JP2017124415A - Continuous casting method and continuous casting facility - Google Patents

Continuous casting method and continuous casting facility Download PDF

Info

Publication number
JP2017124415A
JP2017124415A JP2016004433A JP2016004433A JP2017124415A JP 2017124415 A JP2017124415 A JP 2017124415A JP 2016004433 A JP2016004433 A JP 2016004433A JP 2016004433 A JP2016004433 A JP 2016004433A JP 2017124415 A JP2017124415 A JP 2017124415A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
side corner
corner portion
recuperation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016004433A
Other languages
Japanese (ja)
Other versions
JP6608291B2 (en
Inventor
直樹 蒲池
Naoki Kamaike
直樹 蒲池
三浦 康彰
Yasuaki Miura
康彰 三浦
雅典 斉藤
Masanori Saito
雅典 斉藤
輝修 八明
Terunaga Yaake
輝修 八明
勇次 加藤
Yuji Kato
勇次 加藤
明 大久保
Akira Okubo
明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Aichi Steel Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Aichi Steel Corp
Priority to JP2016004433A priority Critical patent/JP6608291B2/en
Publication of JP2017124415A publication Critical patent/JP2017124415A/en
Application granted granted Critical
Publication of JP6608291B2 publication Critical patent/JP6608291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method adoptable even under a condition having a small capacity of recuperation, capable of suppressing crack on the cast slab L side, and to provide a continuous casting facility.SOLUTION: In a continuous casting method for recuperating after secondary cooling and reforming linearly a cast slab 11 discharged from a template 12 of a continuous casting facility 10, an L side corner part 19 of the cast slab 11 is cooled by water to a temperature below an A1 transformation point, in a cooling zone 20 provided on the furthermore downstream side than a recuperation completion position after secondary cooling of the cast slab 11, and further its temperature is raised over an A3 transformation point, and then the cast slab 11 is reformed linearly.SELECTED DRAWING: Figure 1

Description

本発明は、連続鋳造設備の鋳型から出て、湾曲した経路に沿って進行した鋳片を直線状に矯正する連続鋳造方法及び連続鋳造設備に関する。 The present invention relates to a continuous casting method and a continuous casting facility for straightening a slab that has come out of a mold of a continuous casting facility and traveled along a curved path.

湾曲型及び垂直曲げ型の連続鋳造機においては、曲がった鋳片を直線状に矯正することが必須である。しかし、鋳片は、矯正点に至るまでに温度が降下し、(オースティナイト)粒界にフェライトがフィルム状に析出し、脆化するため、鋳片が直線状に矯正される際に、鋳片L側、即ち鋳片の湾曲内側に引っ張り歪みが発生することにより割れが生じ、最終製品の品質低下を招くことになる。特に、鋳片は、断面4隅のコーナー部が最も温度低下が進むので、鋳片L側のコーナー部でも幅方向両端部の領域に割れが発生し易い。
そこで、鋳片を直線状に矯正する際に鋳片L側に割れが生じるのを抑制する技術が提案され、その具体例が特許文献1に記載されている。
In a curved type and vertical bending type continuous casting machine, it is essential to straighten a bent slab. However, the temperature of the slab drops until it reaches the correction point, and ferrite is precipitated in a film form at the (austenite) grain boundary and becomes brittle, so when the slab is straightened, When tensile strain is generated on the slab L side, that is, on the curved inner side of the slab, cracks occur and the quality of the final product is degraded. In particular, since the temperature of the slab is the lowest at the corners at the four corners of the cross section, cracks are likely to occur in the regions at both ends in the width direction even at the corners on the slab L side.
Then, the technique which suppresses that a crack arises in the slab L side when correcting a slab to linear form is proposed, and the specific example is described in patent document 1. FIG.

特許文献1の連続鋳造方法は、二次冷却で急冷して鋳片の表面温度をA3変態点以下にし、復熱によって鋳片の表面温度をA3変態点以上に昇温させた後に、鋳片の表面温度が850℃未満の状態で矯正を行う。
鋳片を水冷し表面温度をA3変態点以下に冷却し、復熱させることによって、結晶粒が微細化し、鋳片L側のコーナー部の割れに対する限界応力を高めることが可能となる。
In the continuous casting method of Patent Document 1, the slab is rapidly cooled by secondary cooling so that the surface temperature of the slab is not higher than the A3 transformation point and the surface temperature of the slab is increased to not lower than the A3 transformation point by recuperation. Correction is performed in a state where the surface temperature is less than 850 ° C.
By cooling the slab with water, cooling the surface temperature below the A3 transformation point, and reheating it, the crystal grains can be refined and the critical stress against cracking at the corner on the slab L side can be increased.

特開2002−86252号公報JP 2002-86252 A

しかしながら、二次冷却は、鋳片に対して4面側から冷却を行い、しかも、各面側に対し幅方向全体を冷却するので、鋳片全体の温度低下が著しい。その際、特に鋳片コーナー部は、他の部位より温度低下が著しく、鋳片の復熱容量が小さい条件下で、特許文献1の技術を採用する場合、A3変態点以下に冷却した鋳片コーナー部の温度を復熱によりA3変態点以上に上昇させることは、安定的に行うことができないということが、論理的検証及び実験的検証によって判明した。
このため、特許文献1の技術を適用可能な範囲は限定的であり、例えば、復熱容量が小さいブルームやビレットに特許文献1の技術を採用した場合に、鋳片L側コーナー部の割れを効果的に抑制できない場合があった。
本発明は、かかる事情に鑑みてなされるもので、復熱容量が小さい条件でも採用可能な、鋳片L側の割れ(特に、コーナー部の割れ)を抑制する連続鋳造方法及び連続鋳造設備を提供することを目的とする。
However, in the secondary cooling, the slab is cooled from the four sides, and the entire width direction is cooled on each side, so that the temperature drop of the entire slab is remarkable. At that time, in particular, the slab corner portion has a significantly lower temperature than other parts, and the slab corner cooled below the A3 transformation point when the technique of Patent Document 1 is employed under the condition that the recuperated capacity of the slab is small. It has been proved by logical verification and experimental verification that it is impossible to stably raise the temperature of the part to the A3 transformation point or higher by recuperation.
For this reason, the range which can apply the technique of patent document 1 is limited, for example, when the technique of patent document 1 is employ | adopted for the bloom and billet with a small recuperation capacity, it is effective in the crack of the slab L side corner part. In some cases, it could not be suppressed.
The present invention is made in view of such circumstances, and provides a continuous casting method and a continuous casting facility that can suppress cracks on the slab L side (particularly, cracks at the corners) that can be employed even under conditions where the recuperation capacity is small. The purpose is to do.

前記目的に沿う第1の発明に係る連続鋳造方法は、連続鋳造設備の鋳型から出される鋳片を二次冷却後復熱させ直線状に矯正する連続鋳造方法において、前記鋳片の二次冷却後の復熱完了位置より下流側に設けた冷却帯で、前記鋳片のL側コーナー部を水冷してA1変態点未満に冷却し、更にA3変態点以上に昇温させた後、前記鋳片を直線状に矯正する。 The continuous casting method according to the first aspect of the present invention is a continuous casting method in which a slab taken out from a mold of a continuous casting facility is subjected to secondary cooling and then reheated and straightened to correct the slab in a secondary cooling manner. After cooling the L-side corner of the slab to a temperature lower than the A1 transformation point in a cooling zone provided downstream from the subsequent recuperation completion position, and further raising the temperature above the A3 transformation point, Straighten the piece straight.

第1の発明に係る連続鋳造方法において、前記鋳片のL側コーナー部は、300〜700℃に冷却されるのが好ましい。 In the continuous casting method according to the first invention, the L-side corner portion of the slab is preferably cooled to 300 to 700 ° C.

第1の発明に係る連続鋳造方法において、前記鋳片のL側コーナー部の昇温は、前記鋳片の復熱のみによって行われるのが好ましい。 In the continuous casting method according to the first aspect of the present invention, it is preferable that the temperature increase of the L-side corner portion of the slab is performed only by reheating the slab.

第1の発明に係る連続鋳造方法において、前記鋳片のL側コーナー部の昇温を行う復熱量の不足分を、該鋳片のL側コーナー部を加熱することによって補うのが好ましい。 In the continuous casting method according to the first aspect of the present invention, it is preferable to compensate for an insufficient amount of recuperation for heating the L-side corner of the slab by heating the L-side corner of the slab.

第1の発明に係る連続鋳造方法において、前記L側コーナー部の加熱は、誘導加熱によって行われるのが好ましい。 In the continuous casting method according to the first aspect of the invention, the L-side corner is preferably heated by induction heating.

前記目的に沿う第2の発明に係る連続鋳造設備は、鋳型から出される鋳片を二次冷却後復熱させ直線状に矯正する連続鋳造設備において、前記二次冷却後の復熱完了位置より下流側に設けられ、前記鋳片のL側コーナー部に冷却水を吹き付けてA1変態点未満に冷却するノズルと、A1変態点未満に冷却された前記鋳片がA3変態点以上に昇温する位置の下流側で該鋳片を直線状に矯正する矯正ロールとを備える。 The continuous casting equipment according to the second invention in accordance with the above object is the continuous casting equipment for reheating the slab taken out from the mold after secondary cooling and straightening it, from the recuperation completion position after the secondary cooling. A nozzle that is provided on the downstream side and cools below the A1 transformation point by spraying cooling water on the L-side corner of the slab, and the slab cooled below the A1 transformation point is heated to a temperature higher than the A3 transformation point. And a straightening roll for straightening the slab on the downstream side of the position.

第2の発明に係る連続鋳造設備において、前記ノズルの下流側に設けられ、復熱により昇温する前記鋳片のL側コーナー部を加熱してA3変態点以上にする加熱装置を備えるのが好ましい。 The continuous casting equipment according to a second aspect of the present invention includes a heating device that is provided on the downstream side of the nozzle and that heats the L-side corner portion of the slab, which is heated by recuperation, to a temperature equal to or higher than the A3 transformation point. preferable.

第2の発明に係る連続鋳造設備において、前記加熱装置は、誘導加熱を行う誘導加熱装置であるのが好ましい。 In the continuous casting facility according to the second aspect of the invention, the heating device is preferably an induction heating device that performs induction heating.

第1の発明に係る連続鋳造方法及び第2の発明に係る連続鋳造設備は、二次冷却後の復熱完了位置より下流側に設けた冷却帯で、鋳片のL側コーナー部を水冷してA1変態点未満に冷却し、更にA3変態点以上に昇温させた後、鋳片を直線状に矯正する。従って、冷却帯で鋳片のL側コーナー部を水冷し、L側コーナー部の温度を集中的に低下させることによって、鋳片全体の温度降下を抑制することができ、その後のL側コーナー部の復熱による温度上昇幅を大きくすることが可能となる。このため、スラブに比べ復熱容量が小さいビレットやブルームに対しても、直線状に矯正する地点までに、鋳片の温度を確実にA3変態点以上に昇温させることができ、鋳片L側の特にコーナー部の割れ発生を抑制可能である。 The continuous casting method according to the first aspect of the invention and the continuous casting equipment according to the second aspect of the invention are the cooling zone provided downstream from the recuperation completion position after the secondary cooling, and water-cools the L-side corner of the slab. After cooling to below the A1 transformation point and further raising the temperature above the A3 transformation point, the slab is straightened. Accordingly, by cooling the L side corner of the slab with water in the cooling zone and intensively reducing the temperature of the L side corner, the temperature drop of the entire slab can be suppressed, and the subsequent L side corner It is possible to increase the temperature rise width due to the recuperation. For this reason, even for billets and blooms that have a smaller recuperation capacity than slabs, the temperature of the slab can be reliably raised to the A3 transformation point or higher by the point where straightening is corrected, and the slab L side In particular, the occurrence of cracks at the corners can be suppressed.

第1の発明に係る連続鋳造方法において、鋳片のL側コーナー部が、300〜700℃に冷却される場合、鋳片L側コーナー部の割れ発生を安定的に抑制することができる。
これは、実験的検証によって確認されている。
In the continuous casting method according to the first aspect, when the L-side corner portion of the slab is cooled to 300 to 700 ° C., the occurrence of cracks in the slab L-side corner portion can be stably suppressed.
This has been confirmed by experimental verification.

第1の発明に係る連続鋳造方法において、鋳片のL側コーナー部の昇温が、鋳片の復熱のみによって行われる場合、L側コーナー部を昇温するため加熱装置を追加する必要がなく経済的である。 In the continuous casting method according to the first aspect of the present invention, when the temperature rise of the L-side corner portion of the slab is performed only by reheating the slab, it is necessary to add a heating device to raise the temperature of the L-side corner portion. It is economical.

第1の発明に係る連続鋳造方法において、鋳片のL側コーナー部の昇温を行う復熱量の不足分を、鋳片のL側コーナー部を加熱することによって補う場合、あるいは、第2の発明に係る連続鋳造設備において、復熱により昇温する鋳片のL側コーナー部を加熱してA3変態点以上にする加熱装置を備える場合、A1変態点未満に水冷されたL側コーナー部を確実にA3変態点以上の温度にすることが可能である。
また、第1の発明に係る連続鋳造方法及び第2の発明に係る連続鋳造設備において、鋳片のL側コーナー部の加熱を誘導加熱によって行う場合、鋳片のL側コーナー部の高効率な加熱が可能である。
In the continuous casting method according to the first aspect of the present invention, the shortage of the recuperated amount for heating the L-side corner of the slab is compensated by heating the L-side corner of the slab, or the second In the continuous casting equipment according to the invention, when the heating device is provided to heat the L-side corner portion of the slab that is heated by recuperation to the A3 transformation point or higher, the L-side corner portion that is water-cooled below the A1 transformation point is provided. It is possible to reliably set the temperature above the A3 transformation point.
Further, in the continuous casting method according to the first invention and the continuous casting equipment according to the second invention, when the L-side corner portion of the slab is heated by induction heating, the L-side corner portion of the slab is highly efficient. Heating is possible.

本発明の一実施の形態に係る連続鋳造方法が適用される連続鋳造設備の説明図である。It is explanatory drawing of the continuous casting installation with which the continuous casting method which concerns on one embodiment of this invention is applied. (A)、(B)はノズルの位置を示す説明図である。(A), (B) is explanatory drawing which shows the position of a nozzle. 鋳片の温度推移を示すグラフである。It is a graph which shows the temperature transition of slab.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る連続鋳造方法が適用される連続鋳造設備10は、鋳片11が出される鋳型12と複数のサポートロール13を備え、鋳型12から抜き出された鋳片11を水冷し二次冷却を行う複数のノズル14が、鋳型12の近傍に設けられている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a continuous casting facility 10 to which a continuous casting method according to an embodiment of the present invention is applied includes a mold 12 from which a slab 11 is taken out and a plurality of support rolls 13. A plurality of nozzles 14 for cooling the cast slab 11 with water and performing secondary cooling are provided in the vicinity of the mold 12.

複数のサポートロール13は、鋳片11の進行経路に沿って配置され、鋳片11は、サポートロール13により案内されて進行する。鋳片11は、ノズル14から吹き付けられる冷却水及び自然放熱によって温度が下がり、鋳片11の表面に形成された凝固殻15は、鋳片11の進行に伴って厚みを増す。
鋳片11の進行経路には湾曲部が設けられている。鋳片11の進行経路には、複数のサポートロール13の下流側に複数の矯正ロール16が配置され、湾曲部を通過して湾曲した鋳片11は、この複数の矯正ロール16によって曲げ戻され直線状に矯正される。
The plurality of support rolls 13 are arranged along the traveling path of the slab 11, and the slab 11 is guided by the support roll 13 and proceeds. The temperature of the slab 11 is lowered by the cooling water sprayed from the nozzle 14 and natural heat dissipation, and the solidified shell 15 formed on the surface of the slab 11 increases in thickness as the slab 11 advances.
A curved portion is provided in the traveling path of the slab 11. A plurality of straightening rolls 16 are arranged on the downstream side of the plurality of support rolls 13 in the traveling path of the slab 11, and the slab 11 bent through the curved portion is bent back by the plurality of straightening rolls 16. Straightened straight.

本実施の形態では、鋳片11がブルーム又はビレットである。ブルーム及びビレットは、断面の長辺の長さが短辺の1〜2倍で、ブルームは200mm×200mm以上の断面積を有し、ビレットは50mm×50mm以上で200mm×200mm未満の断面積を備える。
なお、スラブは、長辺の長さが短辺の2倍以上であり、通常、短辺が50mm以上で、長辺は800〜3000mmである。
In the present embodiment, the slab 11 is a bloom or billet. The bloom and billet have a cross-sectional area of 200 mm × 200 mm or more, and the billet has a cross-sectional area of 50 mm × 50 mm or more and less than 200 mm × 200 mm. Prepare.
In addition, the slab has a long side length of at least twice that of the short side, and usually has a short side of 50 mm or more and a long side of 800 to 3000 mm.

また、鋳片11の進行方向に沿って、ノズル14が配置されている領域より下流側に、二次冷却された鋳片11に冷却水を吹き付けるノズル17が配置されている。
ノズル14が、鋳片11の湾曲内側にあたる鋳片L側18を含む4面側それぞれに配置され、鋳片11の4面側それぞれに冷却水を吹き付けるのに対し、ノズル17は、鋳片11の鋳片L側18の一端部付近及び他端部付近(以下、鋳片L側18の一端部付近及び他端部付近をそれぞれ「L側コーナー部19」と言う)にのみ配置され、L側コーナー部19に冷却水を吹き付ける。
Further, a nozzle 17 that blows cooling water to the secondary-cooled slab 11 is disposed downstream of the region where the nozzles 14 are disposed along the traveling direction of the slab 11.
The nozzle 14 is disposed on each of the four surfaces including the slab L side 18 corresponding to the curved inner side of the slab 11, and the cooling water is sprayed on each of the four surfaces of the slab 11, whereas the nozzle 17 is disposed on the slab 11. Are disposed only in the vicinity of one end and the other end of the slab L side 18 (hereinafter, the vicinity of the one end and the other end of the slab L side 18 are respectively referred to as “L side corner portion 19”). Cooling water is sprayed on the side corner portion 19.

また、サポートロール13の配置領域に設置されるノズル14は、図2(A)に示すように、鋳片11の4面側それぞれについて、鋳片11の面の幅方向中央に対向する位置に配置され、鋳片11の面全体に冷却水を吹き付ける。 Moreover, the nozzle 14 installed in the arrangement | positioning area | region of the support roll 13 is in the position which opposes the width direction center of the surface of the slab 11 about each of the 4 surface sides of the slab 11, as shown to FIG. 2 (A). It arrange | positions and sprays a cooling water on the whole surface of the slab 11. FIG.

これに対し、ノズル17は、図2(B)に示すように、L側コーナー部19の鋳片L側18の領域に対向する位置にそれぞれ配置され、それぞれ一側及び他側のL側コーナー部19に冷却水を吹き付ける。そのため、ノズル17が配置されている冷却帯(以下、「コーナー冷却帯20」と言う)では、L側コーナー部19を除く部分には、冷却水が直接吹き付けられず、更に、鋳片L側18以外の3面に対しては冷却水が吹き付けられない。
因って、コーナー冷却帯20においては、複数のノズル14が配置されている二次冷却帯21に比べ、鋳片11全体の温度低下を抑制でき、鋳片11のL側コーナー部19を集中的に冷却することができる。
On the other hand, as shown in FIG. 2 (B), the nozzles 17 are arranged at positions facing the region of the slab L side 18 of the L side corner portion 19, respectively, and the L side corners on one side and the other side, respectively. Cooling water is sprayed on the part 19. Therefore, in the cooling zone in which the nozzle 17 is disposed (hereinafter referred to as “corner cooling zone 20”), the cooling water is not directly sprayed on the portion other than the L-side corner portion 19, and the slab L side Cooling water is not sprayed on three surfaces other than 18.
Therefore, compared with the secondary cooling zone 21 in which the plurality of nozzles 14 are arranged, the corner cooling zone 20 can suppress the temperature drop of the entire slab 11 and concentrate the L-side corner portion 19 of the slab 11. Can be cooled.

コーナー冷却帯20は、二次冷却帯21で二次冷却された鋳片11の復熱完了位置より下流側で復熱完了位置に近接して(本実施の形態では、復熱完了位置から下流側に2mの範囲に)配置されている。復熱完了位置とは、二次冷却された鋳片11のL側コーナー部19が、鋳片11の復熱によって最も温度が高くなる位置である。
復熱完了位置より上流側では、鋳片11のL側コーナー部19の温度が低く、コーナー冷却帯20を復熱完了位置より上流側に設けた場合、冷却によってL側コーナー部19の温度を急激に降下させることはできない。この点、実験的検証によって、L側コーナー部19の冷却速度を速くすることで、L側コーナー部19の割れ発生を抑制できることが確認されているので、コーナー冷却帯20を復熱完了位置より上流側に設けるのは好ましくない。また、上流ほど凝固殻15が薄いため、コーナー冷却帯20を復熱完了位置より上流側に設けると、BO(ブレークアウト)等品質トラブルのリスクも上昇する。
The corner cooling zone 20 is close to the recuperation completion position on the downstream side of the recuperation completion position of the slab 11 secondary-cooled in the secondary cooling zone 21 (in this embodiment, downstream from the recuperation completion position). (In the range of 2 m on the side). The recuperation completion position is a position where the temperature of the L-side corner portion 19 of the slab 11 that has undergone secondary cooling is highest due to recuperation of the slab 11.
On the upstream side from the recuperation completion position, the temperature of the L-side corner portion 19 of the slab 11 is low, and when the corner cooling zone 20 is provided upstream from the recuperation completion position, the temperature of the L-side corner portion 19 is reduced by cooling. It cannot be lowered rapidly. In this regard, it has been confirmed by experimental verification that the occurrence of cracks in the L-side corner portion 19 can be suppressed by increasing the cooling rate of the L-side corner portion 19. It is not preferable to provide it upstream. Further, since the solidified shell 15 is thinner toward the upstream side, if the corner cooling zone 20 is provided upstream from the recuperation completion position, the risk of quality troubles such as BO (breakout) increases.

一方、復熱完了位置の下流側で、復熱完了位置から遠ざかった位置にコーナー冷却帯20を設けると、コーナー冷却帯20から鋳片11を直線状に矯正する領域(以下、「矯正帯22」とも言う)までの距離が短くなるため、L側コーナー部19が矯正帯22までに復熱する時間が短くなる。従って、鋳片11が矯正帯22を通過する前に、L側コーナー部19をA3変態点(本実施の形態では850℃)以上の温度にすることができなくなる。
因って、コーナー冷却帯20は、復熱完了位置より下流側で復熱完了位置に近接して設けられるのが好ましいと言える。
On the other hand, when the corner cooling zone 20 is provided on the downstream side of the recuperation completion position and away from the recuperation completion position, the slab 11 is straightened from the corner cooling zone 20 (hereinafter referred to as “correction zone 22”). The distance until the L-side corner portion 19 recovers to the correction band 22 is shortened. Therefore, before the slab 11 passes through the correction band 22, the L-side corner portion 19 cannot be set to a temperature equal to or higher than the A3 transformation point (850 ° C. in the present embodiment).
Therefore, it can be said that the corner cooling zone 20 is preferably provided in the vicinity of the recuperation completion position on the downstream side of the recuperation completion position.

また、L側コーナー部19とは、図2(B)に示すように、鋳片L側18の面の一側及び他側の角部から内側にL1の範囲と、鋳片L側18の面の一側及び他側の角部から鋳片S側(鋳片の湾曲外側)にL2の範囲を合わせた領域であり、鋳片11を直線状に矯正する際、これらの範囲に割れが発生する。本実施の形態では、L1=100mm、L2=0mmであるが、L1及びL2の最適な値、即ち割れが生じる範囲は、鋼種や鋳造速度等、鋳造条件によって異なることは言うまでもない。 Further, as shown in FIG. 2B, the L-side corner portion 19 is a range of L1 inward from one side of the surface of the slab L side 18 and the other side corner portion, and the slab L side 18. It is a region where the range of L2 is adjusted from the corners on one side and the other side of the surface to the slab S side (curved outside of the slab), and when the slab 11 is straightened, cracks are generated in these ranges. Occur. In this embodiment, L1 = 100 mm and L2 = 0 mm, but it goes without saying that the optimum values of L1 and L2, that is, the range in which cracks occur, vary depending on the casting conditions such as the steel type and casting speed.

本実施の形態に係る連続鋳造方法は、鋳造速度及び鋳片11のプロフィールからノズル14の水量を調整し、二次冷却後の復熱完了位置においてL側コーナー部19の温度を鋳片11のA3変態点以上にする。
そして、コーナー冷却帯20において、ノズル17から吹き出される冷却水の容量を調整し、L側コーナー部19をA1変態点未満である300〜700℃の範囲に冷却する。
コーナー冷却帯20で冷却された鋳片11は、鋳片11の復熱によってA3変態点以上1100℃以下の範囲に昇温した後、鋳片11を直線状に矯正する矯正帯22まで進行し、矯正帯22において、複数の矯正ロール16により、鋳片11は直線状に矯正される。
In the continuous casting method according to the present embodiment, the amount of water in the nozzle 14 is adjusted based on the casting speed and the profile of the slab 11, and the temperature of the L-side corner portion 19 is set at the recuperation completion position after secondary cooling. A3 transformation point or higher.
And in the corner cooling zone 20, the capacity | capacitance of the cooling water blown off from the nozzle 17 is adjusted, and the L side corner part 19 is cooled to the range of 300-700 degreeC which is less than A1 transformation point.
The slab 11 cooled in the corner cooling zone 20 is heated to a range of not less than A3 transformation point and not more than 1100 ° C. by reheating of the slab 11, and then proceeds to a straightening zone 22 for straightening the slab 11 into a straight line. The slab 11 is straightened by the plurality of straightening rolls 16 in the straightening band 22.

従って、矯正ロール16は、A1変態点未満に冷却された鋳片11がA3変態点以上に昇温する位置の下流側で鋳片11を直線状に矯正することとなる。
ここで、鋳片11の昇温後の上限値を1100℃としたのは、復熱温度が高温になり過ぎると結晶粒が粗大化し、割れ低減効果が減少するためである。
矯正帯22を通過する際のL側コーナー部19の温度はA3変態点以上であってもA3変態点未満であってもよい。
Accordingly, the straightening roll 16 straightens the slab 11 on the downstream side of the position where the slab 11 cooled below the A1 transformation point is heated to the A3 transformation point or higher.
Here, the reason why the upper limit after the temperature rise of the slab 11 is set to 1100 ° C. is that when the recuperation temperature becomes too high, the crystal grains become coarse and the crack reduction effect decreases.
The temperature of the L-side corner 19 when passing through the correction band 22 may be equal to or higher than the A3 transformation point or lower than the A3 transformation point.

ここで、コーナー冷却帯20において、L側コーナー部19を300〜700℃の範囲に冷却する2つの理由を以下に説明する。
(理由1)コーナー冷却帯20においてL側コーナー部19を300℃未満まで冷却すると、鋳片11がコーナー冷却帯20を通過した後、鋳片11の復熱のみによって、L側コーナー部19をA3変態点以上の温度に昇温させることを安定して行えない。
(理由2)コーナー冷却帯20における冷却によって、L側コーナー部19の温度を700℃以下としない場合、結晶粒径の微細化効果が小さいため、鋳片11を直線状に矯正する際のL側コーナー部19への割れ発生を抑制できない。
理由1及び理由2については、論理的検証及び実験的検証によって確認されたことである。
Here, two reasons for cooling the L-side corner portion 19 in the range of 300 to 700 ° C. in the corner cooling zone 20 will be described below.
(Reason 1) When the L-side corner portion 19 is cooled to less than 300 ° C. in the corner cooling zone 20, the slab 11 passes through the corner cooling zone 20, and then the L-side corner portion 19 is only reheated by the slab 11. It is impossible to stably raise the temperature to a temperature equal to or higher than the A3 transformation point.
(Reason 2) When the temperature of the L-side corner portion 19 is not set to 700 ° C. or lower due to cooling in the corner cooling zone 20, the effect of refining the crystal grain size is small. The occurrence of cracks in the side corner portion 19 cannot be suppressed.
Reason 1 and reason 2 are confirmed by logical verification and experimental verification.

鋳片の冷却温度(即ち、コーナー冷却帯によって冷却されたL側コーナー部の到達温度)及び復熱温度(即ち、鋳片が冷却後の復熱による昇温で到達するL側コーナー部の最高温度)が、鋳片を直線状に矯正する際のL側コーナー部の割れ発生状況に与える影響を実験によって検証したラボテスト結果の一例を以下の表1に示す。 The cooling temperature of the slab (that is, the reached temperature of the L-side corner portion cooled by the corner cooling zone) and the recuperated temperature (that is, the maximum of the L-side corner portion that the slab reaches by the temperature rise due to recuperation after cooling) Table 1 below shows an example of a laboratory test result in which the effect of the (temperature) on the crack occurrence state of the L-side corner when straightening the slab is verified by experiment.

Figure 2017124415
Figure 2017124415

表中に「評価」として記載した検証結果は、L側コーナー部の割れ発生状況であり、割れが顕著に生じた場合を×、ほとんど割れが生じなかった場合を○としている。
なお、鋳造速度は0.5m/min、鋳片サイズは400mm×500mmであった。
The verification result described as “Evaluation” in the table is the crack occurrence state of the L-side corner portion, where “X” indicates a case where the crack occurs remarkably, and “◯” indicates a case where the crack hardly occurs.
The casting speed was 0.5 m / min, and the slab size was 400 mm × 500 mm.

また、コーナー冷却帯20でL側コーナー部19を300℃未満に冷却する場合でも、図1に示す加熱装置23を用いてL側コーナー部19を加熱し鋳片11の復熱の不足分を補えば、L側コーナー部19を安定的にA3変態点以上に昇温することは可能である。即ち、加熱装置23は、ノズル14の下流側に設けられ、復熱により昇温する鋳片11のL側コーナー部19を加熱してA3変態点以上にする。 Further, even when the L-side corner portion 19 is cooled to less than 300 ° C. in the corner cooling zone 20, the L-side corner portion 19 is heated using the heating device 23 shown in FIG. If it supplements, it is possible to heat up the L side corner part 19 stably more than A3 transformation point. That is, the heating device 23 is provided on the downstream side of the nozzle 14 and heats the L-side corner portion 19 of the slab 11 whose temperature is raised by recuperation so as to be higher than the A3 transformation point.

加熱装置23を用いる場合、鋳片11の復熱によりL側コーナー部19をA3変態点以上にするのと同レベルの効果、即ち、鋳片11を直線状に矯正する際にL側コーナー部19に割れが生じるのを安定的に抑制する効果を得られることが確認されている。
ここで、加熱装置として誘導加熱装置を採用し、誘導加熱を行ってL側コーナー部19を加熱することで、L側コーナー部19の温度調整を安定的に行えることが実験によって確認されている。
When the heating device 23 is used, the effect of the same level as when the L-side corner portion 19 is set to the A3 transformation point or higher by the recuperation of the slab 11, that is, when the slab 11 is straightened, the L-side corner portion. It has been confirmed that the effect of stably suppressing the occurrence of cracks in 19 can be obtained.
Here, it has been confirmed by experiments that an induction heating device is adopted as a heating device, and the L side corner portion 19 can be stably adjusted by heating the L side corner portion 19 by induction heating. .

次に、本発明の作用効果を確認するために行った実施例について説明する。
鋳造速度0.5m/min、鋳片サイズ400mm×500mmの条件下で、水冷によってL側コーナー部を冷却した後に、L側コーナー部が鋳片の復熱のみによって何度まで上昇するかを調査すべく実験シミュレーションを行った。
実験は2つのケースについて行い、ケース1は、二次冷却後復熱させて、更にコーナー冷却帯でL側コーナー部を冷却し、L側コーナー部を600℃に冷却した場合、ケース2は、コーナー冷却帯での冷却は行わず、二次冷却帯でL側コーナー部が600℃になるまで冷却した場合である。
Next, examples carried out for confirming the effects of the present invention will be described.
After cooling the L-side corner by water cooling under the conditions of casting speed 0.5m / min and slab size 400mm x 500mm, investigate how many times the L-side corner rises only by reheating the slab An experimental simulation was conducted.
The experiment was conducted on two cases. Case 1 was reheated after secondary cooling, and the L-side corner was further cooled in the corner cooling zone, and the L-side corner was cooled to 600 ° C. This is a case where the cooling in the corner cooling zone is not performed and the cooling is performed until the L-side corner portion reaches 600 ° C. in the secondary cooling zone.

実験結果は、図3のグラフに示すようになり、実線で表されたケース1は、コーナー冷却帯の下流側で、L側コーナー部がA3変態点である850℃を超え、破線で表されたケース2は、復熱によって750℃まで温度上昇するものの、A3変態点以上にはならなかった。このため、直線状に矯正された鋳片のL側コーナー部の割れ発生状況は、ケース1はほとんど割れがなく、ケース2は割れが顕著に発生した。
なお、ケース1において、二次冷却帯の下流側でL側コーナー部の温度が最も高くなっている、丸で囲まれた位置が復熱完了位置である。
The experimental results are as shown in the graph of FIG. 3, and the case 1 represented by a solid line is represented by a broken line on the downstream side of the corner cooling zone and the L-side corner portion exceeding 850 ° C. which is the A3 transformation point. In case 2, the temperature rose to 750 ° C. by recuperation, but the temperature did not exceed the A3 transformation point. For this reason, as for the crack generation situation of the L side corner part of the slab straightened straightly, the case 1 has almost no crack and the case 2 has a remarkable crack.
In case 1, the recirculation completion position is a circled position where the temperature of the L-side corner is highest on the downstream side of the secondary cooling zone.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、鋳片は、ブルームやビレットに限定されず、スラブを用いることも可能である。
また、コーナー冷却帯の配置位置は、鋳片の復熱完了位置から2mの範囲に限定されず、例えば15mの範囲であってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the slab is not limited to bloom or billet, and slab can be used.
Further, the arrangement position of the corner cooling zone is not limited to a range of 2 m from the recuperation completion position of the slab, and may be, for example, a range of 15 m.

10:連続鋳造設備、11:鋳片、12:鋳型、13:サポートロール、14:ノズル、15:凝固殻、16:矯正ロール、17:ノズル、18:鋳片L側、19:L側コーナー部、20:コーナー冷却帯、21:二次冷却帯、22:矯正帯、23:加熱装置 10: continuous casting equipment, 11: slab, 12: mold, 13: support roll, 14: nozzle, 15: solidified shell, 16: straightening roll, 17: nozzle, 18: slab L side, 19: L side corner 20: Corner cooling zone, 21: Secondary cooling zone, 22: Correction zone, 23: Heating device

Claims (8)

連続鋳造設備の鋳型から出される鋳片を二次冷却後復熱させ直線状に矯正する連続鋳造方法において、
前記鋳片の二次冷却後の復熱完了位置より下流側に設けた冷却帯で、前記鋳片のL側コーナー部を水冷してA1変態点未満に冷却し、更にA3変態点以上に昇温させた後、前記鋳片を直線状に矯正することを特徴とする連続鋳造方法。
In the continuous casting method in which the slab taken out from the mold of the continuous casting facility is reheated after secondary cooling and straightened,
In the cooling zone provided downstream of the recuperation completion position after secondary cooling of the slab, the L-side corner of the slab is cooled with water to cool below the A1 transformation point, and further rises above the A3 transformation point. After the heating, the continuous casting method is characterized in that the slab is straightened.
請求項1記載の連続鋳造方法において、前記鋳片のL側コーナー部は、300〜700℃に冷却されることを特徴とする連続鋳造方法。 The continuous casting method according to claim 1, wherein the L-side corner portion of the slab is cooled to 300 to 700 ° C. 請求項1又は2記載の連続鋳造方法において、前記鋳片のL側コーナー部の昇温は、前記鋳片の復熱のみによって行われることを特徴とする連続鋳造方法。 3. The continuous casting method according to claim 1, wherein the temperature rise of the L-side corner portion of the slab is performed only by recuperation of the slab. 請求項1又は2記載の連続鋳造方法において、前記鋳片のL側コーナー部の昇温を行う復熱量の不足分を、該鋳片のL側コーナー部を加熱することによって補うことを特徴とする連続鋳造方法。 3. The continuous casting method according to claim 1, wherein an insufficient amount of recuperation for heating the L-side corner portion of the slab is compensated by heating the L-side corner portion of the slab. Continuous casting method. 請求項4記載の連続鋳造方法において、前記L側コーナー部の加熱は、誘導加熱によって行われることを特徴とする連続鋳造方法。 5. The continuous casting method according to claim 4, wherein the L-side corner portion is heated by induction heating. 6. 鋳型から出される鋳片を二次冷却後復熱させ直線状に矯正する連続鋳造設備において、
前記二次冷却後の復熱完了位置より下流側に設けられ、前記鋳片のL側コーナー部に冷却水を吹き付けてA1変態点未満に冷却するノズルと、A1変態点未満に冷却された前記鋳片がA3変態点以上に昇温する位置の下流側で該鋳片を直線状に矯正する矯正ロールとを備えることを特徴とする連続鋳造設備。
In continuous casting equipment that reheats the slab from the mold after secondary cooling and straightens it,
A nozzle that is provided downstream from the recuperation completion position after the secondary cooling, sprays cooling water to the L-side corner portion of the slab and cools it below the A1 transformation point, and is cooled below the A1 transformation point. A continuous casting facility comprising: a straightening roll that straightens the slab at a position downstream of a position where the slab is heated to an A3 transformation point or higher.
請求項6記載の連続鋳造設備において、前記ノズルの下流側に設けられ、復熱により昇温する前記鋳片のL側コーナー部を加熱してA3変態点以上にする加熱装置を備えることを特徴とする連続鋳造設備。 The continuous casting equipment according to claim 6, further comprising a heating device provided on the downstream side of the nozzle and heating the L-side corner portion of the slab, which is heated by recuperation, to a temperature equal to or higher than the A3 transformation point. Continuous casting equipment. 請求項7記載の連続鋳造設備において、前記加熱装置は、誘導加熱を行う誘導加熱装置であることを特徴とする連続鋳造設備。 The continuous casting equipment according to claim 7, wherein the heating device is an induction heating device that performs induction heating.
JP2016004433A 2016-01-13 2016-01-13 Continuous casting method and continuous casting equipment Active JP6608291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004433A JP6608291B2 (en) 2016-01-13 2016-01-13 Continuous casting method and continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004433A JP6608291B2 (en) 2016-01-13 2016-01-13 Continuous casting method and continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2017124415A true JP2017124415A (en) 2017-07-20
JP6608291B2 JP6608291B2 (en) 2019-11-20

Family

ID=59364060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004433A Active JP6608291B2 (en) 2016-01-13 2016-01-13 Continuous casting method and continuous casting equipment

Country Status (1)

Country Link
JP (1) JP6608291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136630A (en) * 2016-02-05 2017-08-10 新日鉄住金エンジニアリング株式会社 Continuous casting device and manufacturing method of casting piece
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN109014100A (en) * 2018-09-29 2018-12-18 东北大学 A method of it improving steel thin plate base continuous casting process and draws steel speed
JP2020066047A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Manufacturing method of steel piece

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514173A (en) * 1978-07-19 1980-01-31 Nippon Steel Corp Surface crack preventing method of steel cast billet containing nb and v
US5634512A (en) * 1993-10-29 1997-06-03 Danieli & C. Officine Meccaniche Spa Method and apparatus for casting and thermal surface treatment
JP2001353563A (en) * 2000-06-14 2001-12-25 Nkk Corp Direct-feed rolling method of continuously cast slab
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method
JP2007160341A (en) * 2005-12-13 2007-06-28 Jfe Steel Kk Machine and method for continuously casting steel
JP2012218062A (en) * 2011-04-13 2012-11-12 Nippon Steel Engineering Co Ltd Cast slab heating device and cast slab heating method of continuous casting apparatus
JP2015093278A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514173A (en) * 1978-07-19 1980-01-31 Nippon Steel Corp Surface crack preventing method of steel cast billet containing nb and v
US5634512A (en) * 1993-10-29 1997-06-03 Danieli & C. Officine Meccaniche Spa Method and apparatus for casting and thermal surface treatment
JP2001353563A (en) * 2000-06-14 2001-12-25 Nkk Corp Direct-feed rolling method of continuously cast slab
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method
JP2007160341A (en) * 2005-12-13 2007-06-28 Jfe Steel Kk Machine and method for continuously casting steel
JP2012218062A (en) * 2011-04-13 2012-11-12 Nippon Steel Engineering Co Ltd Cast slab heating device and cast slab heating method of continuous casting apparatus
JP2015093278A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136630A (en) * 2016-02-05 2017-08-10 新日鉄住金エンジニアリング株式会社 Continuous casting device and manufacturing method of casting piece
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN109014100A (en) * 2018-09-29 2018-12-18 东北大学 A method of it improving steel thin plate base continuous casting process and draws steel speed
CN109014100B (en) * 2018-09-29 2020-03-31 东北大学 Method for improving steel drawing speed in steel sheet billet continuous casting process
JP2020066047A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Manufacturing method of steel piece

Also Published As

Publication number Publication date
JP6608291B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6608291B2 (en) Continuous casting method and continuous casting equipment
KR101987566B1 (en) Method for manufacturing metal sheet and rapid quenching unit
KR102303872B1 (en) A method for cooling a steel sheet, a cooling device for a steel sheet, and a method for manufacturing a steel sheet
JP5473259B2 (en) Slab cooling method
JP2020509939A (en) Hot Broadening Method for Continuous Casting Crystallizer
JP3622687B2 (en) Steel continuous casting method
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2011224649A (en) Continuous casting method of steel
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
JP2020138222A (en) Reheating system and reheating method for cast piece
JP5999294B2 (en) Steel continuous casting method
KR101858864B1 (en) Method and apparatus for cooling of casting steel
JP5803223B2 (en) Inner case for finish annealing of grain-oriented electrical steel sheet and finish annealing method
JP5402678B2 (en) Steel continuous casting method
JP6149789B2 (en) Steel continuous casting method
JP2007222920A (en) Method and apparatus for cooling continuous cast slab
JPH0218936B2 (en)
JP2009119512A (en) Method and apparatus for cooling flange of t-shape
JP4923643B2 (en) Steel continuous casting method
JP5741147B2 (en) Steel continuous casting method
JP2018079499A (en) Continuous casting method capable of inhibiting triple-point cracks
JP5045258B2 (en) Continuous casting method and continuous casting machine
JP5839177B2 (en) Finishing annealing equipment and finishing annealing method for grain-oriented electrical steel sheets
KR101239460B1 (en) method of manufacturing martensitic stainless steel
JP3171326B2 (en) Thick steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350