JP2017152212A - 燃料電池車両 - Google Patents

燃料電池車両 Download PDF

Info

Publication number
JP2017152212A
JP2017152212A JP2016033583A JP2016033583A JP2017152212A JP 2017152212 A JP2017152212 A JP 2017152212A JP 2016033583 A JP2016033583 A JP 2016033583A JP 2016033583 A JP2016033583 A JP 2016033583A JP 2017152212 A JP2017152212 A JP 2017152212A
Authority
JP
Japan
Prior art keywords
air
fuel cell
oxidant gas
air conditioning
conditioning refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033583A
Other languages
English (en)
Other versions
JP6578988B2 (ja
Inventor
礼 森永
Rei Morinaga
礼 森永
秀昭 水野
Hideaki Mizuno
秀昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016033583A priority Critical patent/JP6578988B2/ja
Publication of JP2017152212A publication Critical patent/JP2017152212A/ja
Application granted granted Critical
Publication of JP6578988B2 publication Critical patent/JP6578988B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池の酸化剤ガス出口側でのフラッディングを抑制しつつ、酸化剤ガス入口側の湿潤状態を良好にした燃料電池車を提供することを課題とする。
【解決手段】燃料電池を備えた燃料電池車両であって、前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給経路と、前記酸化剤ガス供給経路上に配置されたインタークーラと、空調冷媒を電動コンプレッサから室外熱交換器、膨張弁、及びエバポレータの順に循環させる空調冷媒循環経路を有して、当該車両の室内の温度を調整する空調システムと、前記インタークーラを通過した酸化剤ガスの少なくとも一部と、空調冷媒の少なくとも一部とを熱交換する熱交換システムと、を備えている。
【選択図】図1

Description

本発明は、燃料電池車両に関する。
特許文献1には、燃料電池の冷却に用いられる冷媒と、空調に用いられる空調冷媒とを熱交換することによって、燃料電池の冷媒を冷却できる技術が開示されている。この技術によれば、燃料電池に供給される酸化剤ガスも冷却されて相対湿度を上昇させることができるため、燃料電池の湿潤状態を良好にすることができる。
特開2006−2588号公報
しかしながら、特許文献1の技術では、燃料電池全体が冷却されることになるため、燃料電池の酸化剤ガスの出口側での相対湿度が上昇しすぎてフラッディングが発生する可能性がある。
そこで本発明は、燃料電池の酸化剤ガス出口側でのフラッディングを抑制しつつ、酸化剤ガス入口側の湿潤状態を良好にした燃料電池車を提供することを目的とする。
本発明は、燃料電池を備えた燃料電池車両であって、前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給経路と、前記酸化剤ガス供給経路上に配置されたインタークーラと、空調冷媒を電動コンプレッサから室外熱交換器、膨張弁、及びエバポレータの順に循環させる空調冷媒循環経路を有して、当該車両の室内の温度を調整する空調システムと、前記インタークーラを通過した酸化剤ガスの少なくとも一部と、空調冷媒の少なくとも一部とを熱交換する熱交換システムと、を備え、前記熱交換システムは、前記インタークーラよりも下流側で前記酸化剤ガス供給経路から分岐し、更に下流側で前記酸化剤ガス供給経路に合流した酸化剤ガス分岐経路と、前記酸化剤ガス分岐経路を開閉する酸化剤ガス開閉弁と、前記膨張弁及びエバポレータ間で前記空調冷媒循環経路から分岐し、前記エバポレータ及び電動コンプレッサ間で前記空調冷媒循環経路に合流した空調冷媒分岐経路と、前記空調冷媒分岐経路を開閉する空調冷媒開閉弁と、前記酸化剤ガス分岐経路を流通する酸化剤ガスと前記空調冷媒分岐経路を流通する空調の冷媒との間で熱交換する熱交換器と、を有する、燃料電池車両によって達成できる。
燃料電池の酸化剤ガス出口側でのフラッディングを抑制しつつ、酸化剤ガス入口側の湿潤状態を良好にした燃料電池車を提供できる。
図1は、燃料電池車両のシステム構成の概略図である。 図2は、制御装置が実行する空気冷却制御の一例を示したフローチャートである。 図3A及び3Bは、それぞれ、燃料電池の空気入口から空気出口までの空気の相対湿度及び温度を示したグラフである。
図1は、燃料電池車両(以下、車両と称する)1のシステム構成の概略図である。燃料電池システム10、空調システム180、及び熱交換システム190を備えている。燃料電池システム10は、燃料電池20、水素ガス供給システム120、空気供給システム140、及び冷却システム160を含む。燃料電池システム10は、燃料電池20の発電電力を車両走行用のモータ等に供給する。制御装置30は、CPU、ROM、RAM等を備えたコンピュータであり、アクセルAP等のセンサ入力を受けて車両1の種々の制御を実行する。また制御装置30は、詳しくは後述する空気冷却制御を実行する。
燃料電池20は、固体高分子電解質型であり、多数の単電池(セル)が積層され、水素(燃料ガス)と空気中の酸素(酸化剤ガス)との電気化学反応によって発電する。燃料電池20の発電電流及び発電電圧は、それぞれ電流センサ106及び電圧センサ107により計測され、その計測結果が制御装置30に出力される。
水素ガス供給システム120は、燃料電池20に発電に供する水素を供給する。具体的には、水素ガス供給システム120は、タンク110、水素供給経路121、循環経路122、放出経路123、タンク弁124、圧力調整弁125、噴射弁126、循環ポンプ127、気液分離器128、開閉弁129を備えている。
水素ガスは、タンク110から水素供給経路121を介して燃料電池20に供給される。タンク弁124、圧力調整弁125、及び噴射弁126は、水素供給経路121の上流側から順に設けられている。循環経路122は、燃料電池20から排出されたアノードオフガスを水素供給経路121に循環させる。水素ガスの供給量は、アクセルペダルAPの操作に基づいて、制御装置30により各種弁の開閉が制御されることによって調整される。
循環ポンプ127及び気液分離器128は、循環経路122上に設けられ、循環ポンプ127は、気液分離器128で分離したアノードオフガスを水素供給経路121に循環させる。気液分離器128で分離した水分と一部のアノードオフガスは、気液分離器128から分岐した放出経路123及び開閉弁129を介して放出経路142に放出される。
空気供給システム140は、燃料電池20に空気を供給する。具体的には、空気供給システム140は、エアコンプレッサ130、空気供給経路141、放出経路142、バイパス弁145、マフラー146、インタークーラ147、バイパス経路148を備えている。
外部からエアークリーナ144を経て取り込まれた空気は、空気供給経路141を介して、エアコンプレッサ130により圧縮され、インタークーラ147により冷却されて、燃料電池20に供給される。従って、空気供給経路141は、燃料電池20に酸素を供給する酸化剤ガス供給経路の一例であり、燃料電池20の空気が供給される空気入口に接続されている。インタークーラ147の下流側には空気分流弁193が設けられているが、詳しくは後述する。
空気供給経路141からバイパス経路148が分岐した分岐点に、バイパス弁145が設けられている。バイパス弁145は、燃料電池20へ供給される空気の流量と、バイパス経路148を介して燃料電池20をバイパスする空気の流量を調整する。放出経路142は、燃料電池20から排出されたカソードオフガスを大気放出するものであり、燃料電池20から空気が排出される空気出口に接続されている。調圧弁143は、カソードオフガスの流量及びカソード側の背圧を調整する。燃料電池20への空気の供給量も、水素ガスと同様に、アクセルAPの操作に基づいて各種機器が制御装置30に制御されることにより調整される。マフラー146は、放出経路142に設けられて放出経路142を通過する空気により発生する音を低減する。
冷却システム160は、冷媒を所定の経路を経て循環させることにより、燃料電池20を冷却する。具体的には、冷却システム160は、ラジエータ150、ファン152、循環経路161、バイパス経路162と、三方弁163と、循環ポンプ164と、イオン交換器165と、温度センサ168、分配経路169とを備える。
循環ポンプ164により圧送される冷媒は、循環経路161を流通し、ファン152による送風によりラジエータ150で熱交換されて冷媒が冷却される。冷却された冷媒は、燃料電池20に供給されて燃料電池20が冷却される。温度センサ168は、燃料電池20から排出された冷媒の温度を検出する。バイパス経路162は、循環経路161から分岐してラジエータ150をバイパスし、三方弁163は、バイパス経路162を流通する冷媒の流量を調整する。イオン交換器165は、バイパス経路162上に、バイパス経路162を流れる冷媒の一部が流れるように設けられている。
分配経路169は、循環経路161から分岐してインタークーラ147に接続され再び循環経路161に接続されている。これにより、冷媒は分配経路169を介してインタークーラ147に供給され、インタークーラ147を通過する空気がこの冷媒により冷却される。このように、冷却システム160は、燃料電池20を冷却する冷媒をインタークーラ147にも流通させる。
このように冷却システム160は、冷媒を用いて燃料電池20を冷却するものであるが、以下に説明する車両1の室内を冷却するための空調システム180においても、冷却システム160の冷媒とは異なる冷媒が用いられる。このため、冷却システム160において用いられる冷媒を単に冷媒と称し、空調システム180で用いられる冷媒を空調冷媒と称する。なお、燃料電池を冷却する冷媒の一例として、水とエチレングリコールの混合液が使用される。また、空調冷媒の一例として、代替フロン(HFC−134a)が使用される。
空調システム180は、空調冷媒循環経路181、電動コンプレッサ182、インバータ183、室外熱交換器184、膨張弁185、及びエバポレータ186を備えている。
空調冷媒循環経路181は、空調冷媒を電動コンプレッサ182から室外熱交換器184、膨張弁185、及びエバポレータ186の順に循環させる。電動コンプレッサ182は、空調冷媒を圧縮して高温高圧のガス状とする。室外熱交換器184は、圧縮された空調冷媒を外気と熱交換することによって冷却し、高圧の液状とする熱交換器である。膨張弁185は、冷却された空調冷媒を急激に膨張させて低温低圧の霧状とする。エバポレータ186では、低温低圧の空調冷媒と車室内の空気とが熱交換して車室内の温度を低下させ、空調冷媒は蒸発して低温低圧のガス状になる。
電動コンプレッサ182の回転数は、制御装置30により制御され、電動コンプレッサ182の回転数が大きいほど、エバポレータ186での空調冷媒の流速が増大し、空調システム180による車室内の冷却能力が増大する。空調冷媒循環経路181には空調分流弁199が設けられているが、詳しくは後述する。
熱交換システム190は、燃料電池20に供給される空気の少なくとも一部を冷却する空気冷却制御の実行に使用される。具体的には、熱交換システム190は、空気分岐経路191、空気分流弁193、熱交換器195、空調冷媒分岐経路197、及び空調分流弁199を備えている。
空気分岐経路191は、インタークーラ147よりも下流側で空気供給経路141から分岐し、更に下流側で空気供給経路141に合流した酸化剤ガス分岐経路の一例である。空気分岐経路191上には、詳しくは後述する熱交換器195が配置されている。
空気分流弁193は、空気分岐経路191を開閉する酸化剤ガス開閉弁の一例であり、空気供給経路141から空気分岐経路191が分岐した分岐点に設けられ、空気分流弁193に導入される空気の一部を空気分岐経路191へ分流できる。また空気分流弁193は、空気分流弁193に導入される空気の全流量に対する、空気分岐経路191へ分流される空気の流量の割合である分流割合を変更できる。空気分流弁193の分流割合は、制御装置30によって制御される。
空調冷媒分岐経路197は、膨張弁185及びエバポレータ186間で空調冷媒循環経路181から分岐し、エバポレータ186及び電動コンプレッサ182間で空調冷媒循環経路181に合流する。空調分流弁199は、空調冷媒分岐経路197を開閉する空調冷媒開閉弁の一例であり、空調冷媒循環経路181から空調冷媒分岐経路197が分岐した分岐点に設けられ、空調分流弁199に導入される空調冷媒の一部を空調冷媒分岐経路197へ分流できる。また、空調分流弁199は、空調分流弁199に導入される空調冷媒の全流量に対する、空調冷媒分岐経路197へ分流される空調冷媒の割合である分流割合を変更できる。空調分流弁199の分流割合は、制御装置30によって制御される。
空調冷媒分岐経路197上には、熱交換器195が配置されている。従って、熱交換器195は、エバポレータ186をバイパスするようにエバポレータ186に対して並列となるように空調冷媒循環経路181に接続されている。熱交換器195は、空気分岐経路191を流通する空気と空調冷媒分岐経路197を流通する空調冷媒との間で熱交換する。詳しくは後述する。
次に、制御装置30が実行する空気冷却制御について説明する。制御装置30は、所定の条件成立時に、空気分岐経路191に空気を流通させ空調冷媒分岐経路197に空調冷媒を流通させて、熱交換器195で空調冷媒と空気とで熱交換する空気冷却制御を実行する。熱交換器195は、例えば多管式熱交換器やプレート式熱交換器である。熱交換器195のチューブ内を空調冷媒が流れ、その周囲を空気が流れることにより、空調冷媒と空気とが熱交換される。これにより、熱交換器195において冷却された空気が燃料電池20へ供給される。
従って、例えば冷媒が高温であってインタークーラ147によって空気を十分に冷却できない場合に、空気冷却制御が実行されることにより、燃料電池20へ供給される空気への冷却性を確保できる。このため、燃料電池20に相対湿度の高い空気を供給でき、燃料電池20の湿潤状態を良好に維持することができる。尚、空気冷却制御が実行されていない状態では、空気分流弁193及び空調分流弁199の各分流割合はゼロに制御され、空気分岐経路191に空気は流通せず、空調冷媒分岐経路197に空調冷媒は流通しない。
図1に示すように、熱交換器195は空調冷媒分岐経路197によりエバポレータ186に対して並列に設けられている。このため、空調冷媒は熱交換器195とエバポレータ186とに別々に流通する。このため、エバポレータ186で熱交換された空調冷媒が室外熱交換器184及び膨張弁185を流れる前に熱交換器195に流れることはない。よって、熱交換器195で十分に低温である空調冷媒と空気とを熱交換でき、空気の温度を十分に低下させることができる。
次に、制御装置30が実行する空気冷却制御について説明する。図2は、制御装置30が実行する空気冷却制御の一例を示したフローチャートである。尚、本制御は所定時間毎に継続して実行される。制御装置30は、イグニッションオンから所定期間、例えば10分経過したか否かを判定する(ステップS1)。イグニッションオンから所定時間が経過する前は、車両1の停止中での燃料電池20内の温度や湿度の影響によって、以下のステップS3以降での判定を精度よく行うことができない可能性があるからである。従って、ステップS1で否定判定がなされた場合には、本制御が終了される。
ステップS1で肯定判定の場合、制御装置30は燃料電池20の電解質膜でのプロトン移動抵抗βが閾値β1より大きいか否かを判定する(ステップS3)。ここで、プロトン移動抵抗βは、燃料電池20に交流電流を、周波数を変化させながら印加したときのインピーダンスの周波数無限大成分であり、制御装置30は、電流センサ106及び電圧センサ107の検出値に基づいて算出する。プロトン移動抵抗βは、燃料電池20の電解質膜の湿潤状態と相関し、プロトン移動抵抗βが大きいほど、燃料電池20の電解質膜は乾燥していることを示す。尚、閾値β1は、予め実験により取得され制御装置30のROMに記憶されている。否定判定の場合には、燃料電池20の湿潤状態は良好であるとして、本制御が終了される。
ステップS3で肯定判定の場合、制御装置30は、電動コンプレッサ182の回転数γが閾値γ1未満であるか否かを判定する(ステップS5)。電動コンプレッサ182の回転数γが閾値γ1以上の場合、即ち、電動コンプレッサ182の回転数γが十分に高い回転数である場合、空調システム180の冷却能力に余力はないとして、本制御が終了される。以下のステップS7以降の処理によって燃料電池20に供給される空気を十分に冷却することができない可能性があるからである。
ステップS5で肯定判定の場合には、制御装置30は、空気分流弁193の分流割合を制御して空気分岐経路191へ空気を流通させる空気分流を開始する(ステップS7)。次に制御装置30は、空調分流弁199の分流割合を所定の割合だけ増大する(ステップS9)。尚、イグニッションオン後にステップS9の処理が始めて実行された場合には、それまで空調分流弁199の分流割合はゼロに設定されているため、ステップS9の処理により空調冷媒の分流が開始されることになる。次に制御装置30は、電動コンプレッサ182の回転数を所定量だけ増大する(ステップS11)。
ステップS7〜S9の処理により、燃料電池20に供給される空気の一部が空気分岐経路191を流通し、空調冷媒の一部が空調冷媒分岐経路197を流通して、熱交換器195でこの空気と空調冷媒とが熱交換され、冷却された空気は燃料電池20へと供給される。このようにして空気冷却制御が実行される。ここで、空調冷媒の一部はエバポレータ186をバイパスして熱交換器195へ流通させているため、空調冷媒分岐経路197に空調冷媒を流通させることによりエバポレータ186へ流れる空調冷媒の流速が低下する可能性があるが、電動コンプレッサ182の回転数を増大することによって、このようなエバポレータ186への空調冷媒の流速の低下が抑制されている。これにより、エバポレータ186による車室内の温度への影響を抑制できる。
次に制御装置30は、車室内の実室温T1から室温の目標値である目標室温T2を引いた差が閾値α以下であるか否かを判定する(ステップS13)。実室温T1は、室内に設けられた温度センサの検出値に基づいて制御装置30により取得される。目標室温T2は、例えば乗員によって設定された車室内の温度である。閾値αは、ゼロに近い値であるがゼロより大きい値である。
ステップS13で否定判定の場合、実室温が目標室温に至るまで低下していないとして、再度ステップS11の処理が実行される。このため、電動コンプレッサ182の回転数が所定量だけ更に増大され、空調システム180による車室内の冷却能力と熱交換システム190による空気の冷却能力とが増大する。
ステップS13で肯定判定の場合には、制御装置30はプロトン移動抵抗βが閾値β2未満であるか否かを判定する(ステップS15)。閾値β2は、閾値β1よりも小さい値であり、予め実験により取得されROMに記憶されている。ステップS15で否定判定の場合、燃料電池20はまだ十分な湿潤状態にはなっていないとして、再度ステップS9以降の処理が実行される。この場合、空調分流弁199の分流割合が所定の割合だけ更に増大して空調冷媒分岐経路197を流通する空調冷媒の流量が増大すると共に、更に電動コンプレッサ182の回転数も所定量だけ増大する。このため、電動コンプレッサ182により搬送される空調冷媒の流速が増大する。これにより、熱交換システム190による空気の冷却能力が増大する。
ステップS15で肯定判定の場合には、制御装置30はプロトン移動抵抗βが閾値β3未満であるか否かを判定する(ステップS17)。閾値β3は、閾値β2よりも小さい値であり、予めROMに記憶されている。否定判定の場合には、再度ステップS15の処理が実行される。即ち、プロトン移動抵抗βが閾値β2以下であり閾値β3以上の場合には、空調分流弁199の開度と電動コンプレッサ182の回転数とが一定に維持されて、熱交換器195で空気と空調冷媒との熱交換が継続される。
ステップS17で肯定判定の場合、燃料電池20は十分な湿潤状態になったものとして、空調分流弁199の分流割合を所定の割合だけ減少させ(ステップS19)、電動コンプレッサ182の回転数を所定量だけ減少させる(ステップS21)。これにより、熱交換システム190による空気の冷却能力が低下される。
次に制御装置30は、空調分流弁199の分流割合がゼロ、即ち空調冷媒分岐経路197が空調分流弁199によって全閉されたか否かを判定する(ステップS23)。否定判定の場合、再度ステップS15以降の処理が行われる。従って、プロトン移動抵抗βが常時閾値β3未満であれば、空調分流弁199が空調冷媒分岐経路197を全閉するまで、ステップS19及びS21の処理が実行される。
ステップS23で肯定判定の場合、制御装置30は空気分流弁193の分流割合をゼロに設定して空気分流を停止する(ステップS25)。これにより、本制御が終了する。
尚、ステップS3、S15、及びS17では、プロトン移動抵抗β及び閾値β1〜β3の代わりに、温度センサ168の検出値に基づいて燃料電池20の冷媒の出口実温度とそれに対応する閾値を用いてもよいし、燃料電池20の空気の入口付近に設けられた温度センサの検出値に基づいて燃料電池20の空気入口付近での空気の実温度とそれに対応する閾値を用いてもよい。何れの場合であっても、燃料電池20の湿潤状態を判定することができるからである。
次に、燃料電池20の空気入口から空気出口までの空気の相対湿度及び温度について、比較例と比較しながら説明する。図3A及び3Bは、それぞれ、燃料電池20の空気入口から空気出口までの空気の相対湿度及び温度を示したグラフである。線分C、Cx、及びCyは、それぞれ本実施例、比較例1、及び比較例2での空気の相対湿度を示している。線分D、Dx、及びDyは、それぞれ本実施例、比較例1、及び比較例2での空気の温度を示している。
比較例1は、上述した特開2006−2588号公報に開示されているように、燃料電池用の冷媒と空調冷媒とが熱交換されて燃料電池用の冷媒が冷却される構成である。比較例2は、本実施例及び比較例1とは異なり、燃料電池に供給される空気と空調冷媒とを熱交換するものでもなく、冷媒と空調冷媒とを熱交換するものでもない構成である。
図3A及び3Bに示すように、本実施例及び比較例2よりも比較例1のほうが、空気入口側から空気出口側にかけた全域で、相対湿度が高く温度が低い。比較例1では、燃料電池用の冷媒が冷却され、燃料電池全体が冷却されるからである。このため、比較例1では、空気出口付近で相対湿度が高くなりすぎて、フラッディングが発生する可能性がある。
これに対して本実施例では、燃料電池20に供給される空気が冷却されているため、空気入口付近で相対湿度が高く温度は低いが、それ以外では相対湿度が低くなっており温度は高くなっている。換言すれば、本実施例では、空気入口付近で空気の相対湿度を確保しつつ、空気出口付近での相対湿度の増大が抑制されている。このため、空気入口での相対湿度を確保して電解質膜の乾燥を抑制しつつ、空気出口付近で相対湿度が高くなりすぎることに起因してフラッディングが発生することが抑制されている。
以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 燃料電池車両
10 燃料電池システム
20 燃料電池
30 制御装置
120 水素ガス供給システム
130 エアコンプレッサ
140 空気供給システム
141 空気供給経路(酸化剤ガス供給経路)
160 冷却システム
180 空調システム
181 循環経路(空調冷媒循環経路)
182 電動コンプレッサ
184 室外熱交換器
185 膨張弁
186 エバポレータ
190 熱交換システム
191 空気分岐経路(酸化剤ガス分岐経路)
193 空気分流弁(酸化剤ガス開閉弁)
195 熱交換器
197 空調冷媒分岐経路
199 空調分流弁(空調冷媒開閉弁)

Claims (1)

  1. 燃料電池を備えた燃料電池車両であって、
    前記燃料電池に酸化剤ガスを供給する酸化剤ガス供給経路と、
    前記酸化剤ガス供給経路上に配置されたインタークーラと、
    空調冷媒を電動コンプレッサから室外熱交換器、膨張弁、及びエバポレータの順に循環させる空調冷媒循環経路を有して、当該車両の室内の温度を調整する空調システムと、
    前記インタークーラを通過した酸化剤ガスの少なくとも一部と、空調冷媒の少なくとも一部とを熱交換する熱交換システムと、を備え、
    前記熱交換システムは、
    前記インタークーラよりも下流側で前記酸化剤ガス供給経路から分岐し、更に下流側で前記酸化剤ガス供給経路に合流した酸化剤ガス分岐経路と、
    前記酸化剤ガス分岐経路を開閉する酸化剤ガス開閉弁と、
    前記膨張弁及びエバポレータ間で前記空調冷媒循環経路から分岐し、前記エバポレータ及び電動コンプレッサ間で前記空調冷媒循環経路に合流した空調冷媒分岐経路と、
    前記空調冷媒分岐経路を開閉する空調冷媒開閉弁と、
    前記酸化剤ガス分岐経路を流通する酸化剤ガスと前記空調冷媒分岐経路を流通する空調の冷媒との間で熱交換する熱交換器と、を有する、燃料電池車両。

JP2016033583A 2016-02-24 2016-02-24 燃料電池車両 Active JP6578988B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033583A JP6578988B2 (ja) 2016-02-24 2016-02-24 燃料電池車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033583A JP6578988B2 (ja) 2016-02-24 2016-02-24 燃料電池車両

Publications (2)

Publication Number Publication Date
JP2017152212A true JP2017152212A (ja) 2017-08-31
JP6578988B2 JP6578988B2 (ja) 2019-09-25

Family

ID=59741003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033583A Active JP6578988B2 (ja) 2016-02-24 2016-02-24 燃料電池車両

Country Status (1)

Country Link
JP (1) JP6578988B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172872A (zh) * 2017-12-28 2018-06-15 潍柴动力股份有限公司 一种燃料电池电动汽车的空气压缩系统
JP7441266B2 (ja) 2022-04-28 2024-02-29 本田技研工業株式会社 燃料電池システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230015787A (ko) * 2021-07-23 2023-01-31 현대모비스 주식회사 연료 전지의 공기 공급 시스템 및 공기 공급 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348919U (ja) * 1986-09-17 1988-04-02
JP2003118396A (ja) * 2001-10-12 2003-04-23 Hitachi Ltd 燃料電池自動車
JP2005135910A (ja) * 2003-10-29 2005-05-26 General Motors Corp <Gm> 燃料電池システムの給気のための2段階圧縮
US20080081238A1 (en) * 2006-09-29 2008-04-03 Gm Global Technology Operations, Inc. Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
JP2008288149A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 燃料電池システム
JP2013059159A (ja) * 2011-09-07 2013-03-28 Toyota Motor Corp 電気自動車の冷却システム
JP2015511754A (ja) * 2012-02-27 2015-04-20 デーナ、カナダ、コーパレイシャン 燃料電池用給気を冷却する方法およびシステム、並びに、三流体給気冷却器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348919U (ja) * 1986-09-17 1988-04-02
JP2003118396A (ja) * 2001-10-12 2003-04-23 Hitachi Ltd 燃料電池自動車
JP2005135910A (ja) * 2003-10-29 2005-05-26 General Motors Corp <Gm> 燃料電池システムの給気のための2段階圧縮
US20080081238A1 (en) * 2006-09-29 2008-04-03 Gm Global Technology Operations, Inc. Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
JP2008288149A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 燃料電池システム
JP2013059159A (ja) * 2011-09-07 2013-03-28 Toyota Motor Corp 電気自動車の冷却システム
JP2015511754A (ja) * 2012-02-27 2015-04-20 デーナ、カナダ、コーパレイシャン 燃料電池用給気を冷却する方法およびシステム、並びに、三流体給気冷却器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172872A (zh) * 2017-12-28 2018-06-15 潍柴动力股份有限公司 一种燃料电池电动汽车的空气压缩系统
CN108172872B (zh) * 2017-12-28 2020-06-02 潍柴动力股份有限公司 一种燃料电池电动汽车的空气压缩系统
JP7441266B2 (ja) 2022-04-28 2024-02-29 本田技研工業株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP6578988B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
KR101136897B1 (ko) 공기조절제어시스템
US10367213B2 (en) Method of controlling fuel cell system
JP6206440B2 (ja) 燃料電池システム
KR102217210B1 (ko) 연료 전지 시스템
JP2018177083A (ja) 車両用空気調和装置
CA2998935C (en) Fuel cell system
US10283791B2 (en) Fuel cell system
JP2007280927A (ja) 燃料電池の冷却システム
JP6271222B2 (ja) 車両用冷媒循環装置、及び車両用空調装置
WO2013005373A1 (ja) 車両用空調装置
JP6900750B2 (ja) 燃料電池システム
JP6578988B2 (ja) 燃料電池車両
JP2020059369A (ja) 車両用空気調和装置
JP2008130470A (ja) 燃料電池と空調の協調冷却システム
JP2018163874A (ja) 燃料電池システム
JPWO2013031470A1 (ja) 燃料電池システム
JP5772660B2 (ja) 空調制御方法および空調制御システム
JP7472605B2 (ja) 電池温調装置
WO2020184146A1 (ja) 車両用空気調和装置
JP5045072B2 (ja) 燃料電池と空調の協調冷却システム
JP2008094184A (ja) 空調制御システム
JP2009051475A (ja) 車両用空調装置
JP2011131858A (ja) 燃料電池を備える空調システムおよび燃料電池を用いた空調方法、並びに、空調システムを備える燃料電池車両
US11302938B2 (en) Fuel cell system
JP2010192141A (ja) 冷媒回路システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R151 Written notification of patent or utility model registration

Ref document number: 6578988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151