JP2017131194A - 小型肝細胞の継代培養方法 - Google Patents

小型肝細胞の継代培養方法 Download PDF

Info

Publication number
JP2017131194A
JP2017131194A JP2016016210A JP2016016210A JP2017131194A JP 2017131194 A JP2017131194 A JP 2017131194A JP 2016016210 A JP2016016210 A JP 2016016210A JP 2016016210 A JP2016016210 A JP 2016016210A JP 2017131194 A JP2017131194 A JP 2017131194A
Authority
JP
Japan
Prior art keywords
small hepatocytes
hepatocytes
cells
laminin
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016016210A
Other languages
English (en)
Other versions
JP6704617B2 (ja
Inventor
三高 俊広
Toshihiro Mitaka
俊広 三高
雅之 石井
Masayuki Ishii
雅之 石井
義久 市戸
Norihisa Ichinohe
義久 市戸
直樹 谷水
Naoki Tanimizu
直樹 谷水
徹 水口
Toru Mizuguchi
徹 水口
公一 平田
Koichi Hirata
公一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Medical University
Original Assignee
Sapporo Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Medical University filed Critical Sapporo Medical University
Priority to JP2016016210A priority Critical patent/JP6704617B2/ja
Publication of JP2017131194A publication Critical patent/JP2017131194A/ja
Application granted granted Critical
Publication of JP6704617B2 publication Critical patent/JP6704617B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】本発明は、機能を保持したまま小型肝細胞の継代を可能にする培養方法を提供することを目的とする。【解決手段】本発明は、EHSゲル、ラミニン111、ラミニン332及び/又はニドゲンをその表面に有する担体上で小型肝細胞を培養する培養工程を含む、小型肝細胞の継代培養方法に関する。本発明によれば、肝機能を維持したまま小型肝細胞を継代培養することができ、小型肝細胞の細胞数を多く確保し、長期間保存することができる。さらに小型肝細胞を成熟化誘導し、肝細胞数を多数確保できる。【選択図】図2

Description

本発明は、小型肝細胞の継代培養方法に関する。
肝臓は糖やアミノ酸等の代謝、血清タンパク質産生、薬物代謝、胆汁産生など、生体内で様々な役割を果たしており、これらの多くは肝細胞の機能に依存している。したがって、肝細胞をその生体内での機能を維持した状態で学術研究や創薬における薬理試験等の試験研究目的で使用することが強く望まれている。
このため、肝臓から成熟肝細胞を分離培養し、その機能を維持したまま増殖させる試みがなされている。しかし、機能を維持した成熟肝細胞を長期にわたって安定的に増殖させる方法は未だ確立していない。近年、ES細胞やiPS細胞から肝細胞へと分化誘導させる方法も新たに提唱されているが、多くの研究者が日夜努力しているにも拘わらず、ES細胞やiPS細胞から分化誘導された肝細胞の利用は未だ実用化されていない。
また、正常な肝臓は高い組織再生能を有しており、その一部が切除されても比較的速やかに復元する性質を有している。しかし、肝炎、肝硬変、肝癌などが進行して肝機能不全状態になると、正常な肝臓に復元することはもはや困難となる。
かかる肝機能不全患者に対する治療法の選択肢として、肝臓移植が挙げられる。しかし、肝臓移植は、移植を必要とする患者に対するドナー数が常に不足していること、また成熟肝細胞は凍結解凍することでその機能が低下してしまうためにドナーから提供された肝臓を凍結保存することができないこと、などの問題を有する。そのため、他者からの臓器提供に頼らない、新たな臓器移植方法が模索されている。その最も基本的な試みは、肝細胞を培養増殖させて肝組織を再生させ、患者に移植するというものであるが、やはり機能を維持した肝細胞を増殖させることの困難性が研究開発の障壁となっている。
本発明者らは、肝臓組織内に、アルブミン、トランスフェリン、サイトケラチン(CK)8、CK18などのマーカーについて成熟肝細胞とほぼ同様の表現型を示し、超微構造的にも肝細胞としての特徴を有するが、増殖能を有する小型肝細胞(Small Hepatocytes)が存在することを示した(非特許文献1、非特許文献2)。小型肝細胞はCD44陽性、増殖能、及び成熟肝細胞では困難であった凍結保存が可能であることなどの特徴を有している。特に凍結保存が可能という特徴は、必要なときに凍結保存した小型肝細胞を融解し、コロニーを形成するまで培養してから成熟化させて使用することを可能とする、という利点をもたらす。
本発明者らは、小型肝細胞を肝組織から調製、培養する方法(特許文献1)、小型肝細胞のコロニーから肝組織を誘導する方法(特許文献2)、効率的な小型肝細胞の分離方法及び培養方法(特許文献3)などを提供し、小型肝細胞の利用の促進を試みてきた。しかし、小型肝細胞は、増殖能は有するものの、その機能を維持したまま継代培養することが困難であるという問題を有している。
国際公開第01/092481号パンフレット 国際公開第02/088332号パンフレット 国際公開第2006/001473号パンフレット
Mitaka et al,Hepatology,16,440−447(1992) Mitaka et al,Hepatology,29,111−135(1999)
本発明は、機能を保持したまま小型肝細胞の継代を可能にする培養方法を提供することを目的とする。
本発明者らは、Engelbreth−Holm−Swarm(EHS)マウスサルコーマ細胞が産生するEHSゲルを表面に付着させた担体上で小型肝細胞を培養することで、小型肝細胞の継代培養が可能となることを見いだし、下記の各発明を完成させた。
(1)EHSゲル、ラミニン111、ラミニン332及び/又はニドゲンをその表面に有する担体上で小型肝細胞を培養する培養工程を含む、小型肝細胞の継代培養方法。
(2)前記培養工程の前に、小型肝細胞を含む細胞集団からCD44陽性細胞又はICAM−1陽性細胞を分離し収集することで小型肝細胞を取得する細胞分離工程をさらに含む、(1)に記載の培養方法。
(3)前記細胞分離工程の前に、ヒアルロン酸をその表面に有する担体上で小型肝細胞を含む細胞集団を培養する工程をさらに含む、(1)又は(2)に記載の培養方法。
(4)継代が1〜8回行われる、(1)〜(3)のいずれかに記載の培養方法。
本発明によれば、小型肝細胞を、その機能を維持したまま継代培養することができ、小型肝細胞の細胞数を多く確保することができる。本発明によれば、肝細胞の生化学的研究、肝細胞を利用した薬物の開発等に対して有益な小型肝細胞を安定的かつ多量に提供することが可能となる。また、小型肝細胞は肝機能不全患者に対する治療法の選択肢である肝臓移植用の臓器の作製に利用することができる。
培養7〜35日目における2代目の同一小型肝細胞コロニーの位相差顕微鏡写真である。 培養28日目における2〜5代目の小型肝細胞コロニーの位相差顕微鏡写真である。 2〜5代目の小型肝細胞のコロニーあたりの細胞数を示すグラフである。横軸は世代毎の培養日数、縦軸は観察されたコロニーを構成する細胞数/コロニー(n=3)を表す。グラフ中の各プロットは個々のコロニーの細胞数を示す。 2〜5代目の小型肝細胞の細胞分裂回数を示すグラフである。横軸は培養日数、縦軸は細胞分裂回数を表す。 2〜5代目の小型肝細胞の培養1日目における生着率(左)及び各世代の培養28日目における細胞増殖率(右)を示すグラフである。 3代目及び4代目の小型肝細胞における各種マーカーのタンパク質発現を示す蛍光顕微鏡写真である。 2〜5代目の小型肝細胞におけるCD44、Alb、CK19、C/EBPα及びHNF4αの遺伝子発現量を示すグラフである。縦軸はGAPDHに対する相対的発現量を表す。 Matrigel(登録商標)重層による3代目の小型肝細胞の成熟化を示す位相差顕微鏡写真である。左からMatrigel(登録商標)重層後0、2、4、6、10日目のコロニーの位相差顕微鏡写真、一番右はfluorescein diacetate(FD)添加後の蛍光顕微鏡写真である。 2代目の小型肝細胞を、Matrigel(登録商標)、ラミニン111、ニドゲン、ラミニン511、ラミニン521、ラミニン332又はSynthemax(登録商標)を付着させた担体上で培養したときの、各担体への細胞の生着率を示すグラフである。 2代目の小型肝細胞を、Matrigel(登録商標)、ラミニン111、ニドゲン、ラミニン511、ラミニン521、ラミニン332又はSynthemax(登録商標)を付着させた担体上で7日間培養したときのコロニー形成の有無を示す位相差顕微鏡写真である。 Matrigel(登録商標)、ラミニン111又はラミニン511に接着した小型肝細胞における各種マーカーの遺伝子発現量を示すグラフである。縦軸はGAPDHに対する相対的発現量を表す。 マウス由来の小型肝細胞の増殖を示すグラフである。横軸は培養時間(週)、縦軸は細胞数を表す。 マウス由来の小型肝細胞のICAM−1(A)及びCD44(B)の発現を示すフローサイトメトリーのヒストグラムである。横軸はシグナル強度、縦軸はカウント数を表す。図中、濃色のピークはICAM−1又はCD44陽性細胞を、淡色のピークはIgG陽性細胞を示す。
本発明は、EHSゲル、ラミニン111、ラミニン332及び/又はニドゲンをその表面に有する担体上で小型肝細胞を培養する培養工程を含む、小型肝細胞の継代培養方法に関する。
本発明における小型肝細胞とは、単に肝臓に由来する小型の細胞を意味するものではなく、前述の非特許文献1、2及び特許文献1〜3などにおいて報告されている、肝臓から単離可能な細胞であって、アルブミン、トランスフェリン、CK8、CK18などのマーカーについて成熟肝細胞とほぼ同様の表現型を示し、超微構造的にも肝細胞としての特徴を有するが、高い増殖能を有する、肝臓由来の特別な種類の小型の細胞を意味する。
小型肝細胞は、成熟肝細胞(肝実質細胞)と比較して比重が軽く、肝臓組織のコラゲナーゼ処理等により得られる肝臓由来細胞集団を含む懸濁液を低い重力加速度で遠心分離した場合、成熟肝細胞は主として沈殿に移行するが、小型肝細胞は主として上清に移行する性質を持つ。小型肝細胞と成熟肝細胞とを効率的に分離させるため、かかる遠心分離は、好ましくは、50×gで1分以下の時間、行われる。
また、小型肝細胞はCD44を発現しているが、成熟肝細胞及び肝非実質細胞は発現していない。このような特徴により、小型肝細胞は成熟肝細胞及び肝非実質細胞とは異なる細胞として理解されている。
本発明における小型肝細胞は、単離された状態であっても細胞集団に含まれる状態であってもよい。すなわち本発明の培養方法は、肝臓組織から単離又は調製された小型肝細胞又は小型肝細胞に富む細胞集団をその対象とすることができる。特に、表面抗原としてCD44を発現している小型肝細胞(CD44陽性小型肝細胞)又はこれに富む細胞集団が、本発明において好ましい培養対象である。小型肝細胞は、前記非特許文献1、2又は特許文献1〜3に記載された方法に従って、ヒトを含む霊長類やげっ歯類等の哺乳動物の肝臓から単離又は調製することができる。CD44陽性小型肝細胞は、小型肝細胞若しくはこれを含む細胞集団(典型的には、肝臓組織から非選択的に回収される、様々な肝臓由来細胞を含む集団)に対してCD44特異的抗体を利用したセルソーティングを行うことにより、及び/又はその表面にヒアルロン酸を有する担体上でかかる細胞集団を培養することにより、効率的に取得することができる(詳細は特許文献3を参照されたい)。本発明の好ましい態様は、かかる細胞分離工程及び/又はヒアルロン酸担体上での培養工程をさらに含む。
なお後述の実施例に示すように、本発明者らは、マウス由来の小型肝細胞ではCD44に加えてICAM−1が選択的に発現することを見出している。したがって、ICAM−1は小型肝細胞を含む細胞集団から小型肝細胞を検出又は分離するためのマーカーとして有用であり、小型肝細胞マーカーとしてのICAM−1、及びICAM−1特異的抗体を用いた小型肝細胞の検出・分離方法もまた、本発明の一部に包含される。
また、本発明の継代培養方法において、CD44陽性小型肝細胞又はこれに富む細胞集団を培養対象とするだけでなく、ICAM−1陽性小型肝細胞又はこれに富む細胞集団を培養対象とすることも可能である。かかる細胞又は細胞集団を得るためにICAM−1特異的抗体を利用したセルソーティングを行うこともまた好ましい。
EHSゲルは、細胞外マトリクスタンパク質を豊富に含むEngelbreth−Holm−Swarm(EHS)マウス肉腫から抽出した再構成基底膜調製品であり、Corning社からMatrigel(登録商標)として市販されている。EHSゲルは、細胞外マトリクスの成分としてラミニン、コラーゲンIV及びニドゲン等を含み、主成分はラミニンでアイソフォームとしてラミニン111のみを含む。
ラミニンは、細胞外マトリクスの基底膜に含まれる、細胞接着に関与する糖タンパク質であり、α鎖、β鎖、γ鎖と呼ばれる3本のサブユニットが十字架様に会合した構造を有する。ラミニンのα鎖はα1〜α5の5種類、β鎖はβ1〜β3の3種類、γ鎖はγ1〜γ3の3種類がこれまでに同定されており、これらの組み合わせが異なる19種類のアイソフォームが存在することが確認されている。本発明において使用されるラミニンは、アイソフォームの一種であるラミニン111(α1β1γ1)及びラミニン332(α3β3γ2)である。
ラミニン111及びラミニン332は、それぞれBioLamina社及びOriental社から入手することができる。また、ラミニン111は、EHSゲルとして、又はEHSゲルから部分的に精製したものを用いてもよい。
ニドゲンは、エンタクチン(entactin)とも呼ばれ、ラミニンと同様に細胞外マトリクスの基底膜に含まれる糖タンパク質の一種である。2種類のアイソフォーム(ニドゲン−1、−2)が知られており、いずれもラミニンγ1鎖に結合し、ラミニンをIV型コラーゲンに結びつけることで基底膜の形成と維持に関与している。本発明においては、ニドゲン−1、−2いずれのアイソフォームも利用することができる。ニドゲンは、R&D SYSTEM社から入手することができる。また、ニドゲンは、EHSゲルとして、又はEHSゲルから部分的に精製したものを用いてもよい。
EHSゲル、ラミニン111、ラミニン332及び/又はニドゲン(以下、これらをまとめて言及するときは継代培養用接着基質と表す)をその表面に有する担体の典型的な態様は、特異的又は非特異的であるかを問わず、また共有的又は非共有的などの結合の態様を問わず、継代培養用接着基質がその表面(培養が行われる面)に付着した、すなわち細胞培養中に容易に遊離しない程度に結合した担体をいう。かかる付着は、典型的には、適当量の継代培養用接着基質を含む溶液と担体表面とを接触させて、継代培養用接着基質を担体の表面に非特異的に吸着させることによって行うことができる。例えば、EHSゲルを溶解した溶液をディッシュに加えることで、EHSゲル、そこに含まれるラミニン111及び/又はニドゲンが表面に付着したディッシュを作製することができる。担体に付着させた培養用接着基質は、乾燥状態、湿潤状態を問わない。
本発明における担体は、細胞培養に利用可能な担体であればどのようなものでもよいが、好ましくは、多孔質、ガラス、セファロース、プラスチック、金属及びセルロースよりなる群から選択される材料によって成形される培養基材又は培養容器である。そのような例としては、プラスチック製又はガラス製のディッシュ、培養フラスコ、培養ボトル、培養チューブ、培養ビーズ、プラスチックビーズ、ガラスビーズ、セファロースビーズ、磁気ビーズ、スポンジ、セルロース多孔質などを挙げることができる。
継代培養用接着基質の担体表面への付着量は、担体表面積1cmあたりおおよそ10〜30μgであることが好ましい。かかる付着量は、担体の材質、継代培養用接着基質を含む溶液の濃度、液量、インキュベーション温度などを適宜設定することで、調節することができる。
例えば、0.15〜1mg/mL、好ましくは0.2〜0.5mg/mLの継代培養用接着基質を含む溶液、例えば一般的な細胞培養培地又はハンクス液、生理食塩水若しくはリン酸緩衝生理食塩水などの緩衝液を、担体表面積1cmあたり、0.05〜0.20mL、より好ましくは0.10〜0.15mLとなるように担体に加えてインキュベートすることで、継代培養用接着基質を担体の表面に付着させることができる。担体としてポリスチレン製のディッシュを、継代培養用接着基質としてEHSゲルを選択したときは、0.2〜0.5mg/mLの濃度のEHSゲルを含むハンクスBSSの適当量をポリスチレン製ディッシュに加え、4℃〜40℃程度の温度でインキュベートすることによって、付着を行うことができる。
なお、活発に増殖している小型肝細胞にEHSゲルを共存させると、小型肝細胞の成熟化が誘導されることが知られている。継代培養のための小型肝細胞は未成熟な状態を維持していることが好ましいため、継代培養用接着基質としてEHSゲルを用いる場合、コロニーを形成していない状態の小型肝細胞を用いて継代培養を開始することが望ましい。
継代培養用接着基質をその表面に有する担体上での小型肝細胞の培養は、前述の非特許文献1又は特許文献1〜3に記載されている培養条件、例えば培地組成、温度、培養時間等を設定して行うことができる。好ましくは、培地はDMEM/F12培地であり、温度は35〜38℃、培養時間は7〜30日の範囲内で適宜設定することができる。
本発明における継代培養の操作自体は格別の工夫を必要とはせず、先に説明した担体上で培養した小型肝細胞に対して、洗浄処理、トリプシン処理等の一般的な操作によって細胞を回収し、再び本発明にかかる担体上に回収した細胞と適当な培地とを加えて培養するという操作を繰り返せばよい。かかる継代培養を1又は2回行うことで、機能を維持した状態の小型肝細胞をより大量に取得することができる。また、小型肝細胞の機能の一部は失われるものの、2回より多い継代培養、好ましくは8回まで、より好ましくは4回までの継代培養が可能である。継代回数は、取得する小型肝細胞の用途に応じて適宜選択することができる。
本発明の方法で培養した後の細胞が小型肝細胞としての所望の機能を保持しているかどうかは、種々のマーカーを用いて確認することができる。そのようなマーカーとしては、培地中に分泌されるアルブミンの他、トランスフェリン、尿素の産生、グリコーゲン量、アミノ酸代謝酵素、チトクロームP450等が利用できる。これらは、培地又は細胞抽出液のELISA、ウェスタンブロッティング解析、RT−PCR等によって、あるいは直接細胞を免疫染色することによって確認することができる。また、小型肝細胞は、成熟肝細胞のマーカーであるアルブミン、CK8、CK18、グリコーゲン等のマーカーを有しており、これらもマーカーとして利用可能である。
さらに、ED1/2(クッパー細胞のマーカー)、SE−1(類洞内皮細胞マーカー)、デスミン(desmin、星細胞のマーカー)、又はビメンチン(vimentin、肝上皮様細胞マーカー)などが陰性であることで、小型肝細胞であることを補足的に確認することも可能である。
以下、非限定的な実施例によって本発明をさらに詳細に説明する。
<実施例1>
1)Matrigel(登録商標)を表面に有する担体の作製
氷上に置いた100mm径のプラスチック製ディッシュ(Corning社)に、Matrigel(登録商標)を200μg/mLの濃度で含むハンクスBSS5〜10mLを加え、1時間インキュベートした後、溶液をディッシュから除去した。ディッシュをクリーンベンチ内で一晩風乾させて、Matrigel(登録商標)が表面に付着したディッシュを作製した。
2)小型肝細胞の分離
特許文献1に記載された方法によって成体F344ラット肝臓小葉内から分離した小型肝細胞を含む細胞集団を、特許文献3に記載された方法に従ってヒアルロン酸でコーティングしたディッシュ上で9日間無血清培養した。培地を除去した後の細胞をPBSで洗浄後、1% EDTA/PBS溶液を加えて37℃、5分間インキュベートした。上清をビーカーに移し、7mLのコラゲナーゼ/ヒアルロニダーゼ溶液(50ml Hanks BSS、1mg/mLコラゲナーゼ(Wako)、17500U/50μLヒアルロニダーゼ(Sigma))を加えて37℃で5分間インキュベートした。穏やかにピペッティングした後、溶液を別のビーカーに移して37℃で30分間撹拌した。その後、この溶液から、0.5μg/mLの抗ラットCD44抗体(Biosciences)で処理した磁気ビーズを用いたMACS法によりCD44陽性細胞を回収した(初代)。
3)継代培養
1)で作製したMatrigel(登録商標)を表面に有するディッシュに10mMニコチンアミド、1mMアスコルビン酸2リン酸、10ng/mL EGF、ITS(Insulin−Transferrin−Selenite)、10−7Mデキサメタゾン、ペニシリン、ストレプトマイシン及びゲンタマイシンを含む無血清DMEM/F12培地を分注し、2)で回収したCD44陽性小型肝細胞(1×10個)を加えて、37℃で28日間、培地を一日おきに交換しながら培養した後、PBSによる洗浄及びトリプシン処理を行って小型肝細胞を回収した(2代目)。1×10個の回収小型肝細胞/DMEM/F12培地と新しい培地とを再び新しい1)のディッシュに加え、37℃で28日間、培地を培養開始の翌日及びその後は一日おきに交換しながら培養し、上記と同様の操作で小型肝細胞を回収した(3代目)。この操作を繰り返して5代目まで培養した。
4)コロニー形成能
2代目の小型肝細胞を培養開始から7日毎に位相差顕微鏡を用いて観察したところ、小型肝細胞は増殖しコロニーは増大していることが認められた(図1)。また、2〜5代目のコロニーを培養28日目に観察したところ、コロニーは比較的円形の形態を伴って増殖していた(図2)。さらに、2〜5代目の小型肝細胞について、細胞数>10であるコロニーの1コロニーあたりの細胞数をカウントし、増殖能を比較した(図3)。世代を経る毎に平均細胞数は減少し、増殖能の低下した小型肝細胞が増えるものの、2〜5代目の小型肝細胞はいずれもコロニー形成能を有していた。
5)世代毎の細胞分裂回数
1つの小型肝細胞が分裂してコロニーを形成したと仮定し、培養7、14、21日目のコロニーあたりの平均細胞数から培養28日目の細胞数を算出することで、各継代培養における小型肝細胞の細胞分裂回数を推定した。その結果、初代では6回/9日、2代目では13.5回/28日、3代目では12.7回/28日、4代目では11回/28日、5代目では9回/28日と算出され(図4)、その合計は52回であった。劇症肝炎マウスモデルに移植した肝細胞の推定分裂回数は最大70回程度とされており(Overturf K. et al.,Am.J.Pathol.151:1273−1280(1997))、本発明によって継代培養した小型肝細胞はこれに近い回数の細胞分裂を行い得ると推測された。
6)世代毎の生着率及び増殖率
2〜5代目の小型肝細胞の生着率(培養1日目の接着細胞数/添加した細胞数)と、増殖率(培養28日目に回収された細胞数/接着細胞数)を算出した。生着率は、継代を通じて13〜16%の範囲でほぼ一定であった(図5左)。また、増殖率は世代を経る毎に減少するものの、5代目でも増殖能を保持していた(図5右)。
上記の接着率及び増殖率の結果から、3代目の培養終了時に回収された細胞数は、ディッシュ1枚あたり、1×10個×0.16×12倍×0.14×11倍=2.96×10個と算出された。すなわち、分離された小型肝細胞を本発明の方法によって3代目まで培養することで、約2ヵ月で絶対総数として細胞数を3倍に増加させることが可能であることが確認された。
<試験例1>
実施例1において得られた小型肝細胞の性質を評価するため、以下の試験を行った。なお、特に指定がないかぎり、各世代の培養28日目の小型肝細胞を試験に用いた。
1)培地成分の影響
実施例1の3代目細胞を、実施例1の培地からニコチンアミド、EGF、ITS、デキサメタゾン又はアスコルビン酸2リン酸をそれぞれ除いた培地を用いて7日間継代培養を行い、コロニー数、コロニーあたりの細胞数をカウントした。また、細胞をBrdU(Bromodeoxyuridine)で24時間処理した後に固定し、抗BrdU抗体を用いて免疫染色後、総細胞数に対するBrdU陽性細胞の割合(Labeling index)を算出した。ニコチンアミド又はEGFを含まない培地で継代培養した3代目細胞では、コロニー数、細胞数、Labeling indexのいずれについても減少が認められたことから(表1)、3代目の小型肝細胞は、ニコチンアミド及びEGFに依存して増殖することが示された。
Figure 2017131194
2)DNA合成、倍数性及び多核性
実施例1の3代目細胞について上記1)と同様の操作でLabeling indexを算出したところ、培養14日目で21.3±8.4%、培養28日目では17.7±7.9%であった。またフローサイトメトリーによりG0期の細胞(Ki67陰性細胞)のDNA含量から倍数性を評価したところ、コロニーを形成する細胞のほとんどは2倍体であった。さらに、3代目細胞における1核細胞及び2核細胞の割合は、1核細胞が93.2±3.6%、2核細胞が6.5±3.6%と、ほぼすべて1核細胞であった。
3)マーカー発現
実施例1の3代目及び4代目細胞のコロニーを免疫染色し、CD44、Alb、HNF4α、CK19、Sox9及びThy1のタンパク質発現を調べた結果、いずれのマーカーも発現が観察された(図6)。また、2〜5代目細胞におけるCD44、Alb、C/EBPα、HNF4α及びCK19の遺伝子発現量をRT−PCRにより測定した。世代を経ることで発現量は減少するものの、CD44、Alb、CK19及びHNF4αの発現は5代目まで維持され、C/EBPαの発現は3代目まで維持された(図7)。
実施例1で得られた小型肝細胞におけるその他のマーカー遺伝子及びタンパク質の発現についても同様に評価した。結果を表2にまとめる。
Figure 2017131194
4)分化能
3代目の培養18日目の小型肝細胞に対してMatrigel(登録商標)を重層し、さらに10日間培養を続けたところ、細胞の大型化及び毛細胆管様構造の形成が観察された。また、FDを培養液に加えたところ、FDの代謝物である蛍光物質fluoresceinの毛細胆管様構造内への蓄積が認められた(図8)。
さらに、分泌/代謝マーカーであるTryptophan 2,3−dioxygenase(Tdo2)、有機アニオン輸送体であるOatp2、薬物代謝マーカーであるCyp1A2及びCyp2B1の遺伝子発現をRT−PCRにより測定した結果、Matrigel(登録商標)の添加前と比較して、Tdo2は13倍に、Oatp2は12倍に、Cyp1A2は150倍に、Cyp2B1は57倍にそれぞれ発現量が上昇した。4)で示したように、3代目の小型肝細胞は、Matrigel(登録商標)の添加によって毛細胆管を形成し、胆汁分泌能も獲得することから、成熟肝細胞への分化能を保持していることが確認された。
5)凍結保存
3代目の培養28日目の小型肝細胞を回収し、特許文献1に記載の方法に従って、−80℃で約2ヵ月凍結保存した後、解凍して培地に播種し、培養した。培養1日目の細胞のディッシュへの生着率は50%以上であった。さらに培養を継続すると、凍結保存した細胞は、凍結保存を行なっていない4代目と同様に増殖してコロニーを形成することが確認された。
以上の試験結果から、実施例1で得られた小型肝細胞は、継代培養を行わない従来の小型肝細胞と同様の性質及び機能を有することが示された。
<実施例2>
1)担体の作製
実施例1の1)におけるMatrigel(登録商標)をラミニン111(BioLamina社)、ニドゲン(R&D SYSTEM社)、ラミニン511(Nippi社)、ラミニン521(Veritas社)、ラミニン332(Oriental社)又はSynthemax(登録商標)(Corning社)に置き換えて同様の操作を行い、各物質を表面に有するディッシュを作製した。
2)接着能及びコロニー形成能
実施例1の2代目の小型肝細胞を培養28日目に回収し、培地を分注した上記1)の各ディッシュに加えて3代目の継代培養を開始し、各ディッシュへの細胞の接着能を実施例1の6)と同様に調べた。その結果、3代目の細胞は、ラミニン511及びラミニン521に対して40%以上の接着率を示し、Matrigel(登録商標)、ラミニン111、ニドゲン及びラミニン332に対して約15〜20%の接着率を示し、Synthemax(登録商標)に対して約30%程度の接着率を示した(図9)。
また、3代目の継代培養を14日間行ったところ、Matrigel(登録商標)、ラミニン111、ニドゲン又はラミニン332を付着させたディッシュ上にはコロニーが観察されたが、ラミニン511又はラミニン521を付着させたディッシュ上では小型肝細胞コロニーは観察されなかった(図10)。また、ラミニン511又はラミニン521に接着した細胞は、コロニーを形成しないまま増殖するものの、培養を継続するにつれて細胞が次第に大型化し、増殖能を失った。
<試験例2>
実施例1の培養21日目の2代目細胞を回収し、ラミニン111を付着させたディッシュに播種した。3時間後にディッシュから培地を回収してラミニン111に接着しなかった細胞を集め、ラミニン511を付着させたディッシュに播種したところ、細胞は良好に接着した。
次に、上記のラミニン111又はラミニン511に接着した細胞、Matrigel(登録商標)に接着した細胞、初代のCD44陽性小型肝細胞及び成熟肝細胞のそれぞれからRNAを抽出し、肝細胞マーカーであるAlb、HNF4α及びC/EBPα、胆管細胞マーカーであるCK19、Sox9、EpCAM及びGrhi2の遺伝子発現をRT−PCRにより測定した。ラミニン111に接着した細胞は、実施例1の表2に示されるものと同傾向のマーカー発現を示していた(図11)。
<実施例3>
抗CD44抗体の代わりに抗ICAM−1抗体を用いた点以外は実施例1と同様に、マウス肝臓から小型肝細胞を調製し、ラミニン111を付着させたディッシュに2×10個の細胞濃度で播種した。培養開始から7日後、細胞をトリプシン処理によりディッシュから遊離させ、細胞数をカウントした。この操作を繰り返すことで継代培養を行ったところ、8回の継代を繰り返しても細胞は良好に増殖することが確認された(図12)。
<試験例3>
実施例3で得られた8代目のマウス小型肝細胞を、PE−抗ICAM−1抗体及びPE−ラットIgG、又はPE−抗CD44抗体及びPE−ラットIgGで染色した後にフローサイトメトリーに供し、ICAM−1及びCD44の発現を評価した。全ての細胞でICAM−1及びCD44が発現していることが確認された(図13)。
本発明は、肝細胞の生化学的研究、肝細胞を利用した薬物の開発等に対して有益な小型肝細胞を、研究材料等として提供することについての産業上の利用可能性を有する。

Claims (4)

  1. EHSゲル、ラミニン111、ラミニン332及び/又はニドゲンをその表面に有する担体上で小型肝細胞を培養する培養工程を含む、小型肝細胞の継代培養方法。
  2. 前記培養工程の前に、小型肝細胞を含む細胞集団からCD44陽性細胞又はICAM−1陽性細胞を分離し収集することで小型肝細胞を取得する細胞分離工程をさらに含む、請求項1に記載の培養方法。
  3. 前記細胞分離工程の前に、ヒアルロン酸をその表面に有する担体上で小型肝細胞を含む細胞集団を培養する工程をさらに含む、請求項1又は2に記載の培養方法。
  4. 継代が1〜8回行われる、請求項1〜3のいずれかに記載の培養方法。


JP2016016210A 2016-01-29 2016-01-29 小型肝細胞の継代培養方法 Active JP6704617B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016210A JP6704617B2 (ja) 2016-01-29 2016-01-29 小型肝細胞の継代培養方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016210A JP6704617B2 (ja) 2016-01-29 2016-01-29 小型肝細胞の継代培養方法

Publications (2)

Publication Number Publication Date
JP2017131194A true JP2017131194A (ja) 2017-08-03
JP6704617B2 JP6704617B2 (ja) 2020-06-03

Family

ID=59501833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016210A Active JP6704617B2 (ja) 2016-01-29 2016-01-29 小型肝細胞の継代培養方法

Country Status (1)

Country Link
JP (1) JP6704617B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189799A1 (ja) * 2019-03-20 2020-09-24 北海道公立大学法人札幌医科大学 肝細胞と胆管上皮細胞との接続部構造を有する肝上皮様組織の培養方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112092A (ja) * 1994-08-23 1996-05-07 Res Dev Corp Of Japan クローン性増殖能を有する肝実質細胞とその取得 方法、並びにその継代培養方法
JPH09313172A (ja) * 1996-05-28 1997-12-09 Kagaku Gijutsu Shinko Jigyodan 小型肝細胞の培養方法
JPH10179148A (ja) * 1996-12-26 1998-07-07 Kagaku Gijutsu Shinko Jigyodan ヒト小型肝細胞の取得方法と、この細胞の初代培養 および継代培養方法
WO2002088332A1 (fr) * 2001-04-24 2002-11-07 Hokkaido Technology Licensing Office Co.,Ltd. Colonie riche en petites cellules hepatiques, procede d'obtention de cette colonie, procede d'induction de la maturation de cette colonie dans un tissu hepatique et procede d'estimation de l'effet d'un medicament faisant appel a cette colonie riche en petites cellules hepatiques mature
JP2004510432A (ja) * 2000-10-03 2004-04-08 ユニバーシティ オブ ノース カロライナ 両能性肝前駆細胞の単離方法
WO2006001472A1 (ja) * 2004-06-29 2006-01-05 Japan Science And Technology Agency 特異的抗体を用いる小型肝細胞の分離法
WO2006001473A1 (ja) * 2004-06-29 2006-01-05 Japan Science And Technology Agency ヒアルロン酸を用いた小型肝細胞の選択的培養法および分離法
JP2009520474A (ja) * 2005-12-21 2009-05-28 ユニヴァルシテ カソリック デ ルーバン 単離肝幹細胞
WO2014168157A1 (ja) * 2013-04-08 2014-10-16 独立行政法人医薬基盤研究所 肝幹前駆様細胞の培養方法及びその培養物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112092A (ja) * 1994-08-23 1996-05-07 Res Dev Corp Of Japan クローン性増殖能を有する肝実質細胞とその取得 方法、並びにその継代培養方法
JPH09313172A (ja) * 1996-05-28 1997-12-09 Kagaku Gijutsu Shinko Jigyodan 小型肝細胞の培養方法
JPH10179148A (ja) * 1996-12-26 1998-07-07 Kagaku Gijutsu Shinko Jigyodan ヒト小型肝細胞の取得方法と、この細胞の初代培養 および継代培養方法
JP2004510432A (ja) * 2000-10-03 2004-04-08 ユニバーシティ オブ ノース カロライナ 両能性肝前駆細胞の単離方法
WO2002088332A1 (fr) * 2001-04-24 2002-11-07 Hokkaido Technology Licensing Office Co.,Ltd. Colonie riche en petites cellules hepatiques, procede d'obtention de cette colonie, procede d'induction de la maturation de cette colonie dans un tissu hepatique et procede d'estimation de l'effet d'un medicament faisant appel a cette colonie riche en petites cellules hepatiques mature
WO2006001472A1 (ja) * 2004-06-29 2006-01-05 Japan Science And Technology Agency 特異的抗体を用いる小型肝細胞の分離法
WO2006001473A1 (ja) * 2004-06-29 2006-01-05 Japan Science And Technology Agency ヒアルロン酸を用いた小型肝細胞の選択的培養法および分離法
JP2009520474A (ja) * 2005-12-21 2009-05-28 ユニヴァルシテ カソリック デ ルーバン 単離肝幹細胞
WO2014168157A1 (ja) * 2013-04-08 2014-10-16 独立行政法人医薬基盤研究所 肝幹前駆様細胞の培養方法及びその培養物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189799A1 (ja) * 2019-03-20 2020-09-24 北海道公立大学法人札幌医科大学 肝細胞と胆管上皮細胞との接続部構造を有する肝上皮様組織の培養方法

Also Published As

Publication number Publication date
JP6704617B2 (ja) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2019185017A1 (zh) 用于肝细胞培养及肝脏类器官制备的培养基
US9775863B2 (en) Isolated liver stem cells
JP4146802B2 (ja) 単球を起源に持つ、脱分化したプログラム可能な幹細胞およびそれらの製造と使用
Avital et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells
CN106795489B (zh) 用于生产成人肝脏祖细胞的方法
JP4758347B2 (ja) ヒアルロン酸を用いた小型肝細胞の選択的培養法および分離法
JP5996841B2 (ja) 尿由来の前駆細胞およびその使用方法
Weiss et al. Hepatic progenitor cells from adult human livers for cell transplantation
US8377689B2 (en) EPHA4-positive human adult pancreatic endocrine progenitor cells
JP2010519934A (ja) 肝細胞の維持、増殖及び/又は分化のためのヒアルロナン、他のマトリックス成分、ホルモン及び増殖因子の複合体
KR20180114073A (ko) 향상된 성체 간 전구 세포 제제
JP2020516257A (ja) 凍結保存方法
JP6421335B2 (ja) 肝幹前駆様細胞の培養方法及びその培養物
JP2013208104A (ja) 消化器系がん幹細胞を培養するための無血清培地、及びそれを用いた消化器系がん幹細胞の増殖方法
JP6704617B2 (ja) 小型肝細胞の継代培養方法
JP7300719B2 (ja) 成体多能性幹細胞の調製、拡大および使用
JP4829112B2 (ja) 特異的抗体を用いる小型肝細胞の分離法
TW202035682A (zh) 表現hla-g之肝先驅細胞及取得包含該等細胞之此等細胞組成物之方法與其用途
JP7191041B2 (ja) 機能的肝前駆細胞もしくは肝細胞または機能的小腸上皮前駆細胞もしくは小腸上皮細胞を調製する方法
KR20210116469A (ko) Hla-e를 발현하는 간 전구 세포를 포함하는 세포 조성물
KR20230088673A (ko) 연골세포 세포 시트 및 이들의 제조 방법 및 용도
Martinez Buccal biopsies as an epithelial cell source for tracheal tissue engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6704617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250