JP2017145748A - ターボ過給機付エンジンの排気装置 - Google Patents

ターボ過給機付エンジンの排気装置 Download PDF

Info

Publication number
JP2017145748A
JP2017145748A JP2016027860A JP2016027860A JP2017145748A JP 2017145748 A JP2017145748 A JP 2017145748A JP 2016027860 A JP2016027860 A JP 2016027860A JP 2016027860 A JP2016027860 A JP 2016027860A JP 2017145748 A JP2017145748 A JP 2017145748A
Authority
JP
Japan
Prior art keywords
turbine
power generation
engine
exhaust
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027860A
Other languages
English (en)
Other versions
JP6344407B2 (ja
Inventor
直之 山形
Naoyuki Yamagata
直之 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016027860A priority Critical patent/JP6344407B2/ja
Publication of JP2017145748A publication Critical patent/JP2017145748A/ja
Application granted granted Critical
Publication of JP6344407B2 publication Critical patent/JP6344407B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

【課題】電力をより確実に確保することのできるターボ過給機付エンジンの排気装置を提供する。
【解決手段】排気通路50に、コンプレッサ62を回転駆動させる過給用タービン64と、発電機72を回転駆動する発電用タービンとを設け、発電用タービン74を、軸流式のタービンとして、これを、排気通路50のうち過給用タービン64の下流側に、過給用タービン64を通過した排気の全量が導入されるように、かつ、前記過給用タービンと対向して前記発電用タービンの回転軸と前記過給用タービンの回転軸とが同軸となるように配置する。
【選択図】図4

Description

本発明は、エンジン本体と、当該エンジン本体にそれぞれ接続される吸気通路および排気通路と、前記排気通路に設けられる過給用タービンおよび前記吸気通路に設けられるコンプレッサを含むターボ過給機とを備え、車両に設けられるターボ過給機付エンジンの排気装置に関する。
従来より、排気通路にタービンを配置して排気のエネルギを過給等に利用することが行われている。
例えば、特許文献1には、吸気通路に設けられたコンプレッサを回転駆動するための過給用のタービンと、発電機を回転駆動するための発電用のタービンとを有し、これらが排気通路に上流側から順に設けたものが開示されている。
特開2015−108330号公報
特許文献1の装置では、エンジン本体から排出された排気のエネルギを過給用タービンと発電用タービンとに供給することができ、過給圧を高めつつ発電を行うことができる。しかしながら、この装置では、発電用タービンには過給用タービンでエネルギが消費された後の排気が流入する。そのため、例えば、排気の流量が小さくそのエネルギが小さい場合等において、発電用タービンで十分に発電を行うことができず、適切な電力が確保されないおそれがある。
本発明は、前記のような事情に鑑みてなされたものであり、電力をより確実に確保することのできるターボ過給機付エンジンの排気装置を提供することを目的とする。
前記課題を解決するために、本発明は、エンジン本体と、当該エンジン本体にそれぞれ接続される吸気通路および排気通路と、前記排気通路に設けられる過給用タービンおよび前記吸気通路に設けられるコンプレッサを含むターボ過給機とを備え、車両に設けられるターボ過給機付エンジンの排気装置であって、前記排気通路に設けられて排気のエネルギを受けて回転する発電用タービンと、前記発電用タービンと連結されて、当該発電用タービンによって回転駆動されることで発電する発電機とを備え、前記発電用タービンは、軸流式のタービンであって、前記排気通路のうち前記過給用タービンの下流側に、当該過給用タービンを通過した排気の全量が導入されるように、かつ、前記過給用タービンと対向して前記発電用タービンの回転軸と前記過給用タービンの回転軸とが同軸となるように配置されていることを特徴とするターボ過給機付エンジンの排気装置を提供する(請求項1)。
この装置によれば、排気通路に、上流側から順に、コンプレッサを駆動する過給用タービンと発電機を駆動する発電用タービンとが配置されているとともに、過給用タービンを流下した排気の全量が発電用タービンに流入するよう構成されている。そのため、過給用タービンから導出された全ての排気のエネルギを発電用タービンで利用することができる。すなわち、過給用タービンで利用しなかった排気をそのまま外部に排出するのではなく、発電用タービンで発電に利用することができる。従って、発電用タービンでの発電量すなわち電力をより多く確保することができる。
しかも、この装置では、下流側に設けられる発電用タービンが軸流式であって、この軸流式の発電用タービンが、過給用タービンと対向し、かつ、これらタービンの回転軸どうしが同軸となるように配置されている。そのため、過給用タービンから流出した排気の旋回流を発電用タービンの各翼に効果的に衝突させて発電用タービンひいては発電機を効果的に回転駆動することができ、発電機での発電量をより多く確保することができる。特に、これら2つのタービンの回転数差が大きいほど、具体的には、過給用タービンの回転数に対して発電用タービンの回転数が小さいほど、発電用タービンの軸トルクは大きくなるため、発電用タービンにおいて低回転で高い軸トルクを得ることができ、発電機において効率よく発電を行うことができる。
本発明において、前記過給用タービンに流入する排気の流路面積を変更することにより当該排気の流速を変更可能な排気流速変更手段と、前記発電機の発電量を変更可能な発電量変更手段と、前記排気流速変更手段と前記発電量変更手段とを制御する制御手段とを備え、前記制御手段は、エンジン回転数が基準回転数よりも低く、かつ、エンジン負荷が基準負荷よりも高い低速高負荷領域では、前記排気流速変更手段によって前記流路面積を最小面積にするとともに前記発電量変更手段によって前記発電機による発電を停止させるのが好ましい(請求項2)。
このようにすれば、発電量変更手段によって発電機での発電量を変更しつつ、排気流速変更手段によって過給用タービンに過給用タービンに流入する排気の流速すなわち排気のエネルギを変更することができ、過給圧と発電量とを適切な値にすることができる。そして、この構成では、低速高負荷領域において、排気流速変更手段によって前記流路面積を最小面積にするとともに発電量変更手段によって発電機による発電を停止させている。そのため、エンジン本体から排出される排気の流量が小さい一方高い過給圧が要求されるこの低速高負荷領域において、過給圧を適切に高めることができる。
また、前記構成において、前記過給用タービンは、周流式のタービンであり、前記排気流速変更手段は、前記過給用タービンの周囲に角度変更可能に設けられた複数のノズルベーンを備えるのが好ましい(請求項3)。
すなわち、過給用タービンとして、VGT(Variable Geometry Turbine)が用いられるのが好ましい。このようにすれば、各ノズルベーンの角度を変更することで過給用タービンに流入する排気の流速を容易に変更することができる。
また、前記構成において、前記制御手段は、前記低速高負荷領域を除く運転領域において前記発電機に対して発電の要求があった場合には、前記発電量変更手段によって前記発電機に発電を行わせるとともに、当該発電機の発電に伴って過給圧が低下すると前記排気流速変更手段によって前記流路面積を小さくするのが好ましい(請求項4)。
このようにすれば、要求に応じて発電を行いつつ過給圧をより確実に適切な値にすることができる。
また、前記構成において、前記発電機は、モータ・ジェネレータであり、前記モータ・ジェネレータをモータとして回転駆動させるモータ駆動装置を備え、前記制御手段は、前記低速高負荷領域において、前記モータ駆動装置によって、前記排気通路のうち前記発電用タービンと前記過給用タービンとの間の部分の圧力が低下する方向に前記モータ・ジェネレータおよび前記発電用タービンを回転させるのが好ましい(請求項5)。
このようにすれば、低速高負荷領域において、排気通路のうち発電用タービンと過給用タービンとの間の部分の圧力すなわち過給用タービンの背圧を低くすることができる。そのため、過給用タービンの前後圧を大きくして、過給圧をより一層確実に高くすることができる。
また、本発明において、前記発電用タービンの最大回転数は、前記過給用タービンの最大回転数よりも小さいのが好ましい(請求項6)。
このようにすれば、発電機での回転数を小さく抑えて発電効率を高くすることができる。すなわち、発電機の回転数が、十数万回転するターボ過給機のように高い回転数では発電効率が低下するため、発電用タービンの最大回転数ひいては発電機の最大回転数を過給用タービンの最大回転数よりも小さくすることで、発電効率が低下するのを抑制することができる。
また、本発明において、前記車両は、車両の駆動源として前記エンジン本体と駆動用モータとを備えるハイブリッド車であるのが好ましい(請求項7)。
前記のように、本発明では、発電用タービンに効率よく発電を行わせてより高い電力を確保することができる。従って、消費電力の大きいハイブリッド車に適用されれば、効果的である。
以上説明したように、本発明のターボ過給機付エンジンの排気装置によれば、より確実に高い電力を確保することができる。
車両システムの概略構成図である。 エンジン本体の概略断面図である。 VGTの概略断面図である。 過給用タービンおよび発電用タービン周辺を拡大して示した概略構成図である。 軸流式タービンの動翼に対する排気の作用を説明するための図である。 過給用タービンの回転数を一定とした状態での発電用タービンの回転数とその軸トルクとの関係を示した図である。 制御ブロックを示した図である。 排気開閉弁、VGT開度および発電に係る制御の手順を示したフローチャートである。 制御領域を示した図である。
(1)全体構成
図1は、本発明の一実施形態に係るターボ過給機付エンジンの排気装置2が適用されるハイブリッド車3の概略システム図である。このハイブリッド車3は、エンジン本体1とモータ(以下、駆動用モータという)5とをそれぞれ車輪4,4を駆動する駆動源として有し、モータ5がエンジン本体1による車輪4,4の駆動をアシストするように構成されている。具体的には、車輪4,4には、駆動軸等を介してエンジン本体1の出力と駆動用モータ5の出力とがそれぞれ入力されるようになっており、運転条件に応じて、エンジン本体1のみで車輪4,4が駆動される場合と、エンジン本体1と駆動用モータ5とによって車輪4,4が駆動される場合とに切り替えられる。
図1に示すように、ここでは、エンジン本体1が、4ストロークの直列4気筒の場合について説明する。すなわち、エンジン本体1は、所定の方向に並ぶ4つの気筒10(図1における左側から順に、第1気筒、第2気筒、第3気筒、第4気筒)を有する。また、ここでは、エンジン本体1がディーゼルエンジンの場合について説明する。
エンジン本体1には、エンジン本体1に吸気を導入するための吸気通路120と、エンジン本体1から排気を排出するための排気通路130とが接続されている。
図2は、エンジン本体1の概略断面図である。
エンジン本体1は、気筒10が内部に形成されたシリンダブロック101と、シリンダブロック101の上面に設けられたシリンダヘッド102と、気筒10に往復摺動可能に挿入されたピストン103とを有している。
ピストン103の上方には燃焼室15が形成されている。燃焼室15内には、インジェクタ18から燃料が噴射される。噴射された燃料と空気との混合気は燃焼室15において圧縮されることで燃焼し、ピストン103はその燃焼による膨張力で押し下げられて上下に往復運動する。
ピストン103はコネクティングロッドを介してクランクシャフト106と連結されており、ピストン103の往復運動に応じて、クランクシャフト106はその中心軸回りに回転する。
シリンダヘッド102には、各気筒10にそれぞれ対応して、吸気通路120から供給される空気を各気筒10の燃焼室15に導入するための吸気ポート13と、吸気ポート13を開閉する吸気弁14と、各気筒10の燃焼室15で生成された排気をエンジン本体1の外部に導出するための排気ポート11と、排気ポート11を開閉する排気弁12とが設けられている。
図1に戻り、吸気通路120には、上流側から順にコンプレッサ62、インタークーラー121、スロットルバルブ122、サージタンク125が設けられている。サージタンク125からは、各吸気ポート13とそれぞれ個別に連通する独立吸気通路が延びている。
このエンジンシステムは、ターボ過給機60を備えたエンジンであって、排気通路130に設けられた過給用タービン64を有し、過給用タービン64が排気により回転駆動されることでコンプレッサ62が回転し、これにより吸気通路120内の吸気が過給される。
排気通路130は、エンジン本体1の各排気ポート11に繋がるように設けられている。
排気通路130は、各気筒の排気ポート11とそれぞれ連通する4本の独立通路40と、各独立通路40の下流端部(排気の流れ方向下流側の端部)が1箇所に集合した部分から下流側に延びる1本の排気管50とを有している。
過給用タービン64は、排気管50に設けられている。
過給用タービン64は、複数の翼を有しこれら翼に排気が衝突することで回転する。本実施形態では、図3に示すように、過給用タービン64は、VGT(Variable Geometry Turbine)であり、その周囲には、角度変更可能な複数のノズルベーン64bが設けられているとともに、各ノズルベーン64bと連携されたロッド64cと、ロッド64cを進退駆動することにより各ノズルベーン64bの角度を変更するベーンアクチュエータ64dとが設けられている。ベーンアクチュエータ64dおよびロッド64cによってノズルベーン64bが閉方向(隣接するノズルベーン64bどうしの距離を狭める方向)に駆動されると、過給用タービン64に流入する排気の流路の面積は小さくなり、過給用タービン64に流入する排気の流速が増大する。
このように、本実施形態では、各ノズルベーン64bと、ロッド64cと、ベーンアクチュエータ64dとが、過給用タービン64に流入する排気の流路面積を変更して、過給用タービン64に流入する排気の流速を変更可能な排気流速変更手段として機能する。
排気管50のうち過給用タービン64よりも下流側の部分には、排気のエネルギを受けて回転する発電用タービン74が設けられている。
図4は、過給用タービンおよび発電用タービン周辺を拡大して示した概略構成図である。
発電用タービン74は、軸流式のタービンであって、周方向に並ぶ複数の動翼を有し、排気が回転軸74cに沿ってこれら動翼74aに流入することで回転する。
発電用タービン74は、過給用タービン64と比較的近接した位置にこれと対向して配置されている。また、本実施形態では、これらタービン74、64は、その各回転中心軸が一致するように、すなわち、互いに同軸上に配置されている。そのため、過給用タービン64から排出された排気は発電用タービン74の各翼74aに均等に、かつ、高いエネルギを維持したまま流入する。また、図4等に示すように、排気管50のうち過給用タービン64と発電用タービン74との間の連結通路には、分岐通路等は設けられておらず、過給用タービン64を流下した排気は全量、発電用タービン74に流入する。
本実施形態では、発電用タービン74は、静翼を有しない1段式の軸流式タービンであって、発電用タービン74は、過給用タービン64と反対向きに回転する。
このように構成されることで、発電用タービン74の回転軸74cには、発電用タービン74と過給用タービン64との間で回転数差が生じるとトルクすなわち軸トルクが発生する。
図5を用いて簡単に説明する。図5は、発電用タービン74の動翼74aの概略断面図である。この図5の破線で示すように、軸流式である発電用タービン74では、過給用タービン64から旋回しながら流下した排気が動翼74aに衝突してその向きを変えつつ流下することで、動翼74aに排気から衝動力と反力が加えられるようになっている。
従って、発電用タービン74と過給用タービン64との回転数が一致していると、排気は発電用タービン74の動翼74aに沿って流下するだけとなり前記衝動力は得られない。一方、前記回転数に差がある場合、具体的には、発電用タービン74の回転数が過給用タービン64の回転数よりも小さい場合は、排気が発電用タービン74の動翼74aに衝突し、動翼74aには衝動力が加えられる。そして、これにより発電用タービン74に軸トルクが発生する。また、前記衝動力は、過給用タービン64と発電用タービンの回転数差が大きいほど大きくなり、図6に示すように、過給用タービンの回転数に対する発電用タービンの回転数の割合が小さいほど、発電用タービンに生成される軸トルクは大きくなる。なお、図6は、入力軸回転数すなわち過給用タービンの回転数を一定とした状態での、出力軸回転数すなわち発電用タービンの回転数と出力軸トルクすなわち発電用タービンに生成される軸トルクとの関係を示したものである。
このように、過給用タービン64との回転数差が大きいほど発電用タービン74で生成される軸トルクは高くなるため、本実施形態では、軸トルクを確保しながら発電用タービン74の回転数を小さくすることができる。そこで、本実施形態では、発電用タービン74の最大回転数は、過給用タービン64の最大回転数よりも小さく設定されている。例えば、過給用タービン64の最大回転数の1/20〜1/10程度に設定されている。具体的には、過給用タービン64の最大回転数が2万回転程度とされ、発電用タービン74の最大回転数が1万以下の値とされている。そして、これにより、発電用タービン74と一体に回転する後述するモータ・ジェネレータ72の発電効率が高くされている。
図1に示すように、発電用タービン74は、モータ・ジェネレータ72と連結されている。モータ・ジェネレータ72は発電機としての機能を有しており、発電用タービン74が排気のエネルギを受けて回転すると、これにより回転駆動されて発電する。
ここで、モータ・ジェネレータ72は、電気エネルギを受けてモータとしても回転駆動可能であり、このようにモータとして作動する場合には、モータ・ジェネレータ72は、発電時とは反対向きに回転する。そして、モータ・ジェネレータ72は、発電用タービン74を、排気のエネルギを受けて回転するときとは反対の方向に強制的に回転させる。そして、このように強制的に回転させられると、発電用タービン74は、その上流側から下流側に向かって排気を吸い出す。
モータ・ジェネレータ72は、コンバータ81とMG制御装置(発電量変更手段、モータ駆動装置)75とを介してバッテリ82に接続されている。バッテリ82は、インバータ83を介して駆動用モータ5に接続されている。従って、モータ・ジェネレータ72により生成された電力は、バッテリ82を介して駆動用モータ5の駆動に利用される。また、駆動用モータ5の駆動が停止している場合には、この電力はバッテリ82に蓄電される。なお、本実施形態では、駆動用モータ5以外の各種電気機器もバッテリ82に接続されており、前記電力は、バッテリ82を介してこれら電気機器の駆動にも利用される。
ここで、駆動用モータ5が駆動している状態でモータ・ジェネレータ72が発電を行っている場合、バッテリ82は、モータ・ジェネレータ72からの電力を受けつつ駆動用モータ5に電力を供給することになる。そのため、これらの一部が相殺されてバッテリ82の最終的な入力電力あるいは出力電力は小さくなり、高い効率(送電効率)で駆動用モータ5を駆動することが可能になる。
モータ・ジェネレータ72の駆動は、MG制御装置75により制御される。具体的には、MG制御装置は、モータ・ジェネレータ72がジェネレータ72として発電するときの発電量、および、モータ・ジェネレータ72がモータとして駆動するときの回転数等を変更する。
なお、駆動用モータ5の出力は、インバータ83等により変更される。
また、排気管50のうち過給用タービン64よりも下流側の部分には、排気を浄化するための触媒装置90が配置されている。
また、本実施形態では、排気管50に、発電用タービン74と過給用タービン64とをバイパスする触媒用バイパス通路58が設けられている。すなわち、触媒用バイパス通路58は、排気管50のうち過給用タービン64よりも上流側の部分と発電用タービン74よりも下流側の部分とを接続しており、排気の少なくとも一部が、これらタービン64,74を通過せずに触媒装置90に流入可能となっている。
触媒用バイパス通路58には、これを開閉する排気開閉弁59が設けられており、触媒用バイパス通路58には、排気開閉弁59が開弁した場合にのみ排気が流入する。
(2)制御系
次に、図7を用いて、エンジンシステムの制御系について説明する。当実施形態のエンジンシステムは、車両に搭載されたECU(エンジン制御ユニット、制御手段)500によって制御される。ECU500は、周知のとおり、CPU、ROM、RAM、I/F等から構成されるマイクロプロセッサである。
ECU500には、各種センサからの情報が入力される。例えば、ECU500は、クランクシャフト106の回転数すなわちエンジンの回転数を検出するためのエンジン回転数センサSW1、各気筒10に導入される吸気量を検出するためのエアフローセンサSW2、車両に設けられて運転者により操作されるアクセルペダル(不図示)の開度を検出するアクセル開度センサSW3、過給圧(吸気通路120のうちコンプレッサ62の下流側の圧力)を検出する過給圧センサSW4等と電気的に接続されており、これらのセンサからの入力信号を受け付ける。また、ECU500には、バッテリの電圧や、各種電気機器の操作信号が入力される。
ECU500は、各センサSW1〜S4からの入力信号等に基づいて種々の演算等を実行し、過給用タービン64およびMG制御装置75を制御するとともに、排気開閉弁59およびその他のエンジンの各部(インジェクタ18、スロットルバルブ122等)にそれぞれ制御信号を出力する。
具体的には、ECU500は、過給用タービン64のベーンアクチュエータ64dを制御して過給用タービン64のノズルベーン64bの角度(以下、適宜、VGT開度という)を制御する。ここで、VGT開度は、その値が大きいほど過給用タービン64の各翼に向かう排気の流通通路の流路面積が大きくなり、その値が小さいほどこの流路面積が絞られるようになるパラメータである。なお、本実施形態では、後述するように触媒装置90が未活性状態のときを除き、エンジンの稼働中において、VGT開度は全閉(流通通路を完全に閉鎖する状態)よりも開き側の所定の開度以上となるように制御されている。そして、ここでは、この所定の開度をVGT開度の最小開度という。すなわち、VGT開度が最小開度とされた場合であっても過給用タービン64には所定量の排気が流入することになる。
また、ECU500は、排気開閉弁59を開閉するアクチュエータを駆動して、排気開閉弁59を全開と全閉とに切り替える。
ECU500による、過給用タービン64、MG制御装置75、排気開閉弁59に対する制御手順について図8のフローチャートを用いて説明する。
まず、ステップS1にて、エンジン回転数、アクセル開度、過給圧、触媒温度等を読み込む。触媒温度は、例えば、触媒装置90に温度センサを取付けてこの温度センサで検出することや、エンジン回転数やエンジン負荷等から推定することで求められる。
ステップS2では、触媒温度が予め設定された触媒装置90の活性温度以上か否かを判定する。なお、活性温度は、触媒装置90の浄化率が所定値(例えば90%)以上であって触媒装置90が活性する温度の最低温度であり、予め設定されている。
ステップS2での判定がNOであって触媒温度が活性温度未満の場合は、触媒装置90が未活性状態であるとして、ステップS3に進む。
ステップS3では、排気開閉弁59を開弁(全開に)する(既に開弁しているときは、開弁を維持する)。そして、処理を終了する(ステップS1に戻る)。
このように、本実施形態では、触媒装置90の温度が活性温度未満であって触媒装置90が未活性状態のときは、排気開閉弁59が開弁されて触媒用バイパス通路58が開放される。なお、本実施形態では、このとき、触媒装置90に、より高温の排気を導入するべく、VGT開度は最大開度よりも小さい開度(最も小さい開度等)とされて、触媒用バイパス通路58への排気の流入が促進されるとともに、各タービン64,74を通過する排気のこれらタービン64,74でのエネルギ消費が抑制される。
一方、ステップS2の判定がYESであって、触媒温度が活性温度以上の場合は、触媒装置90が活性状態であるとして、ステップS8に進む。
ステップS8では、排気開閉弁59を閉弁(全閉に)する(既に閉弁しているときは、閉弁を維持する)。
このように、本実施形態では、触媒装置90の温度が活性温度以上であって触媒装置90が活性状態にあるときは、排気開閉弁59が閉弁されてエンジン本体1からの排気はすべて過給用タービン64と発電用タービン74とに供給される。
ステップS8の後は、ステップS10に進む。ステップS10では、運転領域が図9に示した低速高負荷領域A1であるか否かを判定する。具体的には、本実施形態では、図9に示すように、モータ・ジェネレータ72等の制御に係る運転領域として、エンジン回転数が基準回転数N1以下、かつ、エンジントルクが基準負荷T1以上の低速高負荷領域A1と、残余の領域A2とが設定されており、ステップS10では、エンジン回転数とエンジントルクとに応じて現在の運転領域が低速高負荷領域A1であるか否かを判定する。なお、基準負荷T1は、エンジン回転数が高いほど大きい値に設定されている。
一方、ステップS10の判定がNOであって、領域A2で運転がなされている場合は、ステップS21に進む。
ステップS21では、VGT開度を基本開度にする。この基本開度は、過給圧をその目標値である目標過給圧であって予め設定された圧力にすることができるVGT開度であり、実験等により運転条件に応じて予め設定されている。例えば、ECU500は、エンジン回転数とエンジン負荷(要求エンジントルク)とに対して目標過給圧および基本開度をマップで設定、記憶しており、ステップS31において、エンジン回転数とエンジン負荷とに応じてこのマップから基本開度を抽出する。
ステップS21の後は、ステップS22に進む。ステップS22では、モータ・ジェネレータ72に対する発電要求が出されているか否かを判定する。本実施形態では、ECU500は、駆動用モータ5の駆動時、すなわち、モータアシスト時や、バッテリの残量が所定量以下になった場合や、バッテリに接続されている電気機器での負荷が増加した場合等に、ジェネレータ72に対する発電要求が出されたと判定する。ここで、本実施形態では、図9に示すように、領域A2のうちエンジン回転数が高くエンジン負荷が高い高速高負荷領域A2_bにおいて、駆動用モータ5が駆動される。
ステップS22の判定がNOであって、発電要求が出されていない場合は、そのまま処理を終了する(ステップS1に戻る)。
一方、ステップS22の判定がYESであって、発電要求が出されている場合は、ステップS23に進む。
ステップS23では、モータ・ジェネレータ72での発電を実施する(既に発電が行われているときは、それを維持する)。
ステップS23の後は、ステップS24に進み、過給圧が前記のように設定された目標過給圧未満か否かを判定する。
ステップS24の判定がNOであって過給圧が目標過給圧以上の場合は、そのまま処理を終了する(ステップS1に戻る)。
一方、ステップS24の判定がYESであって過給圧が目標過給圧未満の場合は、ステップS25に進む。
ステップS25では、VGT開度を閉じ側に補正し、その後処理を終了する(ステップS1に戻る)。
このように、本実施形態では、領域A2では、VGT開度は、目標過給圧が実現されるようにVGT開度が変更され、発電要求に応じてモータ・ジェネレータ72において発電が実施される。
一方、ステップS10の判定がYESであって低速高負荷領域A1で運転がなされている場合は、ステップS11に進む。
ステップS11では、VGT開度を最も閉じ側の開度(最小開度)とする。また、ステップS11の後に進むステップS12では、モータ・ジェネレータ72をモータとして駆動し(既にモータとして駆動されているときはそれを維持する)、処理を終了する(ステップS1に戻る)。すなわち、モータ・ジェネレータ72による発電は停止され、モータ・ジェネレータ72はモータとして駆動される。
このように、本実施形態では、低速高負荷領域A1では、VGT開度が最も閉じ側の開度とされるとともに、モータ・ジェネレータ72がモータとして駆動される。
従って、エンジン回転数が基準回転数N1以下の状態での加速時であって運転領域が領域A2から領域A1に移行したときには、これに伴って、モータ・ジェネレータ72のモータとしての駆動が開始され、VGT開度が閉じ側の開度に変更される。
(3)作用等
以上のように、本実施形態では、排気管50に、上流側から順に、コンプレッサ62を駆動する過給用タービン64と、モータ・ジェネレータ72を回転駆動して発電させることが可能な発電用タービン74とが配置されているとともに、過給用タービン64を流下した排気の全量が発電用タービン74に流入するよう構成されている。そのため、過給用タービン64から導出された全ての排気のエネルギを発電用タービン74で利用することができる。すなわち、過給用タービン64で利用しなかった排気をそのまま外部に排出するのではなく、発電用タービン74で発電に利用することができる。従って、発電用タービン74での発電量すなわち電力をより多く確保することができる。
しかも、本実施形態では、発電用タービン74が軸流式であって、この軸流式の発電用タービン74が、過給用タービン64と対向し、かつ、これらタービン64,74の回転軸どうしが同軸となるように配置されている。そのため、過給用タービン64から流出した排気の旋回流を発電用タービン74の各動翼74aに効果的に衝突させてこれら動翼74aに高い衝動力を加えることができる。従って、発電用タービン74およびモータ・ジェネレータ72を効果的に回転駆動することができ、モータ・ジェネレータ72での発電量をより多く確保することができる。特に、前記のように、これら2つのタービン64,74の回転数差が大きいほど、具体的には、過給用タービン64の回転数に対して発電用タービン74の回転数が小さいほど、発電用タービン74の軸トルクは大きくなる。従って、発電用タービン74において低回転で高い軸トルクを発生させ、これを、モータ・ジェネレータ72に付与することができ、モータ・ジェネレータ72において効率よく発電を行うことができる。
また、本実施形態では、過給用タービン64がVGTとされて、過給用タービン64に流入する排気の流速ひいては過給用タービン64の回転駆動力および過給能力が変更可能となっている。そのため、モータ・ジェネレータ72において適切に発電を行いつつVGT開度の調整によって過給圧を目標過給圧に制御することができる。
また、本実施形態では、モータ・ジェネレータ72をモータとして駆動してこれにより発電用タービン74を強制的に回転駆動させ、排気を発電用タービン74の上流側から下流側に向かって吸い出すことが可能となっている。そのため、発電用タービン74の上流側の圧力すなわち過給用タービン64の背圧を小さくして過給用タービン64の前後差圧(上流側の圧力と下流側の圧力との差)を大きくすることができ、過給用タービン64によるコンプレッサ62の駆動力すなわち過給力をより適切に高めることができる。
特に、本実施形態では、低速高負荷領域A1であってエンジン本体から排出される排気の流量が小さい一方高い過給圧が要求される領域A1において、VGT開度を最小開度(最も閉じ側の開度)にするとともに、モータ・ジェネレータ72をモータとして駆動して発電用タービン74を強制的に回転させている。そのため、この領域A1において、過給用タービンの前後差圧をより一層大きくすることができ、過給圧を確実に高くすることができる。
また、本実施形態では、排気管50に、過給用タービン64および発電用タービン74をバイパスする触媒用バイパス通路58が設けられて、これらをバイパスした排気が触媒装置90に流入できるようになっている。そして、触媒装置90が未活性状態のときには、この触媒用バイパス通路58が開放されて、エンジン本体1から排出された排気が各タービン64,74を通過することなく触媒装置90に流入するようになっている。そのため、触媒装置90の未活性時において、エンジン本体1から排出された排気のエネルギを過給用タービン64および発電用タービン74で消費することなく触媒装置90に流入させることができる。すなわち、排気をより高温の状態で触媒装置90に流入させることができる。そのため、触媒の活性化を促進することができる。
(4)変形例
前記実施形態では、過給用タービン64としてVGTを用い、ノズルベーンの開度を変更することで過給用タービン64に流入する排気が通過する通路の流路面積を変更した場合について説明したが、この流路面積を変更するための具体的構成はこれに限らない。例えば、過給用タービンとして、VGTに代えて、過給用タービンに排気を導入する通路が2つに分岐されたツインスクロールタービンを用い、一方の通路を開閉することで、前記流路面積を変更してもよい。この場合には、例えば、低速高負荷領域A1において、一方の通路を閉鎖し、領域A2において両方の通路を開放する。ただし、VGTを用いれば、各ノズルベーン64bの角度を変更することで過給用タービン64に流入する排気の流速を容易に変更することができる。
また、過給用タービン64を軸流式としてもよい。ただし、前記のように、過給用タービン64を周流式とし、さらにこれをVGTとすれば、過給用タービン64に流入する排気の流速を容易に変更して過給圧を容易に適切な値に変更することができる。
また、前記モータ・ジェネレータ72に代えて、モータ機能を有さないジェネレータ72が用いられてもよい。ただし、前記のように、モータ・ジェネレータ72を用い、これにより、発電用タービン74において排気を下流側に吸い出すようにすれば、過給圧をより一層高めることができる。
また、前記実施形態では、発電用タービン74の最大回転数が、過給用タービン64の最大回転数よりも小さい場合について説明したが、これら最大回転数の関係はこれに限らない。ただし、前記のように、本実施形態では、発電用タービン74において低回転で高い軸トルクを得ることができるため、発電用タービンとしてその最大回転数を小さくすることができ、これにより、発電機の回転数を小さくして発電効率を高めることができる。
また、前記実施形態では、領域A2においてのみ(エンジン本体1に対する加速要求がなく、発電要求がある場合において)、発電を実施する場合について説明したが、低速高負荷領域A1においても、発電要求に応じて発電を行ってもよい。ただし、低速高負荷領域A1は、排気の流量が少なく排気のエネルギが小さい一方高いエンジントルクひいては高い過給力が要求される領域である。そのため、この領域A1での発電を停止(禁止)すれば、より効果的に過給力を確保することができる。
また、前記実施形態では、車両がエンジン本体1と駆動用モータ5とを備えるハイブリッド車である場合について説明したが、エンジン本体1のみを駆動源とする車両に適用されてもよい。ただし、前記のように、本実施形態では、発電用タービン74に効率よく発電を行わせてより高い電力を確保することができるため、消費電力の大きいハイブリッド車に適用されれば、効果的である。
また、前記実施形態では、エンジン本体1が4気筒のディーゼルエンジンの場合について説明したが、エンジン本体1の種類はこれに限らない。例えば、ガソリンエンジンや、その他の気筒数を有するエンジンであってもよい。
1 エンジン本体
64 過給用タービン
64b ノズルベーン
72 モータ・ジェネレータ(発電機)
74 発電用タービン
75 MG制御装置(発電量変更手段、モータ駆動装置)
130 排気通路
500 ECU(制御手段)

Claims (7)

  1. エンジン本体と、当該エンジン本体にそれぞれ接続される吸気通路および排気通路と、前記排気通路に設けられる過給用タービンおよび前記吸気通路に設けられるコンプレッサを含むターボ過給機とを備え、車両に設けられるターボ過給機付エンジンの排気装置であって、
    前記排気通路に設けられて排気のエネルギを受けて回転する発電用タービンと、
    前記発電用タービンと連結されて、当該発電用タービンによって回転駆動されることで発電する発電機とを備え、
    前記発電用タービンは、軸流式のタービンであって、前記排気通路のうち前記過給用タービンの下流側に、当該過給用タービンを通過した排気の全量が導入されるように、かつ、前記過給用タービンと対向して前記発電用タービンの回転軸と前記過給用タービンの回転軸とが同軸となるように配置されていることを特徴とするターボ過給機付エンジンの排気装置。
  2. 請求項1に記載のターボ過給機付エンジンの排気装置において、
    前記過給用タービンに流入する排気の流路面積を変更することにより当該排気の流速を変更可能な排気流速変更手段と、
    前記発電機の発電量を変更可能な発電量変更手段と、
    前記排気流速変更手段と前記発電量変更手段とを制御する制御手段とを備え、
    前記制御手段は、エンジン回転数が基準回転数よりも低く、かつ、エンジン負荷が基準負荷よりも高い低速高負荷領域では、前記排気流速変更手段によって前記流路面積を最小面積にするとともに前記発電量変更手段によって前記発電機による発電を停止させることを特徴とするターボ過給機付エンジンの排気装置。
  3. 請求項2に記載のターボ過給機付エンジンの排気装置において、
    前記過給用タービンは、周流式のタービンであり、
    前記排気流速変更手段は、前記過給用タービンの周囲に角度変更可能に設けられた複数のノズルベーンを備えることを特徴とするターボ過給機付エンジンの排気装置。
  4. 請求項2または3に記載のターボ過給機付エンジンの排気装置において、
    前記制御手段は、前記低速高負荷領域を除く運転領域において前記発電機に対して発電の要求があった場合には、前記発電量変更手段によって前記発電機に発電を行わせるとともに、当該発電機の発電に伴って過給圧が低下すると前記排気流速変更手段によって前記流路面積を小さくすることを特徴とするターボ過給機付エンジンの排気装置。
  5. 請求項1〜4のいずれかに記載のターボ過給機付エンジンの排気装置において、
    前記発電機は、モータ・ジェネレータであり、
    前記モータ・ジェネレータをモータとして回転駆動させるモータ駆動装置を備え、
    前記制御手段は、前記低速高負荷領域において、前記モータ駆動装置によって、前記排気通路のうち前記発電用タービンと前記過給用タービンとの間の部分の圧力が低下する方向に前記モータ・ジェネレータおよび前記発電用タービンを回転させることを特徴とするターボ過給機付エンジンの排気装置。
  6. 請求項1〜5のいずれかに記載のターボ過給機付エンジンの排気装置において、
    前記発電用タービンの最大回転数は、前記過給用タービンの最大回転数よりも小さいことを特徴とするターボ過給機付エンジンの排気装置。
  7. 請求項1〜6のいずれかに記載のターボ過給機付エンジンの排気装置において、
    前記車両は、車両の駆動源として前記エンジン本体と駆動用モータとを備えるハイブリッド車であることを特徴とするターボ過給機付エンジンの排気装置。
JP2016027860A 2016-02-17 2016-02-17 ターボ過給機付エンジンの排気装置 Expired - Fee Related JP6344407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027860A JP6344407B2 (ja) 2016-02-17 2016-02-17 ターボ過給機付エンジンの排気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027860A JP6344407B2 (ja) 2016-02-17 2016-02-17 ターボ過給機付エンジンの排気装置

Publications (2)

Publication Number Publication Date
JP2017145748A true JP2017145748A (ja) 2017-08-24
JP6344407B2 JP6344407B2 (ja) 2018-06-20

Family

ID=59681270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027860A Expired - Fee Related JP6344407B2 (ja) 2016-02-17 2016-02-17 ターボ過給機付エンジンの排気装置

Country Status (1)

Country Link
JP (1) JP6344407B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109056A1 (de) 2018-04-06 2019-10-10 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor mit turbolader
DE102019108588A1 (de) 2018-04-06 2019-10-10 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138127A (ja) * 1984-07-31 1986-02-24 Mitsubishi Heavy Ind Ltd タ−ボコンパウンド機関
JPH05256149A (ja) * 1992-03-13 1993-10-05 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンドエンジンのタービン構造
JP2000045817A (ja) * 1998-07-31 2000-02-15 Hino Motors Ltd ハイブリッド自動車
JP2014117962A (ja) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp 排ガス発電機を備えたハイブリッド車両の制御装置および排ガス発電機を備えたハイブリッド車両の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138127A (ja) * 1984-07-31 1986-02-24 Mitsubishi Heavy Ind Ltd タ−ボコンパウンド機関
JPH05256149A (ja) * 1992-03-13 1993-10-05 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンドエンジンのタービン構造
JP2000045817A (ja) * 1998-07-31 2000-02-15 Hino Motors Ltd ハイブリッド自動車
JP2014117962A (ja) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp 排ガス発電機を備えたハイブリッド車両の制御装置および排ガス発電機を備えたハイブリッド車両の制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109056A1 (de) 2018-04-06 2019-10-10 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor mit turbolader
DE102019108588A1 (de) 2018-04-06 2019-10-10 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor
US10774675B2 (en) 2018-04-06 2020-09-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP6344407B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
US6941755B2 (en) Integrated bypass and variable geometry configuration for an exhaust gas turbocharger
US9341145B2 (en) Supercharged turbocompound hybrid engine apparatus
US20070074513A1 (en) Turbo charging in a variable displacement engine
CN105089774B (zh) 具有至少两个涡轮的排气涡轮增压应用点火式内燃发动机及其运转方法
US10190544B2 (en) Supercharger with exhaust gas recirculation
JP2010048225A (ja) 内燃機関の過給システム
JP6394624B2 (ja) ターボ過給機付エンジン
JP6318138B2 (ja) 内燃機関及びその制御装置
JP6344407B2 (ja) ターボ過給機付エンジンの排気装置
CN112424461B (zh) 运行四冲程内燃发动机系统的方法
JP6641206B2 (ja) エンジン制御装置
JP6340629B2 (ja) ハイブリッド自動車の駆動装置
KR20180038308A (ko) 엔진 시스템
JP6990551B2 (ja) エンジン制御装置
JP5397291B2 (ja) ターボ過給機付きエンジンの始動制御装置
JP6296079B2 (ja) ターボ過給機付エンジン
JP6439731B2 (ja) ターボ過給機付エンジン
JP2017145749A (ja) ターボ過給機付エンジンの排気装置
JP5565378B2 (ja) 内燃機関の制御システム
JP2017145747A (ja) ターボ過給機付エンジンの排気装置
JP4582054B2 (ja) 車両用エンジンシステムの制御装置
JP2017214893A (ja) 排気駆動発電機を備えたエンジン
JP2017115756A (ja) エンジンの排気制御装置
JP2017214891A (ja) ターボ過給機付エンジン
JP2017214890A (ja) ターボ過給機付エンジン

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees