JP2017133419A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017133419A
JP2017133419A JP2016013822A JP2016013822A JP2017133419A JP 2017133419 A JP2017133419 A JP 2017133419A JP 2016013822 A JP2016013822 A JP 2016013822A JP 2016013822 A JP2016013822 A JP 2016013822A JP 2017133419 A JP2017133419 A JP 2017133419A
Authority
JP
Japan
Prior art keywords
crank angle
fuel
pressure
pulsation
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016013822A
Other languages
English (en)
Other versions
JP6281579B2 (ja
Inventor
倫太郎 橘
rintaro Tachibana
倫太郎 橘
享 須田
Susumu Suda
享 須田
井戸側 正直
Masanao Idogawa
正直 井戸側
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016013822A priority Critical patent/JP6281579B2/ja
Priority to US15/408,928 priority patent/US9938923B2/en
Priority to CN201710060121.9A priority patent/CN107013353B/zh
Priority to EP17152761.7A priority patent/EP3203057B1/en
Publication of JP2017133419A publication Critical patent/JP2017133419A/ja
Application granted granted Critical
Publication of JP6281579B2 publication Critical patent/JP6281579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】高圧ポンプに起因して低圧燃料通路に燃圧脈動が生じた場合であっても、ポート噴射弁の燃料噴射量を精度よく制御できる内燃機関の制御装置を提供することを課題とする。【解決手段】内燃機関の制御装置は、任意のクランク角範囲でポート噴射弁が仮に燃料噴射した場合での仮噴射量を算出でき、脈動をモデル化した式を含む式を記憶した記憶部と、開始クランク角及び終了クランク角の一方と式に基づいて、脈動の初期位相に対応した基準クランク角から終了クランク角までの仮噴射量から、基準クランク角から開始クランク角までの仮噴射量を減算した値が、要求噴射量に等しいとみなした場合での、開始クランク角及び終了クランク角の他方を算出する算出部と、を備えている。【選択図】図4

Description

本発明は、内燃機関の制御装置に関する。
筒内噴射弁とポート噴射弁とを備えた内燃機関が知られている。このような内燃機関では、低圧ポンプにより吸い上げられた燃料が低圧燃料通路を介してポート噴射弁に供給され、高圧ポンプにより更に加圧された燃料が高圧燃料通路を介して筒内噴射弁に供給される。このような構成においては、ポート噴射弁に供給される燃料の圧力を検出する燃圧センサの検出値に基づいて、ポート噴射弁の燃料噴射量が制御される。
ここで特許文献1では、ポート噴射弁の燃料噴射量を更に精度よく制御するために、上記の燃圧と吸気通路内の圧力との差圧に基づいて、燃料噴射量を補正することが開示されている。
特開平7−208236号公報
ここで上記構成においては、主に高圧ポンプの駆動に起因して、低圧燃料通路内で燃圧が脈動する場合がある。このような脈動の発生中では、燃圧が短期間で変動するため、燃圧センサの検出値が取得されてから燃料噴射が実行されるまでの間に実際の燃圧が変化し、また噴射中にも実際の燃圧が変化する可能性がある。特許文献1の技術では、このような脈動は考慮せずに燃料噴射量が補正されるため、脈動が生じた場合には、ポート噴射弁の燃料噴射量を精度よく制御できない可能性がある。
そこで本発明は、高圧ポンプに起因して低圧燃料通路に燃圧脈動が生じた場合であっても、ポート噴射弁の燃料噴射量を精度よく制御できる内燃機関の制御装置を提供することを目的とする。
上記目的は、内燃機関の気筒内に燃料を直接噴射する筒内噴射弁と、前記内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、燃料を加圧する低圧ポンプと、前記低圧ポンプにより加圧された燃料を複数の前記ポート噴射弁に供給する低圧燃料通路と、前記内燃機関に連動して駆動され、前記低圧燃料通路から供給された燃料を更に加圧し、前記低圧燃料通路内に燃圧の脈動を発生させる高圧ポンプと、前記低圧燃料通路から分岐し、前記高圧ポンプにより加圧された燃料を複数の前記筒内噴射弁に供給する高圧燃料通路と、前記内燃機関のクランク角を検出するクランク角センサと、前記内燃機関の状態に基づいて、前記ポート噴射弁に要求される要求噴射量を算出する要求噴射量算出部と、前記ポート噴射弁の燃料噴射の開始予定タイミング及び終了予定タイミングにそれぞれ対応したクランク角である、開始クランク角及び終了クランク角の一方を取得する取得部と、前記脈動をモデル化した式(1)を含み、任意のクランク角範囲で前記ポート噴射弁が仮に燃料噴射した場合での仮噴射量を算出できる式(2)を記憶した記憶部と、取得された前記開始クランク角及び終了クランク角の前記一方と前記式(2)に基づいて、前記脈動の初期位相に対応した基準クランク角から前記終了クランク角までの仮噴射量から、前記基準クランク角から前記開始クランク角までの仮噴射量を減算した値が、前記要求噴射量に等しいとみなした場合での、前記開始クランク角及び終了クランク角の他方を算出する算出部と、前記開始クランク角から前記終了クランク角までのクランク角範囲を目標通電期間に換算する目標通電期間換算部と、前記ポート噴射弁を前記目標通電期間だけ通電することにより燃料噴射を実行する噴射制御部と、を備えた内燃機関の制御装置によって達成できる。
Figure 2017133419
Figure 2017133419
但し、θ[deg]はクランク角、P(θ)[kPa]はクランク角θ[deg]に対応した燃圧値、A[kPa]は前記脈動の振幅、cはクランク角360度当たりの前記高圧ポンプによる燃料の吐出回数、B[deg]は前記脈動の初期位相、P[kPa]は前記脈動の中心燃圧値、Q[mL]は前記仮噴射量、k[mL・min−1・kPa−0.5]は定数、Ne[rpm]は前記内燃機関の回転数である。
開始クランク角及び終了クランク角の他方は、脈動をモデル化した式(1)を含む式(2)に基づいて算出されるため、精度よく算出される。これにより、目標通電期間を精度よく算出でき、脈動が生じている場合であっても燃料噴射量を精度よく制御できる。
尚、上記構成は以下のような効果も奏する。開始クランク角及び終了クランク角の他方の算出には、開始クランク角から終了クランク角までの仮噴射量ではなく、基準クランク角から終了クランク角までの仮噴射量と、基準クランク角から開始クランク角までの仮噴射量とが用いられる。ここで、基準クランク角は初期位相に対応したクランク角であるため、基準クランク角での燃圧値は式(1)により簡易に表すことができる。従って、上記の2つの仮噴射量は簡易に表すことができる。これにより、開始クランク角及び終了クランク角の他方を算出するための算出部の処理負荷の増大が抑制される。
上記構成において、前記低圧燃料通路内の燃圧を検出する燃圧センサと、前記燃圧センサの検出値を一定のサンプリング時間間隔で取得する検出値取得部と、前記開始クランク角が、今回取得された検出値の取得された時点でのクランク角と次回の検出値が取得される予定の時点でのクランク角との間にあるか否かを判定する噴射開始判定部と、を備え、前記算出部は、前記噴射開始判定部で肯定判定がなされた場合に、前記他方を算出してもよい。
上記構成において、前記低圧燃料通路内の燃圧を検出する燃圧センサと、前記燃圧センサの検出値を一定のサンプリング時間間隔で取得する検出値取得部と、少なくとも前々回、前回、及び今回取得された前記検出値に基づいて、前記P、前記A、及び前記Bを算出するモデル算出部と、前記cが記憶されている吐出回数記憶部と、を備えてもよい。
前記モデル算出部は、前回及び今回取得された前記検出値と、前記サンプリング時間間隔に対応するクランク角とに基づいて、前記Aを算出してもよい。
前記モデル算出部は、前回及び今回取得された前記検出値の一方と、前記一方が取得された時点でのクランク角と、前記cと、算出された前記Aと、算出された前記Pとに基づいて、前記Bを算出してもよい。
上記構成において、前記クランク角センサの出力に基づいて算出される前記内燃機関の回転数が、前記内燃機関の他の回転数域よりも前記脈動が増大する脈動増大域内に属するか否かを判定する脈動判定部を備え、前記算出部は、前記脈動判定部で肯定判定がなされた場合に、前記他方を算出してもよい。
本発明によれば、高圧ポンプに起因して低圧燃料通路に燃圧脈動が生じた場合であっても、ポート噴射弁の燃料噴射量を精度よく制御できる内燃機関の制御装置を提供できる。
図1は、本実施例の制御装置の概略構成図である。 図2は、燃圧の波形図である。 図3は、燃圧脈動の波形とポート噴射弁による噴射期間の一例を示したグラフである。 図4(A)は、ECUが取得した複数の検出値を示したグラフであり、図4(B)は、モデル化された燃圧脈動を示したグラフである。 図5は、ポート噴射制御の一例を示すフローチャートである。 図6は、目標通電期間算出処理の一例を示したフローチャートである。 図7(A)〜7(C)は、燃圧波形と要求噴射量と仮噴射量とを示したグラフである。
以下、本発明の好ましい実施例について、図面を参照しつつ説明する。
図1は、本実施例の制御装置1の概略構成図である。制御装置1は、エンジン10と、エンジン10を制御するECU(Electronic Control Unit)41とを含む。エンジン10は、直列に配置された気筒111〜114を含む気筒群11、筒内噴射弁群37、及びポート噴射弁群27を備えた火花点火式の直列4気筒エンジンである。エンジン10は内燃機関の一例である。制御装置1は内燃機関の制御装置の一例である。
筒内噴射弁群37は、気筒111〜114内にそれぞれ燃料を噴射する筒内噴射弁371〜374を含む。ポート噴射弁群27は、気筒111〜114に連通した吸気ポート13内にそれぞれ燃料を噴射するポート噴射弁271〜274を含む。筒内噴射弁群37及びポート噴射弁群27のそれぞれは、所定の通電期間で電磁コイルを通電して弁座から弁体を離隔させることにより燃料噴射量が調整される電磁駆動式の開閉弁である。
エンジン10には、気筒群11のそれぞれ対応する複数の吸気ポート13を有する吸気通路12と、不図示の複数の排気ポートを有する排気通路とが形成されている。気筒群11のそれぞれでは、不図示のピストンが収納されて燃焼室が画定される。燃焼室は、吸気弁及び排気弁により開閉される。更にエンジン10には、図示しない点火プラグを備えている。また、エンジン10は、複数のピストンに連動したクランク軸14と、クランク軸14に連動し吸気弁又は排気弁を駆動するカム軸15とを備えている。また、クランク軸14の回転角を検出するクランク角センサ14aが設けられている。クランク角センサ14aによるクランク角検知の分解能は、例えば1度程度の高分解能であることが好ましいが、これに限定されない。
また、制御装置1は、燃料タンク21、低圧ポンプ22、プレッシャレギュレータ23、低圧燃料配管25、低圧デリバリパイプ26、及び燃圧センサ28を含む。
燃料タンク21には、燃料であるガソリンが貯留されている。低圧ポンプ22は、燃料を加圧して低圧燃料配管25内に吐出する。プレッシャレギュレータ23は、低圧燃料配管25内に吐出される燃料を予め設定された低圧側の供給圧に調圧する。
低圧燃料配管25及び低圧デリバリパイプ26は、低圧ポンプ22から吐出された燃料をポート噴射弁群27に供給する低圧燃料通路の一例である。低圧ポンプ22により所定の圧力レベルまで加圧されプレッシャレギュレータ23により低圧側の供給圧に調圧された燃料は、低圧燃料配管25を介して低圧デリバリパイプ26に導入される。
ポート噴射弁群27は、低圧デリバリパイプ26に接続されており、気筒群11にそれぞれ対応した吸気ポート13内に燃料を噴射する。燃圧センサ28は、詳しくは後述するが、低圧デリバリパイプ26内の燃圧値を検出する。燃圧センサ28の検出値は、一定のサンプリング時間間隔でECU41に取得される。
また、制御装置1は、高圧ポンプ31、高圧燃料配管35、高圧デリバリパイプ36、及び燃圧センサ38を含む。
高圧ポンプ31は、低圧燃料配管25から分岐した分岐配管25aから燃料を吸入して、低圧ポンプ22からの供給圧レベルより高圧の高圧レベルに加圧する。分岐配管25aには、分岐配管25a内の燃圧脈動を抑制するパルセーションダンパ29が設けられている。
高圧ポンプ31は、具体的には、ポンプハウジング31hと、ポンプハウジング31h内を摺動可能なプランジャ31pと、ポンプハウジング31h及びプランジャ31p間で画定される加圧室31aとを含む。加圧室31aの容積は、プランジャ31pの変位に応じて変化する。加圧室31aには、後述する電磁弁32が開いた状態で、低圧ポンプ22により加圧された燃料が分岐配管25aを介して導入される。加圧室31a内の燃料は、プランジャ31pにより高圧に加圧されて高圧燃料配管35内に吐出される。
エンジン10のカム軸15には、プランジャ31pを駆動するカムCPが装着されている。カムCPの形状は、角が丸められた略正方形である。また、高圧ポンプ31は、カムCPにより昇降されるフォロアリフタ31fと、フォロアリフタ31fをカムCP側に付勢するスプリング31gとを有している。フォロアリフタ31fにプランジャ31pが連動し、フォロアリフタ31fと共にプランジャ31pも昇降する。カム軸15は、チェーン又はベルトを介してクランク軸14に連動している。カム軸15及びカムCPは、クランク軸14の回転速度に対し1/2の回転速度で駆動される。
高圧ポンプ31の加圧室31aの燃料導入口部には、電磁弁32が設けられている。電磁弁32は、弁体32vと、弁体32vを駆動するコイル32cと、弁体32vを常に開方向に付勢するスプリング32kとを有している。コイル32cへの通電は、ECU41によりドライバ回路42を介して制御される。コイル32cが通電されると、弁体32vは、スプリング32kの付勢力に抗して低圧燃料配管25の分岐配管25aと加圧室31aとを遮断する。コイル32cが非通電の状態では、弁体32vは、スプリング32kの付勢力により開状態が維持される。
高圧ポンプ31と筒内噴射弁群37との間の高圧燃料配管35には、ばね付の逆止弁34が設けられている。逆止弁34は、高圧ポンプ31内の燃圧が高圧燃料配管35内の燃圧より所定の分だけ高くなったときに開く。
高圧ポンプ31の吸入行程では、電磁弁32が開きプランジャ31pが下降して、燃料が低圧燃料配管25の分岐配管25aから加圧室31aに充填される。加圧行程では、電磁弁32が閉じプランジャ31pの上昇に伴い加圧室31aの容積が減少し、加圧室31a内の燃料が昇圧される。吐出行程では、加圧室31a内の燃圧による力が逆止弁34のばねの付勢力より大きくなったときに逆止弁34が開き、昇圧された燃料が高圧燃料配管35及び高圧デリバリパイプ36へ供給される。上述したようにプランジャ31pの昇降は、カムCPの回転により実現され、カムCPはカム軸15を介してクランク軸14に連動しているため、高圧ポンプ31はクランク軸14に連動して駆動される。
尚、ここでは電磁弁32は非通電で開いた状態となるが、これに限定されない。例えば電磁弁32は、コイル32c及びスプリング32kの付勢方向をそれぞれ逆向きにして、非通電で閉じた状態となるものであってもよい。この場合、燃料の吸入行程でコイル32cが通電され、加圧及び吐出行程で非通電になる。
高圧デリバリパイプ36には、高圧ポンプ31により加圧された高圧の燃料が高圧燃料配管35を介して蓄圧されている。高圧燃料配管35及び高圧デリバリパイプ36は、高圧ポンプ31から筒内噴射弁371〜374に高圧の燃料を供給する高圧燃料通路の一例である。
筒内噴射弁群37は、高圧デリバリパイプ36内から気筒111〜114のそれぞれの内部に所定の順序で高圧燃料を直接に噴射する。燃圧センサ38は、高圧デリバリパイプ36内の燃圧を検出し、燃圧センサ38の検出値は、一定のサンプリング時間間隔でECU41により取得される。
ECU41は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)を含む。ECU41は、ROM内に予め格納された制御プログラムに従って、センサからの情報や予めROMに格納されている情報等に基づいて、後述するポート噴射制御を実行する。この制御は、CPU、ROM、及びRAMにより機能的に実現される、要求噴射量算出部、取得部、記憶部、算出部、目標通電期間換算部、噴射制御部、検出値取得部、モデル算出部、吐出回数記憶部、脈動判定部、及び噴射開始判定部により実行される。詳しくは後述する。
ECU41は、エンジン10の運転状態に基づいて、ポート噴射弁群27へのそれぞれに要求される燃料の要求噴射量を算出する。更にECU41は、要求噴射量に対応するポート噴射弁群27への各通電期間を算出して、所定のクランク角間隔でポート噴射弁群27のそれぞれが所定の順に、算出された通電期間だけ通電する。これにより、要求噴射量に対応した噴射量でポート噴射が実現される。筒内噴射弁群37も同様である。
これらの各燃料噴射弁の開弁期間は、燃料噴射弁の電磁コイルへの通電期間に比例する。従って、ECU41は、燃圧センサ28の検出値に基づいて、要求噴射量に応じたポート噴射弁群27の各通電期間を算出する。同様に、ECU41は、燃圧センサ38の検出値に基づいて、要求噴射量に応じた筒内噴射弁群37の各通電期間を算出する。ECU41は、算出された通電期間に従って、ドライバ回路42に指令を出す。ドライバ回路42は、ECU41からの指令に従って、ポート噴射弁群27及び筒内噴射弁群37のそれぞれを算出された通電期間だけ通電する。このようにして、各燃料噴射弁の燃料噴射量が制御されている。
次に、高圧ポンプ31に起因して発生する燃圧脈動について説明する。図2は、燃圧の波形図である。縦軸は燃圧、横軸はエンジン回転数を示す。図2に示すように、エンジン回転数域には、低圧燃料配管25及び低圧デリバリパイプ26内で燃圧脈動の振幅が他の域よりも増大する脈動増大域が含まれる。脈動増大域は、例えばエンジン回転数が800〜1400rpmまでであるが、これに限定されない。
このように燃圧脈動の振幅が増大する理由は以下のようなものが考えられる。エンジン回転数の所定の領域では、筒内噴射弁群37は用いられずポート噴射弁群27による燃料噴射が実施される。その間では、筒内噴射弁群37は用いられないため電磁弁32が開状態に維持されつつ、プランジャ31pはエンジン10の動力により昇降を繰り返す。このため、低圧燃料配管25及び加圧室31a間で燃料の吸入及び吐出が繰り返され、これにより脈動の振幅が増大して、低圧デリバリパイプ26にまで伝播するからである。また、このような燃圧脈動の振動数とパルセーションダンパ29の固有振動数とが一致して共振すると、燃圧脈動の振幅が更に増大するからである。
図3は、燃圧脈動の波形とポート噴射弁による通電期間の一例を示したグラフである。縦軸は燃圧、横軸は時間を示す。図3は、エンジン回転数が上述した脈動増大域に属した状態での脈動の波形を示している。ここで燃圧値PAは、通電中、即ち、ポート噴射期間中での実際の燃圧値であり、検出値PSは、ECU41が取得した燃圧センサ28の検出値である。一般的に、ポート噴射の開始前に取得された検出値PSに基づいて、ポート噴射の通電期間が算出されてポート噴射量が制御される。この理由は、ECU41は、ポート噴射が開始タイミングに至る前に、取得した燃圧センサ28の検出値に基づいて通電期間の算出を完了しておく必要があるからである。また、ECU41は燃圧センサ28の検出値を一定のサンプリング時間間隔でしか取得できないからである。しかしながら、エンジン回転数が上述した脈動増大域に属している場合には燃圧が短時間で変動し、また噴射中であっても変動するため、図3に示すように検出値PSと燃圧値PAとの差が大きくなる場合がある。このため、検出値PSに基づいて通電期間を算出すると、精度よくポート噴射量を制御できない可能性がある。
本実施例では、ECU41は、後述するモデル式を含む算出式に基づいて、ポート噴射弁の目標通電期間を算出する。これにより、燃圧脈動が発生している場合であっても、ポート噴射弁群27の各噴射量を精度よく制御できる。最初にモデル式について説明する。尚、以下の説明において、特段の断りがない限り、「検出値」は、燃圧センサ28の検出値を意味する。
上述したように、ECU41は、一定のサンプリング時間間隔で検出値を取得する。図4Aは、ECU41が取得した複数の検出値を示したグラフである。図4Bは、複数の検出値に基づいてモデル化された脈動を示したグラフである。図4A及び図4Bでは、縦軸は燃圧であり横軸はクランク角である。脈動のモデル式は、以下のように表される。
Figure 2017133419
ここで、θ[deg]はクランク角である。P(θ)[kPa]は、クランク角θに対応した燃圧値である。A[kPa]は、脈動の振幅である。B[deg]は、脈動の初期位相である。cは、クランク角360度当たりの高圧ポンプ31の燃料の吐出回数であり、換言すれば、クランク角360度当たりの脈動の振動数である。P[kPa]は、脈動の中心燃圧値である。中心燃圧値Pは、振幅Aの中心値である。初期位相Bは、クランク角θがゼロ度に最も近くて振幅Aが極大値をとる際のクランク角である。尚、クランク角θがゼロ度になる時は、気筒111のピストンが圧縮行程の上死点に位置する時である。
このように燃圧脈動を、三角関数を用いた式によりモデル化できる理由は、上述したように脈動は高圧ポンプ31のカムCPの回転に起因して周期的に変化するものだからである。ここで、中心燃圧値P、振幅A、及び初期位相Bについては、詳しくは後述するが、燃圧センサ28の検出値等に基づいてECU41により算出される。
吐出回数cについては、ECU41のROMに予め記憶されている。ここで吐出回数cは、高圧ポンプ31のカムCPの形状により定まる。本実施例の場合、カムCPの形状は角が丸められた略正方形である。このため、クランク角360度当たりにカムCPは180度回転して2回燃料を吐出する。従って本実施例では、吐出回数cは2である。ECU41のROMは、クランク角360度当たりの高圧ポンプCPによる燃料の吐出回数cが記憶されている吐出回数記憶部の一例である。尚、角が丸められた略正三角形のカムの場合は、クランク角360度当たりにカムは180度回転し、吐出回数cは1.5である。略楕円形のカムの場合は、クランク角360度当たりの吐出回数cは1である。
次に、ポート噴射制御について説明する。図5は、ポート噴射制御の一例を示すフローチャートである。尚、以降の説明において、「前々回値」、「前回値」、及び「今回値」とは、それぞれ、ECU41が前々回、前回、及び今回それぞれ取得した燃圧センサ28の検出値を意味する。また、「次回値」とは、ECU41が次回に取得予定の燃圧センサ28の検出値を意味する。
ECU41は、クランク角センサ14aに基づいて算出したエンジン回転数[rpm]が所定の閾値未満であるか否かを判定する(ステップS1)。ここで閾値は、ポート噴射が要求され得るエンジン回転数の上限に規定されており、上述した脈動増大域でのエンジン回転数よりも大きい値に設定されている。否定判定の場合には、ポート噴射は実行されないとして本制御は終了する。
ステップS1で肯定判定の場合、ECU41は所定数の検出値を取得してRAMに記憶させる(ステップS2)。RAMに既に取得された所定数の検出値が記憶されている場合には、新たに取得された検出値から順に更新される。所定数とは、詳しくは後述するが、中心燃圧値Pの算出に必要となる検出値の数である。また、ステップS2の処理は、振幅A及び初期位相Bの算出のためにも実行される。ステップS2で取得されて記憶される検出値には、少なくとも2つの直近の検出値である前回値及び今回値が含まれる。ステップS2の処理は、燃圧センサ28の検出値を一定のサンプリング時間間隔で取得する取得部が実行する処理の一例である。
次に、ECU41は、ステップS2でRAMに記憶された、少なくとも前回値及び今回値に基づいて脈動の中心燃圧値Pを算出する中心燃圧算出処理を実行する(ステップS3)。従って、エンジン回転数が上述した脈動増大域に属さない場合であっても、中心燃圧算出処理が実行される。エンジン回転数が脈動増大域に属した場合に、直ちにモデル式(3)の各項を算出できるようにするためである。ステップS3の処理、及び後述するステップS11及び12の処理は、少なくとも前回及び今回取得された検出値に基づいて、中心燃圧値P、振幅A、及び初期位相Bを算出するモデル算出部が実行する処理の一例である。詳しくは後述する。
エンジン10の運転状態、具体的にはエンジン回転数や、吸入空気量、アクセル開度等に基づいてポート噴射弁群27のそれぞれに要求される燃料の要求噴射量Q[mL]を算出する(ステップS4)。ステップS4の処理は、エンジン10の状態に基づいて、ポート噴射弁群27のそれぞれに要求される要求噴射量Qを算出する要求噴射量算出部が実行する処理の一例である。
次に、次回噴射予定のポート噴射弁の噴射の開始が予定されている開始クランク角θを取得する(ステップS5)。開始クランク角θは、エンジン10の運転状態に応じて設定され、RAMに記憶されている。また、開始クランク角θは、ポート噴射弁271〜274毎に異なっている。
次にECU41は、エンジン回転数が上述した脈動増大域に属するか否かを判定する(ステップS6)。脈動増大域は、予め実験により算出されROMに記憶されている。ステップS6の処理は、クランク角センサ14aの出力に基づいて算出されるエンジン回転数が、他の回転数域よりも脈動が増大する脈動増大域内に属するか否かを判定する脈動判定部が実行する処理の一例である。
ステップS6で否定判定の場合には、燃圧は大きくは変動しないとして、ECU41は、通常ポート噴射処理を実行する(ステップS16)。通常ポート噴射処理は、上述したモデル式(3)は用いずに、式(4)に基づいて目標通電期間が算出されて、算出された目標通電期間だけポート噴射弁が通電されて、ポート噴射が実行される処理である。
Figure 2017133419
ここで、Q[mL]は、ステップS4で算出された要求噴射量である。P[kPa]は、燃料噴射の制御の対象となるポート噴射弁の噴射開始の直前に取得された燃圧センサ28の検出値である。τ[ms]は、ポート噴射弁の目標通電期間である。k[mL・min−1・kPa−0.5]は定数であり、k=QINJ/√Pが成立する。ここで、QINJ[mL・min−1]はポート噴射弁の公称流量であり、P[kPa]は公称流量に対応した検査圧力である。定数kは、予め実験により算出されて、ポート噴射弁群27のそれぞれに対応付けされてROMに記憶されている。尚、式(4)の右辺では60及び1000が乗算されており、これにより式(4)の右辺の値は目標通電期間τと同じ単位であるミリ秒に換算されている。
脈動の振幅が比較的小さい場合には、噴射開始直前の検出値とポート噴射中での燃圧値との差も小さいため、上述したモデル式(3)を用いなくても、ポート噴射量も適切に制御できる。通常ポート噴射処理の実行後は、再度ステップS1以降の処理が実行される。
ステップS6で肯定判定の場合には、ECU41は、クランク角センサ14aからの出力値に基づいて、ステップS2で取得された今回値の取得時点でのクランク角をRAMに記憶する(ステップS7)。新たな検出値が取得されるたびに、今回値の取得時点でのクランク角が更新される。次にECU41は、算出された直近のエンジン回転数に基づいて、ROMに予め記憶されているサンプリング時間間隔をクランク角に換算する(ステップS8)。エンジン回転数を考慮する理由は、サンプリング時間間隔は一定であるがエンジン回転数は変動するからである。次にECU41は、今回値の取得時点でのクランク角にサンプリング時間間隔に対応するクランク角を加算して、次回値の取得予定の時点でのクランク角として算出する(ステップS9)。
次にECU41は、次回値の取得予定の時点でのクランク角に基づいて、ステップS5で取得した開始クランク角θが、次回値の取得予定時点でのクランク角前にあるか否かを判定する(ステップS10)。ステップS7〜S9の処理は、ステップS10の判定処理を実行するために必要な処理である。ステップS7〜10の処理は、開始クランク角θが、今回の検出値が取得された時点でのクランク角と次回の検出値が取得される予定の時点でのクランク角との間にあるか否かを判定する噴射開始判定部が実行する処理の一例である。ステップS10で否定判定の場合には、再度ステップS1以降の処理が実行されて、中心燃圧算出処理が継続される。
ステップS10で肯定判定の場合には、ECU41は、ステップS2でRAMに記憶された、少なくとも前回値及び今回値に基づいて、脈動の振幅Aを算出する振幅算出処理を実行する(ステップS11)。次に、ECU41は、ステップS2でRAMに記憶された、少なくとも前回値及び今回値の一方に基づいて、初期位相Bを算出する位相算出処理を実行する(ステップS12)。振幅算出処理及び位相算出処理については詳しくは後述する。以上のように、ステップS3、S11、及びS12の処理に基づいて、モデル式(3)の各項が算出される。
次にECU41は、後述する算出式に基づいて、ポート噴射弁の目標通電期間τを算出する目標通電期間算出処理を実行する(ステップS13)。ステップS13での処理では、上述した式(4)は用いずに、モデル式(3)を含む算出式に基づいて目標通電期間τが算出される。詳しくは後述する。
次にECU41は、クランク角センサ14aの検出値に基づいて、現時点でのクランク角が開始クランク角θに到達したか否かを判定する(ステップS14)。ステップS14で否定判定の場合には、再度ステップS14の処理が実行される。ステップS14で肯定判定の場合には、ECU41は、噴射予定のポート噴射弁をステップS13で算出された目標通電期間τだけ通電してポート噴射を実行する(ステップS15)。ステップS15の処理は、ポート噴射弁を目標通電期間τだけ通電することにより燃料噴射を実行する噴射制御部が実行する処理の一例である。エンジン回転数が脈動増大域内に属する場合には、このようにしてポート噴射制御が実行される。
次に、上述した目標通電期間算出処理について説明する。本制御では、モデル式(3)を含む以下の算出式(5)に基づいて、任意のクランク角範囲でポート噴射弁が仮に燃料を噴射した場合での仮噴射量Q[mL]が算出される。
Figure 2017133419
ここで、Ne[rpm]はエンジン回転数である。単位分当たりの回転数を示すエンジン回転数Neに360を乗算することにより、単位分当たりでのクランク軸14の回転角度[deg]に換算されている。k[mL・min−1・kPa−0.5]は上述した定数である。P(θ)[kPa]は、上述したモデル式(3)である。
尚、算出式(5)は、以下のようにして導かれる。上述した式(4)により、単位分当たりの噴射量は、k√Pと表すことができる。上述したモデル式(3)とエンジン回転数Neとを用いると、単位クランク角当たりの噴射量は、{k/(360・Ne)}×√P(θ)と表すことができる。ここで、(360・Ne)は、単位分当たりのクランク軸14の回転角度[deg]を意味する。従って、単位クランク角当たりの噴射量を示す式を任意のクランク角範囲で積分することにより、そのクランク角範囲での噴射量を算出できる。算出式(5)は、ECU41のROMに記憶されている。従ってECU41のROMは、任意のクランク角範囲でポート噴射弁が仮に燃料噴射した場合での仮噴射量を算出でき、脈動をモデル化した式(1)を含む式(2)を記憶した記憶部の一例である。
ここで、ポート噴射弁への要求噴射量Qに対応する目標通電期間τを算出するためには、算出式(5)により算出される仮噴射量が要求噴射量Qとなる場合での開始クランク角θ及び終了クランク角θがわかればよい。ここで終了クランク角θとは、ポート噴射弁の燃料噴射の終了予定タイミングに対応したクランク角である。本実施例ではステップS5で開始クランク角θは取得済みであるため、終了クランク角θが算出できればよい。従って、以下の式が成立する場合での終了クランク角θを算出することが考えられる。
Figure 2017133419
しかしながら、式(6)に基づいて終了クランク角θを算出しようとすると、計算が複雑になりECU41の処理負荷が増大する可能性がある。従って、本実施例では以下のようにして終了クランク角θが算出されて目標通電期間τが算出される。
図6は、目標通電期間算出処理の一例を示したフローチャートである。ECU41は、上述の算出式(5)に基づいて、基準クランク角θから、ステップS5で取得された開始クランク角θまでのクランク角範囲で、次回噴射予定のポート噴射弁が仮に燃料を噴射した場合での仮噴射量Qsを算出する(ステップS21)。仮噴射量Qsは以下の積分の式で表すことができる。
Figure 2017133419
ここで、基準クランク角θは、初期位相Bに対応したクランク角であり、(θ−B)=0となる。このため、式(7)での三角関数の積分値の算出が容易となり、仮噴射量Qを算出することによるECU41への処理負荷の増大は抑制されている。
次に、ECU41は、基準クランク角θから終了クランク角θまでの仮噴射量Qから、仮噴射量Qを減算した値が、ステップS4で算出された要求噴射量Qと等しくなる場合での終了クランク角θを算出する(ステップS22)。即ち、以下の式が成立する場合での終了クランク角θが算出される。
Figure 2017133419
ここで仮噴射量Qは以下の積分の式で表すことができる。
Figure 2017133419
上述したように(θ−B)=0であるため、式(9)の三角関数の積分値の算出が容易となり、終了クランク角θを算出することによるECU41への処理負荷の増大は抑制されている。ステップS21及びS22は、取得された開始クランク角θ及び終了クランク角θの一方と式(2)に基づいて、脈動の初期位相Bに対応した基準クランク角θから終了クランク角θまでの仮噴射量Qから、基準クランク角θから開始クランク角θまでの仮噴射量Qを減算した値が、要求噴射量Qに等しいとみなした場合での、開始クランク角θ及び終了クランク角θの他方を算出する算出部が実行する処理の一例である。
図7(A)〜7(C)は、燃圧波形と要求噴射量Qと仮噴射量Q及びQとを示したグラフである。図7(A)〜7(C)は、これらの関係の理解を容易にするためのグラフである。図7(A)〜7(C)の横軸はクランク角であり、図7(A)の縦軸は燃圧、図7(B)及び7(C)の縦軸は噴射量[mL]である。図7(B)では仮噴射量Qを、図7(C)では仮噴射量Q及び要求噴射量Qを、それぞれ面積で示している。図7(B)及び7(C)に示した噴射量は、単位クランク角毎の噴射量をクランク角範囲で積算した総噴射量を示している。図7(B)及び図7(C)に示すように、上記の式(7)が成立する場合での終了クランク角θは、ポート噴射弁が要求噴射量Qだけ噴射する場合での終了クランク角である。尚、図7(A)では、仮噴射量Q及びQの算出に用いられる、開始クランク角θに最も近いエンジン回転数Neが算出されるタイミングを例示している。
次にECU41は、算出された終了クランク角θから開始クランク角θまでのクランク角範囲を、目標通電期間τ[ms]に換算する(ステップS23)。具体的には、以下の式に基づいて目標通電期間τが算出される。
Figure 2017133419
上述したように、エンジン回転数Ne[rpm]に360を乗算することにより、エンジン回転数をクランク軸14の回転角度[deg]に換算できる。またエンジン回転数Ne[rpm]を60で除算し更に1000で除算することにより、単位分当たりのエンジン回転数を単位ミリ秒当たりのエンジン回転数に換算できる。これにより、開始クランク角θから終了クランク角θまでのクランク角範囲に対応した目標通電期間τ[ms]を算出できる。尚、ポート噴射は、一般的には、各気筒の吸気行程中に開始して終了するため、開始クランク角θから終了クランク角θまでのクランク角範囲に、クランク角がゼロ度である上死点が含まれることはない。このため、上記(θ−θ)は正の値[deg]をとる。ステップS23の処理は、開始クランク角θから終了クランク角θまでのクランク角範囲を目標通電期間τに換算する目標通電期間換算部が実行する処理の一例である。
このように、燃圧の脈動を考慮したモデル式(3)を含む算出式(5)に基づいて、要求噴射量Qに対応する目標通電期間τが算出される。このため、エンジン回転数が脈動増大域内に属する場合であっても、目標通電期間τを精度よく算出でき、これによりポート噴射量を精度よく制御することができる。従って、空燃比を精度よく制御することができる。
また、基準クランク角θを用いて表すことができる2つの仮噴射量Q及びQに基づいて終了クランク角θが算出されるため、ECU41の処理負荷の増大が抑制されている。
また、上述したように、ステップS6及びS10で肯定判定の場合にのみモデル式(3)の各項が算出されて、算出式(5)に基づいて目標通電期間が算出される。このため、必要な場合にのみ算出式(5)に基づいて目標通電期間が算出され、ECU41の処理負荷の増大が抑制されている。
尚、エンジン回転数が上述した脈動増大域内に属さない場合であっても、上述の算出式(5)に基づいて目標通電期間を算出して、ポート噴射を実行してもよい。例えば、低圧ポンプ22はフィードバック制御されているため、エンジン回転数が脈動増大域内に含まれない場合であっても低圧ポンプ22に起因して燃圧が僅かに脈動する場合もあるからである。
尚、上記実施例では、ステップS5において、開始クランク角θはエンジン10の運転状態に応じて設定されているとしたが、これに限定されない。例えば、エンジン10の運転状態に応じて仮の終了クランク角が設定され、燃圧センサ28の検出値に基づいて仮の目標通電期間を算出し、仮の終了クランク角から仮の目標通電期間だけ遡った時点でのクランク角を、開始クランク角θとして取得してもよい。
また、上記実施例では、ステップS5で開始クランク角θが取得されてからステップS22で終了クランク角θが算出されるがこれに限定されない。例えば、エンジン状態に応じて先に終了クランク角θが取得される場合には、先に取得された終了クランク角θに基づいて仮噴射量Qを算出してから、要求噴射量Q及び仮噴射量Qに基づいて上述した式(8)が成立する場合での開始クランク角θを算出できる。この場合、終了クランク角θから、算出され得る通電期間の最大値に対応するクランク角範囲だけ遡ったクランク角に到達する前に、開始クランク角θを算出して目標通電期間τの算出を完了しておく必要がある。従って、終了クランク角θから、算出され得る通電期間の最大値に対応するクランク角範囲だけ遡ったクランク角を、仮の開始クランク角としてステップS10の処理を実行し、ステップS10で肯定判定の場合に上述の方法により実際の開始クランク角θを算出して目標通電期間τを算出してもよい。
次に、中心燃圧算出処理について説明する。ECU41は、ステップS2で取得された前々回値、前回値、及び今回値と、サンプリング時間間隔に対応するクランク角とに基づいて、中心燃圧値Pを算出する。ここで、サンプリング時間間隔に対応するクランク角t[deg]とし、係数aとすると、前々回値P[kPa]、前回値P[kPa]、及び今回値P[kPa]のそれぞれは以下の式で表される。
=Asin(a)+P
=Asin(a+t)+P
=Asin(a+2t)+P
上記の3つの式により、係数aを前々回値P、前回値P、及び今回値P、及びクランク角tにより表し、算出された係数aを上記の3つの式の何れかに代入することにより、中心燃圧値Pを算出できる。尚、サンプリング時間間隔に対応するクランク角tは、上述したステップS8の手法により算出される。
また、検出値のなまし値を中心燃圧値Pとして算出してもよい。なまし値は、今回値と、前回算出されたなまし値と、なまし係数とにより算出される。前回算出されたなまし値は、前回値に基づいて算出される。このため、今回算出されるなまし値は、今回値及び前回値に基づいて算出される。また、今回初めてなまし値が算出され、前回算出されたなまし値が存在しない場合には、前回算出されたなまし値として前回値を用いる。従って、検出値のなまし値を中心燃圧値Pcとして算出する場合には、ステップS2の所定数は2以上であればよい。
また、取得した検出値の平均値を中心燃圧値Pとして算出してもよい。例えば、算出に用いられる検出値のサンプル数は、脈動の略1周期分の期間に取得される検出値の数に対応するように、エンジン回転数が増大するにつれてサンプル数が減少するマップに基づいて設定してもよい。この場合、ステップS2の所定数は少なくとも2以上である。
次に、振幅算出処理について説明する。今回値P及び前回値Pn−1が取得された時点でのそれぞれのクランク角をθ及びθn−1とすると、以下の式で表すことができる。
Figure 2017133419
Figure 2017133419
式(11)及び(12)が中心燃圧値Pを含んでいない理由は、中心燃圧値Pをゼロとみなしても振幅Aや初期位相Bの算出結果には影響がないからである。
ここで、サンプリング時間間隔に対応するクランク角θAD[deg]に関して、θAD=θ−θn−1と表すことができる。従って、式(11)及び(12)に基づいて、振幅Aは以下のように表すことができる。
Figure 2017133419
このように振幅Aは、中心燃圧値Pを用いずに算出できるため、ECU41の処理負荷の増大が抑制されている。従って、ECU41は、前回値Pn−1及び今回値Pと、サンプリング時間間隔に対応するクランク角θADとに基づいて、振幅Aを算出する。
次に、位相算出処理について説明する。ECU41は、式(13)と式(11)とに基づいて算出される以下の式(14)に基づいて、初期位相Bの2つの候補B及びBを算出する。
Figure 2017133419
ここで、B=θ+{cos−1(P/A)×(1/c)}、B=θ−{cos−1(P/A)×(1/c)}とする。尚、式(14)において、クランク角θ及び今回値Pの代わりに、クランク角θn−1及び前回値Pn−1を用いてもよい。この場合も、理論上は初期位相Bの値は同じ値になる。
ここで、初期位相Bの真の解は、式(15)に基づいて判定される。
Figure 2017133419
式(15)の左辺にある、Acos{c(θn−1−B)}+Pは、上述した候補Bに基づいて算出された仮燃圧値を意味する。所定値ε[kPa]は、初期位相Bの真の解が候補Bである場合における、仮燃圧値と前回値Pn−1との取り得る最大の誤差よりも若干大きい値であり、予め実験により算出されROMに記憶されている。式(15)が成立する場合には、ECU41は候補Bが初期位相Bとして特定され、不成立の場合には候補Bが初期位相Bとして特定される。以上のように、簡易な不等号の式(15)に基づいて最終的な初期位相Bを算出できるため、ECU41の処理負荷の増大が抑制されている。
尚、式(15)において、不等号の向きを逆にしてもよい。この場合、式(15)が成立する場合には候補Bが、不成立の場合には候補Bが初期位相Bとして特定される。また、式(15)において、候補Bの代わりに候補Bを用いてもよく、この場合も、式(15)が成立する場合には候補Bが、不成立の場合には候補Bが初期位相Bとして特定される。また、式(15)においては、前回値Pn−1及びクランク角θn−1の代わりに、今回値P及びクランク角θを用いてもよい。従って、ECU41は、前回値Pn−1及び今回値Pの一方と、一方が取得された時点でのクランク角と、吐出回数cと、算出された振幅Aと、算出された中心燃圧値Pとに基づいて、初期位相Bを算出する。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 制御装置(内燃機関の制御装置)
10 エンジン(内燃機関)
11 気筒群
111〜114 気筒
14 クランク軸
14a クランク角センサ
15 カム軸
22 低圧ポンプ
25 低圧燃料配管(低圧燃料通路)
26 低圧デリバリパイプ(低圧燃料通路)
27 ポート噴射弁群
271〜274 ポート噴射弁
28 燃圧センサ
31 高圧ポンプ
35 高圧燃料配管(高圧燃料通路)
36 高圧デリバリパイプ(高圧燃料通路)
37 筒内噴射弁群
41 ECU(要求噴射量算出部、取得部、記憶部、算出部、目標通電期間換算部、噴射制御部、検出値取得部、モデル算出部、吐出回数記憶部、脈動判定部、噴射開始判定部)
CP カム

Claims (6)

  1. 内燃機関の気筒内に燃料を直接噴射する筒内噴射弁と、
    前記内燃機関の吸気ポートに燃料を噴射するポート噴射弁と、
    燃料を加圧する低圧ポンプと、
    前記低圧ポンプにより加圧された燃料を複数の前記ポート噴射弁に供給する低圧燃料通路と、
    前記内燃機関に連動して駆動され、前記低圧燃料通路から供給された燃料を更に加圧し、前記低圧燃料通路内に燃圧の脈動を発生させる高圧ポンプと、
    前記低圧燃料通路から分岐し、前記高圧ポンプにより加圧された燃料を複数の前記筒内噴射弁に供給する高圧燃料通路と、
    前記内燃機関のクランク角を検出するクランク角センサと、
    前記内燃機関の状態に基づいて、前記ポート噴射弁に要求される要求噴射量を算出する要求噴射量算出部と、
    前記ポート噴射弁の燃料噴射の開始予定タイミング及び終了予定タイミングにそれぞれ対応したクランク角である、開始クランク角及び終了クランク角の一方を取得する取得部と、
    前記脈動をモデル化した式(1)を含み、任意のクランク角範囲で前記ポート噴射弁が仮に燃料噴射した場合での仮噴射量を算出できる式(2)を記憶した記憶部と、
    取得された前記開始クランク角及び終了クランク角の前記一方と前記式(2)に基づいて、前記脈動の初期位相に対応した基準クランク角から前記終了クランク角までの仮噴射量から、前記基準クランク角から前記開始クランク角までの仮噴射量を減算した値が、前記要求噴射量に等しいとみなした場合での、前記開始クランク角及び終了クランク角の他方を算出する算出部と、
    前記開始クランク角から前記終了クランク角までのクランク角範囲を目標通電期間に換算する目標通電期間換算部と、
    前記ポート噴射弁を前記目標通電期間だけ通電することにより燃料噴射を実行する噴射制御部と、を備えた内燃機関の制御装置。
    Figure 2017133419
    Figure 2017133419
    但し、θ[deg]はクランク角、P(θ)[kPa]はクランク角θ[deg]に対応した燃圧値、A[kPa]は前記脈動の振幅、cはクランク角360度当たりの前記高圧ポンプによる燃料の吐出回数、B[deg]は前記脈動の初期位相、P[kPa]は前記脈動の中心燃圧値、Q[mL]は前記仮噴射量、k[mL・min−1・kPa−0.5]は定数、Ne[rpm]は前記内燃機関の回転数である。
  2. 前記低圧燃料通路内の燃圧を検出する燃圧センサと、
    前記燃圧センサの検出値を一定のサンプリング時間間隔で取得する検出値取得部と、
    前記開始クランク角が、今回取得された検出値の取得された時点でのクランク角と次回の検出値が取得される予定の時点でのクランク角との間にあるか否かを判定する噴射開始判定部と、を備え、
    前記算出部は、前記噴射開始判定部で肯定判定がなされた場合に、前記他方を算出する、請求項1の内燃機関の制御装置。
  3. 前記低圧燃料通路内の燃圧を検出する燃圧センサと、
    前記燃圧センサの検出値を一定のサンプリング時間間隔で取得する検出値取得部と、
    少なくとも前々回、前回、及び今回取得された前記検出値に基づいて、前記P、前記A、及び前記Bを算出するモデル算出部と、
    前記cが記憶されている吐出回数記憶部と、を備えた請求項1の内燃機関の制御装置。
  4. 前記モデル算出部は、前回及び今回取得された前記検出値と、前記サンプリング時間間隔に対応するクランク角とに基づいて、前記Aを算出する、請求項3の内燃機関の制御装置。
  5. 前記モデル算出部は、前回及び今回取得された前記検出値の一方と、前記一方が取得された時点でのクランク角と、前記cと、算出された前記Aと、算出された前記Pとに基づいて、前記Bを算出する、請求項4の内燃機関の制御装置。
  6. 前記クランク角センサの出力に基づいて算出される前記内燃機関の回転数が、前記内燃機関の他の回転数域よりも前記脈動が増大する脈動増大域内に属するか否かを判定する脈動判定部を備え、
    前記算出部は、前記脈動判定部で肯定判定がなされた場合に、前記他方を算出する、請求項1乃至5の何れかの内燃機関の制御装置。
JP2016013822A 2016-01-27 2016-01-27 内燃機関の制御装置 Active JP6281579B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016013822A JP6281579B2 (ja) 2016-01-27 2016-01-27 内燃機関の制御装置
US15/408,928 US9938923B2 (en) 2016-01-27 2017-01-18 Control system of internal combustion engine
CN201710060121.9A CN107013353B (zh) 2016-01-27 2017-01-24 内燃机的控制系统
EP17152761.7A EP3203057B1 (en) 2016-01-27 2017-01-24 Control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013822A JP6281579B2 (ja) 2016-01-27 2016-01-27 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017133419A true JP2017133419A (ja) 2017-08-03
JP6281579B2 JP6281579B2 (ja) 2018-02-21

Family

ID=57882027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013822A Active JP6281579B2 (ja) 2016-01-27 2016-01-27 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US9938923B2 (ja)
EP (1) EP3203057B1 (ja)
JP (1) JP6281579B2 (ja)
CN (1) CN107013353B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094873A (ja) * 2017-11-27 2019-06-20 株式会社デンソー 内燃機関制御システム
US10443532B2 (en) 2017-01-27 2019-10-15 Toyota Jidosha Kabushiki Kaisha Fuel injection control device and method for internal combustion engine
JP2020002875A (ja) * 2018-06-28 2020-01-09 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089304A1 (en) 2012-12-07 2014-06-12 Ethanol Boosting Systems, Llc Port injection system for reduction of particulates from turbocharged direct injection gasoline engines
US10094320B2 (en) * 2015-06-23 2018-10-09 Ford Global Technologies, Llc Methods and systems for dual fuel injection
DE102015226461B4 (de) * 2015-12-22 2018-10-04 Continental Automotive Gmbh Verfahren zur Ermittlung des Einspritzbeginn-Zeitpunktes und der Einspritzmenge des Kraftstoffes im Normalbetrieb eines Verbrennungsmotors
JP6281580B2 (ja) * 2016-01-27 2018-02-21 トヨタ自動車株式会社 内燃機関の制御装置
JP6281581B2 (ja) * 2016-01-27 2018-02-21 トヨタ自動車株式会社 内燃機関の制御装置
EP3516195A4 (en) * 2016-09-26 2020-11-18 Ethanol Boosting Systems LLC GASOLINE PARTICLE REDUCTION USING AN OPTIMIZED FUEL INJECTION SYSTEM IN AN INTAKE AND DIRECT INJECTION DUCT
JP7111050B2 (ja) * 2019-04-10 2022-08-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2021161971A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 燃料噴射制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024263A1 (en) * 2009-11-03 2012-02-02 Gm Global Technology Operations, Inc. Method for estimating fuel injecting pressure
JP2012237274A (ja) * 2011-05-13 2012-12-06 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2014190186A (ja) * 2013-03-26 2014-10-06 Toyota Motor Corp 燃料供給制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316995B2 (ja) 1994-01-17 2002-08-19 株式会社デンソー 内燃機関の燃料制御装置
JPH08326581A (ja) * 1995-06-05 1996-12-10 Nissan Motor Co Ltd 内燃機関の燃料噴射量制御装置
TW530117B (en) 2001-07-12 2003-05-01 Yamaha Motor Co Ltd Four-stroked engine control device and control method
EP1990528B1 (en) * 2007-05-08 2020-05-06 Denso Corporation Injection characteristic detection apparatus, control system, and method for the same
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
DE102012208784B3 (de) * 2012-05-25 2013-09-19 Continental Automotive Gmbh Minimierung der Verbrennungsgeräusche einer Brennkraftmaschine basierend auf einer Erkennung einer Instabilität der Lage des Maximums eines Zylinderdruckgradienten
DE102012023834A1 (de) * 2012-12-06 2014-06-12 Man Diesel & Turbo Se Verfahren zur Bestimmung einer Zylinderdruck-Kurbelwellenpositions-Zuordnung für eine Brennkraftmaschine
JP6281580B2 (ja) * 2016-01-27 2018-02-21 トヨタ自動車株式会社 内燃機関の制御装置
JP6281581B2 (ja) * 2016-01-27 2018-02-21 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024263A1 (en) * 2009-11-03 2012-02-02 Gm Global Technology Operations, Inc. Method for estimating fuel injecting pressure
JP2012237274A (ja) * 2011-05-13 2012-12-06 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2014190186A (ja) * 2013-03-26 2014-10-06 Toyota Motor Corp 燃料供給制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443532B2 (en) 2017-01-27 2019-10-15 Toyota Jidosha Kabushiki Kaisha Fuel injection control device and method for internal combustion engine
JP2019094873A (ja) * 2017-11-27 2019-06-20 株式会社デンソー 内燃機関制御システム
JP2020002875A (ja) * 2018-06-28 2020-01-09 トヨタ自動車株式会社 内燃機関の制御装置
JP7020318B2 (ja) 2018-06-28 2022-02-16 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP3203057B1 (en) 2019-06-26
CN107013353A (zh) 2017-08-04
CN107013353B (zh) 2020-02-21
US20170211501A1 (en) 2017-07-27
EP3203057A1 (en) 2017-08-09
JP6281579B2 (ja) 2018-02-21
US9938923B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
JP6281579B2 (ja) 内燃機関の制御装置
JP6281581B2 (ja) 内燃機関の制御装置
JP6281580B2 (ja) 内燃機関の制御装置
JP4416026B2 (ja) 蓄圧式燃料噴射システムの制御装置
US8100112B2 (en) Fuel-supply quantity estimating apparatus and fuel injection system
JP4428427B2 (ja) 燃料噴射特性検出装置及び燃料噴射指令補正装置
JP2009052414A (ja) 燃料噴射制御装置
JP2018091187A (ja) 内燃機関の制御装置
JP2013177823A (ja) 燃料漏れ検出装置
JP6146274B2 (ja) 内燃機関の制御装置
WO2015064075A1 (ja) 内燃機関の制御装置
US10895216B2 (en) Control device of internal combustion engine
JP2012127278A (ja) 内燃機関の燃料噴射制御装置
JP3984446B2 (ja) 内燃機関の制御装置
JP2009057860A (ja) 内燃機関の制御装置及び内燃機関
JP2018076804A (ja) 内燃機関の制御装置
BR102014012263A2 (pt) Dispositivo de controle de motor de combustão interna e método de aprender a característica de injeção de combustível
BR102014012263B1 (pt) Dispositivo de controle de motor de combustão interna e método de aprender a característica de injeção de combustível

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R151 Written notification of patent or utility model registration

Ref document number: 6281579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151