JP2017120679A - Glass substrate for magnetic recording medium, magnetic recording medium - Google Patents

Glass substrate for magnetic recording medium, magnetic recording medium Download PDF

Info

Publication number
JP2017120679A
JP2017120679A JP2016083175A JP2016083175A JP2017120679A JP 2017120679 A JP2017120679 A JP 2017120679A JP 2016083175 A JP2016083175 A JP 2016083175A JP 2016083175 A JP2016083175 A JP 2016083175A JP 2017120679 A JP2017120679 A JP 2017120679A
Authority
JP
Japan
Prior art keywords
glass substrate
outer peripheral
magnetic recording
coordinate
peripheral end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016083175A
Other languages
Japanese (ja)
Other versions
JP6020754B1 (en
Inventor
晴彦 大塚
Haruhiko Otsuka
晴彦 大塚
龍 山口
Ryu Yamaguchi
龍 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to PCT/JP2016/063215 priority Critical patent/WO2017110109A1/en
Application granted granted Critical
Publication of JP6020754B1 publication Critical patent/JP6020754B1/en
Publication of JP2017120679A publication Critical patent/JP2017120679A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Glass Compositions (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass substrate for magnetic recording medium which suppresses cracks generated when the temperature abruptly changes.SOLUTION: There is provided a doughnut-shaped glass substrate for magnetic recording medium including a pair of principal surfaces, an outer peripheral end surface, and an inner peripheral end surface. In a cross section perpendicular to a pair of principal surfaces and passing through a centre axis of the glass substrate for magnetic recording medium, when an axis parallel to the principal surface is defined as an X-axis, an X-coordinate of the outer peripheral end surface in the most outer peripheral position is defined as 0, and an X-coordinate of the outer peripheral end surface closer to the centre axis of the glass substrate for magnetic recording medium than the most outer peripheral position is defined as positive, in the outer peripheral end surface, an angle formed between a straight line connecting a point of 5 μm in the X-coordinate and a point of 10 μm in the X-coordinate, and the X-axis is 81° or more and 85° or less; an angle formed between a straight line connecting a point of 10 μm in the X-coordinate and a point of 20 μm in the X-coordinate, and the X-axis is 69° or more and 83° or less; and an angle formed between a straight line connecting a point of 20 μm in the X-coordinate and a point of 30 μm in the X-coordinate, and the X-axis is 52° or more and 72° or less.SELECTED DRAWING: Figure 2

Description

本発明は、磁気記録媒体用ガラス基板、磁気記録媒体に関する。   The present invention relates to a glass substrate for a magnetic recording medium and a magnetic recording medium.

磁気記録装置は、磁気記録媒体用基板上に磁性層等を成膜した磁気記録媒体を備えており、該磁性層を用いて情報を記録することができる。   The magnetic recording apparatus includes a magnetic recording medium in which a magnetic layer or the like is formed on a magnetic recording medium substrate, and information can be recorded using the magnetic layer.

磁気記録装置に用いられる磁気記録媒体用基板としては、従来、アルミニウム合金基板が使用されてきたが、高記録密度化の要求に伴い、アルミニウム合金基板に比べて硬く、平坦性や平滑性に優れるガラス基板が主流となってきている。   Conventionally, an aluminum alloy substrate has been used as a substrate for a magnetic recording medium used in a magnetic recording apparatus. However, due to the demand for higher recording density, it is harder and more flat and smooth than an aluminum alloy substrate. Glass substrates are becoming mainstream.

そして、近年では年々高まる高記録密度化のニーズに応えるため、エネルギーアシスト磁気記録方式を用いた磁気記録媒体、すなわちエネルギーアシスト磁気記録媒体が検討されている。エネルギーアシスト磁気記録媒体についても、基板として磁気記録媒体用ガラス基板を用い、磁気記録媒体用ガラス基板の主表面上に磁性層等を配置した構成を有することができる。   In recent years, magnetic recording media using an energy-assisted magnetic recording system, that is, energy-assisted magnetic recording media, have been studied in order to meet the increasing demand for higher recording density. The energy-assisted magnetic recording medium can also have a configuration in which a glass substrate for a magnetic recording medium is used as a substrate and a magnetic layer or the like is disposed on the main surface of the glass substrate for a magnetic recording medium.

エネルギーアシスト磁気記録媒体では、磁性層の磁性材料として磁気異方性係数Kuの大きい(以下、「高Ku」とも記載する)規則合金が用いられている。そして、規則化の程度(規則度)を高めて高Kuを実現するため、磁性層の成膜時、成膜前、または成膜後に、磁気記録媒体用ガラス基板を含む基材を600℃〜700℃程度の高温で熱処理を行う場合がある。   In the energy-assisted magnetic recording medium, an ordered alloy having a large magnetic anisotropy coefficient Ku (hereinafter also referred to as “high Ku”) is used as the magnetic material of the magnetic layer. And in order to raise the degree of ordering (order degree) and to realize high Ku, at the time of film formation of a magnetic layer, before film formation, or after film formation, a base material including a glass substrate for a magnetic recording medium is set to 600 ° C. Heat treatment may be performed at a high temperature of about 700 ° C.

磁性層の成膜時、成膜前、または成膜後に高温での熱処理を行うのは、例えばエネルギーアシスト磁気記録媒体の磁性層の磁性材料として好適なFePt系合金等において、アニール温度を高くするほど保磁力を高められるためでもある。   When the magnetic layer is formed, heat treatment at a high temperature is performed before or after the film formation. For example, in an FePt alloy suitable as a magnetic material of the magnetic layer of the energy-assisted magnetic recording medium, the annealing temperature is increased. This is also because the coercive force can be increased.

磁気記録媒体用ガラス基板は、通常一対の主表面、外周端面、及び内周端面を有するドーナツ形状を有しており、外周端面は、主表面と略垂直な外周側面部、及び外周側面部と主表面との間に配置された外周面取り部を有している。   The glass substrate for a magnetic recording medium usually has a donut shape having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, and the outer peripheral end surface includes an outer peripheral side surface portion and an outer peripheral side surface portion that are substantially perpendicular to the main surface. An outer peripheral chamfered portion is disposed between the main surface.

磁気記録媒体用ガラス基板の端面形状については、従来から各種検討がなされている。例えば特許文献1には、磁気ディスクのコロージョン対策に有効な磁気記録媒体用ガラス基板が開示されている。   Various studies have been made on the shape of the end face of a glass substrate for a magnetic recording medium. For example, Patent Document 1 discloses a glass substrate for a magnetic recording medium that is effective for countermeasures against magnetic disk corrosion.

具体的には、基板端面の研削加工工程を含む製造方法によって製造された磁気ディスク用ガラス基板であって、前記ガラス基板の端面は、側壁面と、該ガラス基板の両方の主表面と側壁面との間の2つの面取面とから形成され、2つの面取面のいずれにおいても面内の表面粗さRaのばらつきが±0.01μm以内であり、前記ガラス基板の端面は鏡面であって、表面粗さはRmaxで1μm以下、かつ、Raで0.1μm以下であり、前記ガラス基板の内周及び外周の面取面と側壁面の角度ばらつきが目標の角度に対して0.8度以内であることを特徴とする磁気ディスク用ガラス基板が開示されている。   Specifically, it is a glass substrate for a magnetic disk manufactured by a manufacturing method including a grinding process step of a substrate end surface, and the end surface of the glass substrate includes a side wall surface, both main surfaces and side wall surfaces of the glass substrate. Between the two chamfered surfaces, the variation of the in-plane surface roughness Ra is within ± 0.01 μm, and the end surface of the glass substrate is a mirror surface. The surface roughness Rmax is 1 μm or less and Ra is 0.1 μm or less, and the angle variation between the chamfered surface and the side wall surface of the inner and outer periphery of the glass substrate is 0.8 with respect to the target angle. A glass substrate for a magnetic disk, which is characterized by being within the range, is disclosed.

特許第5639215号公報Japanese Patent No. 5639215

ところで、磁気記録媒体用ガラス基板について、上述のような高温での熱処理時や、熱処理後の冷却時等に、急激な温度変化が加えられた際に、外周端面を起点として割れ等を生じる場合があった。このため、熱処理時に急激な温度変化が加えられた場合でも割れの発生を抑制できる磁気記録媒体用ガラス基板が求められていた。   By the way, when a glass substrate for a magnetic recording medium is subjected to a rapid temperature change during heat treatment at a high temperature as described above or during cooling after the heat treatment, cracks or the like are generated starting from the outer peripheral end surface. was there. For this reason, there has been a demand for a glass substrate for a magnetic recording medium that can suppress the occurrence of cracks even when a sudden temperature change is applied during heat treatment.

そこで、本発明の一側面では上記従来技術が有する問題に鑑み、急激な温度変化が加えられた場合に割れが生じることを抑制した磁気記録媒体用ガラス基板を提供することを目的とする。   In view of the above-described problems of the prior art, an object of one aspect of the present invention is to provide a glass substrate for a magnetic recording medium in which cracking is suppressed when a sudden temperature change is applied.

本発明の一側面では、一対の主表面、外周端面、及び内周端面を有するドーナツ形状の磁気記録媒体用ガラス基板であって、
前記外周端面が外周側面部、及び前記外周側面部と前記主表面との間に配置された外周面取り部を有し、
前記一対の主表面と垂直で、かつ前記磁気記録媒体用ガラス基板の中心軸を通る断面において、
前記主表面と平行な軸をX軸とし、前記外周端面の最外周位置のX座標を0、前記外周端面の最外周位置よりも、前記磁気記録媒体用ガラス基板の中心軸側のX座標を正とした場合に、
前記外周端面のうち、X座標が5μmの点と、X座標が10μmの点とを結んだ直線と、前記X軸とが形成する角度が81°以上85°以下、
前記外周端面のうち、X座標が10μmの点と、X座標が20μmの点とを結んだ直線と、前記X軸とが形成する角度が69°以上83°以下、
前記外周端面のうち、X座標が20μmの点と、X座標が30μmの点とを結んだ直線と、前記X軸とが形成する角度が52°以上72°以下、
である磁気記録媒体用ガラス基板を提供する。
In one aspect of the present invention, a glass substrate for a magnetic recording medium in a donut shape having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface,
The outer peripheral end surface has an outer peripheral side surface portion, and an outer peripheral chamfered portion disposed between the outer peripheral side surface portion and the main surface,
In a cross section perpendicular to the pair of main surfaces and passing through the central axis of the glass substrate for magnetic recording medium,
The axis parallel to the main surface is the X axis, the X coordinate of the outermost peripheral surface of the outer peripheral end surface is 0, and the X coordinate on the central axis side of the glass substrate for a magnetic recording medium from the outermost peripheral position of the outer peripheral end surface is If positive,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 5 μm and a point having an X coordinate of 10 μm and the X axis is 81 ° to 85 °,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 10 μm and a point having an X coordinate of 20 μm and the X axis is 69 ° or more and 83 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 20 μm and a point having an X coordinate of 30 μm and the X axis is 52 ° or more and 72 ° or less,
A glass substrate for a magnetic recording medium is provided.

本発明の磁気記録媒体用ガラス基板の一側面によれば、急激な温度変化が加えられた場合に割れが生じることを抑制した磁気記録媒体用ガラス基板を提供することができる。   According to one aspect of the glass substrate for a magnetic recording medium of the present invention, it is possible to provide a glass substrate for a magnetic recording medium that suppresses the occurrence of cracking when a sudden temperature change is applied.

本発明の実施形態に係る磁気記録媒体用ガラス基板の説明図。Explanatory drawing of the glass substrate for magnetic recording media which concerns on embodiment of this invention. 図1の磁気記録媒体用ガラス基板の断面図の一部拡大図。FIG. 2 is a partially enlarged view of a cross-sectional view of the magnetic recording medium glass substrate of FIG. 1. 面取り工程で用いる砥石の説明図。Explanatory drawing of the grindstone used at a chamfering process. 端面研磨工程で用いる端面研磨装置の構成例の説明図。Explanatory drawing of the structural example of the end surface grinding | polishing apparatus used at an end surface grinding | polishing process.

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
(磁気記録媒体用ガラス基板)
本実施形態の磁気記録媒体用ガラス基板の一構成例について説明を行う。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.
(Glass substrate for magnetic recording media)
One structural example of the glass substrate for magnetic recording media of this embodiment is demonstrated.

本実施形態の磁気記録媒体用ガラス基板は、一対の主表面、外周端面、及び内周端面を有するドーナツ形状の磁気記録媒体用ガラス基板であって、外周端面が外周側面部、及び外周側面部と主表面との間に配置された外周面取り部を有することができる。
ここで、一対の主表面と垂直で、かつ磁気記録媒体用ガラス基板の中心軸を通る断面において、主表面と平行な軸をX軸とし、外周端面の最外周位置のX座標を0、外周端面の最外周位置よりも、磁気記録媒体用ガラス基板の中心軸側のX座標を正とする。
The glass substrate for a magnetic recording medium of this embodiment is a glass substrate for a magnetic recording medium having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface, and the outer peripheral end surface is an outer peripheral side surface portion and an outer peripheral side surface portion. And an outer peripheral chamfer disposed between the main surface and the main surface.
Here, in a cross section perpendicular to the pair of main surfaces and passing through the central axis of the glass substrate for magnetic recording medium, the axis parallel to the main surface is the X axis, the X coordinate of the outermost peripheral position of the outer peripheral end surface is 0, the outer periphery The X coordinate on the central axis side of the glass substrate for magnetic recording media is more positive than the outermost peripheral position of the end face.

この場合に、外周端面のうち、X座標が5μmの点と、X座標が10μmの点とを結んだ直線と、前記X軸とが形成する角度を81°以上85°以下とすることができる。
また、外周端面のうち、X座標が10μmの点と、X座標が20μmの点とを結んだ直線と、前記X軸とが形成する角度が69°以上83°以下とすることができる。
また、外周端面のうち、X座標が20μmの点と、X座標が30μmの点とを結んだ直線と、前記X軸とが形成する角度が52°以上72°以下とすることができる。
In this case, an angle formed by a straight line connecting a point having an X coordinate of 5 μm and a point having an X coordinate of 10 μm on the outer peripheral end face and the X axis can be 81 ° or more and 85 ° or less. .
In addition, an angle formed by a straight line connecting a point having an X coordinate of 10 μm and a point having an X coordinate of 20 μm on the outer peripheral end surface and the X axis can be 69 ° or more and 83 ° or less.
In addition, an angle formed by a straight line connecting a point having an X coordinate of 20 μm and a point having an X coordinate of 30 μm on the outer peripheral end surface and the X axis may be 52 ° or more and 72 ° or less.

まず、図1を用いて本実施形態の磁気記録媒体用ガラス基板(以下、単に「ガラス基板」とも記載する)の構造について説明する。   First, the structure of a glass substrate for a magnetic recording medium according to the present embodiment (hereinafter also simply referred to as “glass substrate”) will be described with reference to FIG.

図1は本実施形態のガラス基板の斜視断面図を模式的に示している。図1はガラス基板10の中心軸Oを通り、主表面121、122と垂直な面における断面を含む斜視断面図となっている。すなわち、図1では本実施形態のガラス基板の半分と、断面図とをあわせて示している。   FIG. 1 schematically shows a perspective sectional view of the glass substrate of the present embodiment. FIG. 1 is a perspective cross-sectional view including a cross section in a plane passing through the central axis O of the glass substrate 10 and perpendicular to the main surfaces 121 and 122. That is, in FIG. 1, the half of the glass substrate of this embodiment and sectional drawing are shown collectively.

図1から把握されるように、ガラス基板10は外周が円形であり、中央部には外周と同心円となるように円形の開口部(中央開口部)11が設けられた円板形状、すなわちドーナツ形状を有している。   As can be seen from FIG. 1, the glass substrate 10 has a circular shape on the outer periphery, and a circular shape in which a circular opening (center opening) 11 is provided in the center so as to be concentric with the outer periphery, that is, a donut. It has a shape.

そして、上下の面が主表面121、122となっている。また、ガラス基板10は外周に位置する外周端面13と、内周に位置する内周端面14と、を有している。   The upper and lower surfaces are main surfaces 121 and 122. Moreover, the glass substrate 10 has the outer peripheral end surface 13 located in an outer periphery, and the inner peripheral end surface 14 located in an inner periphery.

外周端面13、及び内周端面14は主表面121、122側にそれぞれ面取り部を有することができる。すなわち、外周端面13、及び内周端面14は、それぞれ一対の面取り部を有することができる。具体的には外周端面13は外周面取り部131、133を、内周端面14は内周面取り部141、143をそれぞれ有することができる。   The outer peripheral end surface 13 and the inner peripheral end surface 14 can have chamfered portions on the main surfaces 121 and 122 side, respectively. That is, the outer peripheral end surface 13 and the inner peripheral end surface 14 can each have a pair of chamfered portions. Specifically, the outer peripheral end surface 13 can have outer peripheral chamfered portions 131 and 133, and the inner peripheral end surface 14 can have inner peripheral chamfered portions 141 and 143, respectively.

また、面取り部間には側面部を形成することができ、外周端面13は外周側面部132を、内周端面14は内周側面部142をそれぞれ有することができる。外周側面部132、及び内周側面部142はそれぞれ主表面121、122と略垂直になるように形成できる。   Further, a side surface portion can be formed between the chamfered portions, the outer peripheral end surface 13 can have an outer peripheral side surface portion 132, and the inner peripheral end surface 14 can have an inner peripheral side surface portion 142. The outer peripheral side surface portion 132 and the inner peripheral side surface portion 142 can be formed so as to be substantially perpendicular to the main surfaces 121 and 122, respectively.

以上のように、外周端面13は外周側面部132と、外周面取り部131、133とを含み、内周端面14は内周側面部142と、内周面取り部141、143とを含むことができる。   As described above, the outer peripheral end surface 13 can include the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133, and the inner peripheral end surface 14 can include the inner peripheral side surface portion 142 and the inner peripheral chamfered portions 141 and 143. .

なお、本実施形態のガラス基板10のサイズは特に限定されるものではなく、ガラス基板の仕様にあわせて任意に選択することができる。本実施形態のガラス基板の直径Dは例えば48mm、65mm、または95mm等のガラス基板に要求される仕様に応じたサイズとすることができる。特に、本実施形態のガラス基板の直径は、近年需要が高まっている65mm以上であることが好ましい。   In addition, the size of the glass substrate 10 of this embodiment is not specifically limited, It can select arbitrarily according to the specification of a glass substrate. The diameter D of the glass substrate of this embodiment can be made into the size according to the specification requested | required of glass substrates, such as 48 mm, 65 mm, or 95 mm, for example. In particular, the diameter of the glass substrate of the present embodiment is preferably 65 mm or more, for which demand has been increasing in recent years.

本発明の発明者らは、熱処理等を行う際に急激な温度変化が加えられた場合でも割れが生じることを抑制できるガラス基板について鋭意検討を行った。そして、熱処理等を行う際に急激な温度変化が加えられた際に生じている割れは、主に外周端面の熱膨張、または熱収縮により、外周端面に含まれる微小なクラックを起点として生じていることが分かった。   The inventors of the present invention have earnestly studied a glass substrate that can suppress the occurrence of cracking even when a sudden temperature change is applied during heat treatment or the like. The cracks that are generated when a sudden temperature change is applied during heat treatment or the like are caused mainly by the thermal expansion or contraction of the outer peripheral end surface, starting from minute cracks contained in the outer peripheral end surface. I found out.

そこで、本発明の発明者らはさらに検討を行い、外周端面の形状、具体的には主表面と垂直で、かつガラス基板の中心軸を通る断面における外周端面の形状、すなわち外周端面の輪郭形状が所定の形状の場合に割れを抑制できることを見出した。   Therefore, the inventors of the present invention further studied, and the shape of the outer peripheral end surface, specifically, the shape of the outer peripheral end surface in a cross section perpendicular to the main surface and passing through the central axis of the glass substrate, that is, the contour shape of the outer peripheral end surface It has been found that cracking can be suppressed in the case of a predetermined shape.

ここで、図2を用いて本実施形態のガラス基板の外周端面の形状を説明する。図2は、図1において点線で示した領域15を拡大して示した図である。   Here, the shape of the outer peripheral end face of the glass substrate of the present embodiment will be described with reference to FIG. FIG. 2 is an enlarged view of a region 15 indicated by a dotted line in FIG.

図2は、図1に示したように、一対の主表面121、122と垂直で、かつガラス基板10の中心軸Oを通る断面における外周端面周辺を拡大して示した図となる。   FIG. 2 is an enlarged view of the periphery of the outer peripheral end face in a cross section perpendicular to the pair of main surfaces 121 and 122 and passing through the central axis O of the glass substrate 10 as shown in FIG.

ここで、図2に示したように、主表面121と平行な軸をX軸とし、外周端面13の最外周位置のX座標を0、外周端面13の最外周位置よりも、磁気記録媒体用ガラス基板の中心軸側のX座標を正とする。   Here, as shown in FIG. 2, the axis parallel to the main surface 121 is taken as the X axis, the X coordinate of the outermost peripheral position of the outer peripheral end surface 13 is 0, and the outermost peripheral position of the outer peripheral end surface 13 is more than that for the magnetic recording medium. The X coordinate on the central axis side of the glass substrate is positive.

なお、外周端面13は図1を用いて説明したように、外周側面部132と、外周面取り部131、133とを有しており、外周側面部132は一対の主表面121、122と略垂直になっている。このため、外周側面部132が主表面121、122と垂直な直線部分を含む場合には該直線部分を、X座標が0である最外周位置とすることができる。また、外周側面部132が主表面121、122と垂直な直線部分を含まない場合には、主表面121、122と垂直な外周側面部132の接線と、X軸との交点をX座標が0である最外周位置とすることができる。   As described with reference to FIG. 1, the outer peripheral end surface 13 includes an outer peripheral side surface portion 132 and outer peripheral chamfered portions 131 and 133, and the outer peripheral side surface portion 132 is substantially perpendicular to the pair of main surfaces 121 and 122. It has become. For this reason, when the outer peripheral side surface portion 132 includes a straight line portion perpendicular to the main surfaces 121 and 122, the straight line portion can be set to the outermost peripheral position where the X coordinate is zero. When the outer peripheral side surface 132 does not include a straight line portion perpendicular to the main surfaces 121 and 122, the X coordinate is 0 at the intersection of the tangent line of the outer peripheral side surface 132 perpendicular to the main surfaces 121 and 122 and the X axis. It can be set as the outermost peripheral position.

この場合に、本実施形態のガラス基板10は、外周端面13のうち、X座標Xが5μmの点Pと、X座標X10が10μmの点P10とを結んだ直線と、X軸とが形成する角度θ5−10を81°以上85°以下とすることができる。 In this case, the glass substrate 10 of this embodiment, of the outer peripheral end surface 13, a point P 5 in the X-coordinate X 5 is 5 [mu] m, the straight line X-coordinate X 10 is connecting the point P 10 of 10 [mu] m, X axis The angle θ 5-10 formed by and can be 81 ° or more and 85 ° or less.

なお、図2中においてはX軸と平行で、P10を通る直線Xを示しており、直線Xと、直線P10とが作る角度が上記θ5−10となる。 Note that parallel to the X-axis in the figure 2, it shows a straight line X A through P 10, and the straight line X A, is the angle which the straight line P 5 P 10 makes the above theta 5-10.

また、外周端面13のうち、X座標X10が10μmの点P10と、X座標X20が20μmの点P20とを結んだ直線と、X軸とが形成する角度θ10−20を69°以上83°以下とすることができる。なお、図2中においてはX軸と平行で、P20を通る直線Xを示しており、直線Xと、直線P1020とが作る角度が上記θ10−20となる。 Further, of the outer peripheral end surface 13, a point P 10 of the X-coordinate X 10 is 10 [mu] m, the straight line X-coordinate X 20 is connecting the point P 20 of 20 [mu] m, the angle theta 10-20 where the X-axis to form 69 The angle can be not less than 83 ° and not more than 83 °. Note that parallel to the X-axis in the figure 2, it shows a straight line X B through P 20, and the straight line X B, the angle formed by the meeting of a straight line P 10 P 20 becomes the theta 10-20.

また、外周端面13のうち、X座標X20が20μmの点P20と、X座標X30が30μmの点P30とを結んだ直線と、X軸とが形成する角度θ20−30を52°以上72°以下とすることができる。なお、図2中においてはX軸と平行で、P30を通る直線Xを示しており、直線Xと、直線P2030とが作る角度が上記θ20−30となる。 Further, of the outer peripheral end surface 13, a point P 20 of the X-coordinate X 20 is 20 [mu] m, the straight line X-coordinate X 30 is connecting the point P 30 of 30 [mu] m, the angle theta 20-30 where the X-axis to form 52 It can be set in the range from ° to 72 °. Note that parallel to the X-axis in the figure 2, shows a straight line X C through the P 30, and the straight line X C, the angle the straight line P 20 P 30 makes the above theta 20-30.

本実施形態のガラス基板は、外周面取り部から外周側面部にかけて上記形状を有することで、外周側面部から外周面取り部に向かって傾斜が徐々に変化する形状となっており、係る形状を有することで、急激な温度変化が加わった際に割れが生じることを抑制できる。   The glass substrate of the present embodiment has the above shape from the outer peripheral chamfered portion to the outer peripheral chamfered portion, so that the inclination gradually changes from the outer peripheral side surface portion toward the outer peripheral chamfered portion, and has such a shape. Thus, it is possible to suppress the occurrence of cracks when a sudden temperature change is applied.

ところで、ガラス基板に磁性層等を成膜するために熱処理を行う場合、ガラス基板を支持部材により支持した状態で、熱処理を行い、工程によっては磁性層等が成膜される。   By the way, when heat treatment is performed to form a magnetic layer or the like on a glass substrate, the heat treatment is performed in a state where the glass substrate is supported by a support member, and the magnetic layer or the like is formed depending on the process.

熱処理工程や、ガラス基板上に磁性層等を成膜する工程を実施している間は、主表面が支持部材で覆われないように、外周端面上の複数箇所にそれぞれ支持部材を押し当て、支持部材でガラス基板を挟み込むことで支持している。この際、支持部材の外周端面と対向する面は通常、外周端面のうち、主に外周側面部に対応した形状を有している。   During the heat treatment step and the step of forming a magnetic layer or the like on the glass substrate, the support member is pressed to each of a plurality of locations on the outer peripheral end surface so that the main surface is not covered with the support member, It is supported by sandwiching the glass substrate with a support member. At this time, the surface facing the outer peripheral end surface of the support member usually has a shape corresponding mainly to the outer peripheral side surface portion of the outer peripheral end surface.

そして、本実施形態のガラス基板の外周端面は上述のように、外周側面部と、外周面取り部との間で、面の傾きの変化がなだらかな形状を有するため、支持部材と外周端面との接触面積が広くなり、支持部材からガラス基板に加えられる力を分散できる。   And since the outer peripheral end surface of the glass substrate of this embodiment has a gentle change in the inclination of the surface between the outer peripheral side surface portion and the outer peripheral chamfered portion as described above, the support member and the outer peripheral end surface A contact area becomes large and the force applied to a glass substrate from a supporting member can be disperse | distributed.

このため、本実施形態のガラス基板によれば、支持部材によりガラス基板に力が局所的に加えられることを抑制でき、係る観点からも、急激な温度変化が加えられた場合の割れの発生を抑制することができる。   For this reason, according to the glass substrate of this embodiment, it can suppress that force is locally applied to a glass substrate by a supporting member, and also from such a viewpoint, occurrence of cracking when a sudden temperature change is applied. Can be suppressed.

さらに、上述のように本実施形態のガラス基板によれば、θ5−10、θ10−20が大きいので、ガラス基板と支持部材との接触面積を広くすることができ、ガラス基板に加えられる力を分散できることから、磁性層等を成膜する際に、ガラス基板の外周端面の外周側面部と外周面取り部との間においてチッピング、すなわち欠けが生じることを抑制できる。 Furthermore, as described above, according to the glass substrate of the present embodiment, since θ 5-10 and θ 10-20 are large, the contact area between the glass substrate and the support member can be increased, and the glass substrate is added. Since the force can be dispersed, chipping, that is, chipping, can be suppressed between the outer peripheral side surface and the outer peripheral chamfered portion of the outer peripheral end surface of the glass substrate when the magnetic layer or the like is formed.

一方、θ20−30が大きすぎると、結果として主表面と外周面取り部との間の角度を大きくすることが困難になるため、爪状の搬送ジグや収納カセットとの接触により、主表面と外周面取り部との間に於いてチッピングが発生しやすくなる。それに対し、本実施形態のガラス基板によれば、前記部分のチッピングの発生も抑制することができる。 On the other hand, if θ 20-30 is too large, it becomes difficult as a result to increase the angle between the main surface and the outer peripheral chamfered portion. Chipping is likely to occur between the peripheral chamfered portion. On the other hand, according to the glass substrate of this embodiment, generation | occurrence | production of the chipping of the said part can also be suppressed.

ちなみに外周側面部と、外周面取り部との間の断面形状を、ある範囲の単一の曲率半径(例えばR=0.6〜0.8mm)にすることで、θ5−10、θ10−20の値を大きく(例えばそれぞれ81°〜85°、69°〜83°)することは可能であるが、一方、θ20−30が大きくなり過ぎ、好適な範囲(例えば52°〜72°)にすることができない。或いは、別の範囲の単一の曲率半径(例えばR=0.15〜0.5mm)にすることで、θ20−30の値を好適な範囲にすることは可能であるが、逆にθ5−10またはθ10−20を充分に大きな範囲にすることができない。 Incidentally, by making the cross-sectional shape between the outer peripheral side surface portion and the outer peripheral chamfered portion a single radius of curvature within a certain range (for example, R = 0.6 to 0.8 mm), θ 5-10, θ 10− Although it is possible to increase the value of 20 (for example, 81 ° to 85 °, 69 ° to 83 °, respectively), θ 20-30 becomes too large and a suitable range (for example, 52 ° to 72 °). I can't. Alternatively, it is possible to set the value of θ 20-30 to a suitable range by setting a single radius of curvature in another range (for example, R = 0.15 to 0.5 mm). 5-10 or θ 10-20 cannot be set to a sufficiently large range.

また、磁性層等を成膜する際に、支持部材によりガラス基板を含む基材に対して電圧を印加する場合があるが、従来のガラス基板に磁性層を成膜する際には、支持部材とガラス基板との接触面積が十分ではなく、ガラス基板が安定せずアークが発生する場合があった。アークが発生すると、発塵し、製造した磁気記録媒体の検査において、ミッシングカウントが多くなる場合があった。   Further, when a magnetic layer or the like is formed, a voltage may be applied to the base material including the glass substrate by the support member. However, when the magnetic layer is formed on the conventional glass substrate, the support member There was a case where the contact area between the glass substrate and the glass substrate was not sufficient, and the glass substrate was not stable and an arc was generated. When the arc is generated, dust is generated, and in some cases, the missing count increases in the inspection of the manufactured magnetic recording medium.

これに対して、本実施形態のガラス基板においては、外周端面が既述の構造を有するため、支持部材と外周端面との接触面積が広くなり、ガラス基板を安定して支持できる。このため、アークの発生を抑制し、ひいては発塵を抑制できるため、得られる磁気記録媒体において、ミッシングカウントを抑制することが可能になる。   On the other hand, in the glass substrate of this embodiment, since the outer peripheral end surface has the structure described above, the contact area between the support member and the outer peripheral end surface is increased, and the glass substrate can be stably supported. For this reason, since generation | occurrence | production of an arc can be suppressed and by extension dusting can be suppressed, it becomes possible to suppress a missing count in the magnetic recording medium obtained.

また、本実施形態のガラス基板は、一対の主表面と垂直で、かつガラス基板の中心軸を通る断面において、主表面121と平行な軸をX軸とし、外周端面13の最外周位置のX座標を0、外周端面13の最外周位置よりも、ガラス基板の中心軸側のX座標を正とした場合に以下の構成を充足することがより好ましい。   In addition, the glass substrate of the present embodiment is perpendicular to the pair of main surfaces and passes through the central axis of the glass substrate, with the axis parallel to the main surface 121 as the X axis and the outermost peripheral position X of the outer peripheral end surface 13. More preferably, the following configuration is satisfied when the coordinate is 0 and the X coordinate on the central axis side of the glass substrate is positive rather than the outermost peripheral position of the outer peripheral end face 13.

外周端面13のうち、X座標Xが5μmの点Pと、X座標X10が10μmの点P10とを結んだ直線と、X軸とが形成する角度θ5−10が81°以上84°以下であることがより好ましい。 Of the outer peripheral end surface 13, a point P 5 in the X-coordinate X 5 is 5 [mu] m, the straight line X-coordinate X 10 is connecting the point P 10 of 10 [mu] m, the angle theta 5-10 in which the X axis is formed 81 ° or more More preferably, it is 84 ° or less.

また、外周端面13のうち、X座標X10が10μmの点P10と、X座標X20が20μmの点P20とを結んだ直線と、X軸とが形成する角度θ10−20が75°以上82°以下であることがより好ましい。 Further, of the outer peripheral end surface 13, a point P 10 of the X-coordinate X 10 is 10 [mu] m, the straight line X-coordinate X 20 is connecting the point P 20 of 20 [mu] m, the angle theta 10-20 where the X-axis to form the 75 It is more preferable that the angle is not less than ° and not more than 82 °.

外周端面13のうち、X座標X20が20μmの点P20と、X座標X30が30μmの点P30とを結んだ直線と、X軸とが形成する角度θ20−30が55°以上72°以下であることがより好ましい。 Of the outer peripheral end surface 13, a point P 20 of the X-coordinate X 20 is 20 [mu] m, the straight line X-coordinate X 30 is connecting the point P 30 of 30 [mu] m, the angle theta 20-30 in which the X axis is formed 55 ° or more More preferably, it is 72 ° or less.

外周端面13のうち、X座標X30が30μmの点P30と、X座標X40が40μmの点P40とを結んだ直線と、X軸とが形成する角度θ30−40が51°以上68°以下であることがより好ましい。なお、図2中においてはX軸と平行で、P40を通る直線Xを示しており、直線Xと、直線P3040とが作る角度が上記θ30−40となる。 Of the outer peripheral end surface 13, a point P 30 of the X-coordinate X 30 is 30 [mu] m, the straight line X-coordinate X 40 is connecting the point P 40 of 40 [mu] m, the angle theta 30-40 in which the X axis is formed 51 ° or more More preferably, it is 68 ° or less. Note that parallel to the X-axis in the figure 2, it shows a straight line X D through P 40, and the straight line X D, the angle formed by the meeting of a straight line P 30 P 40 becomes the theta 30-40.

図2では図1に示した外周端面13のうち、外周面取り部131と外周側面部132との周辺を拡大した図を示している。しかし、図1に示したように、本実施形態のガラス基板の外周端面13は、一対の外周面取り部131、133と、外周側面部132とを有している。このため、一方の外周面取り部131と外周側面部132との部分だけではなく、もう一方の外周面取り部133と外周側面部132との部分についてもここまで説明したものと同様の構成を有することができる。   2 shows an enlarged view of the periphery of the outer peripheral chamfered portion 131 and the outer peripheral side surface portion 132 in the outer peripheral end surface 13 shown in FIG. However, as shown in FIG. 1, the outer peripheral end surface 13 of the glass substrate of this embodiment has a pair of outer peripheral chamfered portions 131 and 133 and an outer peripheral side surface portion 132. For this reason, not only the part of one outer peripheral chamfer 131 and the outer peripheral side part 132 but also the other outer peripheral chamfer 133 and the outer peripheral side part 132 have the same configuration as described above. Can do.

本実施形態のガラス基板についてはガラス材料については特に限定されるものではなく、各種ガラス材料を用いることができる。ただし、ガラス基板に用いるガラス材料についても、急激な温度変化が加えられた場合でも、割れを生じにくいガラス基板を用いることがより好ましい。   About the glass substrate of this embodiment, it does not specifically limit about glass material, Various glass materials can be used. However, as for the glass material used for the glass substrate, it is more preferable to use a glass substrate that does not easily crack even when a sudden temperature change is applied.

このため、本実施形態のガラス基板は、50℃以上350℃以下の温度域における平均熱膨張係数が50×10−7/℃未満であるガラス材料からなることがより好ましい。 For this reason, it is more preferable that the glass substrate of this embodiment consists of a glass material whose average thermal expansion coefficient in a temperature range of 50 degreeC or more and 350 degrees C or less is less than 50x10 < -7 > / degreeC .

これは、50℃以上350℃以下の温度域における平均熱膨張係数が、50×10−7/℃未満の場合、温度変化に伴うガラス基板の膨張、収縮を抑制できるため、急激な温度変化が加えられた場合でも、外周端面の形状と相まって、割れを抑制できるからである。 This is because when the average coefficient of thermal expansion in the temperature range of 50 ° C. or more and 350 ° C. or less is less than 50 × 10 −7 / ° C., the glass substrate can be prevented from expanding and contracting due to temperature change, and thus a rapid temperature change occurs. This is because even when added, cracking can be suppressed in combination with the shape of the outer peripheral end face.

なお、50℃以上350℃以下の温度域における平均熱膨張係数の下限値は特に限定されるものではなく、本実施形態のガラス基板には、例えば50℃以上350℃以下の温度域における熱膨張係数が0より大きいガラス材料を用いることができる。   The lower limit value of the average thermal expansion coefficient in the temperature range of 50 ° C. or higher and 350 ° C. or lower is not particularly limited, and the glass substrate of the present embodiment has, for example, thermal expansion in the temperature range of 50 ° C. or higher and 350 ° C. or lower. A glass material having a coefficient larger than 0 can be used.

本実施形態のガラス基板のガラス材料としては、モル百分率表示で、SiOを62%以上74%以下、Alを7%以上18%以下、Bを2%以上15%以下含有し、MgOを0以上10%以下、CaO、SrOおよびBaOのいずれか1成分以上を合計で1%以上21%以下含有し、MgO、CaO、SrOおよびBaOの含有量合計が8%以上21%以下、上記7成分の含有量合計が95%以上であるものを、好適に用いることができる。 As a glass material of the glass substrate of the present embodiment, SiO 2 is 62% to 74%, Al 2 O 3 is 7% to 18%, and B 2 O 3 is 2% to 15% in terms of mole percentage. MgO is contained in an amount of 0 to 10%, CaO, SrO and BaO are contained in a total of 1% to 21%, and the total content of MgO, CaO, SrO and BaO is 8% to 21%. % Or less, and those having a total content of the above seven components of 95% or more can be suitably used.

また、本実施形態のガラス基板のガラス材料としては、モル百分率表示でSiOを62%以上74%以下、Alを7%以上18%以下、Bを0以上2%未満、MgO、CaO、SrOおよびBaOの含有量合計が5%以上18%以下、上記7成分の含有量合計が95%以上であるものを好適に用いることができる。 Moreover, as a glass material of the glass substrate of the present embodiment, SiO 2 is 62% or more and 74% or less, Al 2 O 3 is 7% or more and 18% or less, and B 2 O 3 is 0 or more and less than 2% in terms of mole percentage. , MgO, CaO, SrO and BaO with a total content of 5% or more and 18% or less and a total content of the seven components of 95% or more can be suitably used.

また、本実施形態のガラス基板のガラス材料としては、モル百分率表示で、SiOを60%以上75%以下、Alを7%以上17%以下、Bを0以上2%未満、MgO、CaO、SrOおよびBaOの含有量合計が18%超26%以下、上記7成分の含有量合計が95%以上であるものを好適に用いることができる。 As the glass material of the glass substrate of this embodiment, the molar in percentage display, a SiO 2 60% to 75% or less, Al 2 O 3 17% 7% more or less, B 2 O 3 0 2% or more The total content of MgO, CaO, SrO and BaO is more than 18% and 26% or less, and the total content of the seven components is 95% or more.

本実施形態のガラス基板は、ここまで説明したように急激な温度変化を加えた場合でも割れが生じることを抑制できる。このため、製造工程で急激な温度変化を加える場合がある、エネルギーアシスト磁気記録媒体用のガラス基板として、特に好適に用いることができる。そして、エネルギーアシスト磁気記録媒体を製造する際には、磁性層に含まれるFePt系等の磁性層合金(磁性材料)の規則化促進のため、磁性層の成膜時等に600℃〜700℃程度の高温で熱処理を行うのが一般的である。   The glass substrate of this embodiment can suppress the occurrence of cracks even when a sudden temperature change is applied as described above. For this reason, it can be particularly suitably used as a glass substrate for an energy-assisted magnetic recording medium that may be subjected to a rapid temperature change in the manufacturing process. When manufacturing an energy-assisted magnetic recording medium, in order to promote the ordering of an FePt-based magnetic layer alloy (magnetic material) contained in the magnetic layer, a temperature of 600 ° C. to 700 ° C. is used during the formation of the magnetic layer. Generally, heat treatment is performed at a high temperature.

既述のように、特にエネルギーアシスト磁気記録媒体を製造する際に、600℃〜700℃程度の高温で熱処理を行う際に、ガラス基板に急激な温度変化が加わる場合があり、従来のガラス基板においては、割れを生じる場合があった。これに対して、本実施形態のガラス基板によれば、外周端面の形状を所定の形状としているため、急激な温度変化が加えられた場合でも割れが生じることを抑制することができる。   As described above, particularly when an energy-assisted magnetic recording medium is manufactured, when a heat treatment is performed at a high temperature of about 600 ° C. to 700 ° C., a rapid temperature change may be applied to the glass substrate. In some cases, cracks may occur. On the other hand, according to the glass substrate of this embodiment, since the shape of the outer peripheral end surface is a predetermined shape, it is possible to suppress the occurrence of cracking even when a sudden temperature change is applied.

このため、本実施形態のガラス基板は、エネルギーアシスト磁気記録媒体用の磁気記録媒体用ガラス基板として、特に好適に用いることができる。   For this reason, the glass substrate of this embodiment can be used especially suitably as a glass substrate for magnetic recording media for energy-assisted magnetic recording media.

ただし、本実施形態のガラス基板の用途は、エネルギーアシスト磁気記録媒体用のガラス基板に限定されるものではなく、各種磁気記録媒体用のガラス基板として好適に用いることができる。   However, the use of the glass substrate of this embodiment is not limited to the glass substrate for energy-assisted magnetic recording media, and can be suitably used as a glass substrate for various magnetic recording media.

次に、ここまで説明した本実施形態の磁気記録媒体用ガラス基板の製造方法(以下、単に「ガラス基板の製造方法」とも記載する)の一構成例について簡単に説明する。   Next, a structural example of the method for manufacturing the glass substrate for a magnetic recording medium of the present embodiment described so far (hereinafter also simply referred to as “glass substrate manufacturing method”) will be briefly described.

なお、本実施形態のガラス基板の製造方法によれば、既述の磁気記録媒体用ガラス基板を製造することができる。このため、磁気記録媒体用ガラス基板において説明した内容と重複する部分については一部記載を省略する。   In addition, according to the manufacturing method of the glass substrate of this embodiment, the glass substrate for magnetic recording media as stated above can be manufactured. For this reason, some description is abbreviate | omitted about the part which overlaps with the content demonstrated in the glass substrate for magnetic recording media.

本実施形態のガラス基板の製造方法は、例えば以下の工程1〜工程5を含むことができる。
(工程1)ガラス素板から、中央部に円孔を有する円板形状のガラス基板に加工する形状付与工程。
(工程2)ガラス基板の内周と外周の端面部分の面取りを行う面取り工程。
(工程3)ガラス基板の端面(内周端面及び外周端面)を研磨する端面研磨工程。
(工程4)ガラス基板の主表面を研磨する主表面研磨工程。
(工程5)ガラス基板を洗浄して乾燥する洗浄・乾燥工程。
The manufacturing method of the glass substrate of this embodiment can include the following steps 1 to 5, for example.
(Step 1) A shape imparting step of processing from a glass base plate into a disc-shaped glass substrate having a circular hole in the center.
(Step 2) A chamfering step for chamfering the inner surface and the outer edge of the glass substrate.
(Step 3) An end surface polishing step for polishing the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate.
(Step 4) A main surface polishing step for polishing the main surface of the glass substrate.
(Step 5) A cleaning / drying step of cleaning and drying the glass substrate.

ここで、(工程1)の形状付与工程は、フロート法、フュージョン法、プレス成形法、ダウンドロー法またはリドロー法で成形されたガラス素板を、中央部に円孔を有する円板形状のガラス基板に加工するものである。なお、用いるガラス素板は、アモルファスガラスでもよく、結晶化ガラスでもよく、ガラス基板の表層に強化層を有する強化ガラスでもよい。   Here, the shape imparting step of (Step 1) is a glass-shaped glass plate formed by a float method, a fusion method, a press molding method, a down draw method or a redraw method. The substrate is processed. The glass base plate used may be amorphous glass, crystallized glass, or tempered glass having a tempered layer on the surface layer of the glass substrate.

(工程2)の面取り工程は、内周端面、及び外周端面の面取りを行うことができる。面取り工程を行うことで、図1を用いて説明したように、内周端面14に内周面取り部141、143を、外周端面13に外周面取り部131、133を形成できる。   In the chamfering step (step 2), the inner peripheral end surface and the outer peripheral end surface can be chamfered. By performing the chamfering step, as described with reference to FIG. 1, the inner peripheral chamfered portions 141 and 143 can be formed on the inner peripheral end surface 14, and the outer peripheral chamfered portions 131 and 133 can be formed on the outer peripheral end surface 13.

なお、既述の外周端面13の形状を有するガラス基板とする場合、外周面取り部131、133を形成する際に、外周側面部132と、外周面取り部131、133との間の角部を半径が0.3mm以上0.4mm以下の円の円弧曲線とすることが好ましい。そして、係る曲線の角部を含む外周端面を後述する端面研磨工程で条件を適切に選択し必要十分な研磨量を研磨し、単一曲率半径の円弧曲線を修正加工することで、既述のガラス基板の外周端面の形状とすることができる。   In addition, when it is set as the glass substrate which has the shape of the outer periphery end surface 13 as stated above, when forming the outer peripheral chamfered portions 131 and 133, the corners between the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133 are radiused. Is preferably a circular arc curve of a circle of 0.3 mm to 0.4 mm. Then, by appropriately selecting the conditions for the outer peripheral end face including the corner of the curved line in the end face polishing process described later, polishing the necessary and sufficient amount of polishing, and correcting the arc curve of the single curvature radius, It can be set as the shape of the outer peripheral end surface of a glass substrate.

ガラス基板の外周端面の面取りは、通常、図3(A)に示したように略円柱形状を有し、その周面に複数の溝32が形成された砥石31を用いて行われる。   The chamfering of the outer peripheral end surface of the glass substrate is usually performed using a grindstone 31 having a substantially cylindrical shape as shown in FIG. 3A and having a plurality of grooves 32 formed on the peripheral surface.

そして、図3(A)に示したように、溝32内にガラス基板10の外周端部を収容した状態で、ガラス基板10、および砥石31を、ガラス基板10の中心軸O、および砥石31の中心軸33を回転軸として回転することで面取りを行うことができる。   Then, as shown in FIG. 3A, the glass substrate 10 and the grindstone 31, the central axis O of the glass substrate 10, and the grindstone 31 in a state where the outer peripheral end of the glass substrate 10 is accommodated in the groove 32. The chamfering can be performed by rotating the central axis 33 as a rotation axis.

このため、溝32は、形成するガラス基板の外周端面の形状に対応した断面形状を有することとなる。上述のように外周側面部132と、外周面取り部131、133との間の角部を半径が0.3mm以上0.4mm以下の円の円弧曲線とする場合、これに対応した断面形状の溝32とする必要がある。   For this reason, the groove | channel 32 has a cross-sectional shape corresponding to the shape of the outer peripheral end surface of the glass substrate to form. As described above, when the corner portion between the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133 is a circular arc curve having a radius of 0.3 mm or more and 0.4 mm or less, a groove having a cross-sectional shape corresponding thereto. 32 is required.

砥石31の、中心軸33、および溝32を通る面34での、溝32の断面図を図3(B)に示す。上述のように外周側面部132と、外周面取り部131、133との間の角部を所定の半径の円の円弧形状とする場合、溝32は、外周側面部132と、外周面取り部131、133との間の角部を研削する部分35A、35Bについて、対応した曲面形状にすることとなる。   FIG. 3B shows a cross-sectional view of the groove 32 on the surface 34 passing through the central axis 33 and the groove 32 of the grindstone 31. As described above, when the corner portion between the outer peripheral side surface portion 132 and the outer peripheral chamfered portions 131 and 133 is formed into a circular arc shape with a predetermined radius, the groove 32 includes the outer peripheral side surface portion 132, the outer peripheral chamfered portion 131, The portions 35 </ b> A and 35 </ b> B that grind the corners between the first and second portions 133 have a corresponding curved surface shape.

また、溝32は、側壁部角度36A、36Bを、外周面取り部の面取り角度に対応する、角度とすることで、所定の面取り角度の外周面取り部を形成できる。   Moreover, the groove | channel 32 can form the outer peripheral chamfering part of a predetermined chamfering angle by making side wall part angle 36A, 36B into an angle corresponding to the chamfering angle of an outer peripheral chamfering part.

なお、ここでは外周端面の面取り工程を中心に説明したが、内周端面についても同様に、形成する内周端面の形状に合わせた溝を有する略円柱形状の砥石を用いて面取りを行うことができる。   In addition, although it demonstrated centering on the chamfering process of an outer peripheral end surface here, chamfering can be similarly performed also about an inner peripheral end surface using the grindstone of the substantially cylindrical shape which has the groove | channel according to the shape of the inner peripheral end surface to form. it can.

(工程3)の端面研磨工程は、ガラス基板の端面(側面部と面取り部)を端面研磨することができる。   In the end surface polishing step of (Step 3), the end surface (side surface portion and chamfered portion) of the glass substrate can be end surface polished.

図4に、端面研磨工程において用いる端面研磨装置の構成例を説明する。   FIG. 4 illustrates a configuration example of an end surface polishing apparatus used in the end surface polishing step.

端面研磨工程では、被研磨物であるガラス基板を積層したガラス基板積層体41、42を用意することができる。ガラス基板積層体41、42は、ガラス基板の対向する主表面間にスペーサーを配置し、積層することができる。   In the end face polishing step, glass substrate laminates 41 and 42 obtained by laminating glass substrates that are objects to be polished can be prepared. The glass substrate laminates 41 and 42 can be laminated by arranging a spacer between the opposing main surfaces of the glass substrate.

なお、図4では2つのガラス基板積層体41、42について、同時に端面研磨を行う例を示したが、係る形態に限定されるものではなく、1つのガラス基板積層体について端面研磨を行ってもよい。また、当然のことながら2つのガラス基板積層体41、42は互いに接触しないように配置されている。   In addition, although the example which performs end surface grinding | polishing simultaneously about two glass substrate laminated bodies 41 and 42 was shown in FIG. 4, it is not limited to such a form, Even if end surface grinding | polishing is performed about one glass substrate laminated body Good. As a matter of course, the two glass substrate laminates 41 and 42 are arranged so as not to contact each other.

そして、ガラス基板積層体41、42の外周端面に対して円柱形状のブラシ43、44が接触するように配置することができる。この際、ブラシ43、44をガラス基板積層体41、42に対して、十分に押し当てるようにして配置することが好ましい。   And it can arrange | position so that the cylindrical brushes 43 and 44 may contact with the outer peripheral end surface of the glass substrate laminated body 41 and 42. FIG. At this time, the brushes 43 and 44 are preferably arranged so as to be sufficiently pressed against the glass substrate laminates 41 and 42.

なお、ブラシ43、44はそれぞれ、図中の高さ方向A、Bに沿って移動することができ、ガラス基板積層体に含まれるすべてのガラス基板の端面を研磨できる。   The brushes 43 and 44 can move along the height directions A and B in the drawing, respectively, and can polish the end faces of all the glass substrates included in the glass substrate laminate.

ブラシ43、44については特に限定されないが、ブラシ43のブラシ毛の線径と、ブラシ44のブラシ毛の線径とは異なることが好ましい。ブラシ毛の線径が異なるブラシを組み合わせて用いることで、外周面取り部と外周側面部との間の角部を丸めつつ、主表面側の外周面取り部表面を研磨することができるからである。例えばブラシ毛の線径が0.3mmのブラシと、ブラシ毛の線径が0.2mmのブラシとを組み合わせて用いることが好ましい。   Although it does not specifically limit about the brushes 43 and 44, It is preferable that the wire diameter of the brush hair of the brush 43 and the wire diameter of the brush hair of the brush 44 differ. This is because by using a combination of brushes having different bristle diameters, the outer peripheral chamfered portion surface on the main surface side can be polished while rounding the corner portion between the outer peripheral chamfered portion and the outer peripheral side surface portion. For example, it is preferable to use a brush having a bristle wire diameter of 0.3 mm in combination with a brush having a bristle wire diameter of 0.2 mm.

ガラス基板積層体41、42、およびブラシ43、44を、ガラス基板積層体41、42と、ブラシ43、44とが接触した状態で、それぞれを図中に示した回転方向C、D、E、Fの方向に回転させることで、ガラス基板積層体41、42中のガラス基板の外周端面を研磨できる。   With the glass substrate laminates 41 and 42 and the brushes 43 and 44 in a state where the glass substrate laminates 41 and 42 and the brushes 43 and 44 are in contact with each other, the rotation directions C, D, E, and By rotating in the direction F, the outer peripheral end face of the glass substrate in the glass substrate laminates 41 and 42 can be polished.

端面研磨工程においては、ガラス基板の外周端面について、40μm以上、70μm以下の研磨量で研磨することが好ましい。既述の面取り工程で、外周側面部と、外周面取り部との間の角部を、所定の円弧曲線としたガラス基板の外周端面について、ブラシ毛を例えば上述の線径のように組み合わせて用い、上記研磨量を研磨することで、既述のガラス基板の外周端面の形状とすることができる。   In the end surface polishing step, it is preferable to polish the outer peripheral end surface of the glass substrate with a polishing amount of 40 μm or more and 70 μm or less. In the above-described chamfering step, the bristle is used in combination with, for example, the above-described wire diameter for the outer peripheral end surface of the glass substrate in which the corner portion between the outer peripheral side surface portion and the outer peripheral chamfered portion has a predetermined arc curve. By polishing the polishing amount, the shape of the outer peripheral end face of the glass substrate described above can be obtained.

(工程4)の主表面研磨工程では、例えば両面研磨装置により、ドーナツ形状を有するガラス基板の主表面に研磨液が供給され、ドーナツ形状を有するガラス基板の上下主表面を同時に研磨できる。主表面研磨工程は、一次ポリッシュ(一次研磨)のみでもよく、一次ポリッシュ及び二次ポリッシュを行うものでもよく、二次ポリッシュの後に三次ポリッシュを行うものでもよい。   In the main surface polishing step of (Step 4), the polishing liquid is supplied to the main surface of the glass substrate having a donut shape by, for example, a double-side polishing apparatus, and the upper and lower main surfaces of the glass substrate having a donut shape can be simultaneously polished. The main surface polishing step may be only primary polishing (primary polishing), primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.

なお、(工程4)の主表面研磨工程では、上記主表面の一次研磨等を実施する前に主表面のラップ(例えば遊離砥粒ラップ、固定砥粒ラップ等)が実施されてもよい。この場合、一次ラップのみでもよく、二次ラップ等複数のラップ工程を実施することもできる。   In the main surface polishing step of (Step 4), wrapping of the main surface (for example, free abrasive wrap, fixed abrasive wrap, etc.) may be performed before performing the primary polishing or the like of the main surface. In this case, only a primary lap may be used, and a plurality of lap processes such as a secondary lap may be performed.

また、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。ここで、主表面のラップとは、広義の主表面研磨である。   In addition, glass substrate cleaning (inter-process cleaning) and glass substrate surface etching (inter-process etching) may be performed between the processes. Here, the main surface lapping is a broad surface main surface polishing.

(工程5)の洗浄・乾燥工程は、研磨後のガラス基板を洗浄し、乾燥する工程である。具体的な洗浄方法は特に限定されるものではない。例えば、洗剤を用いたスクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄等により洗浄を行うことができる。また、乾燥方法についても特に限定されるものではなく、例えば、イソプロピルアルコール蒸気にて乾燥することができる。   The cleaning / drying step of (Step 5) is a step of cleaning and drying the polished glass substrate. A specific cleaning method is not particularly limited. For example, cleaning can be performed by scrub cleaning using a detergent, ultrasonic cleaning in a state immersed in a detergent solution, ultrasonic cleaning in a state immersed in pure water, or the like. Moreover, it does not specifically limit about the drying method, For example, it can dry with isopropyl alcohol vapor | steam.

さらに、上記各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。また、ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を工程3、4で挙げた研磨工程前、または研磨工程後、あるいは研磨工程間で実施してもよい。   Further, glass substrate cleaning (inter-process cleaning) and glass substrate surface etching (inter-process etching) may be performed between the above steps. Further, when high mechanical strength is required for the glass substrate, the reinforcing step (for example, chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed before or after the polishing step mentioned in steps 3 and 4, Or you may implement between grinding | polishing processes.

ここまで説明した工程1〜5は記載した順番に行う必要はなく、例えば、形状付与工程の前に主表面研磨工程を行ってもよい。また、各工程は1回ずつに限定されるものではなく、要求されるガラス基板の仕様等に応じて任意の回数実施することができる。例えば、形状付与工程後に主表面研磨工程を行い、その後に面取り工程と端面研磨工程を行った後、再度主表面研磨工程を実施することもできる。   The steps 1 to 5 described so far need not be performed in the order described, and for example, a main surface polishing step may be performed before the shape imparting step. Further, each step is not limited to one time, and can be performed any number of times according to the required glass substrate specifications. For example, the main surface polishing step may be performed after the shape imparting step, and then the chamfering step and the end surface polishing step may be performed, and then the main surface polishing step may be performed again.

以上に説明した本実施形態の磁気記録媒体用ガラス基板によれば、外周端面の形状を所定の形状としているため、急激な温度変化が加えられた場合に割れが生じることを抑制することができる。   According to the glass substrate for a magnetic recording medium of the present embodiment described above, since the shape of the outer peripheral end face is a predetermined shape, it is possible to suppress the occurrence of cracking when a sudden temperature change is applied. .

また、本実施形態のガラス基板によれば、ガラス基板の熱処理等を行う際の、ガラス基板と支持部材との接触面積を広くすることができ、ガラス基板に加えられる力を分散できる。   Further, according to the glass substrate of the present embodiment, the contact area between the glass substrate and the support member when performing heat treatment or the like of the glass substrate can be widened, and the force applied to the glass substrate can be dispersed.

このため、係る観点からもガラス基板に急激な温度変化が加えられた場合に、割れが生じることを抑制できる。   For this reason, it can control that a crack arises also when a sudden temperature change is given to a glass substrate also from the viewpoint concerned.

さらに、磁性層等を成膜するため、支持部材でガラス基板を支持している際に、ガラス基板の外周端面においてチッピング、すなわち欠けが生じることを抑制できる。   Furthermore, since the magnetic layer and the like are formed, it is possible to suppress chipping, that is, chipping, on the outer peripheral end surface of the glass substrate when the glass substrate is supported by the support member.

また、本実施形態のガラス基板においては、外周端面が既述の構造を有するため、支持部材と外周端面との接触面積が広くなり、ガラス基板を安定して支持できる。このため、磁性層等を成膜する際に、支持部材によりガラス基板を含む基材に対して電圧を印加した場合でも、アークの発生を抑制し、発塵を抑制できる。従って、得られる磁気記録媒体において、ミッシングカウントを抑制することが可能なる。
[磁気記録媒体]
次に、本実施形態の磁気記録媒体の一構成例について説明する。
Moreover, in the glass substrate of this embodiment, since an outer peripheral end surface has the above-mentioned structure, the contact area of a supporting member and an outer peripheral end surface becomes large, and it can support a glass substrate stably. For this reason, when forming a magnetic layer etc., even when a voltage is applied with respect to the base material containing a glass substrate by a support member, generation | occurrence | production of an arc can be suppressed and dust generation can be suppressed. Therefore, the missing count can be suppressed in the obtained magnetic recording medium.
[Magnetic recording medium]
Next, a configuration example of the magnetic recording medium of this embodiment will be described.

本実施形態の磁気記録媒体は、既述の磁気記録媒体用ガラス基板を含むことができる。   The magnetic recording medium of this embodiment can include the glass substrate for magnetic recording medium described above.

以下に本実施形態の磁気記録媒体の一構成例を説明するが、既述の磁気記録媒体用ガラス基板は、各種記録方式の磁気記録媒体に適用することができるため、本実施形態の磁気記録媒体の構成は特に限定されるものではない。   An example of the configuration of the magnetic recording medium of the present embodiment will be described below. However, since the glass substrate for magnetic recording medium described above can be applied to magnetic recording media of various recording methods, the magnetic recording of the present embodiment The configuration of the medium is not particularly limited.

本実施形態の磁気記録媒体は、既述のガラス基板の主表面の上に、垂直磁化膜となる垂直磁性層等を成膜することにより作製できる。垂直磁性層を形成する磁性材料としては、CoCrPt系合金、FePt系合金等が挙げられる。   The magnetic recording medium of the present embodiment can be manufactured by forming a perpendicular magnetic layer or the like serving as a perpendicular magnetization film on the main surface of the glass substrate described above. Examples of the magnetic material forming the perpendicular magnetic layer include a CoCrPt alloy and an FePt alloy.

本実施形態の磁気記録媒体は、具体的には例えば既述のガラス基板の主表面に、垂直磁性層、保護層、潤滑膜が形成された構成を有することができる。垂直磁性層は垂直磁気記録方式に対応した材料を用いることができる。なお、記録密度を更に向上させたい場合は、エネルギーアシスト磁気記録方式(例えば、熱アシスト磁気記録方式、マイクロ波アシスト磁気記録方式など)が好ましく、この場合には、垂直磁性層にはエネルギーアシスト磁気記録方式に対応した材料を用いることができる。   Specifically, the magnetic recording medium of the present embodiment can have a configuration in which, for example, a perpendicular magnetic layer, a protective layer, and a lubricating film are formed on the main surface of the glass substrate described above. A material corresponding to the perpendicular magnetic recording system can be used for the perpendicular magnetic layer. In order to further improve the recording density, an energy assisted magnetic recording method (for example, a heat assisted magnetic recording method, a microwave assisted magnetic recording method, etc.) is preferable. In this case, the perpendicular magnetic layer has an energy assisted magnetic recording method. A material corresponding to the recording method can be used.

垂直記録方式の場合には、磁気ヘッドからの記録磁界を環流させる役割を果たす軟磁性材料からなる軟磁性下地層を形成するのが一般的である。軟磁性下地層は、Co、Fe、Ni等を含む軟磁性材料が用いられる。具体的には、FeCo系合金、FeNi系合金、FeAl系合金、FeCr系合金、FeTa系合金、FeMg系合金、FeZr系合金、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB系合金等が用いられる。   In the case of the perpendicular recording system, it is common to form a soft magnetic underlayer made of a soft magnetic material that plays a role of circulating a recording magnetic field from a magnetic head. For the soft magnetic underlayer, a soft magnetic material containing Co, Fe, Ni or the like is used. Specifically, FeCo alloy, FeNi alloy, FeAl alloy, FeCr alloy, FeTa alloy, FeMg alloy, FeZr alloy, FeC alloy, FeN alloy, FeSi alloy, FeP alloy, FeNb Alloys, FeHf alloys, FeB alloys and the like are used.

また、ガラス基板の主表面における吸着ガスや吸着水分の影響、あるいはガラス基板に含まれる成分の拡散等による軟磁性下地層の腐食を抑制するために、ガラス基板10と軟磁性下地層との間に、密着層を設けてもよい。密着層を形成する材料としては、Cr、Cr合金、Ti、Ti合金等が挙げられ、厚さ2nm以上40nm以下程度が好ましい。密着層は、例えば、スパッタリングによる成膜により形成することができる。   Further, in order to suppress the corrosion of the soft magnetic underlayer due to the influence of the adsorbed gas and adsorbed moisture on the main surface of the glass substrate or the diffusion of the components contained in the glass substrate, between the glass substrate 10 and the soft magnetic underlayer. In addition, an adhesion layer may be provided. Examples of the material for forming the adhesion layer include Cr, Cr alloy, Ti, Ti alloy and the like, and a thickness of about 2 nm to 40 nm is preferable. The adhesion layer can be formed by film formation by sputtering, for example.

軟磁性下地層と垂直磁性層との間に、配向制御層を設けることにより、垂直磁性層の結晶粒を微細化し、記録再生特性を向上させることができる。配向制御層は、RuやRu合金、Pt、Au及びAgを含む材料ならびにCoCr系合金、TiまたはTi合金等の材料を用いることができ、膜厚は2nm以上20nm以下程度が好ましい。この配向制御層は、垂直磁性層のエピタキシャル成長を容易にする機能及び軟磁性下地層と垂直磁性層との磁気交換結合を断つ機能を有している。   By providing the orientation control layer between the soft magnetic underlayer and the perpendicular magnetic layer, the crystal grains of the perpendicular magnetic layer can be miniaturized and the recording / reproducing characteristics can be improved. The orientation control layer can be made of a material containing Ru, Ru alloy, Pt, Au and Ag, and a material such as CoCr alloy, Ti or Ti alloy, and the film thickness is preferably about 2 nm to 20 nm. This orientation control layer has a function of facilitating the epitaxial growth of the perpendicular magnetic layer and a function of breaking the magnetic exchange coupling between the soft magnetic underlayer and the perpendicular magnetic layer.

更に、軟磁性下地層と配向制御層との間に、配向制御層の結晶粒径を制御するためのシード層を設けてもよい。シード層は、例えば、NiW系合金を用いることができる。垂直磁性層は、磁化容易軸がガラス基板における主表面に対して垂直方向に向いている磁性膜であり、Co、Cr、Pt等を含む材料により形成されている。   Further, a seed layer for controlling the crystal grain size of the orientation control layer may be provided between the soft magnetic underlayer and the orientation control layer. For the seed layer, for example, a NiW alloy can be used. The perpendicular magnetic layer is a magnetic film having an easy axis of magnetization that is perpendicular to the main surface of the glass substrate, and is formed of a material containing Co, Cr, Pt, or the like.

垂直磁性層は、高い固有媒体ノイズの原因となる粒間交換結合を低減するため、良好に隔離された微粒子構造、即ち、グラニュラ構造とすることが好ましい。具体的には、CoCrPt系合金等に、酸化物(SiO、SiO、Cr、CoO、Ta、TiO等)や、Cr、B、Ta、Zr等を添加することが好ましい。 The perpendicular magnetic layer preferably has a well-isolated fine particle structure, that is, a granular structure, in order to reduce intergranular exchange coupling that causes high intrinsic medium noise. Specifically, an oxide (SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 5 , TiO 2, etc.), Cr, B, Ta, Zr, or the like may be added to a CoCrPt alloy or the like. preferable.

垂直磁性層は、磁性層と非磁性層とが交互に積層された構造としてもよい。この場合、非磁性層は、例えば、RuまたはRu合金の材料を用い、厚さ0.6nm以上1.2nm以下とすることにより、磁性層をAFC結合(反強磁性交換結合)させることができる。   The perpendicular magnetic layer may have a structure in which magnetic layers and nonmagnetic layers are alternately stacked. In this case, for example, the nonmagnetic layer is made of Ru or a Ru alloy and has a thickness of 0.6 nm to 1.2 nm, whereby the magnetic layer can be AFC-coupled (antiferromagnetic exchange coupled). .

垂直磁性層の腐食を防ぎ、かつ、磁気ヘッドが媒体に接触した際において、磁気ディスクの表面の損傷を防ぐため、垂直磁性層の上に保護層が形成される。保護層は、C、ZrO、SiO等を含む材料により形成されており、スパッタリング、CVD(chemical vapor deposition)等による成膜により形成することができる。 In order to prevent corrosion of the perpendicular magnetic layer and to prevent damage to the surface of the magnetic disk when the magnetic head comes into contact with the medium, a protective layer is formed on the perpendicular magnetic layer. The protective layer is formed of a material containing C, ZrO 2 , SiO 2 or the like, and can be formed by film formation by sputtering, CVD (chemical vapor deposition), or the like.

保護層の表面には、磁気ヘッドと磁気記録媒体との摩擦を低減するため、潤滑膜を配置できる。潤滑膜は、例えば、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いることができる。これら潤滑膜は、ディップ法、スプレー法等により形成することができる。   A lubricating film can be disposed on the surface of the protective layer in order to reduce friction between the magnetic head and the magnetic recording medium. As the lubricating film, for example, perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid, or the like can be used. These lubricating films can be formed by dipping, spraying, or the like.

以上に説明した本実施形態の磁気記録媒体は、既述の磁気記録媒体用ガラス基板を含んでいる。すなわち、急激な温度変化が加えられた場合に割れが生じることを抑制した磁気記録媒体用ガラス基板を含んでいる。このため、磁性層を成膜する際等に、ガラス基板に割れが生じることを抑制し、生産性良く本実施形態の磁気記録媒体を製造することができる。   The magnetic recording medium of this embodiment described above includes the glass substrate for magnetic recording medium described above. That is, it includes a glass substrate for a magnetic recording medium that suppresses the occurrence of cracking when a sudden temperature change is applied. For this reason, when forming a magnetic layer, etc., it can suppress that a glass substrate cracks, and can manufacture the magnetic recording medium of this embodiment with high productivity.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   Specific examples will be described below, but the present invention is not limited to these examples.

まず、以下の実験例における、磁気記録媒体用ガラス基板の評価方法について説明する。   First, a method for evaluating a glass substrate for a magnetic recording medium in the following experimental example will be described.

(1)外周端面の形状
以下の各実験例で作製したガラス基板の外周端面の形状について、輪郭形状測定器(東京精密社製 型式:CONTOURECORD 1600DH)により測定を行った。なお、測定の際の触針先端Rは30μm、スキャン速度は0.3mm/secとした。
(1) Shape of outer peripheral end surface The shape of the outer peripheral end surface of the glass substrate produced in each of the following experimental examples was measured by a contour shape measuring instrument (model: CONTOURRECORD 1600DH manufactured by Tokyo Seimitsu Co., Ltd.). The stylus tip R at the time of measurement was 30 μm, and the scanning speed was 0.3 mm / sec.

測定に当たっては、図2を用いて説明したように、一対の主表面と垂直で、かつ前記磁気記録媒体用ガラス基板の中心軸を通る断面において、主表面と平行な軸をX軸とした。そして、各ガラス基板の外周端面の輪郭形状における最外周位置のX座標を0、外周端面の最外周位置よりも、ガラス基板の中心軸側のX座標を正とした。   In the measurement, as described with reference to FIG. 2, in the cross section perpendicular to the pair of main surfaces and passing through the central axis of the glass substrate for magnetic recording medium, the axis parallel to the main surface was taken as the X axis. And the X coordinate of the outermost peripheral position in the outline shape of the outer peripheral end surface of each glass substrate was set to 0, and the X coordinate on the central axis side of the glass substrate from the outermost peripheral position of the outer peripheral end surface was made positive.

以下の各実験例において、作製したガラス基板について、図2を用いて説明した以下の各角度を測定、算出した。   In each of the following experimental examples, the following angles described with reference to FIG. 2 were measured and calculated for the produced glass substrate.

外周端面13のうち、X座標Xが5μmの点Pと、X座標X10が10μmの点P10とを結んだ直線と、X軸とが形成する角度θ5−10Of the outer peripheral edge surface 13, the angle theta 5-10 to X coordinate X 5 is the point P 5 of 5 [mu] m, the straight line X-coordinate X 10 is connecting the point P 10 of 10 [mu] m, and the X-axis to form.

外周端面13のうち、X座標X10が10μmの点P10と、X座標X20が20μmの点P20とを結んだ直線と、X軸とが形成する角度θ10−20Of the outer peripheral edge surface 13, the angle theta 10-20 of X-coordinate X 10 is a point P 10 of 10 [mu] m, the straight line X-coordinate X 20 is connecting the point P 20 of 20 [mu] m, and the X-axis to form.

外周端面13のうち、X座標X20が20μmの点P20と、X座標X30が30μmの点P30とを結んだ直線と、X軸とが形成する角度θ20−30Of the outer peripheral edge surface 13, the angle theta 20-30 of X-coordinate X 20 is a point P 20 of 20 [mu] m, the straight line X-coordinate X 30 is connecting the point P 30 of 30 [mu] m, and the X-axis to form.

外周端面13のうち、X座標X30が30μmの点P30と、X座標X40が40μmの点P40とを結んだ直線と、X軸とが形成する角度θ30−40
(2)急激な温度変化による割れ発生率評価
各実験例で作製したガラス基板に、急激な温度変化を加えた際の割れ発生率について、以下の手順により評価を実施する。
Of the outer peripheral edge surface 13, the angle theta 30-40 of X-coordinate X 30 is a point P 30 of 30 [mu] m, the straight line X-coordinate X 40 is connecting the point P 40 of 40 [mu] m, and the X-axis to form.
(2) Evaluation of crack occurrence rate due to abrupt temperature change The crack occurrence rate when a sudden temperature change is applied to the glass substrate produced in each experimental example is evaluated by the following procedure.

各実験例において作製したガラス基板について、電気炉で230℃まで加熱後、冷却することなく電気炉から取り出す。そして、予め水温が20℃、深さ10mmとなるように水を張った水槽内の水に、ガラス基板をガラス基板の主表面に対し平行の方向に移動させ、すなわち水面とガラス基板の主表面とが垂直になるように保ちながら投入する。   About the glass substrate produced in each experimental example, it heats to 230 degreeC with an electric furnace, Then, it takes out from an electric furnace, without cooling. Then, the glass substrate is moved in a direction parallel to the main surface of the glass substrate to the water in the water tank in which the water temperature is 20 ° C. and the depth is 10 mm in advance, that is, the water surface and the main surface of the glass substrate Insert while keeping the vertical position.

水に投入した際に、ガラス基板に外周部分から5mm以上の長さの割れ、またはクラックが発生した場合に割れが発生したと判定する。   It is determined that a crack has occurred when a crack having a length of 5 mm or more from the outer peripheral portion or a crack occurs in the glass substrate when thrown into water.

各実験例について、100枚のガラス基板を同様にして試験し、試験に供した100枚のガラス基板中、割れが発生したと判断されたガラス基板の割合、すなわち、外周部分から5mm以上の長さの割れ、またはクラックが発生したガラス基板の割合を割れ発生率とする。   For each experimental example, 100 glass substrates were tested in the same manner, and the ratio of the glass substrates determined to have cracked in the 100 glass substrates subjected to the test, that is, a length of 5 mm or more from the outer peripheral portion. The ratio of the glass substrate in which the crack or the crack has occurred is defined as the crack occurrence rate.

割れ発生率評価試験では、上述のようにガラス基板を、230℃まで加熱後、3秒以内に水温が20℃の水に投入している。このため、ガラス基板にはおよそ70℃/秒の急激な温度変化が加えられていることになる。エネルギーアシスト磁気記録媒体を製造する工程において最も急激な温度変化は、例えばFe−Pt系合金膜の規則化に要する600℃程度の温度から、保護層を成膜するための200℃程度に保持されたCVDチャンバーに移送する際に生じる。ただし、係る温度変化は十数秒から、数十秒程度をかけて行われる。このため、係る温度変化に要する時間を15秒と見積もったとしても温度変化は27℃/秒程度である。   In the crack occurrence rate evaluation test, as described above, the glass substrate was heated to 230 ° C. and then poured into water having a water temperature of 20 ° C. within 3 seconds. For this reason, a rapid temperature change of about 70 ° C./second is applied to the glass substrate. In the process of manufacturing the energy-assisted magnetic recording medium, the most rapid temperature change is maintained, for example, from about 600 ° C. required for ordering the Fe—Pt alloy film to about 200 ° C. for forming the protective layer. This occurs when transferred to a CVD chamber. However, the temperature change is performed over a period of several tens of seconds to several tens of seconds. For this reason, even if the time required for the temperature change is estimated as 15 seconds, the temperature change is about 27 ° C./second.

そこで、実際の磁気記録媒体の製造工程において、急激な温度変化を与えた場合に割れが発生することをより確実に抑制するため、ここでは磁気記録媒体を製造する際の温度勾配よりも大きな温度勾配を与えて評価を行っている。
(3)磁性層成膜後の外周チッピング発生率
後述のように、各実験例で作製したガラス基板の主表面上に磁性層等を成膜し、磁気記録媒体の作製を行っている。
Therefore, in order to more surely suppress the occurrence of cracking in the actual magnetic recording medium manufacturing process when a sudden temperature change is applied, here, the temperature is larger than the temperature gradient when manufacturing the magnetic recording medium. The evaluation is performed with a gradient.
(3) Peripheral chipping occurrence rate after film formation of magnetic layer As described later, a magnetic layer or the like is formed on the main surface of the glass substrate prepared in each experimental example to manufacture a magnetic recording medium.

そこで、磁性層成膜後のガラス基板の外周端部についてチッピングの発生率の評価を実施している。目視で確認し、チッピングを含むガラス基板についてはチッピングが発生したと判断する。各実験例について、10000枚のガラス基板について試験を行い、該10000枚のガラス基板中、チッピングが発生したガラス基板の割合をチッピング発生率とする。   Therefore, evaluation of the occurrence rate of chipping is performed on the outer peripheral edge of the glass substrate after the magnetic layer is formed. Visual confirmation is made and it is determined that chipping has occurred for the glass substrate including chipping. For each experimental example, 10,000 glass substrates were tested, and the ratio of the glass substrates in which chipping occurred in the 10,000 glass substrates was defined as the chipping occurrence rate.

なお、評価に当たっては、外周面取り部と外周側面部との間、及び主表面と外周面取り部との間に分けて、それぞれ評価を行った。外周面取り部と外周側面部との間におけるチッピングの発生率を表3中では、外周面取り部−外周側面部間と記載している。また、主表面と外周面取り部との間におけるチッピングの発生率を表3中では、主表面−外周面取り部間と記載している。
(4)磁気記録媒体の評価
作製した磁気記録媒体について、ミッシングビットによる磁気ディスク評価を実施している。
In the evaluation, the evaluation was performed separately between the outer peripheral chamfered portion and the outer peripheral chamfered portion and between the main surface and the outer peripheral chamfered portion. In Table 3, the occurrence rate of chipping between the outer peripheral chamfered part and the outer peripheral side part is described as between the outer peripheral chamfered part and the outer peripheral side part. Further, in Table 3, the occurrence rate of chipping between the main surface and the outer peripheral chamfered portion is described as between the main surface and the outer peripheral chamfered portion.
(4) Evaluation of magnetic recording medium Magnetic disk evaluation by missing bits is performed on the produced magnetic recording medium.

ミッシングビットは、線記録密度1600kBPI、トラック密度500kTPI(面記録密度800Gbit/inch)の条件で記録し、再生した際の信号強度を測定して評価する。 The missing bit is recorded under the conditions of a linear recording density of 1600 kBPI and a track density of 500 kTPI (surface recording density of 800 Gbit / inch 2 ), and is evaluated by measuring the signal intensity when reproduced.

再生の際に得られる出力が、合格の閾値(第一の閾値)以下であるものをミッシングビットとし、第一の閾値以下だが修正可能な第二の閾値(第一の閾値の80%)以上のものをコレクダブル・ミッシングビット(Correctable Missing Bit)、修正不可能なもの(第一の閾値の80%未満)をアンコレクタブル・ミッシングビット(Uncorrectable Missing Bit)とする。   When the output obtained during playback is less than the pass threshold (first threshold), the missing bit is used as the missing bit. Are the collectable missing bits (correctable missing bits), and those that cannot be modified (less than 80% of the first threshold) are uncorrectable missing bits (uncorrectable missing bits).

そして、各実験例において作製した500枚の磁気記録媒体について測定し、1面当たりの個数として算出する。   Then, 500 magnetic recording media manufactured in each experimental example are measured and calculated as the number per one surface.

磁気ディスクの評価は、このように測定されたコレクダブル・ミッシングビット、アンコレクタブル・ミッシングビットに基づき、それぞれA、B、C、Dのランクで示す。具体的には、表1に示されるように、コレクダブル・ミッシングビットについては0.3以下(個/面)の場合、アンコレクタブル・ミッシングビットについては0.1以下(個/面)の場合、ランクAとする。   The evaluation of the magnetic disk is indicated by ranks of A, B, C, and D based on the collectable missing bit and the uncorrectable missing bit measured as described above. Specifically, as shown in Table 1, when the collectable missing bit is 0.3 or less (pieces / face), the uncorrectable missing bit is 0.1 or less (pieces / face) , Rank A.

また、コレクダブル・ミッシングビットについては0.3より多く0.4以下(個/面)の場合、アンコレクタブル・ミッシングビットについては0.1より多く0.2以下(個/面)の場合、ランクBとする。   Further, when the collectable missing bit is greater than 0.3 and less than or equal to 0.4 (pieces / face), the uncorrectable missing bit is greater than 0.1 and less than or equal to 0.2 (pieces / face). Rank B.

また、コレクダブル・ミッシングビットについては0.4より多く0.7以下(個/面)の場合、アンコレクタブル・ミッシングビットについては0.2より多く0.3以下(個/面)の場合、ランクCとする。   Further, when the collectable missing bit is greater than 0.4 and less than or equal to 0.7 (pieces / face), the uncorrectable missing bit is greater than 0.2 and less than or equal to 0.3 (pieces / face). Rank C.

また、コレクダブル・ミッシングビットについては0.7(個/面)を超えた場合、アンコレクタブル・ミッシングビットについては0.3(個/面)を超えた場合、ランクDとする。   Further, when the collectable missing bit exceeds 0.7 (pieces / face), the uncorrectable missing bit exceeds 0.3 (pieces / face), the rank is D.

次に、各実験例における磁気記録媒体用ガラス基板、磁気記録媒体の製造方法について説明する。なお、実験例1〜実験例5が実施例となり、実験例6〜9が比較例となる。
[実験例1]
以下の順に各工程を実施して、磁気記録媒体用ガラス基板、および磁気記録媒体の作製を行う。
(1)磁気記録媒体用ガラス基板
(形状付与工程)
フロート法で成形された、SiOを主成分とする表2に示したガラス組成Aを有するアルミノシリケートガラス素板を用意する。そして、該ガラス素板から、外径65mm、内径20mm、板厚0.8mmの磁気記録媒体用ガラス基板が得られるように、中央部に円孔を有するドーナツ形状を有するガラス基板に加工する。
Next, a glass substrate for a magnetic recording medium and a method for manufacturing the magnetic recording medium in each experimental example will be described. Experimental Examples 1 to 5 are examples, and Experimental Examples 6 to 9 are comparative examples.
[Experimental Example 1]
Each step is performed in the following order to manufacture a glass substrate for a magnetic recording medium and a magnetic recording medium.
(1) Glass substrate for magnetic recording medium (shape imparting step)
An aluminosilicate glass base plate having a glass composition A shown in Table 2 mainly composed of SiO 2 and formed by a float process is prepared. Then, the glass base plate is processed into a glass substrate having a donut shape having a circular hole in the center so that a glass substrate for a magnetic recording medium having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.8 mm can be obtained.

なお、内径とは、中央開口部の直径を意味する。
(面取り工程)
形状付与工程で得られたガラス基板の内周端面と外周端面とに、それぞれ内周面取り部、及び外周面取り部を形成する。
The inner diameter means the diameter of the central opening.
(Chamfering process)
An inner peripheral chamfered portion and an outer peripheral chamfered portion are formed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate obtained in the shape imparting step, respectively.

面取り工程では、内周端面を研削するための内周端面研削用砥石、および外周端面を研削するための外周端面研削用砥石を用いている。内周端面研削用砥石、および外周端面研削用砥石としてはいずれも、図3(A)に示したように略円柱形状を有し、その周面に沿って溝32を有する砥石を用いている。   In the chamfering step, an inner peripheral end face grinding grindstone for grinding the inner peripheral end face and an outer peripheral end face grindstone for grinding the outer peripheral end face are used. As shown in FIG. 3 (A), the inner peripheral end face grinding wheel and the outer peripheral end face grinding grindstone each have a substantially cylindrical shape, and use a grindstone having grooves 32 along the peripheral face. .

そして、外周端面研磨用砥石は、図3(B)に示すように、砥石31の、中心軸33、および溝32を通る面34での、溝32の断面形状は、外周側面部132と、外周面取り部131、133との間の角部を研削する部分35A、35Bについて、半径0.40mmの円弧形状としている。すなわちRが0.40mmの曲線としている。なお、表3中では砥石底Rとして示している。また、側壁部角度36A、36Bを43°としている。   As shown in FIG. 3B, the outer peripheral end surface polishing grindstone has a cross-sectional shape of the groove 32 on the surface 34 passing through the central axis 33 and the groove 32 of the grindstone 31, and the outer peripheral side surface portion 132, The portions 35A and 35B for grinding the corners between the outer peripheral chamfered portions 131 and 133 have an arc shape with a radius of 0.40 mm. That is, R is a curve of 0.40 mm. In Table 3, the grinding wheel bottom R is shown. Further, the side wall angle 36A, 36B is set to 43 °.

内周端面研磨用砥石は、溝32の断面形状が、内周側面部142と、内周面取り部141、143との間の角部を研削する部分35A、35Bについて、半径0.15mmの円弧形状としている。すなわちRが0.15mmの曲線とした。また、側壁部角度36A、36Bを43°としている。   The inner peripheral end surface polishing grindstone is a circular arc having a radius of 0.15 mm with respect to the portions 35A and 35B where the cross-sectional shape of the groove 32 grinds the corners between the inner peripheral side surface portion 142 and the inner peripheral chamfered portions 141 and 143. It has a shape. That is, a curve with R of 0.15 mm was used. Further, the side wall angle 36A, 36B is set to 43 °.

なお、面取り加工は、内周側面部、外周側面部、共に2段階で行い、1段階目の砥石は粒度#325、2段階目の砥石は粒度#800のダイヤモンドの電着砥石をそれぞれ用いている。
(主表面研磨工程:一次ラップ工程)
研磨具として鋳鉄定盤と、アルミナ砥粒を含有する研削液とを用いて、16B型両面研磨装置により、ガラス基板の上下の主表面の研削を行う。1次ラップ工程終了後、ガラス基板を洗浄し、研削液その他の汚れを除去する。
(端面研磨工程:外周端面研磨工程)
外周側面部と外周面取り部とを、研磨ブラシと平均粒子直径(以下、平均粒径と略す)が約1.5μmの酸化セリウム砥粒を含有する研磨剤とを用いて研磨し、外周側面及び外周面取り部の疵を除去し、鏡面となるように外周端面を研磨加工する。
The chamfering process is performed in two steps for both the inner peripheral side surface portion and the outer peripheral side surface portion, and the first stage grindstone is a grain size # 325, and the second stage grindstone is a diamond electrodeposition grindstone of grain size # 800. Yes.
(Main surface polishing process: primary lapping process)
The upper and lower main surfaces of the glass substrate are ground by a 16B double-side polishing apparatus using a cast iron surface plate as a polishing tool and a grinding liquid containing alumina abrasive grains. After completion of the primary lapping process, the glass substrate is washed to remove grinding fluid and other dirt.
(End face polishing process: outer peripheral end face polishing process)
The outer peripheral side surface portion and the outer peripheral chamfered portion are polished using a polishing brush and an abrasive containing a cerium oxide abrasive having an average particle diameter (hereinafter, abbreviated as an average particle size) of about 1.5 μm. The wrinkles at the outer peripheral chamfered portion are removed, and the outer peripheral end surface is polished so as to be a mirror surface.

より具体的には、図4に示した端面研磨装置を用いて、外周端面の研磨を行っている。   More specifically, the outer peripheral end face is polished using the end face polishing apparatus shown in FIG.

ガラス基板積層体41、42は、厚さ0.4mmの樹脂製スペーサーを介して、主表面研磨工程(一次ラップ工程)までを終えたガラス基板を100枚積層して形成する。   The glass substrate laminates 41 and 42 are formed by laminating 100 glass substrates that have been subjected to the main surface polishing step (primary lapping step) through a resin spacer having a thickness of 0.4 mm.

また、ブラシ43としてはナイロン製の毛径0.3mmのロール状研磨ブラシを、ブラシ44としてはナイロン製の毛径0.2mmのロール状研磨ブラシを用いている。   Further, as the brush 43, a roll abrasive brush made of nylon having a bristle diameter of 0.3 mm is used, and as the brush 44, a roll abrasive brush having a bristle diameter of 0.2 mm is used.

そして、ガラス基板積層体41、42の外周にブラシ43、44を、各ブラシのブラシ押し込み量が4mmとなるように押し当てて、ガラス基板積層体41、42とブラシ43、44を回転させて外周端面の研磨量が60μmとなるように研磨を行う。   Then, the brushes 43 and 44 are pressed against the outer periphery of the glass substrate laminates 41 and 42 so that the brush pressing amount of each brush is 4 mm, and the glass substrate laminates 41 and 42 and the brushes 43 and 44 are rotated. Polishing is performed so that the polishing amount of the outer peripheral end face becomes 60 μm.

なお、平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。なお、本明細書の他の部分でも、平均粒径は同様の意味を有する。
(端面研磨工程:内周端面研磨工程)
内周端面については、ガラス基板の内周側面部と内周面取り部とを、研磨ブラシと平均粒径約1.5μmの酸化セリウム砥粒を含有する研磨剤とを用いて研磨を行っている。これにより、内周側面及び内周面取り部の疵を除去し、鏡面となるように内周端面を研磨加工している。
The average particle size means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method. In other parts of the present specification, the average particle size has the same meaning.
(End polishing process: Inner peripheral edge polishing process)
About the inner peripheral end surface, the inner peripheral side surface portion and the inner peripheral chamfered portion of the glass substrate are polished using a polishing brush and a polishing agent containing cerium oxide abrasive grains having an average particle diameter of about 1.5 μm. . Thereby, the wrinkles of the inner peripheral side surface and the inner peripheral chamfered portion are removed, and the inner peripheral end surface is polished so as to be a mirror surface.

外周端面、および内周端面を研磨後はガラス基板を洗浄し、研磨剤その他の汚れを除去する。
(主表面研磨工程:二次ラップ工程)
研磨具として平均粒径4μmのダイヤモンド粒子を含有する固定砥粒工具と、界面活性剤を含有する研削液とを用いて、16B型両面研磨装置によりガラス基板の上下の主表面を研削する。
After polishing the outer peripheral end face and the inner peripheral end face, the glass substrate is washed to remove the abrasive and other dirt.
(Main surface polishing process: secondary lapping process)
The upper and lower main surfaces of the glass substrate are ground by a 16B double-side polishing apparatus using a fixed abrasive tool containing diamond particles having an average particle diameter of 4 μm as a polishing tool and a grinding liquid containing a surfactant.

主表面研磨工程(二次ラップ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去を行う。
(主表面研磨工程:一次ポリッシュ工程)
主表面研磨工程(一次ポリッシュ工程)では、研磨具として、軟質ウレタン製研磨パッド(スウェード系研磨パッド)と、平均粒径が約1.0μmの酸化セリウムを主成分として含有する研削液とを用いて、16B型の両面研磨装置によりガラス基板の上下の主表面をポリッシュする。
After completion of the main surface polishing step (secondary lapping step), the glass substrate is washed to remove grinding fluid and other contaminants.
(Main surface polishing process: primary polishing process)
In the main surface polishing step (primary polishing step), as a polishing tool, a soft urethane polishing pad (suede type polishing pad) and a grinding liquid containing cerium oxide having an average particle size of about 1.0 μm as a main component are used. The upper and lower main surfaces of the glass substrate are polished by a 16B double-side polishing apparatus.

メインの研磨加工圧力は12kPa、下定盤回転数は30rpm、上定盤回転数は下定盤と逆方向に10rpm、研磨キャリア公転数10rpm、自転数3rpmで、上下両主平面を板厚方向で合計30μm研磨する。   The main polishing pressure is 12 kPa, the lower surface plate rotation speed is 30 rpm, the upper surface plate rotation speed is 10 rpm in the opposite direction to the lower surface plate, the polishing carrier revolution number is 10 rpm, the rotation speed is 3 rpm, and the upper and lower main planes are total in the plate thickness direction. Polish 30 μm.

主表面研磨工程(一次ポリッシュ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去する。
(主表面研磨工程:二次ポリッシュ工程)
主表面研磨工程(二次ポリッシュ工程)では、研磨具として軟質ウレタン製の研磨パッドと、平均粒径が20nmのコロイダルシリカ砥粒を含有する研磨液を用いて、16B型の両面研磨装置によりガラス基板の上下の主表面をポリッシュする。
After completion of the main surface polishing step (primary polishing step), the glass substrate is washed to remove grinding fluid and other contaminants.
(Main surface polishing process: secondary polishing process)
In the main surface polishing step (secondary polishing step), a polishing pad containing a soft urethane polishing pad and a colloidal silica abrasive having an average particle size of 20 nm is used as a polishing tool, and a 16B double-side polishing apparatus is used to make glass Polish the upper and lower main surfaces of the substrate.

メインの研磨加工圧力を10kPa、下定盤回転数を10rpm、上定盤回転数を下定盤と逆方向に5rpm、研磨キャリア公転数を4.9rpm、自転数1.7rpmとして上下両主平面を板厚方向で合計1μm研磨する。   The main polishing pressure is 10 kPa, the lower surface plate rotation speed is 10 rpm, the upper surface plate rotation speed is 5 rpm in the opposite direction of the lower surface plate, the polishing carrier revolution number is 4.9 rpm, and the rotation speed is 1.7 rpm. A total of 1 μm is polished in the thickness direction.

主表面研磨工程(二次ポリッシュ工程)終了後、ガラス基板を洗浄し、研削液その他の汚れを除去を行う。
(洗浄・乾燥工程)
主表面研磨工程(二次ポリッシュ工程)を行ったガラス基板は、アルカリ性洗剤によるスクラブ洗浄、アルカリ性洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い(精密洗浄)、次いで、イソプロピルアルコール蒸気にて乾燥を行う。
After completion of the main surface polishing step (secondary polishing step), the glass substrate is washed to remove grinding fluid and other contaminants.
(Washing / drying process)
The glass substrate that has been subjected to the main surface polishing step (secondary polishing step) is sequentially subjected to scrub cleaning with an alkaline detergent, ultrasonic cleaning in a state immersed in an alkaline detergent solution, and ultrasonic cleaning in a state immersed in pure water. (Precise cleaning), followed by drying with isopropyl alcohol vapor.

以上の手順により得られた磁気記録媒体用ガラス基板について、上述の外周端面の形状、急激な温度変化による割れ発生率の評価を実施する。結果を表3に示す。
(2)磁気記録媒体
得られたガラス基板を精密洗浄して表面のパーティクルを除去し、その後インライン型スパッタリング装置により、ガラス基板の主表面上に密着層を、Crをターゲットとして、10nmの膜厚で成膜する。
The glass substrate for a magnetic recording medium obtained by the above procedure is evaluated for the shape of the outer peripheral end face and the crack occurrence rate due to a rapid temperature change. The results are shown in Table 3.
(2) Magnetic recording medium The obtained glass substrate is precisely cleaned to remove particles on the surface, and then an in-line type sputtering apparatus is used to form an adhesion layer on the main surface of the glass substrate and a film thickness of 10 nm using Cr as a target. The film is formed.

なお、インライン型スパッタリング装置内では、ガラス基板の外周端面上の複数箇所にそれぞれ支持部材を押し当て、支持部材でガラス基板を挟み込むことで支持している。   In the in-line type sputtering apparatus, a supporting member is pressed against a plurality of locations on the outer peripheral end surface of the glass substrate, and the glass substrate is sandwiched between the supporting members to support the glass substrate.

密着層の上には、軟磁性下地層を、Co−Fe−Zr−Ta合金をターゲットとして、30nmの膜厚で形成する。   On the adhesion layer, a soft magnetic underlayer is formed with a thickness of 30 nm using a Co—Fe—Zr—Ta alloy as a target.

次に、シード層を、NiW合金をターゲットとして、10nmの膜厚で形成する。   Next, a seed layer is formed with a thickness of 10 nm using a NiW alloy as a target.

シード層の上には、配向制御層を、Ruをターゲットとして、10nmの膜厚で形成する。   On the seed layer, an orientation control layer is formed with a thickness of 10 nm using Ru as a target.

配向制御層の上には、垂直磁性層としてCoCrPt−SiOのグラニュラ構造層を10nmの膜厚で形成し、非磁性中間層としてRu膜を0.6nmの膜厚で形成し、更に磁性層としてCoCrPt−SiOのグラニュラ構造層を6nmの膜厚で形成する。 On the orientation control layer, a granular structure layer of CoCrPt—SiO 2 is formed as a perpendicular magnetic layer with a thickness of 10 nm, a Ru film is formed as a nonmagnetic intermediate layer with a thickness of 0.6 nm, and a magnetic layer A granular structure layer of CoCrPt—SiO 2 is formed with a thickness of 6 nm.

上記の各層が積層されたガラス基板をインライン型スパッタリング装置から移送し、CVD法により保護層としてカーボン膜を3nmの膜厚で形成する。この後、ディップ法により、保護層の上に、パーフルオロポリエーテルの潤滑膜を2nmの膜厚で形成する。   The glass substrate on which each of the above layers is stacked is transferred from an in-line type sputtering apparatus, and a carbon film is formed with a thickness of 3 nm as a protective layer by a CVD method. Thereafter, a perfluoropolyether lubricating film having a thickness of 2 nm is formed on the protective layer by dipping.

得られた磁気記録媒体について、既述の評価を行う。結果を表3に示す。
[実験例2、実験例3]
(1)磁気記録媒体用ガラス基板
面取り工程において、外周端面研削用砥石の溝の形状が異なる点、及び端面研磨工程の外周端面の研磨量が異なる点以外は、実験例1と同様にしてガラス基板を作製し、評価を行う。
The obtained magnetic recording medium is evaluated as described above. The results are shown in Table 3.
[Experimental Example 2, Experimental Example 3]
(1) Glass substrate for magnetic recording medium Glass in the same manner as in Experimental Example 1 except that in the chamfering process, the shape of the groove of the grinding wheel for outer peripheral end face grinding is different and the polishing amount of the outer peripheral end face in the end face grinding process is different. A substrate is prepared and evaluated.

なお、図3(A)、(B)において、外周端面研削用の砥石31の、中心軸33、および溝32を通る面34での、溝32の断面形状は、外周側面部132と、外周面取り部131、133との間の角部を研削する部分35A、35Bについて、半径0.30mmの円弧形状としている。すなわちRが0.30mmの曲線としている。   3A and 3B, the cross-sectional shape of the groove 32 on the surface 34 passing through the central axis 33 and the groove 32 of the grindstone 31 for outer peripheral end surface grinding is as follows. The portions 35A and 35B where the corners between the chamfered portions 131 and 133 are ground have an arc shape with a radius of 0.30 mm. That is, R is a curve of 0.30 mm.

また、表3に示すように、端面研磨工程の外周端面の研磨量が50μm(実験例2)、または40μm(実験例3)となるように研磨を行う。   Further, as shown in Table 3, the polishing is performed so that the polishing amount of the outer peripheral end face in the end face polishing step is 50 μm (Experimental Example 2) or 40 μm (Experimental Example 3).

評価結果を表2に示す。
(2)磁気記録媒体
各実験例で作製した磁気記録媒体用ガラス基板を用いる点以外は、実験例1と同様にして磁気記録媒体を作製する。
The evaluation results are shown in Table 2.
(2) Magnetic recording medium A magnetic recording medium is produced in the same manner as in Experimental Example 1 except that the glass substrate for magnetic recording medium produced in each experimental example is used.

評価結果を表3に示す。
[実験例4、5]
(1)磁気記録媒体用ガラス基板
ガラス素板以外は、実験例2と同様にしてガラス基板を作製し、評価を行う。
The evaluation results are shown in Table 3.
[Experimental Examples 4 and 5]
(1) Glass substrate for magnetic recording medium A glass substrate is prepared and evaluated in the same manner as in Experimental Example 2 except for the glass base plate.

なお、実施例4は、フロート法で成形された、SiOを主成分とする表2に示したガラス組成Bを有するアルミノシリケートガラス素板を、また実施例5は同じく表2に示したガラス組成Cを有するアルミノシリケートガラス素板を用いる。 In addition, Example 4 is an aluminosilicate glass base plate having a glass composition B shown in Table 2 and composed mainly of SiO 2 formed by a float process, and Example 5 is a glass similarly shown in Table 2. An aluminosilicate glass base plate having composition C is used.

評価結果を表2に示す。
(2)磁気記録媒体
各実験例で作製した磁気記録媒体用ガラス基板を用いる点以外は、実験例1と同様にして磁気記録媒体を作製する。
The evaluation results are shown in Table 2.
(2) Magnetic recording medium A magnetic recording medium is produced in the same manner as in Experimental Example 1 except that the glass substrate for magnetic recording medium produced in each experimental example is used.

評価結果を表3に示す。
[実験例6〜9]
(1)磁気記録媒体用ガラス基板
面取り工程において、外周端面研削用砥石の溝の形状が異なる点、及び端面研磨工程の外周端面の研磨量が異なる点以外は、実験例1と同様にしてガラス基板を作製し、評価を行う。
The evaluation results are shown in Table 3.
[Experimental Examples 6 to 9]
(1) Glass substrate for magnetic recording medium Glass in the same manner as in Experimental Example 1 except that in the chamfering process, the shape of the groove of the grinding wheel for outer peripheral end face grinding is different and the polishing amount of the outer peripheral end face in the end face grinding process is different. A substrate is prepared and evaluated.

なお、図3(A)、(B)において、外周端面研削用の砥石31の、中心軸33、および溝32を通る面34での、溝32の断面形状は、外周側面部132と、外周面取り部131、133との間の角部を研削する部分35A、35Bについて、半径0.20mm(実験例6)、半径0.15mm(実験例7)、半径0.10mm(実験例8)、および半径0.60mm(実験例9)の円弧形状としている。すなわちRが0.20mm、0.15mm、0.10mm、および0.60mmの曲線としている。   3A and 3B, the cross-sectional shape of the groove 32 on the surface 34 passing through the central axis 33 and the groove 32 of the grindstone 31 for outer peripheral end surface grinding is as follows. For the portions 35A and 35B for grinding the corners between the chamfered portions 131 and 133, a radius of 0.20 mm (Experimental example 6), a radius of 0.15 mm (Experimental example 7), a radius of 0.10 mm (Experimental example 8), The arc shape has a radius of 0.60 mm (Experimental Example 9). That is, the curves R are 0.20 mm, 0.15 mm, 0.10 mm, and 0.60 mm.

また、表3に示したように、端面研磨工程の外周端面の研磨量が実施例6、7,8,および9ではそれぞれ、20μm、15μm、15μm、および30μmとなるように研磨を行う。具体的には、図4に示した端面研磨装置において、ガラス基板積層体41、42の外周にブラシ43、44を、各ブラシのブラシ押し込み量が実施例6および7では1.5mm、実施例8では2mm、実施例9では3mmとなるように押し当てて、ガラス基板積層体41、42とブラシ43、44を回転させて上記研磨量となるように研磨を行っている。なお、ブラシ43、44としては、実施例6および7では共にナイロン製の毛径0.15mm、実施例8では共にナイロン製の毛径0.2mm、実施例9では共にナイロン製の毛径0.3mmのそれぞれロール状研磨ブラシを用いている。   Further, as shown in Table 3, the polishing is performed so that the polishing amount of the outer peripheral end face in the end face polishing step becomes 20 μm, 15 μm, 15 μm, and 30 μm in Examples 6, 7, 8, and 9, respectively. Specifically, in the end surface polishing apparatus shown in FIG. 4, the brushes 43 and 44 are placed on the outer periphery of the glass substrate laminates 41 and 42, and the brush pressing amount of each brush is 1.5 mm in Examples 6 and 7. The glass substrate laminates 41 and 42 and the brushes 43 and 44 are rotated so as to have the above polishing amount by being pressed so as to be 2 mm in 8 and 3 mm in Example 9. As for the brushes 43 and 44, both the hair diameters made of nylon in Examples 6 and 7 were 0.15 mm, the hair diameter in Example 8 was both 0.2 mm, and the hair diameter in Example 9 was 0. Each roll abrasive brush of 3 mm is used.

評価結果を表2に示す。
(2)磁気記録媒体
各実験例で作製した磁気記録媒体用ガラス基板を用いる点以外は、実験例1と同様にして磁気記録媒体を作製する。
The evaluation results are shown in Table 2.
(2) Magnetic recording medium A magnetic recording medium is produced in the same manner as in Experimental Example 1 except that the glass substrate for magnetic recording medium produced in each experimental example is used.

評価結果を表3に示す。   The evaluation results are shown in Table 3.

Figure 2017120679
Figure 2017120679

Figure 2017120679
Figure 2017120679

Figure 2017120679
表3に示した結果によると、ガラス基板の外周端面の形状について、θ5−10、θ10−20、θ20−30がそれぞれ81°以上85°以下、69°以上83°以下、52°以上72°以下となっている実験例1〜実験例5のガラス基板はいずれも急激な温度変化による割れ発生率が5%以下と低くなっていることを確認できる。
Figure 2017120679
According to the results shown in Table 3, with respect to the shape of the outer peripheral end face of the glass substrate, θ 5-10 , θ 10-20 , θ 20-30 are 81 ° to 85 °, 69 ° to 83 °, 52 °, respectively. It can be confirmed that all of the glass substrates of Experimental Examples 1 to 5 that are 72 ° or less have a low crack generation rate of 5% or less due to a rapid temperature change.

更に、ガラスの平均熱膨張係数が実験例1〜3より小さい実験例4および5は、外周端面形状が実験例2と同様だが、急激な温度変化による割れ発生率が実験例2より低く、0%となっている。   Further, in Experimental Examples 4 and 5 in which the average thermal expansion coefficient of the glass is smaller than Experimental Examples 1 to 3, the outer peripheral end face shape is the same as that of Experimental Example 2, but the crack occurrence rate due to a rapid temperature change is lower than that of Experimental Example 2; %.

これに対して、外周端面の形状のθ5−10およびθ10−20が、上記範囲を満たさない実験例6〜8については、急激な温度変化による割れ発生率が15%を超え、非常に高くなっていることを確認できる。なお、外周端面形状のθ5−10およびθ10−20が上記範囲を満たしている実験例9では、急激な温度変化による割れ発生率は3%と比較的低い水準をしめす。 In contrast, in Experimental Examples 6 to 8 in which the shapes of the outer peripheral end faces θ 5-10 and θ 10-20 do not satisfy the above range, the crack occurrence rate due to a rapid temperature change exceeds 15%, which is very high. You can see that it is higher. In Experimental Example 9 in which the outer peripheral end face shapes θ 5-10 and θ 10-20 satisfy the above range, the crack occurrence rate due to a rapid temperature change is a relatively low level of 3%.

以上の結果から、急激な温度変化による割れ発生率にはガラス基板の外周端面の形状が影響しており、所定の形状とすることで、割れ発生率を抑制できることを確認できる。   From the above results, it can be confirmed that the crack occurrence rate due to a rapid temperature change is affected by the shape of the outer peripheral end face of the glass substrate, and that the crack occurrence rate can be suppressed by setting it to a predetermined shape.

また、外周端面の形状が上記形状である実験例1〜実験例5のガラス基板については、実験例6〜9のガラス基板と比較して、磁性層成膜後の外周チッピング発生率を低く抑制できることを確認できる。   Moreover, about the glass substrate of Experimental example 1-Experimental example 5 whose shape of an outer peripheral end surface is the said shape, compared with the glass substrate of Experimental examples 6-9, the outer periphery chipping generation rate after magnetic layer film-forming is suppressed low. I can confirm that I can do it.

なお、外周端面形状のθ5−10およびθ10−20が上記形状範囲外である実験例6〜8では外周側面と外周面取り面との間のチッピングの発生率が高く、外周端面形状のθ20−30が上記範囲外である実験例8および9では、主表面と外周面取り面との間のチッピング発生率が高くなっている。 In Experimental Examples 6 to 8 in which the outer peripheral end face shape θ 5-10 and θ 10-20 are outside the above shape range, the occurrence rate of chipping between the outer peripheral side surface and the outer peripheral chamfered surface is high, and the outer peripheral end surface shape θ In Experimental Examples 8 and 9 where 20-30 is out of the above range, the chipping rate between the main surface and the peripheral chamfered surface is high.

さらには、実験例1〜実験例5のガラス基板については、磁気記録媒体とした際のCorrectable Missing Bit、Uncorrectable Missing Bitのランクについても、実験例6〜8のガラス基板よりも高くなることが確認できる。   Further, for the glass substrates of Experimental Examples 1 to 5, it was confirmed that the ranks of Collectable Missing Bit and Uncorrectable Missing Bit when used as magnetic recording media were also higher than those of the glass substrates of Experimental Examples 6 to 8. it can.

10 磁気記録媒体用ガラス基板
121、122 主表面
13 外周端面
131、133 外周面取り部
132 外周側面部
14 内周端面
DESCRIPTION OF SYMBOLS 10 Glass substrate 121,122 for magnetic recording media Main surface 13 Outer peripheral surface 131, 133 Outer peripheral chamfer 132 Outer peripheral side 14 Inner peripheral end

本発明の一側面では、一対の主表面、外周端面、及び内周端面を有するドーナツ形状の磁気記録媒体用ガラス基板であって、
前記外周端面が外周側面部、及び前記外周側面部と前記主表面との間に配置された外周面取り部を有し、
前記一対の主表面と垂直で、かつ前記磁気記録媒体用ガラス基板の中心軸を通る断面において、
前記主表面と平行な軸をX軸とし、前記外周端面の最外周位置のX座標を0、前記外周端面の最外周位置よりも、前記磁気記録媒体用ガラス基板の中心軸側のX座標を正とした場合に、
前記外周端面のうち、X座標が5μmの点と、X座標が10μmの点とを結んだ直線と、前記X軸とが形成する角度が81°以上85°以下、
前記外周端面のうち、X座標が10μmの点と、X座標が20μmの点とを結んだ直線と、前記X軸とが形成する角度が69°以上83°以下、
前記外周端面のうち、X座標が20μmの点と、X座標が30μmの点とを結んだ直線と、前記X軸とが形成する角度が52°以上72°以下、
前記外周端面のうち、X座標が30μmの点と、X座標が40μmの点とを結んだ直線と、前記X軸とが形成する角度が51°以上68°以下、
である磁気記録媒体用ガラス基板を提供する。


In one aspect of the present invention, a glass substrate for a magnetic recording medium in a donut shape having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface,
The outer peripheral end surface has an outer peripheral side surface portion, and an outer peripheral chamfered portion disposed between the outer peripheral side surface portion and the main surface,
In a cross section perpendicular to the pair of main surfaces and passing through the central axis of the glass substrate for magnetic recording medium,
The axis parallel to the main surface is the X axis, the X coordinate of the outermost peripheral surface of the outer peripheral end surface is 0, and the X coordinate on the central axis side of the glass substrate for a magnetic recording medium from the outermost peripheral position of the outer peripheral end surface is If positive,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 5 μm and a point having an X coordinate of 10 μm and the X axis is 81 ° to 85 °,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 10 μm and a point having an X coordinate of 20 μm and the X axis is 69 ° or more and 83 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 20 μm and a point having an X coordinate of 30 μm and the X axis is 52 ° or more and 72 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 30 μm and a point having an X coordinate of 40 μm and the X axis is 51 ° or more and 68 ° or less,
A glass substrate for a magnetic recording medium is provided.


Claims (8)

一対の主表面、外周端面、及び内周端面を有するドーナツ形状の磁気記録媒体用ガラス基板であって、
前記外周端面が外周側面部、及び前記外周側面部と前記主表面との間に配置された外周面取り部を有し、
前記一対の主表面と垂直で、かつ前記磁気記録媒体用ガラス基板の中心軸を通る断面において、
前記主表面と平行な軸をX軸とし、前記外周端面の最外周位置のX座標を0、前記外周端面の最外周位置よりも、前記磁気記録媒体用ガラス基板の中心軸側のX座標を正とした場合に、
前記外周端面のうち、X座標が5μmの点と、X座標が10μmの点とを結んだ直線と、前記X軸とが形成する角度が81°以上85°以下、
前記外周端面のうち、X座標が10μmの点と、X座標が20μmの点とを結んだ直線と、前記X軸とが形成する角度が69°以上83°以下、
前記外周端面のうち、X座標が20μmの点と、X座標が30μmの点とを結んだ直線と、前記X軸とが形成する角度が52°以上72°以下、
である磁気記録媒体用ガラス基板。
A glass substrate for a magnetic recording medium having a donut shape having a pair of main surfaces, an outer peripheral end surface, and an inner peripheral end surface,
The outer peripheral end surface has an outer peripheral side surface portion, and an outer peripheral chamfered portion disposed between the outer peripheral side surface portion and the main surface,
In a cross section perpendicular to the pair of main surfaces and passing through the central axis of the glass substrate for magnetic recording medium,
The axis parallel to the main surface is the X axis, the X coordinate of the outermost peripheral surface of the outer peripheral end surface is 0, and the X coordinate on the central axis side of the glass substrate for a magnetic recording medium from the outermost peripheral position of the outer peripheral end surface is If positive,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 5 μm and a point having an X coordinate of 10 μm and the X axis is 81 ° to 85 °,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 10 μm and a point having an X coordinate of 20 μm and the X axis is 69 ° or more and 83 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 20 μm and a point having an X coordinate of 30 μm and the X axis is 52 ° or more and 72 ° or less,
A glass substrate for a magnetic recording medium.
前記外周端面のうち、X座標が5μmの点と、X座標が10μmの点とを結んだ直線と、前記X軸とが形成する角度が81°以上84°以下、
前記外周端面のうち、X座標が10μmの点と、X座標が20μmの点とを結んだ直線と、前記X軸とが形成する角度が75°以上82°以下、
前記外周端面のうち、X座標が20μmの点と、X座標が30μmの点とを結んだ直線と、前記X軸とが形成する角度が55°以上72°以下、
前記外周端面のうち、X座標が30μmの点と、X座標が40μmの点とを結んだ直線と、前記X軸とが形成する角度が51°以上68°以下、
である請求項1に記載の磁気記録媒体用ガラス基板。
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 5 μm and a point having an X coordinate of 10 μm and the X axis is 81 ° or more and 84 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 10 μm and a point having an X coordinate of 20 μm and the X axis is 75 ° to 82 °,
Of the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 20 μm and a point having an X coordinate of 30 μm and the X axis is 55 ° or more and 72 ° or less,
Among the outer peripheral end faces, an angle formed by a straight line connecting a point having an X coordinate of 30 μm and a point having an X coordinate of 40 μm and the X axis is 51 ° or more and 68 ° or less,
The glass substrate for magnetic recording media according to claim 1.
50℃以上350℃以下の温度域における平均熱膨張係数が50×10−7/℃未満のガラス材料からなる、請求項1または2記載の磁気記録媒体用ガラス基板。 3. The glass substrate for a magnetic recording medium according to claim 1, wherein the glass substrate is made of a glass material having an average coefficient of thermal expansion of less than 50 × 10 −7 / ° C. in a temperature range of 50 ° C. or more and 350 ° C. or less. エネルギーアシスト磁気記録媒体用の磁気記録媒体用ガラス基板である、請求項1乃至3のいずれか一項に記載の磁気記録媒体用ガラス基板。   The glass substrate for magnetic recording media according to any one of claims 1 to 3, which is a glass substrate for magnetic recording media for energy-assisted magnetic recording media. モル百分率表示で、SiOを62%以上74%以下、Alを7%以上18%以下、Bを2%以上15%以下含有し、MgOを0以上10%以下、CaO、SrOおよびBaOのいずれか1成分以上を合計で1%以上21%以下含有し、MgO、CaO、SrOおよびBaOの含有量合計が8%以上21%以下、上記7成分の含有量合計が95%以上のガラス材料からなる請求項1乃至4の何れか一項に記載の磁気記録媒体用ガラス基板。 In terms of mole percentage, SiO 2 is 62% to 74%, Al 2 O 3 is 7% to 18%, B 2 O 3 is 2% to 15%, MgO is 0% to 10%, CaO 1% or more and 21% or less in total of any one component of SrO and BaO, the total content of MgO, CaO, SrO and BaO is 8% or more and 21% or less, and the total content of the seven components is 95% The glass substrate for a magnetic recording medium according to any one of claims 1 to 4, wherein the glass substrate is made of at least% glass material. モル百分率表示でSiOを62%以上74%以下、Alを7%以上18%以下、Bを0以上2%未満、MgO、CaO、SrOおよびBaOの含有量合計が5%以上18%以下、上記7成分の含有量合計が95%以上のガラス材料からなる請求項1乃至4の何れか一項に記載の磁気記録媒体用ガラス基板。 In terms of mole percentage, SiO 2 is 62% or more and 74% or less, Al 2 O 3 is 7% or more and 18% or less, B 2 O 3 is 0 or more and less than 2%, and the total content of MgO, CaO, SrO and BaO is 5 The glass substrate for a magnetic recording medium according to any one of claims 1 to 4, wherein the glass substrate is made of a glass material having a total content of 7% to 18% and a total content of the seven components of 95% or more. モル百分率表示で、SiOを60%以上75%以下、Alを7%以上17%以下、Bを0以上2%未満、MgO、CaO、SrOおよびBaOの含有量合計が18%超26%以下、上記7成分の含有量合計が95%以上のガラス材料からなる請求項1乃至4の何れか一項に記載の磁気記録媒体用ガラス基板。 In terms of mole percentage, the total content of SiO 2 is 60% to 75%, Al 2 O 3 is 7% to 17%, B 2 O 3 is 0% to less than 2%, and MgO, CaO, SrO and BaO 5. The glass substrate for a magnetic recording medium according to claim 1, comprising a glass material having a content of more than 18% and 26% or less and a total content of the seven components of 95% or more. 請求項1乃至7のいずれか一項に記載の磁気記録媒体用ガラス基板を含む磁気記録媒体。   A magnetic recording medium comprising the glass substrate for a magnetic recording medium according to claim 1.
JP2016083175A 2015-12-25 2016-04-18 Glass substrate for magnetic recording medium, magnetic recording medium Active JP6020754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063215 WO2017110109A1 (en) 2015-12-25 2016-04-27 Glass substrate for magnetic recording medium and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255385 2015-12-25
JP2015255385 2015-12-25

Publications (2)

Publication Number Publication Date
JP6020754B1 JP6020754B1 (en) 2016-11-02
JP2017120679A true JP2017120679A (en) 2017-07-06

Family

ID=57216829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083175A Active JP6020754B1 (en) 2015-12-25 2016-04-18 Glass substrate for magnetic recording medium, magnetic recording medium

Country Status (2)

Country Link
JP (1) JP6020754B1 (en)
WO (1) WO2017110109A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265506A (en) * 1998-03-17 1999-09-28 Asahi Techno Glass Corp Glass substrate for magnetic disk and magnetic disk
JP2001291229A (en) * 2000-04-05 2001-10-19 Asahi Glass Co Ltd Glass substrate for magnetic disk
JP2002342915A (en) * 2001-05-14 2002-11-29 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium and method of manufacturing the same
JP2011253575A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate for heat-assisted recording medium
JP2013004114A (en) * 2011-06-13 2013-01-07 Asahi Glass Co Ltd Support tool and manufacturing method for glass substrate for magnetic recording medium
JP2013073658A (en) * 2011-09-28 2013-04-22 Asahi Glass Co Ltd Glass substrate for magnetic recording medium
JP2014160539A (en) * 2012-09-28 2014-09-04 Hoya Corp Glass substrate for magnetic disk, and magnetic disk
JP2015024954A (en) * 2014-09-01 2015-02-05 旭硝子株式会社 Glass for substrate and glass substrate
JP2015027932A (en) * 2013-06-27 2015-02-12 旭硝子株式会社 Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium prepared using the same
JP2015028827A (en) * 2013-06-27 2015-02-12 旭硝子株式会社 Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium using the same
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265506A (en) * 1998-03-17 1999-09-28 Asahi Techno Glass Corp Glass substrate for magnetic disk and magnetic disk
JP2001291229A (en) * 2000-04-05 2001-10-19 Asahi Glass Co Ltd Glass substrate for magnetic disk
JP2002342915A (en) * 2001-05-14 2002-11-29 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium and method of manufacturing the same
JP2011253575A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate for heat-assisted recording medium
JP2013004114A (en) * 2011-06-13 2013-01-07 Asahi Glass Co Ltd Support tool and manufacturing method for glass substrate for magnetic recording medium
JP2013073658A (en) * 2011-09-28 2013-04-22 Asahi Glass Co Ltd Glass substrate for magnetic recording medium
JP2014160539A (en) * 2012-09-28 2014-09-04 Hoya Corp Glass substrate for magnetic disk, and magnetic disk
JP2015027932A (en) * 2013-06-27 2015-02-12 旭硝子株式会社 Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium prepared using the same
JP2015028827A (en) * 2013-06-27 2015-02-12 旭硝子株式会社 Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium using the same
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate
JP2015024954A (en) * 2014-09-01 2015-02-05 旭硝子株式会社 Glass for substrate and glass substrate

Also Published As

Publication number Publication date
JP6020754B1 (en) 2016-11-02
WO2017110109A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US20070003796A1 (en) Method for manufacturing magnetic disk glass substrate and method for manufacturing magnetic disk
JP2005108306A (en) Chemical reinforcement treatment method of glass substrate for magnetic disk, manufacturing method of chemically reinforced glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP4780607B2 (en) A method for manufacturing a glass substrate for a magnetic disk, a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP5915718B1 (en) Glass substrate for magnetic disk and magnetic disk
JP5126401B1 (en) Glass substrate for magnetic recording media
JP6020754B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP5939350B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP6360512B2 (en) Magnetic disk substrate, magnetic disk, method for manufacturing magnetic disk substrate, and method for manufacturing disk-shaped substrate
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP5983897B1 (en) Glass substrate for magnetic disk and magnetic disk
JP2017199442A (en) Method of manufacturing substrate for magnetic recording medium, and packing body of substrate for magnetic recording medium
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5306758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5212530B2 (en) GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM USING THE GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP5036323B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate holder
JP4698546B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk
JP6008060B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and glass substrate manufacturing apparatus for magnetic recording medium
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
JP2015069684A (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP2010086597A (en) Method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2014167839A (en) Manufacturing method for glass substrate of magnetic disk
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250