JP2017114757A - Heat reflection plate structure of growth furnace for large-sized egf method - Google Patents

Heat reflection plate structure of growth furnace for large-sized egf method Download PDF

Info

Publication number
JP2017114757A
JP2017114757A JP2015255504A JP2015255504A JP2017114757A JP 2017114757 A JP2017114757 A JP 2017114757A JP 2015255504 A JP2015255504 A JP 2015255504A JP 2015255504 A JP2015255504 A JP 2015255504A JP 2017114757 A JP2017114757 A JP 2017114757A
Authority
JP
Japan
Prior art keywords
die pack
growth
die
pack
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015255504A
Other languages
Japanese (ja)
Other versions
JP6025080B1 (en
Inventor
数人 樋口
Kazuto Higuchi
数人 樋口
弘倫 斎藤
Hirotomo Saito
弘倫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2015255504A priority Critical patent/JP6025080B1/en
Application granted granted Critical
Publication of JP6025080B1 publication Critical patent/JP6025080B1/en
Publication of JP2017114757A publication Critical patent/JP2017114757A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EFG growth furnace capable of stabilizing a growth condition between individual ribbons at the time of simultaneous growths of many sheets of ten or more, and preventing the occurrence of a side slip failure, thereby to shorten a spreading time period and to stabilize all sapphire ribbon widths to be grown, into a die-pack width.SOLUTION: In an EFG growth furnace to be provided, heat reflection plates laminated and arranged on a die-pack side face, excepting middle plates partially, are laminated, thereby to vary the quantity of a radiation heat irradiated from a heater upon the center and two ends of the die pack thereby to arrange temperature gradients at a die pack tip, and all sapphire ribbon sides to be grown can be stabilized with a die pack width.SELECTED DRAWING: Figure 2

Description

本発明は、EFG法(Edge−defined Film−fed Growth法)を用いてサファイアリボンを育成するEFG法用育成炉の熱反射板構造に関する。   The present invention relates to a heat reflector structure of a growth furnace for an EFG method in which a sapphire ribbon is grown using an EFG method (Edge-defined Film-fed Growth method).

現在、LEDに代表される半導体の多くは単結晶材料からなる基板上にGaN等の結晶膜を成長させる事で構成されており、当該単結晶材料の製造には円柱状の単結晶を育成するCz法と、板状の単結晶を育成するEFG法の2種類が広く用いられている。これら2種類の育成方法のうち、予め板状に形成された単結晶を育成することができるEFG法は、その加工性に於いて前記基板用途に適しており、特許4245856(以下特許文献1として記載)及び特許5702931(以下特許文献2として記載)等に記載の技術を用いることによって育成する結晶の品質を向上し、半導体用途への利用を可能にしている。当該特許文献について、特許文献1では板状のサファイア単結晶となるサファイアリボンの引き上げ時、アルミナ融液に浸す種結晶の引き上げ角度を傾けることで、サファイアリボン表面に於けるステップ構造を同一方向に形成し、厚さ等のムラが生じた際にも結晶欠陥を減少させている。また、単体の種結晶から同時に引き上げられる複数のサファイアリボンに関し、結晶品質を一括して向上させるという効果をも付与している。   Currently, many semiconductors represented by LEDs are constructed by growing a crystal film such as GaN on a substrate made of a single crystal material, and a cylindrical single crystal is grown for the production of the single crystal material. Two types are widely used: the Cz method and the EFG method for growing plate-like single crystals. Of these two kinds of growth methods, the EFG method capable of growing a single crystal formed in a plate shape in advance is suitable for the substrate application in its workability, and is disclosed in Patent 4245856 (hereinafter referred to as Patent Document 1). Description) and Japanese Patent No. 5702931 (hereinafter described as Patent Document 2) and the like improve the quality of crystals to be grown and enable use in semiconductor applications. With respect to this patent document, in Patent Document 1, when pulling up a sapphire ribbon that is a plate-like sapphire single crystal, the step structure on the surface of the sapphire ribbon is tilted in the same direction by tilting the pulling angle of the seed crystal immersed in the alumina melt. Even when unevenness such as thickness occurs, crystal defects are reduced. Moreover, regarding the several sapphire ribbon pulled up simultaneously from a single seed crystal, the effect of improving crystal quality collectively is also provided.

また、特許文献2ではサファイアリボンの育成方向に2つの温度勾配を設定することで結晶内の転移を抑制している。より具体的には、融液から結晶を形成した直後に当該結晶を速い冷却速度下に置き、製造プロセスが進むにつれて冷却速度を減少することで、多結晶性を示さない単結晶サファイアリボンの製造を可能にしている。尚、当該特許文献2では位置間の温度差だけでなく、当該位置間をリボンが進む速度もまた、温度勾配の構成要素に加えている。
Moreover, in patent document 2, the transition in a crystal | crystallization is suppressed by setting two temperature gradients in the growth direction of a sapphire ribbon. More specifically, immediately after forming a crystal from the melt, the crystal is placed under a high cooling rate, and the cooling rate is decreased as the manufacturing process proceeds, thereby producing a single crystal sapphire ribbon that does not exhibit polycrystallinity. Is possible. In Patent Document 2, not only the temperature difference between the positions but also the speed at which the ribbon travels between the positions is added to the components of the temperature gradient.

特許4245856号公報Japanese Patent No. 4245856 特許5702931号公報Japanese Patent No. 5702931

上述した技術的特徴及び効果が用いられている一方で近年、LEDに用いられるサファイア単結晶基板の需要が高まっており、特許文献1及び2に記載のEFG法を用いた育成方法について、結晶品質を保ったまま育成枚数を増加することができないという課題が生じている。即ち、現在のEFG法を用いたサファイアリボン育成では、育成枚数の増加に伴いダイパックの長さを延長し、10枚以上となる多数枚同時育成に対応することが要求されている。これに対して、上記従来の方法を用いた育成方法は単体としての結晶品質を向上させた結果、各リボン間の育成条件安定という効果を付与することができず、前記同時育成した結晶のうち、半分程度の割合で幅方向端部に線状の結晶欠陥(以下サイドスリップ不良として記載)を生じてしまう。加えて、前記従来技術を用いた多数枚の同時育成では、種結晶からダイパックの両端まで結晶幅を広げるスプレッディングの長時間化や、前記各リボン間の育成条件差に伴う育成中の一部サファイアリボン幅の減少といった課題も有している。   While the technical features and effects described above are used, in recent years, the demand for sapphire single crystal substrates used in LEDs has increased, and the crystal quality of the growth method using the EFG method described in Patent Documents 1 and 2 has been increased. There is a problem that the number of cultivated sheets cannot be increased while maintaining the above. That is, in the current sapphire ribbon growth using the EFG method, it is required to extend the length of the die pack with the increase in the number of growth and cope with simultaneous growth of 10 or more sheets. On the other hand, as a result of improving the crystal quality as a single unit, the growth method using the conventional method cannot give the effect of stable growth conditions between the ribbons, Therefore, a linear crystal defect (hereinafter referred to as a side slip defect) occurs at the end in the width direction at a rate of about half. In addition, in the simultaneous growth of a large number of sheets using the above-mentioned conventional technology, a part of the growing time due to the spreading time for expanding the crystal width from the seed crystal to both ends of the die pack or the difference in the growth conditions between the ribbons. There is also a problem such as a reduction in sapphire ribbon width.

上記課題に対して本願記載の発明では、10枚以上となる多数枚の同時育成に際して各リボン間の育成条件を安定させると共に、サイドスリップ不良の発生を防ぎ、スプレディング時間を短縮すると共に、育成する全てのサファイアリボン幅をダイパック幅にて安定させることが可能なEFG育成炉の提供を目的としている。   In the invention described in the present application with respect to the above-described problems, the growth conditions between the ribbons are stabilized when simultaneously growing a large number of sheets of 10 sheets or more, the occurrence of side slip defects is prevented, the spreading time is shortened, and the growth is performed. An object of the present invention is to provide an EFG growing furnace capable of stabilizing the width of all sapphire ribbons with the die pack width.

上記目的のために本発明は、EFG育成炉に於いて、ダイパック側面に積層配置した熱反射板のうち、中板の一部を取り除いて積層したことをその特徴としている。より具体的には、坩堝端面を覆う蓋体から突出したダイパック先端部の周囲に設けた複数枚の熱反射板について、前記育成した結晶の幅方向に対応したダイパック側面側に積層された熱反射板の一部を切り欠き、当該側面側から見て一部の熱反射板が切り取られた構造としたことをその技術的特徴としている。   For the above purpose, the present invention is characterized in that, in the EFG growth furnace, a part of the middle plate is removed from the heat reflecting plates laminated on the side surface of the die pack and laminated. More specifically, with respect to a plurality of heat reflecting plates provided around the tip of the die pack protruding from the lid covering the crucible end surface, the heat reflection laminated on the side surface of the die pack corresponding to the width direction of the grown crystal. A technical feature is that a part of the plate is cut out and a part of the heat reflecting plate is cut out when viewed from the side surface.

また、本発明に於ける第2の態様記載の発明は、前記ダイパックから引き上げられるサファイアリボンが並ぶ方向について、前記熱反射板外側を板状部材等で覆い、ヒータからダイパック付近の部品が受ける輻射熱を調整したことをその技術的特徴としている。
In the invention according to the second aspect of the present invention, in the direction in which the sapphire ribbons pulled up from the die pack are arranged, the outside of the heat reflecting plate is covered with a plate-like member or the like, and the radiant heat received by the components near the die pack from the heater. The technical feature is that it has been adjusted.

上述した技術的特徴によって、本発明では10枚以上となる多数枚の同時育成に際して各リボン間の育成条件を安定させると共に、サイドスリップ不良の発生を防ぐことができる。これは、前記熱反射板の一部を切り欠いた事による効果となっている。即ち、サファイアリボンの材料となるアルミナの融点に起因して、EFG法を用いたサファイア単結晶育成は2000℃以上の高温条件化にて行われる。これに伴い、育成炉内の環境は坩堝内のアルミナを溶融すると共に、種結晶から引き上げ、冷却されていく当該アルミナ融液がその過程で連続して結晶成長していくという2つの条件をダイパック全体に渡って満たさなければならない。本発明では前記10枚以上の同時育成に用いる大型のダイパックに対し、従来連続した一枚板として設けられていた熱反射板を切り欠くことで、これら2つの条件を満たしている。より具体的には、ダイパック周辺に熱反射板を積層配置することで坩堝外周に環状配置されるヒーターから受ける輻射熱の範囲を限定し、ダイパック周囲の温度勾配を一定に保っていた従来の技術に対し、大型化に伴うダイパックの温度低下に対応した積層配置を、対象となるダイパック中央のみに作用させることで、前記高温条件下にも係わらず、当該大型のダイパック全体に於ける温度勾配の安定化という効果を付与している。   According to the technical features described above, the present invention can stabilize the growing conditions between the ribbons and prevent the occurrence of a side slip defect when simultaneously growing 10 or more sheets. This is an effect obtained by cutting out a part of the heat reflecting plate. That is, due to the melting point of alumina which is the material of the sapphire ribbon, the sapphire single crystal growth using the EFG method is performed under a high temperature condition of 2000 ° C. or higher. Along with this, the environment in the growth furnace has the two conditions that the alumina in the crucible melts and the alumina melt that is pulled up and cooled from the seed crystal continuously grows in the process. It must be satisfied throughout. In the present invention, these two conditions are satisfied by notching a heat reflecting plate that has conventionally been provided as a single continuous plate with respect to the large die pack used for the simultaneous growth of 10 or more sheets. More specifically, the heat reflection plate is laminated around the die pack to limit the range of radiant heat received from the heater arranged annularly on the outer periphery of the crucible, and the conventional technology that keeps the temperature gradient around the die pack constant. On the other hand, by making the stacking arrangement corresponding to the temperature drop of the die pack accompanying an increase in size large, only the center of the target die pack acts, the temperature gradient of the entire large die pack is stabilized regardless of the high temperature conditions. The effect of making it.

上述した効果に加えて、本願で用いる育成炉では融液を熱源とする蓋体からの輻射熱を和らげ、坩堝の周囲に配置したヒータからの輻射熱を通すことで、当該育成炉の構造上、最も温度が低くなる坩堝中心部について温度勾配の高温部分を底上げし、ダイパック内のアルミナ融液を高温に保っている。この為、本発明記載の育成炉では結晶が成長するダイパック先端部の温度をヒーターからの距離に係わらず均一にすることが可能となり、ダイパックから育成する全てのサファイアリボンについてサイドスリップ不良が生じない条件での結晶育成を行うことができる。また、当該温度条件の均一化により、ダイパック上で育成される結晶の成長速度もまた、揃えることができる。この為、スプレッディング中の速度について各サファイアリボン間に於けるバラツキを抑え、スプレッディング時間を短縮することが可能となる。更に、本願記載の育成炉では熱反射板を一定の間隔を空けて積層配置することによって各サファイアリボンの育成方向に安定した温度勾配を形成している。この為、前記大型のダイパックを用いた多数枚同時育成に際しても、育成中の一部サファイアリボン幅の減少といった課題を生じることなく、安定した幅での結晶育成を行うことができる。   In addition to the effects described above, the growth furnace used in the present application softens the radiant heat from the lid using the melt as a heat source, and passes the radiant heat from the heater disposed around the crucible, so that the most The high temperature portion of the temperature gradient is raised at the crucible center where the temperature is lowered, and the alumina melt in the die pack is kept at a high temperature. For this reason, in the growth furnace described in the present invention, it becomes possible to make the temperature of the tip end of the die pack where the crystal grows uniform regardless of the distance from the heater, and no side slip defect occurs for all sapphire ribbons grown from the die pack. Crystal growth can be performed under conditions. In addition, the uniform growth of the temperature condition can make the growth rate of the crystal grown on the die pack uniform. For this reason, it is possible to suppress the dispersion between the sapphire ribbons with respect to the speed during spreading, and to shorten the spreading time. Furthermore, in the growth furnace described in the present application, a stable temperature gradient is formed in the growth direction of each sapphire ribbon by arranging the heat reflecting plates in a stacked manner with a certain interval. For this reason, even when simultaneously growing a large number of sheets using the large die pack, it is possible to perform crystal growth with a stable width without causing a problem such as a reduction in the width of a part of the sapphire ribbon being grown.

また、本発明第2の態様を用いることで、上記温度条件の均一化をより容易に行うことが可能となる。これは、大型のダイパックを用いた多数枚同時育成に際して、最も温度が高くなるサファイアリボン並び方向の両端側を板状部材等により覆ったことによる効果となっている。即ち、当該両端側を覆った構造により、本態様ではヒーターによって上下する前記ダイパック両端側の温度変化が緩やかになる。この為、前記ヒーターから離れたダイパック中央部と当該ダイパック両端部とのヒーターに対する温度変化の追従性を揃え、炉内環境に応じて育成中に変化していくヒーターの温度について、各サファイアリボン間のバラツキを抑えた状態で一括して育成条件を調整すると共に、前記多数枚同時育成に際して各サファイアリボンを同時に引き上げることができる。更に、当該多数枚の同時引き上げという効果により、育成に用いる種結晶を共通化し、種結晶の保持機構を簡略化することもまた、可能となっている。   In addition, by using the second aspect of the present invention, the temperature condition can be more easily uniformed. This is due to the fact that the both ends of the sapphire ribbon arrangement direction where the temperature is highest are covered with plate-like members or the like when simultaneously growing a large number of sheets using a large die pack. That is, due to the structure covering the both end sides, in this embodiment, the temperature change on both end sides of the die pack that is moved up and down by the heater is moderate. For this reason, the temperature change of the heaters at the center of the die pack away from the heater and the temperature at both ends of the die pack is adjusted so that the temperature of the heater changes during growth depending on the furnace environment. It is possible to simultaneously adjust the growth conditions in a state where the variation of the above is suppressed and to simultaneously pull up the sapphire ribbons when the multiple sheets are simultaneously grown. Furthermore, due to the effect of simultaneously pulling up a large number of sheets, it is also possible to share a seed crystal used for growth and simplify the seed crystal holding mechanism.

以上述べたように、本願記載の発明を用いることで、10枚以上となる多数枚の同時育成に際して各リボン間の育成条件を安定させると共に、サイドスリップ不良の発生を防ぎ、スプレディング時間を短縮すると共に、育成する全てのサファイアリボン幅をダイパック幅にて安定させることが可能なEFG育成炉を提供することできる。
As described above, by using the invention described in the present application, it is possible to stabilize the growing conditions between the ribbons when simultaneously growing a large number of sheets of 10 sheets or more, to prevent the occurrence of side slip defects, and to shorten the spreading time. In addition, it is possible to provide an EFG growing furnace capable of stabilizing the width of all sapphire ribbons to be grown at the die pack width.

本発明の最良の実施形態に於いて用いるEFG育成炉の概略図Schematic of the EFG growth furnace used in the best mode of the present invention 本発明の最良の実施形態に於いて用いるダイパック周辺部品の全体斜視図The whole perspective view of the die pack peripheral parts used in the best mode of the present invention 図2に於いて示したダイパック周辺部品の分解斜視図FIG. 2 is an exploded perspective view of the peripheral parts of the die pack shown in FIG. 図2に於いて示したダイパック及び熱反射板の平面図Plan view of the die pack and heat reflecting plate shown in FIG.

以下に、図1、図2、図3及び図4を用いて、本発明に於ける最良の実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. 1, 2, 3 and 4. In addition, about the symbol and component number in a figure, the common symbol or number is provided to what functions as the same component.

図1に本発明の最良の実施形態に於いて用いるEFG育成炉の概略図を、図2に同ダイパック周辺部品の全体斜視図を、図3に同周辺部品の分解斜視図を、そして図4に当該ダイパック及び熱反射板の平面図を、それぞれ示す。尚、。図1中の熱反射板固定構造及び蓋体用支柱部材については、図中での記載を省略している。   FIG. 1 is a schematic view of an EFG growth furnace used in the best embodiment of the present invention, FIG. 2 is an overall perspective view of the peripheral part of the die pack, FIG. 3 is an exploded perspective view of the peripheral part, and FIG. Are respectively plan views of the die pack and the heat reflecting plate. still,. About the heat | fever reflecting plate fixing structure and the support | pillar member for lid bodies in FIG. 1, description in the figure is abbreviate | omitted.

図1に示す様に、本実施形態記載のEFG育成炉1では坩堝7内に板状空隙を有するダイを複数束ねたダイパック5を配置すると共に、当該坩堝7内に供給されたアルミナをヒーター6によって溶融し、毛細管現象によって前記板状空隙内を満たすことで、ダイパック先端まで下降させた単一の種結晶と当該溶融されたアルミナ融液とを接触させ、種結晶2の引き上げによるサファイアリボンの育成を行う。   As shown in FIG. 1, in the EFG growth furnace 1 described in the present embodiment, a die pack 5 in which a plurality of dies having plate-like voids are bundled is disposed in a crucible 7, and the alumina supplied into the crucible 7 is replaced with a heater 6. The sapphire ribbon of the sapphire ribbon is brought into contact with the single seed crystal lowered to the tip of the die pack and the molten alumina melt by filling the inside of the plate-shaped gap by capillary phenomenon. Train.

この様な構造を用いたことで、本実施形態記載の育成炉1では、多数のサファイアリボンをマルチサファイアリボン3として一括して同時に引き上げることが可能となった。即ち、本実施形態では共通の種結晶2を素にした前記同時引き上げにより、サファイア単結晶からなるマルチサファイアリボン3の育成を行っている。この為、種結晶2の支持構造を簡略化すると共に、引き上げ速度を共通化することによる結晶育成時の制御簡略化という効果をも得ている。また、本実施形態では、当該引き上げにより結晶が形成されるダイパック先端付近について、蓋体10、熱反射板11及びカバー14を設けた構造を用いている。この為、複数枚のサファイアリボン育成に際して、各サファイアリボン毎の温度勾配を結晶の育成に適した状態に保つと共に、ヒーター6によるダイパック周辺の温度変化を緩やかにし、各サファイアリボン毎の結晶に於ける成長速度を安定化させることが可能となった。   By using such a structure, in the growth furnace 1 described in the present embodiment, a large number of sapphire ribbons can be simultaneously pulled up as the multi-sapphire ribbon 3. That is, in this embodiment, the multi-sapphire ribbon 3 made of a sapphire single crystal is grown by the simultaneous pulling using the common seed crystal 2 as a raw material. For this reason, while simplifying the support structure of the seed crystal 2, the effect of the simplification of the control at the time of crystal growth by sharing a pulling speed is also acquired. Further, in the present embodiment, a structure in which the lid body 10, the heat reflecting plate 11, and the cover 14 are provided near the tip end of the die pack where the crystal is formed by the pulling up is used. For this reason, when growing a plurality of sapphire ribbons, the temperature gradient of each sapphire ribbon is maintained in a state suitable for crystal growth, and the temperature change around the die pack by the heater 6 is moderated. It became possible to stabilize the growth rate.

次に、図2、図3を用いて本実施形態に於けるダイパック周辺の全体斜視図及び分解斜視図を示す。図2から解るように、本実施形態では蓋体上に支持することで積層配置した3段の熱反射板11、12、13について、中板となる下から2段目の反射板12の中央を切り欠いた構造を用いている。この為、ダイパック中央に対してはヒーター6から直接輻射熱を照射すると共に、ダイパック両端部に対しては照射する輻射熱を限定し、大型のダイパック全体に於ける温度勾配の安定化という効果を付与することができた。また、当該効果によって、本実施形態では2000℃以上の高温条件下となる育成炉内にて、坩堝内でのアルミナ溶融及び毛細管現象によるダイパック先端へのアルミナ融液移動と、種結晶を用いた引き上げによる冷却及びその過程での結晶成長と、の2つの条件を満たすことが可能となった。更に、本実施形態では1段目の熱反射板11をダイパック外側の全周に亘って配置している。これにより、融液を熱源とする蓋体からの輻射熱を和らげ、坩堝内の融液量増減に伴うダイパックへの熱的な影響を低減すると共に、ヒーター6によるダイパック周辺の温度制御安定化という効果をも得ることができた。   Next, an overall perspective view and an exploded perspective view of the periphery of the die pack in the present embodiment will be described with reference to FIGS. 2 and 3. As can be seen from FIG. 2, in this embodiment, the three-stage heat reflectors 11, 12, and 13 that are stacked and supported on the lid body are the center of the second-stage reflector 12 that is the middle plate from the bottom. A structure with a notch is used. For this reason, the radiant heat is directly irradiated from the heater 6 to the center of the die pack, and the radiant heat to be irradiated is limited to both ends of the die pack, thereby providing an effect of stabilizing the temperature gradient in the entire large die pack. I was able to. In addition, due to the effect, in this embodiment, in the growth furnace under a high temperature condition of 2000 ° C. or higher, the alumina melt was moved to the tip of the die pack due to alumina melting and capillary action in the crucible, and a seed crystal was used. It has become possible to satisfy the two conditions of cooling by pulling up and crystal growth in the process. Furthermore, in the present embodiment, the first-stage heat reflecting plate 11 is disposed over the entire circumference outside the die pack. As a result, radiant heat from the lid using the melt as a heat source is softened, the thermal effect on the die pack accompanying the increase or decrease in the amount of melt in the crucible is reduced, and temperature control stabilization around the die pack by the heater 6 is achieved. Could also get.

即ち、本実施形態ではダイパック中央に対応した3段目の反射板13のみをダイパック5よりも上に配置している。この為、10枚以上となるサファイアリボンの多数枚同時育成に際し、前記ヒーター5から距離が離れたダイパック中央の先端部分に照射されるヒーターの輻射熱を調整し、当該先端部分に於ける温度勾配を他の先端部分と同様に、サファイアリボンの育成に適した状態で維持することが可能となった。より詳しくは、前述の2段目反射板中央を切り欠いた構造により、本実施形態に於けるダイパック中央部内の融液は前記ヒーターの輻射熱により直接加熱され続けた状態でダイパック先端へと運ばれる。一方、サファイアリボンの育成には種結晶の引き上げに伴いアルミナ融液内の分子を整列、冷却して固定し、単結晶を形成していくための温度勾配が必要となる。本実施形態では3段目の反射板13をダイパック5よりも上に設けたことで前記ダイパック中央の先端部分へと運ばれた融液に当該温度勾配を形成し、前記多数枚同時育成にて用いるダイパック先端部分に於ける各リボン間の育成条件安定化という効果を付与している。これらの効果によって本実施形態記載のEFG育成炉ではサイドスリップ不良の発生を防ぎ、育成する全てのサファイアリボン幅をダイパック幅にて安定させると共に、スプレッディング中の速度について各サファイアリボン間に於けるバラツキを抑え、スプレッディング時間を短縮する事が可能となった。尚、同じ技術的見地から、3段目の反射板を外し、各ダイの高さを個別に調整することによっても同様の効果を得ることができる。   In other words, in the present embodiment, only the third-stage reflector 13 corresponding to the center of the die pack is disposed above the die pack 5. Therefore, when simultaneously growing a large number of 10 or more sapphire ribbons, the radiant heat of the heater irradiated to the tip portion of the center of the die pack that is far from the heater 5 is adjusted, and the temperature gradient at the tip portion is adjusted. As with other tip portions, it was possible to maintain the sapphire ribbon in a state suitable for growth. More specifically, due to the structure in which the center of the second stage reflector is cut out, the melt in the center of the die pack in this embodiment is conveyed to the tip of the die pack while being directly heated by the radiant heat of the heater. . On the other hand, the growth of the sapphire ribbon requires a temperature gradient for forming a single crystal by aligning, cooling and fixing the molecules in the alumina melt as the seed crystal is pulled up. In this embodiment, the third stage reflector 13 is provided above the die pack 5 so that the temperature gradient is formed in the melt transported to the tip portion at the center of the die pack. The effect of stabilizing the growth conditions between the ribbons at the tip of the die pack used is imparted. Due to these effects, the EFG growth furnace described in the present embodiment prevents the occurrence of a side slip defect, stabilizes the width of all sapphire ribbons to be grown at the die pack width, and the speed during spreading between the sapphire ribbons. It became possible to reduce the spread and shorten the spreading time. The same effect can be obtained by removing the third-stage reflector from the same technical viewpoint and individually adjusting the height of each die.

上記効果に加えて、図4の平面図から解るように、本実施形態では前記3段目の反射板13について、内側に切り欠きを設けた形状を用いている。これにより、前記ダイパック中央の先端部に形成する温度勾配をより細かく設定すると共に、各リボン間のバラツキを最小限に抑え、前記多数枚同時育成に於ける結晶品質の向上という効果を得ることができた。また、当該図中に於いて、育成したサファイアリボンが並ぶ上下方向を覆うように前記2段目となる熱反射板12の側面にカバー14を設け、ヒーター−ダイパック中央間の空間を開放したことで、ヒーターから離れたダイパック中央部とヒーターに近接したダイパック両端部とのヒーターに対する温度変化の追従性を揃え、炉内環境及び育成状態に応じて変化させるヒーターの温度について、ヒーター温度による育成条件の調整を一括して行うと共に、各サファイアリボンの同時引き上げを行うことが可能となった。更に、当該多数枚の同時引き上げに際して育成に用いる種結晶を共通化することで、種結晶の保持機構簡略化という効果をも得ることができた。   In addition to the above effects, as can be seen from the plan view of FIG. 4, in the present embodiment, the third-stage reflector 13 has a shape with a notch on the inside. As a result, the temperature gradient formed at the tip of the center of the die pack is set more finely, the variation between the ribbons is minimized, and the effect of improving the crystal quality in the simultaneous growth of a large number of sheets can be obtained. did it. Further, in the figure, a cover 14 is provided on the side surface of the second heat reflecting plate 12 so as to cover the up and down direction in which the grown sapphire ribbons are arranged, and the space between the heater and the die pack center is opened. In the center of the die pack away from the heater and both ends of the die pack close to the heater, the temperature changes for the heater are aligned, and the heater temperature that changes according to the furnace environment and growth condition It is possible to simultaneously pull up each sapphire ribbon. Furthermore, by sharing the seed crystal used for the growth when the large number of sheets are simultaneously pulled, the effect of simplifying the holding mechanism of the seed crystal could be obtained.

以上述べたように、本願記載の発明を用いることで、10枚以上となる多数枚の同時育成に際して各リボン間の育成条件を安定させると共に、サイドスリップ不良の発生を防ぎ、スプレディング時間を短縮すると共に、育成する全てのサファイアリボン幅をダイパック幅にて安定させることが可能なEFG育成炉を提供することが可能となった。

As described above, by using the invention described in the present application, it is possible to stabilize the growing conditions between the ribbons when simultaneously growing a large number of sheets of 10 sheets or more, to prevent the occurrence of side slip defects, and to shorten the spreading time. In addition, it has become possible to provide an EFG breeding furnace capable of stabilizing the width of all sapphire ribbons to be grown at the die pack width.

1 EFG育成炉
2 種結晶
3 マルチサファイアリボン
4 上部断熱材
5 ダイパック
6 ヒーター
7 坩堝
8 側面部断熱材
9 底面部断熱材
10 蓋体
11 1段目熱反射板
12 2段目熱反射板
13 3段目熱反射板
14 カバー
15 支柱部材
DESCRIPTION OF SYMBOLS 1 EFG growth furnace 2 Seed crystal 3 Multisapphire ribbon 4 Upper heat insulating material 5 Die pack 6 Heater 7 Crucible 8 Side surface heat insulating material 9 Bottom surface heat insulating material 10 Lid body 11 1st step heat reflector 12 2nd step heat reflector 13 3 Stage heat reflector 14 Cover 15 Prop member

Claims (2)

ダイパック側面に積層配置した熱反射板のうち、中板の一部を取り除いて積層したEFG育成炉。
An EFG breeding furnace in which a part of the middle plate is removed and laminated among the heat reflection plates laminated on the side surface of the die pack.
前記ダイパックから引き上げられるサファイアリボンが並ぶ方向について、前記熱反射板外側を覆った構造を有する、請求項1記載のEFG育成炉。   The EFG growing furnace according to claim 1, wherein the sapphire ribbon pulled up from the die pack has a structure covering the outside of the heat reflecting plate.
JP2015255504A 2015-12-26 2015-12-26 Heat reflector structure of large EFG growth furnace Active JP6025080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255504A JP6025080B1 (en) 2015-12-26 2015-12-26 Heat reflector structure of large EFG growth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255504A JP6025080B1 (en) 2015-12-26 2015-12-26 Heat reflector structure of large EFG growth furnace

Publications (2)

Publication Number Publication Date
JP6025080B1 JP6025080B1 (en) 2016-11-16
JP2017114757A true JP2017114757A (en) 2017-06-29

Family

ID=57326673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255504A Active JP6025080B1 (en) 2015-12-26 2015-12-26 Heat reflector structure of large EFG growth furnace

Country Status (1)

Country Link
JP (1) JP6025080B1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132184A (en) * 1975-03-17 1976-11-17 Tyco Laboratories Inc Device used for apparatus for growing crystals from moten melts and method of growing crystals from molten melts
JPS55121996A (en) * 1979-03-06 1980-09-19 Rca Corp Crucible structure for hem controlling film supplying crystal growth
JPS5849690A (en) * 1981-09-16 1983-03-23 Toshiba Corp Production unit for ribbonlike silicon crystal
JPS63144187A (en) * 1986-12-05 1988-06-16 エバラ ソーラー インコーポレイテッド Method and apparatus for growing dendritic web crystal of silicon
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP2003313092A (en) * 2002-04-19 2003-11-06 Namiki Precision Jewel Co Ltd Method for growing sapphire sheet material and sapphire sheet material
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2010229030A (en) * 2004-04-08 2010-10-14 Saint-Gobain Ceramics & Plastics Inc Single crystal and method for fabricating same
JP2013237591A (en) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd Gallium oxide melt, gallium oxide single crystal, gallium oxide substrate, and method for producing gallium oxide single crystal
JP2014070016A (en) * 2012-09-28 2014-04-21 Apple Inc Continuous sapphire growth
JP5702931B2 (en) * 2006-09-22 2015-04-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for forming single crystal C-plane sapphire material
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132184A (en) * 1975-03-17 1976-11-17 Tyco Laboratories Inc Device used for apparatus for growing crystals from moten melts and method of growing crystals from molten melts
JPS55121996A (en) * 1979-03-06 1980-09-19 Rca Corp Crucible structure for hem controlling film supplying crystal growth
JPS5849690A (en) * 1981-09-16 1983-03-23 Toshiba Corp Production unit for ribbonlike silicon crystal
JPS63144187A (en) * 1986-12-05 1988-06-16 エバラ ソーラー インコーポレイテッド Method and apparatus for growing dendritic web crystal of silicon
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP4245856B2 (en) * 2002-04-19 2009-04-02 並木精密宝石株式会社 Sapphire plate growing method
JP2003313092A (en) * 2002-04-19 2003-11-06 Namiki Precision Jewel Co Ltd Method for growing sapphire sheet material and sapphire sheet material
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2010229030A (en) * 2004-04-08 2010-10-14 Saint-Gobain Ceramics & Plastics Inc Single crystal and method for fabricating same
JP5702931B2 (en) * 2006-09-22 2015-04-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for forming single crystal C-plane sapphire material
JP2013237591A (en) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd Gallium oxide melt, gallium oxide single crystal, gallium oxide substrate, and method for producing gallium oxide single crystal
JP2014070016A (en) * 2012-09-28 2014-04-21 Apple Inc Continuous sapphire growth
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate

Also Published As

Publication number Publication date
JP6025080B1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
KR101353277B1 (en) C-plane sapphire method
JP6364647B2 (en) Large sapphire multi-substrate
JP5879102B2 (en) Method for producing β-Ga2O3 single crystal
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US9528195B2 (en) Device for manufacturing semiconductor or metallic oxide ingot
JP6025080B1 (en) Heat reflector structure of large EFG growth furnace
CN103469304B (en) Branched shaping sapphire crystallization device and long crystal method thereof
WO2016043176A1 (en) Plurality of sapphire single crystals and method of manufacturing same
JP2015124096A (en) Single crystal sapphire ribbon for large substrate
JP6014838B1 (en) Multiple sapphire single crystals and method for producing the same
JP6028308B1 (en) Heat reflector structure of growth furnace for EFG method
JP5923700B1 (en) Large EFG method growth furnace lid structure
JP6025085B2 (en) Multiple sapphire single crystals and method for producing the same
KR20200070760A (en) Growth device for ingot
JP6037380B2 (en) Solid solution single crystal manufacturing method
JP2017193472A (en) Crystal growth apparatus for EFG method
WO2017069107A1 (en) Sapphire single crystal and method for producing same
WO2019181197A1 (en) Die for efg-based single crystal growth, efg-based single crystal growth method, and efg single crystal
KR101814111B1 (en) Manufacturing method for Large area Single Crystal Silicon Wafer
TWI449820B (en) Crystal growth system with close thermal cycling structure
WO2017126594A1 (en) Die pack, sapphire single-crystal growing device, and sapphire single-crystal growing method
WO2017047556A1 (en) Thermal insulation structure for efg growth furnace
KR20200070759A (en) Growth device for silicon ingot
JPH0483789A (en) Production of lamellar single crystal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6025080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250