵抗(R)とに基づく時定数τによって予め規定される安定化時間T1を経過したことであってもよい。
ゼロトルク制御開始条件を満足している場合、インバータ制御装置20は、回転電機80のトルクがゼロとなるようにトルク指令Tを設定してq軸電流Iq(駆動電流)をゼロ状態まで減少させると共に、当該トルク指令Tに基づくトルクを維持した状態で電機子電流が増加するようにd軸電流Id(界磁電流)を増加させるゼロトルク制御を開始する(#50)。本実施形態では、図4に示すように、インバータ制御装置20は、動作点を、第2動作点P2から第3動作点P3へと移動させるような制御を実行する。
すなわち、本実施形態では、アクティブショートサーキット制御からゼロトルク制御に移行する場合に、当該移行時点での電圧速度楕円300とd軸電流Idの軸であるd軸との2つの交点の内のd軸電流Idが正側の交点に向かう方向にq軸電流Iq及びd軸電流Idを変化させ、q軸電流Iqをゼロ状態まで減少させる。これにより、本実施形態では、アクティブショートサーキット制御からゼロトルク制御に移行する場合に、q軸電流Iqをゼロ状態まで変化させると共にd軸電流Idの絶対値を減少させる方向に変化させている。図4に示す例では、「電圧速度楕円300とd軸とのd軸電流Idが正側の交点」を、第3動作点P3としている。このように、本例では、ゼロトルク制御へ移行する場合に、q軸電流Iq及びd軸電流Idを、電圧速度楕円300とd軸とのd軸電流Idが正側の交点まで変化させている。しかし、これに限らず、電圧速度楕円300とd軸とのd軸電流Idが正側の交点に向かう方向にq軸電流Iq及びd軸電流Idを変化させてq軸電流Iqをゼロ状態まで減少させるのであれば、図4における第3動作点P3よりも、d軸電流Idが負側の点に到達するように制御してもよい。なお、電圧速度楕円300とd軸とのもう一つの交点である、d軸電流Idが負側の交点は、図4の外に位置している。
上述したように、インバータ制御装置20は、アクティブショートサーキット制御中は、電流ベクトル空間において電流を制御することができないため、電流ベクトル制御による電機子電流の制御を行っていない。そのため、アクティブショートサーキット制御からゼロトルク制御に移行する場合に、電機子電流、ここではd軸電流Idが大きい動作点に移行すると、電流ベクトル制御における電機子電流の変化、ひいては変調率(=3相の相間電圧の実効値/直流リンク電圧)の変化が大きくなる。そのため、インバータ10や回転電機80に生じる電流サージが大きくなる可能性がある。しかし、上記のようにゼロトルク制御へ移行する場合に、q軸電流Iq及びd軸電流Idを、電圧速度楕円300とd軸とのd軸電流Idが正側の交点に向かう方向に変化させることにより、電機子電流が取り得る値の範囲内で電機子電流が最も小さい動作点、すなわち変調率が最も小さい動作点に移行させることができる。これにより、アクティブショートサーキット制御からゼロトルク制御に移行する場合に生じるサージ電流を小さく抑えることができる。
第3動作点P3では、q軸電流Iqはゼロ状態であるが、d軸電流Idはゼロ状態ではない。コンタクタ9が開放状態であるから、d軸電流Idを流すための電力は、引き続き直流リンクコンデンサ4から供給され、直流リンク電圧Vdcがさらに低下する。つまり、放電制御(ゼロトルク制御)の継続によって、直流リンク電圧Vdcが低下していく。インバータ制御装置20は、第3動作点P3からさらに第4動作点P4の方向へ、d軸電流Idを増加させると好適である。この際、インバータ制御装置20は、直流リンク電圧Vdcの低下に応じて小さくなる電圧速度楕円300の径に合わせて、d軸電流Idが、電圧速度楕円300とd軸とのd軸電流Idが正側の交点上の値をとり続けるように、d軸電流Idを次第に増加させる制御を行っても好適である。
後述するように、動作点が第4動作点P4に達すると、インバータ制御装置20は、再度、アクティブショートサーキット制御(ASC制御)を開始する(#55,#60)。1回目と2回目のアクティブショートサーキット制御を区別する場合には、1回目を第1アクティブショートサーキット制御(#40)、2回目を第2アクティブショートサーキット制御(#60)と称する。上述したように、アクティブショートサーキット制御への移行時には電流が振動する場合がある。従って、q軸電流Iqがゼロ状態に達した後も、d軸電流Idを増加させることによって、直流リンクコンデンサ4に蓄積されたエネルギーを効率的に消費させておくと、第2アクティブショートサーキット制御(#60)への移行時に振動する電流の振幅を抑制することができる。
ところで、ゼロトルク制御の実行に際して、上述したようなサージ電流を考慮する必要がない場合には、q軸電流Iq及びd軸電流Idを、図4に示す第2動作点P2から直接第4動作点P4へ遷移させても良いし、第2動作点P2から第3動作点P3と第4動作点P4との間の動作点に遷移させても良い。この場合、q軸電流Iq及びd軸電流Idを変化させる目標の動作点は、q軸電流Iqの減少を優先して設定される座標とすることができる。すなわち、第2動作点P2から第4動作点P4に至る中間の動作点である第3動作点P3は、比較的任意に設定することができる。従って、ゼロトルク制御の実行に際して、d軸電流Idの絶対値を増加させる方向に変化させることもできる。
ここで、直流リンクコンデンサ4への回生電力を抑制する上では、トルクに寄与しないd軸電流Idについては、電流量を減らすことなく、より多く流し続けて損失を増大させることが好ましい。具体的には、第2動作点P2からq軸電流Iqを減少させてトルクをゼロに近づけていきながら、d軸電流Idを増加させる。つまり、図4に示す第2動作点P2から、q軸電流Iqがゼロ状態でd軸電流Idの絶対値が第2動作点P2よりも大きい第3動作点P3まで遷移させることができる。この第3動作点P3は、好ましくは電圧速度楕円の中心であるが、q軸電流Iqの減少を優先して、第2動作点P2の座標とq軸電流Iqの減少速度とd軸電流Idの増加速度とに基づいて設定される座標としても好適である。コンタクタ9は開放状態であるから、電流を流すための電力は直流リンクコンデンサ4から供給され、直流リンク電圧Vdcは低下する。
第4動作点P4は、直流リンク電圧Vdcが後述するしきい値電圧Thである場合の電圧速度楕円300とd軸との交点である。第3動作点P3からのゼロトルク制御によって直流リンクコンデンサ4に蓄積されたエネルギーが放電されていくと、直流リンク電圧Vdcが低下していく。動作点が第4動作点P4に達すると、直流リンク電圧Vdcは、しきい値電圧Thに達する。インバータ制御装置20は、直流リンク電圧Vdcが予め規定されたしきい値電圧Th以下になったと判定した場合(#55)に、ゼロトルク制御に代えて、再びアクティブショートサーキット制御を開始する(#60)。
上述したように、アクティブショートサーキット制御では、エネルギーがステータコイル8及びスイッチング素子3における熱となって消費される。このため、長時間に亘ってこの還流電流が流れ続けると、ステータコイル8やスイッチング素子3の寿命に影響を与える場合がある。従って、できる限り早期に、回転電機80に流れる電流をゼロ状態とすることが好ましい。そこで、本実施形態では、アクティブショートサーキット制御を開始した後、後述するようなパーシャルシャットダウン制御(PSD制御)及びフルシャットダウン制御(FSD制御)を行って、回転電機80に流れる電流をゼロ状態とする。
インバータ制御装置20は、アクティブショートサーキット制御の開始後に、予め規定されたパーシャルシャットダウン制御開始条件を満たした場合(#65)に、パーシャルシャットダウン制御(PSD制御)を開始する(#70)。本実施形態では、インバータ10は、直流と3相の交流との間で電力を変換している。この場合、インバータ制御装置20は、アクティブショートサーキット制御の開始後に、何れか1相のアーム3Aである対象アームの電流がゼロ状態となる際に、少なくともその対象アームにおいてオン状態に制御されているスイッチング素子3をオフ状態とするように制御するパーシャルシャットダウン制御(PSD制御)を開始すると好適である。
尚、パーシャルシャットダウン制御開始条件には、さらに、回転電機80の回転速度が、予め規定された上限回転速度以下であること含むと好適である。つまり、インバータ制御装置20は、アクティブショートサーキット制御の開始後に、回転電機80の回転速度が上限回転速度以下であり、何れか1相のアーム3Aである対象アームの電流がゼロ状態となる際に、少なくともその対象アームにおいてオン状態に制御されているスイッチング素子3をオフ状態とするように制御するパーシャルシャットダウン制御(PSD制御)を開始すると好適である。
アーム3Aに電流が流れている状態で当該アーム3Aのスイッチング素子3をオフ状態に制御すると、その電流がフリーホイールダイオード5を介して直流リンクコンデンサ4に流入し、直流リンク電圧Vdcを上昇させる。しかし、アクティブショートサーキット制御からパーシャルシャットダウン制御への移行時には、オン状態からオフ状態へと制御されるスイッチング素子3を流れる電流がゼロ状態であるから、直流リンクコンデンサ4には電流が流れ込まず、直流リンク電圧Vdcの上昇が抑制される。
さらに、インバータ制御装置20は、パーシャルシャットダウン制御の開始後に、予め規定されたフルシャットダウン制御開始条件を満たした場合(#75)に、フルシャットダウン制御(FSD制御)を開始する(#80)。本実施形態では、インバータ制御装置20は、パーシャルシャットダウン制御の開始後、対象アームとは別の2相のアーム3Aの電流が共にゼロ状態となる際に、残りの全てのアーム3Aにおいてオン状態に制御されているスイッチング素子3をオフ状態とするように制御するフルシャットダウン制御(FSD制御)を開始すると好適である。このフルシャットダウン制御は、インバータ10の全てのスイッチング素子3をオフ状態に制御することと等価となるから、単純にシャットダウン制御(SD制御)と称することもできる。
3相の内、1相には電流が流れないように制御されているので、残りの2相を流れる交流の電流は平衡する。従って、当該2相を流れる交流の電流は同時にゼロ状態となる。アクティブショートサーキット制御からパーシャルシャットダウン制御への移行時と同様に、パーシャルシャットダウン制御からフルシャットダウン制御への移行時も、オン状態からオフ状態へと制御されるスイッチング素子3を流れる電流はゼロ状態である。従って、パーシャルシャットダウン制御からフルシャットダウン制御への移行時にも、直流リンクコンデンサ4には電流が流れ込まず、直流リンク電圧Vdcの上昇が抑制される。
以上、コンタクタ9が開放状態となってからインバータ10がシャットダウンされるまでの制御について説明した。以下、図6及び図7も参照して、アクティブショートサーキット制御、ゼロトルク制御、パーシャルシャットダウン制御、フルシャットダウン制御の具体的な制御方法について詳述する。
図3に示すように、コンタクタ9が接続状態の場合には、回転電機80は通常動作として、トルクモードで制御されている(#10)。通常動作(トルクモード)では、上述したPWM制御や矩形波制御が実行されている。単位時間当たりのトルクの変化率は、制限値LT[N/s]によって制限されており、急激なトルクの変動が抑制されている。制限値LT[N/s]は、目標トルクTMに応じて制御のために設定されるトルク指令Tの単位時間当たりに許容される最大の変化率に相当する。通常動作時(トルクモードの実行時)には、制限値LT[N/s]の値として、通常トルク変化率制限値LT1[N/s]が設定される。また、目標トルクTMに応じて設定される最終目標トルクT**は、目標トルクTMに設定される。
通常動作(トルクモード)が、電流位相制御(PWM制御)により実行される場合には、d軸電流指令Id及びq軸電流指令Iqは、トルク特性に基づいて予め生成された電流指令マップから取得される。つまり、d軸電流指令Id及びq軸電流指令Iqは、現在のトルクから最終目標トルクT**に向かってトルク変化率の制限値LTの範囲内で設定されたトルク指令Tに応じて、電流指令マップから取得される。尚、最終的なd軸電流指令Idは、界磁制御による調整量を反映して決定されるので、電流指令マップから取得されたd軸電流指令Idは、後述する変数Id_tmpとして利用される。
ステップ#20においてコンタクタ9(SMR)が開放状態になったと判定された場合には、アクティブショートサーキット制御が開始される。図1及び図6等に示すように、インバータ10は、交流1相分のアーム3Aが、相補的にスイッチング制御される上段側スイッチング素子3H(31,33,35)と下段側スイッチング素子3L(32,34,36)との直列回路により構成される。インバータ制御装置20は、3相全てのアーム3Aの上段側スイッチング素子3H(31,33,35)をオン状態とし、3相全てのアーム3Aの下段側スイッチング素子3L(32,34,36)をオフ状態とする上段側アクティブショートサーキット制御、及び、3相全てのアーム3Aの下段側スイッチング素子3L(32,34,36)をオン状態とし、3相全てのアーム3Aの上段側スイッチング素子3H(31,33,35)をオフ状態とする下段側アクティブショートサーキット制御の何れかのアクティブショート制御を実行する。
ここでは、図6に示すように、下段側アクティブショートサーキット制御が実行される例を示している。図6において、破線で示すスイッチング素子3は、オフ状態にスイッチング制御されていることを示し、実線で示すスイッチング素子3はオン状態に制御されていることを示す。また、破線で示すフリーホイールダイオード5は非導通状態であることを示し、実線で示すフリーホイールダイオード5は導通状態であることを示す。図6に示すように、上段側スイッチング素子3H(31,33,35)はオフ状態に、下段側スイッチング素子3L(32,34,36)はオン状態に制御される。U相電流Iuは、U相下段側スイッチング素子32を流れる。V相電流Ivは、V相下段側スイッチング素子34を流れると共に、V相下段側スイッチング素子34に逆並列に接続されたV相下段側フリーホイールダイオード54も流れる。同様に、W相電流Iwは、W相下段側スイッチング素子36を流れると共に、W相下段側スイッチング素子36に逆並列に接続されたW相下段側フリーホイールダイオード56も流れる。
アクティブショートサーキット制御では、このように回転電機80とインバータ10との間に還流電流が流れ、回転電機80の逆起電力を打ち消すための電流に相当するd軸電流Idが流れる。動作点は、変調率がゼロとなる動作点に相当する第5動作点P5へ向かって移動しようとする(図4)。しかし、アクティブショートサーキット制御では、単純に回転電機80とインバータ10との間で電流を還流させているだけであるから、電流ベクトル空間における動作点を制御することはできない。また、図5を参照して上述したように、アクティブショートサーキット制御(第1アクティブショートサーキット制御)の開始時には、電流の振動が大きくなる。従って、第1動作点P1から第5動作点P5へ向かう移動時には、動作点の軌跡が安定しない。尚、上記においては、アクティブショートサーキット制御として下段側アクティブショートサーキット制御を行う形態を例示したが、当然ながらアクティブショートサーキット制御として上段側アクティブショートサーキット制御を行ってもよい。
図5を参照して上述したように、時刻t1からd軸電流Id及びq軸電流Iqの絶対値は減少しているが、時刻t2では定常状態となってほとんど減少していない。図4に示す動作点は、電流が定常状態となる時刻t2には第2動作点P2においてほぼ停止する。このため、インバータ制御装置20は、アクティブショートサーキット制御からゼロトルク制御へとインバータ10の制御形態を遷移させる(#45,#50)。
ゼロトルク制御(#50)では、回転電機80の回生トルクを0[Nm]とする制御が実行される。ゼロトルク制御の実行に際しては、まず、トルク変化率ΔT[N/s]が演算される。このトルク変化率ΔTは、回転電機80が制御可能な範囲での回生電力の変化率の最大値である電力変化率ΔW[kW/s]と、現在の回転電機80の回転数NR[rmp](回転速度ω)とに基づいて演算される。
次に、このトルク変化率ΔTが、通常トルク変化率制限値LT1を越えているか否かが判定される。トルク変化率ΔTが通常トルク変化率制限値LT1を越えている場合には、トルク変化率ΔTとして、上記で演算されたトルク変化率ΔTが採用される。一方、トルク変化率ΔTが通常トルク変化率制限値LT1以下の場合には、トルク変化率ΔTとして、通常トルク変化率制限値LT1が設定される。つまり、ゼロトルク制御では、できるだけ速くトルクを下げてゼロトルク制御を実現することが好ましいので、可能な限り大きいトルク変化率ΔTが用いられる。
トルク変化率ΔTは、回転電機80が制御可能な範囲での回生電力の変化率の最大値である電力変化率ΔW[kW/s]と、現在の回転電機80の回転数NR[rmp](回転速度ω)とに基づいて演算される。従って、実用的な範囲内での所定の回転数NRと電力変化率ΔWとに基づくトルク変化率ΔTが、トルク変化率の制限値LTとなる。実質的には、電力変化率ΔWがトルク変化率の制限値LTを規定することになる。つまり、電力変化率ΔWと回転数NRとに基づいて演算されるトルク変化率ΔTの最大値は、実質的に電力変化率ΔWによって制限されることになる。本実施形態では、概ね、通常トルク変化率制限値LT1の5〜6倍程度の制限値となる。
また、トルク変化率ΔTは、回転電機80の回転速度に応じて異なる値を採り得るが、通常の制御においては定数値が用いられることが多い。しかし、速やかに回生電力を低下させる上では、制御が追従可能な範囲内で大きいトルク変化率ΔTで回転電機80の回生トルクがゼロ状態となるようにインバータ10を制御することが好適である。このため、上述したように、回転電機80の回生トルクをゼロに低下させていく際のトルク変化率ΔTが、回転電機80の回転数NR(回転速度ω)に応じて可変設定されると好適である。上述したように、トルク変化率ΔTは、回転電機80が制御可能な範囲での回生電力の変化率の最大値である電力変化率ΔW[kW/s]と、現在の回転電機80の回転数NR[rmp](回転速度ω)とに基づいて演算される。つまり、トルク変化率ΔTは、回転数NR(回転速度(ω)に反比例し、回転数NRが小さくなるに従って大きくなるように設定される。
ところで、通常動作(トルクモード)が、電圧位相制御である矩形波制御モードで制御されている場合には、電流位相を制御することによってd軸電流Idの絶対値を増加させることができない。従って、制御方式(変調方式)をPWM制御モードに変更しておくことが好ましい。尚、変調方式は、変調率によって切り換えられているため、変調方式が矩形波変調方式の場合には、PWM制御の理論的な最大変調率(≒0.707)を超えている。従って、変調率の指令値についても当該最大変調率以下に設定されると好適である。
本実施形態におけるゼロトルク制御では、単純に回転電機80のトルクを0[Nm]とする制御に加え、トルクに寄与しないd軸電流Idを増加させて回生エネルギーを消費させる高損失制御(高損失処理)も並行して実施される。従って、本実施形態のゼロトルク制御においては、変数として高損失d軸電流指令Id_lossが設定される。この高損失d軸電流指令Id_lossには、まず、上述したId_tmp(現在のd軸電流指令Id)が代入される。次に、トルク指令Tと、回転数NRとの関係から、回転電機80が回生運転中であるか否か、トルクがゼロ状態に達しているか否かが判定される。
トルクがゼロ状態に達していないと判定された場合には、d軸電流指令Idの単位時間当たりの変化量ΔIdが演算される。ゼロトルク制御を開始する直前の最終目標トルクT**(=T**−0)を上述したトルク変化率ΔTで除することによって、現時点での最終目標トルクT**からトルクをゼロ状態にするまで、トルク変化率ΔTでトルクをゼロまで変化させる場合に要する遷移時間t[s]を演算することができる。従って、目標となる動作点(例えば第3動作点P3)でのd軸電流の値Id_oと、現在のd軸電流指令の値であるId_lossとの差分を、上述した遷移時間t[s]で除することにより、単位時間当たりのd軸電流の変化量ΔIdを演算する。別の態様として、例えば、電圧速度楕円300の中心(第5動作点P5)でのd軸電流の値Id_oと、現在のd軸電流指令の値であるId_lossとの差分を、上述した遷移時間t[s]で除することにより、単位時間当たりのd軸電流の変化量ΔIdを演算してもよい。つまり、トルク変化率ΔTでトルクをゼロに変化させるまでに要する遷移時間t[s]に応じて変化させることが可能な単位時間当たりのd軸電流の変化量ΔIdが算出される。
尚、演算されたd軸電流の変化量ΔIdが大きすぎて制御が実施できない場合には、制御可能な範囲で最大の変化量ΔIdが設定されると好適である。この場合には、ゼロトルク制御において目標となる動作点が、d軸電流の変化量ΔIdによって決定される。
続いて、インバータ制御装置20は、最終目標トルクT**をゼロに設定し、現在のトルク指令Tから最終目標トルクT**(=0)に向かう方向にトルク変化率ΔTを減じて、トルク指令Tを更新する。インバータ制御装置20は、更新されたトルク指令Tに基づいて、電流指令マップを参照し、d軸電流指令Id、q軸電流指令Iqの値を取得する。但し、このd軸電流指令Idは、最大トルク制御や最大効率制御の場合の電流指令であるから損失は大きくない(d軸電流Idの絶対値が大きくない)。従って、損失を増大させて回生電力を消費させる高損失制御を実現するために、弱め界磁制御や強め界磁制御など同様に、d軸電流指令Idが、界磁調整電流によって調整される。
界磁調整に際して、インバータ制御装置20は、まず、現時点のd軸電流指令Idの値である高損失d軸電流指令Id_lossに、d軸電流指令Idの変化量ΔIdを加えて、高損失d軸電流指令Id_lossの値を更新する。次に、インバータ制御装置20は、更新された高損失d軸電流指令Id_lossと、電流指令マップを参照して得られたd軸電流指令Idとの差分を演算し、d軸電流の界磁調整値Id_AFRとする。この界磁調整値Id_AFRの値は、弱め界磁制御や強め界磁制御の際に利用される調整値と同様に扱うことができる。従って、高損失制御に際して界磁調整を行う場合に、新たな演算機能を付加することなく、弱め界磁制御や強め界磁制御のために用意された機能部を共用することができる。
d軸電流指令Idの値を調整することにより、等トルク線上の動作点が移動することになる。このため、q軸電流指令Iqの値にも変動が生じる。そこで、インバータ制御装置20は、トルク指令Tとd軸電流の界磁調整値Id_AFRとに基づいて、再度、電流指令マップを参照し、高損失q軸電流指令Iq_lossを取得する。そして、高損失d軸電流指令Id_loss及び高損失q軸電流指令Iq_lossが、それぞれd軸電流指令Id、q軸電流指令Iqとして設定される。このような処理が、回転電機80のトルクがゼロ状態となるまで繰り返される。
q軸電流Iqがゼロ状態となると、動作点は第3動作点P3となる。q軸電流Iqがゼロ状態となった後も、インバータ制御装置20はd軸電流Idを増加させる。移動する動作点の目標は、しきい値電圧Thを直流リンク電圧Vdcとした場合の電圧速度楕円300と、d軸との交点に位置する第4動作点P4である。d軸電流Idの制御については、上述した通りであるので詳細な説明は省略する。d軸電流Idが流れ続けることによって、直流リンクコンデンサ4に蓄積されたエネルギーが消費され、直流リンク電圧Vdcが低下していく。インバータ制御装置20は、直流リンク電圧Vdcがしきい値電圧Th以下となると(動作点が第4動作点P4に達すると)、ゼロトルク制御(高損失制御を含む)を終了し、アクティブショートサーキット制御(第2アクティブショートサーキット制御)を開始する(#60)。
アクティブショートサーキット制御では、回転電機80とインバータ10との間に還流電流が流れ、回転電機80の逆起電力を打ち消すための電流に相当するd軸電流Idが流れる。このため、動作点は、変調率がゼロとなる動作点に相当する第5動作点P5へ移動する。尚、この際には、電流の絶対値も小さくなっており、d軸電流Idなどにも、図5を参照して例示したような大きな波形の乱れは生じない。
上述したように、インバータ制御装置20は、アクティブショートサーキット制御の開始後に、予め規定されたパーシャルシャットダウン制御開始条件を満たした場合(#65)に、パーシャルシャットダウン制御(PSD制御)を開始する(#70)。インバータ制御装置20は、アクティブショートサーキット制御の開始後に、何れか1相のアーム3Aである対象アームの電流がゼロ状態となる際に、或いは、アクティブショートサーキット制御の開始後に、回転電機80の回転速度が上限回転速度以下であり、何れか1相のアーム3Aである対象アームの電流がゼロ状態となる際に、少なくともその対象アームにおいてオン状態に制御されているスイッチング素子3をオフ状態とするように制御するパーシャルシャットダウン制御(PSD制御)を開始する。パーシャルシャットダウン制御は、何れか1相のアーム3A(対象アーム)の電流(相電流)がゼロの時点(時刻)で開始されると好適であるが、厳密ではなく、その時刻の前後において実行されればよい。電流がゼロとなったことを検出した後では、パーシャルシャットダウン制御の実行開始が遅れるため、例えば、パーシャルシャットダウン制御は、相電流がゼロの時を予想して実行されると好適である。
図7は、図6に示すようにアクティブショートサーキット制御が行われている状態から、パーシャルシャットダウン制御が開始された状態を示している。ここでは、対象アームがV相アームであり、V相アームにおいてオン状態に制御されているV相下段側スイッチング素子34がオフ状態に制御される。これにより、V相はシャットダウンされた状態となり、インバータ10は部分的にシャットダウンされた状態となる。一般的に、何れかの相がシャットダウンされた場合には、ステータコイル8に蓄積された電力が、フリーホイールダイオード5を介して直流リンクコンデンサ4を充電する。しかし、シャットダウンされる相(この場合V相)の相電流(Iv)がゼロ状態の時にシャットダウンを行っているため、直流リンクコンデンサ4は充電されず、直流リンク電圧Vdcは上昇しない。
パーシャルシャットダウン制御の開始後、対象アーム(ここではV相)とは別の2相(ここではU相及びW相)のアーム3Aの電流が共にゼロ状態となる際に、残りの全てのアーム3Aにおいてオン状態に制御されているスイッチング素子3をオフ状態とするように制御するフルシャットダウン制御(FSD制御)が開始される(#75,#80)。フルシャットダウン制御は、対象アーム(ここではV相)とは別の2相(ここではU相及びW相)のアーム3Aの電流が共にゼロとなる時点(時刻)で開始されると好適であるが、パーシャルシャットダウン制御と同様に、その時刻は厳密ではなく、その時刻の前後において実行されればよい。電流がゼロとなったことを検出した後では、フルシャットダウン制御の実行開始が遅れるため、例えば、フルシャットダウン制御は、相電流がゼロの時を予想して実行されると好適である。
図7に示すように、U相電流Iuは、U相下段側スイッチング素子32を流れ、W相電流Iwは、W相下段側スイッチング素子36を流れると共に、W相下段側スイッチング素子36に逆並列に接続されたW相下段側フリーホイールダイオード56も流れる。V相がシャットダウンされているため、U相電流IuとW相電流Iwとは平衡する。従って、U相電流IuとW相電流Iwとは同じ時刻においてゼロ状態となる。インバータ制御装置20は、対象アーム(ここではV相)とは別の2相のアーム3A(ここではU相、W相)の電流が共にゼロ状態となる際に残りの全てのアーム3Aにおいてオン状態に制御されているスイッチング素子3(ここでは“32,36”)をオフ状態とするように制御するフルシャットダウン制御を実行する。シャットダウンが実施された場合には、ステータコイル8に蓄積された電力が、フリーホイールダイオード5を介して直流リンクコンデンサ4を充電する。しかし、フルシャットダウン制御では、相電流(Iu,Iw)がゼロ状態の時にシャットダウンを行っているため、直流リンクコンデンサ4は充電されず、直流リンク電圧Vdcは上昇しない。
上記においては、回転電機80が図2及び図4に示す第1動作点P1のように、高トルク高回転速度で回生運転中であり、その回生電力がインバータ10を介して高圧バッテリ11の方向へ回生されている状態で、コンタクタ9が開放状態となった場合を例として説明した。しかし、回転電機80が、高トルク高回転速度で力行運転中に、コンタクタ9が開放状態になった場合も同様の制御を行うことができる。但し、力行運転中に、コンタクタ9が開放状態になった場合には、インバータ制御装置20は、アクティブショートサーキット制御(第1アクティブショートサーキット制御)を行わず、ゼロトルク制御を開始する。この場合、インバータ制御装置20は、図4に破線矢印で示すように、動作点を、第1動作点P1から、第2動作点P2を経由せずに、第3動作点P3へ向かって移動させる制御を実行する。
図8のフローチャートに示すように、通常動作として回転電機80をトルクモード(#10)で制御しているインバータ制御装置20は、コンタクタ9(SMR)が開放状態となったことを検出した場合(#20)、当該通常動作が、回生であるか力行であるかを判定する(#30)。回生動作している場合には、上述したように、アクティブショートサーキット制御を開始する(#40)。一方、力行動作している場合には、アクティブショートサーキット制御(第1アクティブショートサーキット制御)を行わず、ゼロトルク制御を開始する(#50)。
力行動作中には、高圧バッテリ11から回転電機80に電力が供給されている。回転電機80から高圧バッテリ11へは、逆起電力に基づき、高圧バッテリ11から回転電機80に電力が供給され電力よりは小さい電力が供給されていることになる。コンタクタ(9)が開放状態になると、高圧バッテリ11から供給される電力が遮断される一方で、慣性力によって回転を続ける回転電機80の逆起電力は、高圧バッテリ11には回生されず、直流リンクコンデンサ4を充電する。コンタクタ9が開放状態となった後、ゼロトルク制御を行って、回転電機80が発生するトルクをゼロに下降させることで、回転電機80の回転速度も減少させ、逆起電力も低減させて、直流リンクコンデンサ4を充電する電流を低減させることができる。
以上説明したように、本実施形態によれば、直流電源(高圧バッテリ11)に接続されると共に交流の回転電機80に接続されるインバータ10の動作中に、インバータ10と当該直流電源との電気的接続が遮断された場合に、直流リンク電圧Vdcの急上昇やインバータ10に流れる電流の大幅な上昇などを抑制できるように、インバータ10を適切に制御することができる。また、インバータ10と当該直流電源との電気的接続が遮断された後、適切に回転電機80に流れる電流をゼロ状態にすることができる。
尚、上述した実施形態の説明において開示された種々の構成は、矛盾が生じない限り、組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔実施形態の概要〕
以下、上記において説明したインバータ制御装置(20)の概要について簡単に説明する。
インバータ制御装置(20)は、1つの態様として、直流電源(11)にコンタクタ(9)を介して接続されると共に交流の回転電機(80)に接続されて直流と複数相の交流との間で電力変換を行うインバータ(10)であって、交流1相分のアーム(3A)が上段側スイッチング素子(3H)と下段側スイッチング素子(3L)との直列回路により構成され、直流側の電圧である直流リンク電圧(Vdc)を平滑化する平滑コンデンサ(4)が接続された当該インバータ(10)を制御対象とし、
前記回転電機(80)の回転に同期して回転する2軸の直交座標系において、当該直交座標系の各軸に沿った界磁電流(Id)と駆動電流(Iq)との合成ベクトルである電機子電流を制御して前記インバータ(10)を構成するスイッチング素子(3)をスイッチング制御するインバータ制御装置(20)であって、
前記回転電機(80)の回転中に前記コンタクタ(9)が開放状態となった場合に、複数相の前記アーム(3A)の前記上段側スイッチング素子(3H)及び前記下段側スイッチング素子(3L)の何れか一方の前記スイッチング素子(3)の全てをオン状態に制御し、他方の前記スイッチング素子(3)の全てをオフ状態に制御するアクティブショートサーキット制御を開始し、
前記アクティブショートサーキット制御の開始後、予め規定された動作条件を満たした場合に、前記回転電機(80)のトルクがゼロとなるようにトルク指令を設定して前記駆動電流をゼロ状態まで減少させると共に、当該トルク指令に基づく前記トルクを維持した状態で前記電機子電流が増加するように前記界磁電流(Id)を増加させるゼロトルク制御を開始する。
回転電機(80)が回転中に、コンタクタ(9)が開放状態となった場合に、例えばインバータ(10)の全てのスイッチング素子(3)をオフ状態に制御すると、直流電源(11)との接続が遮断されているために、回転電機(80)から回生される電力が平滑コンデンサ(4)を充電し、直流リンク電圧(Vdc)を上昇させる。しかし、アクティブショートサーキット制御では、回転電機(80)とインバータ(10)との間で電流が還流するので、平滑コンデンサを充電することはなく、そのような電圧上昇を抑制することができる。但し、アクティブショートサーキット制御では、単純に電流を還流させているだけであるから、回転電機(80)を制御することはできない。本構成では、アクティブショートサーキット制御からゼロトルク制御へと制御方式を切り換えることで、回転電機(80)のトルクを制御した状態で平滑コンデンサ(4)を充電するエネルギーを消費させることができる。即ち、本構成によれば、直流電源(11)に接続されると共に交流の回転電機(80)に接続されるインバータ(10)の動作中に、インバータ(10)と直流電源(11)との電気的接続が遮断された場合に、インバータ(10)の直流側の電圧(Vdc)の急上昇やインバータ(10)に流れる電流の大幅な上昇などを抑制できるように、インバータ(10)を適切に制御することができる。
ここで、前記動作条件は、前記界磁電流(Id)及び前記駆動電流(Iq)の波高値(PPd、PPq)が予め規定された波高値しきい値(PTh)以下となることである、或いは、ステータコイル(8)の抵抗成分である電機子抵抗(R)と前記直交座標系における前記ステータコイル(8)のインダクタンス(Ld,Lq)とに基づく時定数(τ)によって予め規定される安定化時間(T1)を経過したことであると好適である。
上述したように、アクティブショートサーキット制御では、直交座標系において電流を制御することができない。また、コンタクタ(9)が開放状態となったことに伴って、アクティブショートサーキット制御を開始した際には、駆動電流(Iq)び界磁電流(Id)の乱れも大きく、波形が大きく振動することも多い。しかし、このように大きな波形の乱れは、時間の経過と共に収束して定常状態となる。制御方式の移行は、サージの発生等を考慮すると電流が安定している状態で行われることが好ましい。従って、アクティブショートサーキット制御の開始後、電流が定常状態になった後にゼロトルク制御に移行させることが好ましい。駆動電流(Iq)及び界磁電流(Id)の波高値(PPd,PPq)を観測すれば、定常状態となったことを判定することができて好適である。また、このような過渡応答に要する時間は、回転電機(80)の電気的特性によって規定することができる。つまり、過渡応答を表す時定数(τ)によって規定される安定化時間(T1)を経過すれば、電流は定常状態となるので、適切に制御方式を切り換えることができる。
また、インバータ制御装置(20)は、前記ゼロトルク制御の開始後、前記直流リンク電圧(Vdc)が予め規定されたしきい値電圧(Th)以下となったと判定した場合に、前記ゼロトルク制御に代えて、再度、前記アクティブショートサーキット制御を行うと好適である。
制御方式が切り換わる際には、電流に過渡的な振動が生じることがある。しかし、ゼロトルク制御に続くアクティブショートサーキット制御は、平滑コンデンサ(4)に蓄えられたエネルギーがある程度放電されてから(直流リンク電圧(Vdc)がしきい値電圧(Th)以下となってから)、開始される。電力源となる平滑コンデンサ(4)のエネルギーが低下してからアクティブショートサーキット制御を開始することで、そのような振動の振幅を低減することができる。その結果、制御方式が切り換わる際の過電流の発生を抑制することができる。
ここで、前記インバータ(10)が、直流と3相の交流との間で電力変換を行うものである場合、インバータ制御装置(20)は、前記アクティブショートサーキット制御の開始後に、何れか1相の前記アーム(3A)である対象アームの電流がゼロ状態となる際に、少なくとも前記対象アームにおいてオン状態に制御されている前記スイッチング素子(3)をオフ状態とするように制御するパーシャルシャットダウン制御を開始すると好適である。
一般的に、アクティブショートサーキット制御では、回転電機(80)のステータコイルとインバータ(10)のスイッチング素子(3)との間で電流が還流し、そのエネルギーは、ステータコイルやスイッチング素子(3)において熱として消費される。従って、アクティブショートサーキット制御の長時間の継続には、回転電機(80)やスイッチング素子(3)の発熱に考慮する必要がある。一方、インバータ(10)を構成する全てのスイッチング素子(3)をオフ状態に制御するシャットダウン制御では、行先を遮断された電流が平滑コンデンサ(4)を充電し、直流リンク電圧(Vdc)を上昇させるため、平滑コンデンサ(4)やスイッチング素子(3)の耐圧に考慮する必要がある。アクティブショートサーキット制御からパーシャルシャットダウン制御への移行時には、オン状態からオフ状態へと制御されるスイッチング素子(3)を流れる電流がゼロ状態であるから、平滑コンデンサ(4)には電流が流れ込まず、直流リンク電圧(Vdc)の上昇は抑制される。
さらに、前記インバータ制御装置(20)は、前記パーシャルシャットダウン制御の開始後、前記対象アームとは別の2相の前記アーム(3A)の電流が共に前記ゼロ状態となる際に、残りの全ての前記アーム(3A)においてオン状態に制御されている前記スイッチング素子(3)をオフ状態とするように制御するフルシャットダウン制御を開始すると好適である。
パーシャルシャットダウン制御中には、3相の内、1相には電流が流れないように制御されているので、残りの2相を流れる交流の電流は平衡する。従って、当該2相を流れる交流の電流は同時にゼロ状態となる。アクティブショートサーキット制御からパーシャルシャットダウン制御への移行時と同様に、パーシャルシャットダウン制御からフルシャットダウン制御への移行時も、オン状態からオフ状態へと制御されるスイッチング素子(3)を流れる電流はゼロ状態である。従って、パーシャルシャットダウン制御からフルシャットダウン制御への移行時にも、平滑コンデンサ(4)には電流が流れ込まず、直流リンク電圧(Vdc)の上昇は抑制される。本構成によれば、インバータ(10)と直流電源(11)とを接続するコンタクタ(9)が開放状態となった際に、直流リンク電圧(Vdc)の上昇や、還流電流の総量を抑制しつつ、回転電機(80)に流れる電流をゼロ状態にすることができる。
また、インバータ制御装置(20)は、前記回転電機(80)が回生動作で回転中に前記コンタクタ(9)が開放状態となった場合には、前記アクティブショートサーキット制御を開始し、前記回転電機(80)が力行動作で回転中に前記コンタクタ(9)が開放状態となった場合には、前記アクティブショートサーキット制御を行わず、前記ゼロトルク制御を開始すると好適である。
力行動作中には、直流電源(11)から回転電機(80)に電力が供給されている。回転電機(80)は逆起電力により、直流電源(11)から供給される電力よりは小さい電力を生成している。コンタクタ(9)が開放状態になると、直流電源(11)から供給される電力が遮断される一方で、慣性力によって回転を続ける回転電機(80)の逆起電力は、直流電源(11)には回生されず、平滑コンデンサ(4)を充電する。コンタクタ(9)が開放状態となった後、ゼロトルク制御を行って、回転電機(80)が生成するトルクをゼロ状態に下降させることで、回転電機(80)の回転速度も減少させ、逆起電力も低減させて、平滑コンデンサ(4)を充電する電流を低減させることができる。一方、回転電機(80)が回生動作中にコンタクタ(9)が開放状態になった場合には、上述したようなアクティブショートサーキット制御から始まる制御を行うことで、インバータ(10)を適切に制御することができる。
また、前記直交座標系における、前記回転電機(80)の回転速度及び前記直流電源の電圧(Vdc)に応じて設定可能な前記電機子電流の範囲の外縁のベクトル軌跡が電圧速度楕円(300)であり、前記アクティブショートサーキット制御から前記ゼロトルク制御に移行する場合に、当該移行時点での前記電圧速度楕円(300)と前記界磁電流(Id)の軸との2つの交点の内の前記界磁電流(Id)が正側の交点に向かう方向に前記駆動電流(Iq)及び前記界磁電流(Id)を変化させ、前記駆動電流(Iq)をゼロ状態まで減少させると好適である。
上述したように、インバータ制御装置(20)は、アクティブショートサーキット制御中は、直交座標系における電機子電流の制御を行っていない。そのため、このようなアクティブショートサーキット制御からゼロトルク制御に移行する場合に、電機子電流、ここでは界磁電流(Id)が大きい状態に移行すると、インバータ制御装置(20)の電流ベクトル制御における電機子電流の変化が大きくなり、それによる電流サージが大きくなる可能性がある。しかし、この構成によれば、電機子電流が取り得る値の範囲内で電機子電流が最も小さい状態に移行するようにできる。従って、アクティブショートサーキット制御からゼロトルク制御に移行する場合に生じるサージ電流を小さく抑えることができる。
3 :スイッチング素子
3A :アーム
3H :上段側スイッチング素子
3L :下段側スイッチング素子
4 :直流リンクコンデンサ(平滑コンデンサ)
5 :フリーホイールダイオード
9 :コンタクタ
10 :インバータ
11 :高圧バッテリ(直流電源)
20 :インバータ制御装置
80 :回転電機
Id :d軸電流(界磁電流)
Iq :q軸電流(駆動電流)
PPd :d軸電流の波高値(界磁電流の波高値)
PPq :q軸電流の波高値(駆動電流の波高値)
PTh :波高値しきい値

Claims (7)

  1. 直流電源にコンタクタを介して接続されると共に交流の回転電機に接続されて直流と複数相の交流との間で電力変換を行うインバータであって、交流1相分のアームが上段側スイッチング素子と下段側スイッチング素子との直列回路により構成され、直流側の電圧である直流リンク電圧を平滑化する平滑コンデンサが接続された当該インバータを制御対象とし、
    前記回転電機の回転に同期して回転する2軸の直交座標系において、当該直交座標系の各軸に沿った界磁電流と駆動電流との合成ベクトルである電機子電流を制御して前記インバータを構成するスイッチング素子をスイッチング制御するインバータ制御装置であって、
    前記回転電機の回転中に前記コンタクタが開放状態となった場合に、複数相の前記アームの前記上段側スイッチング素子及び前記下段側スイッチング素子の何れか一方の前記スイッチング素子の全てをオン状態に制御し、他方の前記スイッチング素子の全てをオフ状態に制御するアクティブショートサーキット制御を開始し、
    前記アクティブショートサーキット制御の開始後、予め規定された動作条件を満たした場合に、前記回転電機のトルクがゼロとなるようにトルク指令を設定して前記駆動電流をゼロ状態まで減少させると共に、当該トルク指令に基づく前記トルクを維持した状態で前記電機子電流が増加するように前記界磁電流を増加させるゼロトルク制御を開始する、インバータ制御装置。
  2. 前記動作条件は、前記界磁電流及び前記駆動電流の波高値が予め規定された波高値しきい値以下となることである、或いは、ステータコイルの抵抗成分である電機子抵抗と前記直交座標系における前記ステータコイルのインダクタンスとに基づく時定数によって予め規定される安定化時間を経過したことである、請求項1に記載のインバータ制御装置。
  3. 前記ゼロトルク制御の開始後、前記直流リンク電圧が予め規定されたしきい値電圧以下となったと判定した場合に、前記ゼロトルク制御に代えて、再度、前記アクティブショートサーキット制御を行う、請求項1又は2に記載のインバータ制御装置。
  4. 前記インバータは、直流と3相の交流との間で電力変換を行うものであり、
    前記ゼロトルク制御に代えて、再度、前記アクティブショートサーキット制御を開始した後、何れか1相の前記アームである対象アームの電流がゼロ状態となる際に、少なくとも前記対象アームにおいてオン状態に制御されている前記スイッチング素子をオフ状態とするように制御するパーシャルシャットダウン制御を開始する、請求項3に記載のインバータ制御装置。
  5. 前記パーシャルシャットダウン制御の開始後、前記対象アームとは別の2相の前記アームの電流が共に前記ゼロ状態となる際に、残りの全ての前記アームにおいてオン状態に制御されている前記スイッチング素子をオフ状態とするように制御するフルシャットダウン制御を開始する、請求項4に記載のインバータ制御装置。
  6. 前記回転電機が回生動作で回転中に前記コンタクタが開放状態となった場合には、前記アクティブショートサーキット制御を開始し、前記回転電機が力行動作で回転中に前記コンタクタが開放状態となった場合には、前記アクティブショートサーキット制御を行わず、前記ゼロトルク制御を開始する、請求項1から5の何れか一項に記載のインバータ制御装置。
  7. 前記直交座標系における、前記回転電機の回転速度及び前記直流電源の電圧に応じて設定可能な前記電機子電流の範囲の外縁のベクトル軌跡が電圧速度楕円であり、
    前記アクティブショートサーキット制御から前記ゼロトルク制御に移行する場合に、当該移行時点での前記電圧速度楕円と前記界磁電流の軸との2つの交点の内の前記界磁電流が正側の交点に向かう方向に前記駆動電流及び前記界磁電流を変化させ、前記駆動電流をゼロ状態まで減少させる、請求項1から6の何れか一項に記載のインバータ制御装置。
JP2016066612A 2016-03-29 2016-03-29 インバータ制御装置 Active JP6610381B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066612A JP6610381B2 (ja) 2016-03-29 2016-03-29 インバータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066612A JP6610381B2 (ja) 2016-03-29 2016-03-29 インバータ制御装置

Publications (2)

Publication Number Publication Date
JP2017184393A true JP2017184393A (ja) 2017-10-05
JP6610381B2 JP6610381B2 (ja) 2019-11-27

Family

ID=60007822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066612A Active JP6610381B2 (ja) 2016-03-29 2016-03-29 インバータ制御装置

Country Status (1)

Country Link
JP (1) JP6610381B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473483A1 (en) * 2017-10-17 2019-04-24 Valeo Siemens eAutomotive Germany GmbH Inverter for an electric machine, electric machine for a vehicle, vehicle and method for operating an inverter
CN113702766A (zh) * 2021-08-31 2021-11-26 南通大学 一种基于开关管故障诊断的电机主动短路方法
DE102020216248A1 (de) 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Verfahren zum Antrieb eines zumindest teilweise elektrisch angetriebenen Fahrzeugs sowie Getriebeanordnung und Antriebsvorrichtung für ein solches Fahrzeug
DE102022120271A1 (de) 2022-08-11 2024-02-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Steuern von bidirektionalen Transistoren einer Wechselrichteranordnung
DE102022209531A1 (de) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Verfahren zur Ansteuerung eines topologischen Halbleiterschalters für ein Leistungselektroniksystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166600A (ja) * 1984-09-06 1986-04-05 Fuji Electric Co Ltd 交流発電機の励磁調整装置
WO2013145486A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 交流電機システム及びその制御方法
US20140015316A1 (en) * 2011-03-31 2014-01-16 Robert Bosch Gmbh Control unit
JP2015198462A (ja) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
JP2015198461A (ja) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
CN204810180U (zh) * 2015-07-21 2015-11-25 首钢京唐钢铁联合有限责任公司 一种启动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166600A (ja) * 1984-09-06 1986-04-05 Fuji Electric Co Ltd 交流発電機の励磁調整装置
US20140015316A1 (en) * 2011-03-31 2014-01-16 Robert Bosch Gmbh Control unit
WO2013145486A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 交流電機システム及びその制御方法
JP2015198462A (ja) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
JP2015198461A (ja) * 2014-03-31 2015-11-09 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
CN204810180U (zh) * 2015-07-21 2015-11-25 首钢京唐钢铁联合有限责任公司 一种启动装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473483A1 (en) * 2017-10-17 2019-04-24 Valeo Siemens eAutomotive Germany GmbH Inverter for an electric machine, electric machine for a vehicle, vehicle and method for operating an inverter
DE102020216248A1 (de) 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Verfahren zum Antrieb eines zumindest teilweise elektrisch angetriebenen Fahrzeugs sowie Getriebeanordnung und Antriebsvorrichtung für ein solches Fahrzeug
CN113702766A (zh) * 2021-08-31 2021-11-26 南通大学 一种基于开关管故障诊断的电机主动短路方法
CN113702766B (zh) * 2021-08-31 2024-03-29 南通大学 一种基于开关管故障诊断的电机主动短路方法
DE102022120271A1 (de) 2022-08-11 2024-02-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Steuern von bidirektionalen Transistoren einer Wechselrichteranordnung
DE102022209531A1 (de) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Verfahren zur Ansteuerung eines topologischen Halbleiterschalters für ein Leistungselektroniksystem

Also Published As

Publication number Publication date
JP6610381B2 (ja) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6711412B2 (ja) インバータ制御装置
JP6296169B2 (ja) インバータ制御装置及び車両用制御装置
US10003295B2 (en) Inverter control device
JP5645083B2 (ja) 回転電機制御装置
JP6645297B2 (ja) インバータ制御装置
JP6610381B2 (ja) インバータ制御装置
US9407181B2 (en) Vehicle and method for controlling vehicle
JP6954363B2 (ja) インバータ制御装置
JP5803559B2 (ja) 回転電機制御装置
JP6201867B2 (ja) インバータ制御装置
JP5391698B2 (ja) 回転機の制御装置及び制御システム
JP5534323B2 (ja) 電動機制御装置
JP2013031257A (ja) 回転電機制御装置
JP5391696B2 (ja) 回転機の制御装置及び制御システム
JP2012244740A (ja) 駆動装置
US11637522B2 (en) Drive device
JP2021197890A (ja) 回転電機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150