JP2017145229A - Manufacturing method of cyclic siloxane using lewis acid - Google Patents

Manufacturing method of cyclic siloxane using lewis acid Download PDF

Info

Publication number
JP2017145229A
JP2017145229A JP2016030294A JP2016030294A JP2017145229A JP 2017145229 A JP2017145229 A JP 2017145229A JP 2016030294 A JP2016030294 A JP 2016030294A JP 2016030294 A JP2016030294 A JP 2016030294A JP 2017145229 A JP2017145229 A JP 2017145229A
Authority
JP
Japan
Prior art keywords
cyclic siloxane
formula
hydrocarbon group
structure represented
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016030294A
Other languages
Japanese (ja)
Inventor
雅史 海野
Masafumi Unno
雅史 海野
泰暢 江川
Yasunobu Egawa
泰暢 江川
島田 茂
Shigeru Shimada
茂 島田
佐藤 一彦
Kazuhiko Sato
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Gunma University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Gunma University NUC
Priority to JP2016030294A priority Critical patent/JP2017145229A/en
Publication of JP2017145229A publication Critical patent/JP2017145229A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of cyclic siloxane capable of finding novel reaction which can simply modify a silanol group in the cyclic siloxane and effectively manufacturing useful cyclic siloxane.SOLUTION: A useful silanized cyclic siloxane including a structure represented by the formula (C) can be manufactured effectively by reacting cyclic siloxane including a structure represented by the following formula (A) as a structure of a ring and hydrosilane represented by the following formula (B) in a presence of Lewis acid. In formulae (A) to (C), Reach independently represents a hydrocarbon group having 1 to 12 carbon atoms and Reach independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.SELECTED DRAWING: None

Description

本発明は、環状シロキサンの製造方法に関し、より詳しくはルイス酸を用いた環状シロキサンの製造方法に関する。   The present invention relates to a method for producing a cyclic siloxane, and more particularly to a method for producing a cyclic siloxane using a Lewis acid.

シロキサン結合(Si−O−Si)は、有機化合物の基本骨格である炭素−炭素結合(C−C)や炭素−酸素結合(C−O)よりも結合エネルギーが大きく、耐熱性、耐擦傷性、耐候性に優れており、シロキサン結合を有するオルガノポリシロキサンは、シリコーンオイル、シリコーンゴム、コーティング材、シーリング材等の様々な用途に利用されている。   Siloxane bonds (Si-O-Si) have higher bond energy than carbon-carbon bonds (C-C) and carbon-oxygen bonds (C-O), which are the basic skeletons of organic compounds, and have heat resistance and scratch resistance. Organopolysiloxane, which is excellent in weather resistance and has a siloxane bond, is used in various applications such as silicone oil, silicone rubber, coating material and sealing material.

シロキサン結合を形成するための代表的な前駆体としては、シラノール化合物(SiOH)が広く知られており、ハロゲン化シラン(SiX)、アルコキシシラン(SiOR)、シラノール(SiOH)等との縮合反応によって、シロキサン結合を容易に形成できることが知られている。
・ SiOH + SiX → SiOSi +HX
・ SiOH + SiOR → SiOSi +ROH
・ SiOH + SiOH → SiOSi +H2
また、最近ではB(C653等のようなルイス酸を用い、ヒドロシラン化合物(−SiH)とメトキシシラン化合物等とを縮合させてシロキサン結合を形成する方法が提案されている(特許文献1、非特許文献1参照)。
As a typical precursor for forming a siloxane bond, a silanol compound (SiOH) is widely known, and by a condensation reaction with a halogenated silane (SiX), an alkoxysilane (SiOR), a silanol (SiOH), or the like. It is known that siloxane bonds can be easily formed.
・ SiOH + SiX → SiOSi + HX
・ SiOH + SiOR → SiOSi + ROH
・ SiOH + SiOH → SiOSi + H 2 O
Recently, a method of forming a siloxane bond by condensing a hydrosilane compound (—SiH) with a methoxysilane compound or the like using a Lewis acid such as B (C 6 F 5 ) 3 has been proposed (patent). Reference 1 and non-patent reference 1).

米国特許第2004/0127668号明細書US 2004/0127668

S. Rubinsztajn, J. A. Cella, Polym. Prepr. 2004, 45, 635−636.S. Rubinsztajn, J. A. Cella, Polym. Prepr. 2004, 45, 635-636.

活性ケイ素種の加水分解・脱水縮合によって生成するシロキサン化合物の中には、シラノール基(Si−OH)が残存したものがあるが、このシラノール基を簡易的に修飾して有用な官能基を導入することができれば、シロキサン化合物の可能性を広げる重要な技術になり得る。
本発明は、シロキサン化合物の1つである環状シロキサン中のシラノール基を簡易的に修飾し得る新たな反応を見出し、有用な環状シロキサンを効率良く製造することができる環状シロキサンの製造方法を提供することを目的とする。
Some siloxane compounds produced by hydrolysis and dehydration condensation of active silicon species have silanol groups (Si-OH) remaining, but these silanol groups are simply modified to introduce useful functional groups. If this can be done, it can be an important technique for expanding the possibilities of siloxane compounds.
The present invention provides a method for producing a cyclic siloxane capable of efficiently producing a useful cyclic siloxane by finding a new reaction capable of easily modifying a silanol group in the cyclic siloxane which is one of siloxane compounds. For the purpose.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ルイス酸の存在下で、環状シロキサン中のシラノール基とヒドロシランとが反応し、シリル化された有用な環状シロキサンを効率良く製造することができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted silanol groups in a cyclic siloxane with hydrosilane in the presence of a Lewis acid to efficiently produce a silylated useful cyclic siloxane. The present invention has been completed by finding that it can be manufactured well.

即ち、本発明は以下の通りである。
<1> ルイス酸の存在下、下記式(A)で表される構造を環の構成単位として含む環状シロキサンと下記式(B)で表されるヒドロシランを反応させて下記式(C)で表される
構造を環の構成単位として含む環状シロキサンを生成する修飾工程を含むことを特徴とする、環状シロキサンの製造方法。

Figure 2017145229
(式(A)〜(C)中、R1はそれぞれ独立して炭素数1〜12の炭化水素基を、R2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表す。)
<2> 前記ルイス酸が、ハロゲン化インジウム(InX3)である、請求項1に記載の環状シロキサンの製造方法。
<3> 下記式(C)で表される構造を環の構成単位として含む重合数3〜6の環状シロキサン。
Figure 2017145229
(式(C)中、R1はそれぞれ独立して炭素数1〜12の炭化水素基を、R2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表す。) That is, the present invention is as follows.
<1> In the presence of a Lewis acid, a cyclic siloxane containing a structure represented by the following formula (A) as a structural unit of the ring and a hydrosilane represented by the following formula (B) are reacted to represent the following formula (C). The manufacturing method of cyclic siloxane characterized by including the modification process which produces | generates cyclic siloxane which contains the structure made as a structural unit of a ring.
Figure 2017145229
(In formulas (A) to (C), each R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms, and each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. .)
<2> The method for producing a cyclic siloxane according to claim 1, wherein the Lewis acid is indium halide (InX 3 ).
<3> A cyclic siloxane having 3 to 6 polymerizations containing a structure represented by the following formula (C) as a structural unit of the ring.
Figure 2017145229
(In formula (C), each R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms, and each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.)

本発明によれば、有用な環状シロキサンを効率良く製造することができる。   According to the present invention, a useful cyclic siloxane can be produced efficiently.

本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。   In describing the present invention, specific examples will be described. However, the present invention is not limited to the following contents without departing from the gist of the present invention, and can be implemented with appropriate modifications.

<環状シロキサンの製造方法>
本発明の一態様である環状シロキサンの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、ルイス酸の存在下、下記式(A)で表される構造を環の構成単位として含む環状シロキサンと下記式(B)で表されるヒドロシランを反応させて下記式(C)で表される構造を環の構成単位として含む環状シロキサンを生成する修飾工程(以下、「修飾工程」と略す場合がある。)を含むことを特徴とする。

Figure 2017145229
(式(A)〜(C)中、R1はそれぞれ独立して炭素数1〜12の炭化水素基を、R2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表す。)
本発明者らは、シロキサン化合物、特に環状シロキサン中のシラノール基を簡易的に修飾し得る方法を求め鋭意検討を重ねた結果、ルイス酸の存在下で、環状シロキサン中のシラノール基とヒドロシランとが反応し、シリル化された有用な環状シロキサンを効率良く製造することができることを見出したのである。
以下、「式(A)で表される構造を環の構成単位として含む環状シロキサン」、「式(B)で表されるヒドロシラン」、「式(C)で表される構造を環の構成単位として含む環状シロキサン」等について詳細に説明する。 <Method for producing cyclic siloxane>
A method for producing a cyclic siloxane that is one embodiment of the present invention (hereinafter sometimes abbreviated as “the production method of the present invention”) includes a structure represented by the following formula (A) in the presence of a Lewis acid. A modification step (hereinafter referred to as “modification”) in which a cyclic siloxane containing as a structural unit is reacted with a hydrosilane represented by the following formula (B) to produce a cyclic siloxane containing a structure represented by the following formula (C) as a structural unit of the ring. It may be abbreviated as “process”.).
Figure 2017145229
(In formulas (A) to (C), each R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms, and each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. .)
The inventors of the present invention have intensively studied for a method for easily modifying a silanol group in a siloxane compound, particularly a cyclic siloxane. As a result, in the presence of a Lewis acid, the silanol group and the hydrosilane in the cyclic siloxane It has been found that it is possible to efficiently produce a useful silylated silylated cyclic siloxane.
Hereinafter, “cyclic siloxane containing a structure represented by formula (A) as a structural unit of ring”, “hydrosilane represented by formula (B)”, “structure represented by formula (C) as a structural unit of ring The cyclic siloxane contained as “and the like” will be described in detail.

式(A)で表される構造を環の構成単位として含む環状シロキサンは、式(A)で表される構造を少なくとも1つ含むものであれば、式(A)で表される構造以外の構造を環の構成単位を含むものであってもよく、また式(A)で表される構造の具体的種類とその数、重合数、幾何構造(cis、trans等)等も特に限定されず、目的とする環状シロキサンに応じて適宜選択されるべきである。

Figure 2017145229
1はそれぞれ独立して炭素数1〜12の炭化水素基を表しているが、「炭化水素基」とは、直鎖状の飽和炭化水素基に限られず、炭素−炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよいことを意味する。
1の炭化水素基の炭素数は、好ましくは10以下、より好ましくは6以下である。
1としては、メチル基(−CH3,−Me)、エチル基(−C25,−Et)、ビニル基(−CH=CH2)、n−プロピル基(−n37,−nPr)、i−プロピル基(−i37,−iPr)、アリル基(−CH2CH=CH2)、n−ブチル基(−n49,−nBu)、i−ブチル基(−i49,−iBu)、t−ブチル基(−t49,−tBu)、n−ペンチル基(−n511)、n−ヘキシル基(−n613,−nHex)、シクロヘキシル基(−c611,−Cy)、フェニル基(−C65,−Ph)、ナフチル基(−C107,−Naph)等が挙げられる。
式(A)で表される構造を環の構成単位として含む環状シロキサンの重合数は、通常3以上、好ましくは4以上であり、通常6以下、好ましくは5以下である。 The cyclic siloxane containing the structure represented by the formula (A) as a structural unit of the ring has a structure other than the structure represented by the formula (A) as long as it contains at least one structure represented by the formula (A). The structure may include a structural unit of a ring, and the specific type and number of the structure represented by the formula (A), the number of polymerizations, the geometric structure (cis, trans, etc.), etc. are not particularly limited. Should be appropriately selected according to the target cyclic siloxane.
Figure 2017145229
R 1 each independently represents a hydrocarbon group having 1 to 12 carbon atoms, but the “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, but is a carbon-carbon unsaturated bond, branched It means that each of the structure and the ring structure may be included.
The carbon number of the hydrocarbon group for R 1 is preferably 10 or less, more preferably 6 or less.
R 1 includes a methyl group (—CH 3 , —Me), an ethyl group (—C 2 H 5 , —Et), a vinyl group (—CH═CH 2 ), an n-propyl group ( —n C 3 H 7). , - n Pr), i- propyl (- i C 3 H 7, - i Pr), allyl (-CH 2 CH = CH 2) , n- butyl (- n C 4 H 9, - n Bu ), i-butyl group (- i C 4 H 9, - i Bu), t- butyl (- t C 4 H 9, - t Bu), n- pentyl (- n C 5 H 11) , n - hexyl group (- n C 6 H 13, - n Hex), cyclohexyl (- c C 6 H 11, -Cy), phenyl group (-C 6 H 5, -Ph) , a naphthyl group (-C 10 H 7 , -Naph) and the like.
The number of polymerizations of the cyclic siloxane containing the structure represented by the formula (A) as a ring structural unit is usually 3 or more, preferably 4 or more, and usually 6 or less, preferably 5 or less.

式(A)で表される構造を環の構成単位として含む環状シロキサンとしては、下記式で表されるものが挙げられる。

Figure 2017145229
Examples of the cyclic siloxane containing the structure represented by the formula (A) as a structural unit of the ring include those represented by the following formula.
Figure 2017145229

式(B)で表されるヒドロシランの具体的種類は、特に限定されず、目的とする環状シロキサンに応じて適宜選択されるべきである。なお、式(B)で表されるヒドロシランは、1種類に限られず、2種類以上を組み合せて使用してもよい。

Figure 2017145229
2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表しているが、「炭化水素基」とは、R1の場合と同義である。
2が炭化水素基である場合の炭素数は、好ましくは6以下、より好ましくは4以下である。
2としては、水素原子、メチル基(−CH3,−Me)、エチル基(−C25,−Et)、ビニル基(−CH=CH2)、n−プロピル基(−n37,−nPr)、i−プロピル基(−i37,−iPr)、アリル基(−CH2CH=CH2)、n−ブチル基(−n49,−nBu)、t−ブチル基(−t49,−tBu)、n−ペンチル基(−n511)、n−ヘキシル基(−n613,−nHex)、シクロヘキシル基(−c611,−Cy)、フェニル基(−C65,−Ph)、ナフチル基(−C107,−Naph)等が挙げられる。 The specific kind of hydrosilane represented by the formula (B) is not particularly limited, and should be appropriately selected according to the target cyclic siloxane. The hydrosilane represented by the formula (B) is not limited to one type, and two or more types may be used in combination.
Figure 2017145229
Each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, and the “hydrocarbon group” has the same meaning as in R 1 .
The carbon number in the case where R 2 is a hydrocarbon group is preferably 6 or less, more preferably 4 or less.
R 2 includes a hydrogen atom, a methyl group (—CH 3 , —Me), an ethyl group (—C 2 H 5 , —Et), a vinyl group (—CH═CH 2 ), an n-propyl group ( —n C). 3 H 7, - n Pr) , i- propyl (- i C 3 H 7, - i Pr), allyl (-CH 2 CH = CH 2) , n- butyl (- n C 4 H 9, - n Bu), t- butyl (- t C 4 H 9, - t Bu), n- pentyl (- n C 5 H 11) , n- hexyl group (- n C 6 H 13, - n Hex ), cyclohexyl (- c C 6 H 11, -Cy), phenyl group (-C 6 H 5, -Ph) , a naphthyl group (-C 10 H 7, -Naph), and the like.

式(B)で表されるヒドロシランとしては、下記式で表されるものが挙げられる。

Figure 2017145229
Examples of the hydrosilane represented by the formula (B) include those represented by the following formula.
Figure 2017145229

式(B)で表されるヒドロシランの使用量(仕込量)は、式(A)で表される構造を環の構成単位として含む環状シロキサンのシラノール基に対して物質量換算で、通常1倍以上、好ましくは1.1倍以上、より好ましくは1.15倍以上であり、通常2倍以下、好ましくは1.5倍以下、より好ましくは1.3倍以下である。上記範囲内であると、より効率良く環状シロキサンを製造することができる。   The amount (charge) of the hydrosilane represented by the formula (B) is usually 1 times as much as the amount of the silanol group of the cyclic siloxane containing the structure represented by the formula (A) as a structural unit of the ring. Above, preferably 1.1 times or more, more preferably 1.15 times or more, usually 2 times or less, preferably 1.5 times or less, more preferably 1.3 times or less. Within the above range, the cyclic siloxane can be produced more efficiently.

修飾工程は、ルイス酸の存在下、下記式(A)で表される構造を環の構成単位として含む環状シロキサンと下記式(B)で表されるヒドロシランを反応させて下記式(C)で表される構造を環の構成単位として含む環状シロキサンを生成する工程であるが、ルイス酸の具体的種類は特に限定されず、公知のものを適宜選択することができる。
ルイス酸としては、ハロゲン化インジウム(InX3)が好ましく、より具体的には三塩化インジウム(InCl3)、三臭化インジウム(InBr3)、三ヨウ化インジウム(InI3)が挙げられ、三塩化インジウムが特に好ましい。なお、ルイス酸は、1種類に限られず、2種類以上を組み合せて使用してもよい。
In the modification step, in the presence of a Lewis acid, a cyclic siloxane containing a structure represented by the following formula (A) as a structural unit of the ring and a hydrosilane represented by the following formula (B) are reacted to form the following formula (C): In this step, a cyclic siloxane containing the structure represented as a structural unit of the ring is generated. The specific type of Lewis acid is not particularly limited, and a known one can be appropriately selected.
The Lewis acid is preferably indium halide (InX 3 ), more specifically indium trichloride (InCl 3 ), indium tribromide (InBr 3 ), indium triiodide (InI 3 ), Indium chloride is particularly preferred. Note that the Lewis acid is not limited to one type, and two or more types may be used in combination.

修飾工程におけるルイス酸の使用量(仕込量)は、式(A)で表される構造を環の構成単位として含む環状シロキサンに対して、通常10mol%以上、好ましくは15mol%以上、より好ましくは20mol%以上であり、通常50mol%以下、好ましくは40mol%以下、より好ましくは30mol%以下である。上記範囲内であると、より効率良く環状シロキサンを製造することができる。   The use amount (charge amount) of the Lewis acid in the modification step is usually 10 mol% or more, preferably 15 mol% or more, more preferably, relative to the cyclic siloxane containing the structure represented by the formula (A) as a structural unit of the ring. It is 20 mol% or more, usually 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol% or less. Within the above range, the cyclic siloxane can be produced more efficiently.

修飾工程は、通常溶媒を使用するものである。溶媒の種類としては、アセトニトリル(CH3CN)等のニトリル系有機溶媒;クロロホルム(CHCl3)、塩化メチレン(CH2Cl2)等のハロゲン系有機溶媒;ジエチルエーテル(EtOEt)、テトラヒドロフラン(THF)等のエーテル系有機溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒等が挙げられる。これらの中でも、アセトニトリルが特に好ましい。 The modification step usually uses a solvent. Solvent types include nitrile organic solvents such as acetonitrile (CH 3 CN); halogen organic solvents such as chloroform (CHCl 3 ) and methylene chloride (CH 2 Cl 2 ); diethyl ether (EtOEt) and tetrahydrofuran (THF). And ether-based organic solvents such as toluene; aromatic hydrocarbon solvents such as toluene and xylene. Among these, acetonitrile is particularly preferable.

修飾工程における反応温度、反応時間等の反応条件は、特に限定されず、目的に応じて適宜選択することができる。
反応温度は、通常24℃以上、好ましくは80℃以上であり、通常100℃以下、好ましくは90℃以下である。上記範囲内であれば、有機ケイ素化合物をより収率良く製造することができる。
反応時間は、通常1時間以上、好ましくは1.5時間以上であり、通常4時間以下、好ましくは3時間以下である。
雰囲気ガスは、空気であっても、或いは窒素(N2)、アルゴン(Ar)等の不活性ガスであってもよいが、不活性ガスを使用することが特に好ましい。
Reaction conditions such as reaction temperature and reaction time in the modification step are not particularly limited and can be appropriately selected depending on the purpose.
The reaction temperature is usually 24 ° C. or higher, preferably 80 ° C. or higher, and is usually 100 ° C. or lower, preferably 90 ° C. or lower. If it is in the said range, an organosilicon compound can be manufactured with a sufficient yield.
The reaction time is usually 1 hour or longer, preferably 1.5 hours or longer, usually 4 hours or shorter, preferably 3 hours or shorter.
The atmospheric gas may be air or an inert gas such as nitrogen (N 2 ) or argon (Ar), but it is particularly preferable to use an inert gas.

式(C)で表される構造を環の構成単位として含む環状シロキサンは、式(C)で表される構造を少なくとも1つ含むものであればよく、式(A)で表される構造を環の構成単
位として含む環状シロキサンのシラノール基の全てが修飾されていなくてもよい。

Figure 2017145229
式(C)で表される構造を環の構成単位として含む環状シロキサンとしては、下記式で表されるものが挙げられる。
Figure 2017145229
The cyclic siloxane containing the structure represented by the formula (C) as a structural unit of the ring only needs to contain at least one structure represented by the formula (C), and has a structure represented by the formula (A). All of the silanol groups of the cyclic siloxane contained as a ring structural unit may not be modified.
Figure 2017145229
Examples of the cyclic siloxane containing the structure represented by the formula (C) as a ring structural unit include those represented by the following formula.
Figure 2017145229

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention can be modified as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

<実施例1>
アルゴン雰囲気下、撹拌子を収めた50mL二口ナスフラスコにInCl3(74mg,0.33mmol)、MeCN(8mL)、Et3SiH(780μL,4.89mmol)を加え、攪拌させた後、i−ブチル基を有するT4のシルセスキオキサン(i−BuT4OH,472mg,1.00mmol)を加え、加熱還流を2時間行った。反応終了後、減圧下で溶媒を除いた後、ヘキサンを加えCelite(登録商標)ろ過を行ってInCl3を取り除き、ロータリーエバポレーターにて溶媒を留去して、目的物を異性体混合物として得た(収量:888mg,収率:97%)。

Figure 2017145229
<Example 1>
In an argon atmosphere, InCl 3 (74 mg, 0.33 mmol), MeCN (8 mL), Et 3 SiH (780 μL, 4.89 mmol) were added to a 50 mL two-necked eggplant flask containing a stirrer and stirred. T 4 silsesquioxane (i-BuT 4 OH, 472 mg, 1.00 mmol) having a butyl group was added, and the mixture was heated to reflux for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure, hexane was added, Celite (registered trademark) filtration was performed to remove InCl 3, and the solvent was distilled off with a rotary evaporator to obtain the desired product as an isomer mixture. (Yield: 888 mg, yield: 97%).
Figure 2017145229

本発明の製造方法によって製造された環状シロキサンは、高耐熱性材料、耐紫外線材料、低誘電率材料、等として利用することができる。   The cyclic siloxane produced by the production method of the present invention can be used as a high heat resistant material, an ultraviolet resistant material, a low dielectric constant material, and the like.

Claims (3)

ルイス酸の存在下、下記式(A)で表される構造を環の構成単位として含む環状シロキサンと下記式(B)で表されるヒドロシランを反応させて下記式(C)で表される構造を環の構成単位として含む環状シロキサンを生成する修飾工程を含むことを特徴とする、環状シロキサンの製造方法。
Figure 2017145229
(式(A)〜(C)中、R1はそれぞれ独立して炭素数1〜12の炭化水素基を、R2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表す。)
A structure represented by the following formula (C) by reacting a cyclic siloxane containing a structure represented by the following formula (A) as a ring structural unit with a hydrosilane represented by the following formula (B) in the presence of a Lewis acid. The manufacturing method of cyclic siloxane characterized by including the modification process which produces | generates cyclic siloxane which contains as a structural unit of a ring.
Figure 2017145229
(In formulas (A) to (C), each R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms, and each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. .)
前記ルイス酸が、ハロゲン化インジウム(InX3)である、請求項1に記載の環状シロキサンの製造方法。 The method for producing a cyclic siloxane according to claim 1, wherein the Lewis acid is indium halide (InX 3 ). 下記式(C)で表される構造を環の構成単位として含む重合数3〜6の環状シロキサン。
Figure 2017145229
(式(C)中、R1はそれぞれ独立して炭素数1〜12の炭化水素基を、R2はそれぞれ独立して水素原子又は炭素数1〜12の炭化水素基を表す。)
A cyclic siloxane having a polymerization number of 3 to 6, comprising a structure represented by the following formula (C) as a structural unit of the ring.
Figure 2017145229
(In formula (C), each R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms, and each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.)
JP2016030294A 2016-02-19 2016-02-19 Manufacturing method of cyclic siloxane using lewis acid Pending JP2017145229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016030294A JP2017145229A (en) 2016-02-19 2016-02-19 Manufacturing method of cyclic siloxane using lewis acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030294A JP2017145229A (en) 2016-02-19 2016-02-19 Manufacturing method of cyclic siloxane using lewis acid

Publications (1)

Publication Number Publication Date
JP2017145229A true JP2017145229A (en) 2017-08-24

Family

ID=59680619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030294A Pending JP2017145229A (en) 2016-02-19 2016-02-19 Manufacturing method of cyclic siloxane using lewis acid

Country Status (1)

Country Link
JP (1) JP2017145229A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853622A (en) * 1994-06-07 1996-02-27 Shin Etsu Chem Co Ltd Silicone gel composition
JP2005023075A (en) * 2003-06-30 2005-01-27 Samsung Electronics Co Ltd Polyfunctional cyclic siloxane compound, siloxane-based polymer produced from the same and method for producing insulation film by using the polymer
JP2009263316A (en) * 2008-04-30 2009-11-12 Konishi Kagaku Ind Co Ltd Method for producing incompletely condensed oligosilsesquioxane
WO2012144481A1 (en) * 2011-04-20 2012-10-26 セントラル硝子株式会社 Siloxane compound and cured product thereof
WO2014038356A1 (en) * 2012-09-05 2014-03-13 トヨタ自動車株式会社 Lithium secondary battery and production method for same
CN104610546A (en) * 2013-11-04 2015-05-13 上海华明高技术(集团)有限公司 Preparation method of annular reticular silicon resin
JP2015196672A (en) * 2014-04-02 2015-11-09 国立研究開発法人産業技術総合研究所 Method of producing siloxane compound
WO2016001154A1 (en) * 2014-07-01 2016-01-07 Wacker Chemie Ag Method for producing siloxanes from alkali salts of silanols
CN105294750A (en) * 2015-11-11 2016-02-03 上海交通大学 Synthetic method of hexamine phenyl large ring oligomerization silsesquioxane
WO2017141796A1 (en) * 2016-02-15 2017-08-24 国立研究開発法人産業技術総合研究所 Siloxane and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853622A (en) * 1994-06-07 1996-02-27 Shin Etsu Chem Co Ltd Silicone gel composition
JP2005023075A (en) * 2003-06-30 2005-01-27 Samsung Electronics Co Ltd Polyfunctional cyclic siloxane compound, siloxane-based polymer produced from the same and method for producing insulation film by using the polymer
JP2009263316A (en) * 2008-04-30 2009-11-12 Konishi Kagaku Ind Co Ltd Method for producing incompletely condensed oligosilsesquioxane
WO2012144481A1 (en) * 2011-04-20 2012-10-26 セントラル硝子株式会社 Siloxane compound and cured product thereof
WO2014038356A1 (en) * 2012-09-05 2014-03-13 トヨタ自動車株式会社 Lithium secondary battery and production method for same
CN104610546A (en) * 2013-11-04 2015-05-13 上海华明高技术(集团)有限公司 Preparation method of annular reticular silicon resin
JP2015196672A (en) * 2014-04-02 2015-11-09 国立研究開発法人産業技術総合研究所 Method of producing siloxane compound
WO2016001154A1 (en) * 2014-07-01 2016-01-07 Wacker Chemie Ag Method for producing siloxanes from alkali salts of silanols
CN105294750A (en) * 2015-11-11 2016-02-03 上海交通大学 Synthetic method of hexamine phenyl large ring oligomerization silsesquioxane
WO2017141796A1 (en) * 2016-02-15 2017-08-24 国立研究開発法人産業技術総合研究所 Siloxane and method for producing same

Similar Documents

Publication Publication Date Title
EP1208105B1 (en) Process for the formation of polyhedral oligomeric silsesquioxanes
JP2019500309A (en) High purity trisilylamine, process for its production and use
JP6621226B2 (en) Siloxane and production method thereof
JP2000154252A (en) Novel silsequioxane-containing polymer and its production
JP6311983B2 (en) Method for producing siloxane compound
JPH0791308B2 (en) Trialkylsilylmethyl group-containing silane compound
JPS6340194B2 (en)
WO2018051792A1 (en) Process for producing polysiloxane-structure-containing compound, and polymer composition
JP2017145229A (en) Manufacturing method of cyclic siloxane using lewis acid
JP2000103859A (en) Production of epoxy-group-containing organopolysiloxane or epoxy-group-containing organosilane
JP2718620B2 (en) Method for producing polyorganosilane
JP6292552B2 (en) Method for producing siloxane compound
CN102066387A (en) Novel 1,4-disilacyclohexane derivatives and preparation method thereof
JP2016155771A (en) Bissilylethane compound having siloxy group and method for producing the same
US9284340B2 (en) Oxasilacycles and method for the production thereof
JP4603635B2 (en) Process for producing organosiloxane from dihalosilane
JP7219434B2 (en) Method for producing cyclic siloxane compound, cyclic siloxane compound, composition, and heat-resistant material
CN111032666A (en) Method for producing silsesquioxane compound
WO2017065311A1 (en) Cage-type silsesquioxane having four each different substituents facing each other
JP4603634B2 (en) Process for producing organosiloxane from trihalosilane
JP6844384B2 (en) Liquid silicon compound and its manufacturing method
RU2565675C1 (en) Method of producing methylbenzyl alkoxysilanes
JP2718617B2 (en) Method for producing polyorganosilane
JP4276805B2 (en) Novel silazane compound and method for producing the same, and novel silazane compound polymer and method for producing the same
JP4603636B2 (en) Process for producing organosiloxane from monohalosilane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630