JPS5849690A - Production unit for ribbonlike silicon crystal - Google Patents

Production unit for ribbonlike silicon crystal

Info

Publication number
JPS5849690A
JPS5849690A JP56145807A JP14580781A JPS5849690A JP S5849690 A JPS5849690 A JP S5849690A JP 56145807 A JP56145807 A JP 56145807A JP 14580781 A JP14580781 A JP 14580781A JP S5849690 A JPS5849690 A JP S5849690A
Authority
JP
Japan
Prior art keywords
die
crystal
heat
band
dies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145807A
Other languages
Japanese (ja)
Other versions
JPS5932434B2 (en
Inventor
Toshiyuki Sawada
沢田 俊幸
Naoaki Maki
真木 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56145807A priority Critical patent/JPS5932434B2/en
Publication of JPS5849690A publication Critical patent/JPS5849690A/en
Publication of JPS5932434B2 publication Critical patent/JPS5932434B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:A production unit for growing a ribbonlike Si crystal having a little SiC powder adhesion and a good shape in high yield, equipped with plural members for regulating temperature, capable of being brought into contact with die-setting plate and moved in parallel to the longer direction of the die in order to use the heat from a heater effectively for crystal growth. CONSTITUTION:The four members 22(22a-22d) for regulating temperature are arranged in parallel to the longer direction of the dies 13a and 13b in such a way that they all can be moved along the channels carved on the fixed plate 24. The members 22 are arranged two by two at the both sides of the thickness direction of the dies 13, and each can be moved independently. By using this construction and pulling up a ribbonlike Si crystal from the dies 13, the SiC powder attached to the crystal can be extremely reduced. The temperature distribution of the width direction of the dies 13 is corrected effectively, and a wide crystal can be grown. The Si melt 11 and the heat masking shield 14 are shown respectively in the Fig.

Description

【発明の詳細な説明】 する。[Detailed description of the invention] do.

帯状シリコン結晶は薄板状であるため、チョクラルスキ
ー法で得られたインゴット状のシリコン結晶とは異なり
、その得られた形状の!!まで半導体太陽電池の基板と
して用いられる。従って、例えばチョクラルスキー法で
得られるシリコン結晶を半導体太陽電池の基板として用
いるよりも安価になるという大きな特徴を有する。
Because band-shaped silicon crystals are thin-plate-shaped, they differ from the ingot-shaped silicon crystals obtained by the Czochralski method, and the obtained shape! ! It is used as a substrate for semiconductor solar cells. Therefore, it has the great feature that it is cheaper than using, for example, silicon crystal obtained by the Czochralski method as a substrate for a semiconductor solar cell.

帯状シリコン結晶を成長させる炉内の構成例の模式図を
第1図に示す。この第1図は、シリコン融液Ilを′収
容する石英ガラス製ルツテ12にカーダンで作られたス
リット(間隙)を有するキャピラリ・ダイl″I(1″
? a 、 1 、9 b )(以下酢にダイと言う)
をその長手方向をルツが12の長手方向に平行に設置し
た状態を示す。
FIG. 1 shows a schematic diagram of an example of the configuration of a furnace for growing band-shaped silicon crystals. This figure 1 shows a capillary die l″I (1″
? a, 1, 9 b) (hereinafter referred to as vinegar)
The figure shows a state in which the longitudinal direction of the bolt is parallel to the longitudinal direction of the bolt 12.

このダイ13の先端部は鋭く、ナイフェツジ状に加工さ
れている.14は熱fi蔽板であって、これは融液7Z
の熱輻射を上記ダイl3の先端に到達するのを弱める役
割をはだすもので、ダイ13の先端部を露出させる窓1
9があけられている。ルツボ12は、カー、l!ンで形
成′されたルツボホルダー15内に挿入されている。こ
のルツボホルダー15の外側には、一対の板状の抵抗加
熱ヒータ16(1’6a、16b)が設けられている。
The tip of this die 13 is sharp and machined into a knife shape. 14 is a heat shielding plate, which is used for melting liquid 7Z.
The window 1 serves to weaken the thermal radiation reaching the tip of the die 13, and the window 1 exposes the tip of the die 13.
9 is open. Crucible 12 is Ka, l! The crucible holder 15 is inserted into a crucible holder 15 formed of a cylindrical tube. A pair of plate-shaped resistance heaters 16 (1'6a, 16b) are provided on the outside of the crucible holder 15.

このヒータ16は上記ダイ13およびルツボホルダー1
5の長手方向に平行に設置され、かつ上下から交互に切
込み17が加工されてこれにより電気抵抗値を制御する
仕組みになっている。18はチャンバー側壁である。
This heater 16 is connected to the die 13 and the crucible holder 1.
5 is installed in parallel to the longitudinal direction, and cuts 17 are formed alternately from above and below, thereby controlling the electrical resistance value. 18 is a chamber side wall.

上記のように構成された成長装置の石英ルツボ12に多
結晶シリコンを入れ、ヒータ16の温度を約1500℃
に上昇させる。すると、多結晶シリ、コンはシリコン融
液11となり、そL〜てこのシリコン融液11が毛細管
現象により、ダイ13の先端部まで上昇する。この上昇
したシリコン融液11に上方から種子結晶(図示せず)
を接触させ、次に徐々に引き上げることにより、帯状シ
リコン結晶を成長させることができる。
Polycrystalline silicon is placed in the quartz crucible 12 of the growth apparatus configured as described above, and the temperature of the heater 16 is set to approximately 1500°C.
to rise to. Then, the polycrystalline silicon and silicon become a silicon melt 11, and the silicon melt 11 rises to the tip of the die 13 due to capillary action. Seed crystals (not shown) are added to this rising silicon melt 11 from above.
By bringing them into contact with each other and then gradually pulling them up, a band-shaped silicon crystal can be grown.

、本発明者は上述した成長装置において、帯状シリコン
結晶を成長させたところ、帯状シリコン結晶の両面にS
iC粒が付着し太陽電池用基板としては、不適描であっ
た。また、ダイ13の一方の側に片寄って成長を[7た
り、十分な幅の結晶が得られなかったりして、歩留りよ
く幅の広い長い帯状シリコン結晶を成長させることが困
難であった。
When the present inventor grew a band-shaped silicon crystal in the above-mentioned growth apparatus, S was deposited on both sides of the band-shaped silicon crystal.
The iC grains adhered to the substrate, making it unsuitable for use as a solar cell substrate. Further, it was difficult to grow a wide and long band-shaped silicon crystal with a good yield because the growth was biased toward one side of the die 13 or a crystal with a sufficient width could not be obtained.

そこで、本発明は、帯状シリコン結晶の一方の表面には
、SiC粒付着が少なく、ダイのスリットと同等の断面
形状を有する帯状シリコン結晶を歩留りよく(80%以
上)成長させることを可能にする帯状シリコン結晶の製
造装置を提供するものである。
Therefore, the present invention makes it possible to grow a band-shaped silicon crystal with a high yield (80% or more) on one surface of the band-shaped silicon crystal, which has few SiC grains attached and has a cross-sectional shape equivalent to the slit of the die. The present invention provides an apparatus for manufacturing band-shaped silicon crystals.

即ち本発明は、ヒータからの熱を結晶成長に有効に働か
せるように、ダイ固定板上に接してダイの長手方向に平
行に移動可能とした4個の温度調整部材、例えばカーピ
ン板で形成されたブロック(ヒートスクリーンと言う)
をダイの厚み方向の両側に2個ずつ設置することによっ
て、一方の表面には、SiC粒の少い、幅の広い帯状シ
リコン結晶を歩留りよく引き上げることを可能としたも
のである。
That is, the present invention includes four temperature adjusting members, such as carpin plates, which are in contact with the die fixing plate and movable in parallel to the longitudinal direction of the die so that the heat from the heater can be effectively used for crystal growth. block (called a heat screen)
By placing two of these on each side of the die in the thickness direction, it is possible to pull a wide band-shaped silicon crystal with a small number of SiC grains on one surface with a high yield.

以下、図面を参照して、本発明の詳細な説明する。第2
図が本発明の一実施例の装置を示した正面図であり、第
3図は側方向の断面図、第4図はヒートスクリーンの配
置を示す平面図である。これらに図示したようにダイ長
手方向に平行[4個のヒートスクリーン22(22a。
Hereinafter, the present invention will be described in detail with reference to the drawings. Second
3 is a front view showing an apparatus according to an embodiment of the present invention, FIG. 3 is a side sectional view, and FIG. 4 is a plan view showing the arrangement of a heat screen. As shown in these figures, there are four heat screens 22 (22a) parallel to the longitudinal direction of the die.

22b 、2:lc 、22d)が設置されている。22b, 2:lc, 22d) are installed.

ヒートスクリーン22ば、いずれもダイ固定板24上に
刻まれた溝に沿って動くことが可能になっている。この
ヒートスクリーン22はヒータ16同様、グラファイト
製である。これらのヒートスクリーン22はそれぞれ連
結治具23(23a、23b、23c、23d)により
チャンバー側壁を通じて炉の外部でマイクロメータヘッ
ド(図示してない)VC連結され、ヒートスクリーン2
2の移動はマイクロメータヘッドの回転により行なわれ
、移動方向はダイ13の5− 長手方向に平行である。ダイ上部の加熱は、ヒートスク
リーン22がガい状態のときは、ダイ固定板24からの
伝導およびヒータ16からの輻射によって主に行なわれ
る。ヒートスクリーン22を、ヒータ16からの輻射の
一部をさえぎるように動かして行<h、グイ上部に達す
る熱量が減少し、影になった部分は、相対的に低い温度
にすることができる。ヒートスクリーン22はダイ13
の厚み方向の両側に2個ずつ配置されており、それぞれ
独立に動かすことが可能である。ルツボホルダー15は
、ルッが受は台25に支えられている。第2図ではダイ
13先端上部に成長した帯状シリコン結晶26を示しで
ある。
Both heat screens 22 can move along grooves cut on the die fixing plate 24. This heat screen 22, like the heater 16, is made of graphite. These heat screens 22 are connected to a micrometer head (not shown) VC outside the furnace through the chamber side wall by connection jigs 23 (23a, 23b, 23c, 23d), respectively.
The movement of 2 is performed by rotation of the micrometer head, and the direction of movement is parallel to the longitudinal direction of the die 13. The upper part of the die is heated mainly by conduction from the die fixing plate 24 and radiation from the heater 16 when the heat screen 22 is in a loose state. By moving the heat screen 22 so as to block part of the radiation from the heater 16, the amount of heat reaching the upper part of the goo is reduced, and the temperature of the shaded area can be made relatively low. The heat screen 22 is the die 13
There are two on each side in the thickness direction, and each can be moved independently. The crucible holder 15 is supported by a base 25. FIG. 2 shows a band-shaped silicon crystal 26 grown above the tip of the die 13. As shown in FIG.

以下、具体的な実験データを説明する。使用したダイ1
3の幅は100咽であり、4枚のヒートスクリーン22
の配置は、ダイ13の中心で交わる2枚の鏡面による対
称関係になるように動かすことが可能である。ヒートス
クリーン22ば、ダイ13に対して、十分に離すことが
6− でき、この時、ダイ13の上部に達するヒータ16から
の熱輻射を全く妨げない位置に置くことができる。まず
、ダイ13の厚み方向の1方の側の2個のヒートスクリ
ーン22c、22dは、熱輻射を遮蔽しない位置に固定
し、他方の側の2個のヒートスクリーン22a、22b
を動かしながら、結晶成長を行った。ヒートスクリーン
22a、22bの位置は、ダイI3の中心からの距離で
表わし、位置の再現性は十分あることが確かめられた。
Specific experimental data will be explained below. Die used 1
3 has a width of 100 mm and has 4 heat screens 22
The arrangement can be moved so that the two mirror surfaces intersect at the center of the die 13 in a symmetrical relationship. The heat screen 22 can be placed sufficiently away from the die 13, and at this time, it can be placed in a position that does not impede heat radiation from the heater 16 reaching the top of the die 13 at all. First, the two heat screens 22c and 22d on one side of the die 13 in the thickness direction are fixed at a position where they do not block thermal radiation, and the two heat screens 22a and 22b on the other side are fixed.
Crystal growth was performed while moving the . The positions of the heat screens 22a and 22b are expressed as distances from the center of the die I3, and it was confirmed that the positions had sufficient reproducibility.

第5図は、ダイ13の中心から、2枚のヒートスクリー
ン22a。
FIG. 5 shows two heat screens 22a from the center of the die 13.

22bの先端までの距離をそれぞれX mm 、 Y 
ntmとしていることを表わした模式図であり、下表は
、このX、Yの組合せと成長した帯状シリコン表面に付
着したSiC粒の個数、および帯状シリコンの最大幅を
示したものである。
The distance to the tip of 22b is X mm and Y
ntm, and the table below shows the combinations of X and Y, the number of SiC grains attached to the surface of the grown silicon band, and the maximum width of the silicon band.

この表から明らかなように、ヒートスクリーン22*、
22bを置きダイ13の厚さ方向に温度差を設けたこと
によって、810個数を一方の側(熱遜蔽をしていない
側)では、約1桁低減させることができた。また、ヒー
トスクリーン22*、22bを適当な位置に配置するこ
とによって、ダイ13の長手方向の温度分布を補正する
効果も得られ、帯状シリコン結晶の拡幅に寄与した。し
かしながら、幅100 mのダイに対して、約77閣以
上に拡幅することが困難であった。そこで、ダイを挾ん
で反対側に離して固定してあった2枚のヒートスクリー
ン22c。
As is clear from this table, heat screen 22*,
By placing 22b and providing a temperature difference in the thickness direction of the die 13, the number of 810 pieces could be reduced by about one order of magnitude on one side (the side without heat isolation). Further, by arranging the heat screens 22* and 22b at appropriate positions, the effect of correcting the temperature distribution in the longitudinal direction of the die 13 was also obtained, which contributed to widening the band-shaped silicon crystal. However, it was difficult to widen the die to a width of about 77 meters or more for a die with a width of 100 m. Therefore, two heat screens 22c were placed between the dies and fixed on opposite sides.

22dもダイ13に近付けてX = 43 ttm 、
 Y =51論の位置におき、以前から、使用していた
ヒートスクリーン22a、22bは、X=26咽、Y=
38叫の位置に置いた時、幅100 Wanのダイに対
して最大限度の幅97縄の帯状シリコンを成長させるこ
とができた。この時のSiC個数は、少い側で約009
個/ Caであった。
22d is also brought closer to die 13 and X = 43 ttm,
The heat screens 22a and 22b that have been used for a long time are placed in the position of Y = 51, and the positions of X = 26 and Y =
When placed at a position of 38 mm, a silicon strip with a maximum width of 97 mm could be grown on a die with a width of 100 mm. The number of SiC at this time is about 0.09 on the small side.
pcs/Ca.

次に、本実施例装置を用いて製造した帯状シリコン結晶
と従来の装置で製造した結晶とを用いて、太陽電池を作
成し、その性能比較を行った。前者の結晶は、SiC粒
付着の少い側の面にpn設合を作り受光面とした。その
結果、太陽電池変換効率で比較して、前者の方が後者よ
り、約30〜50俤優れていることが判明した。
Next, a solar cell was created using a band-shaped silicon crystal manufactured using the apparatus of this embodiment and a crystal manufactured using a conventional apparatus, and their performances were compared. In the former crystal, a pn junction was formed on the side to which less SiC grains were attached, and this was used as a light-receiving surface. As a result, it was found that the former was superior to the latter by about 30 to 50 units in terms of solar cell conversion efficiency.

また、厚手の帯状シリコン結晶(〜0.8 +a )に
は、従来、厚みを2分する不規則粒界が、時おり見られ
だが、ダイの厚み方向に温度差を設けた本実施例装置に
よって、この不規則粒界は消失し、結晶性の向上も確認
された。特に高速引上げを行う場合、良結晶性を維持す
る必要があり、本実施例装置は有効に機能することが考
9− えられる。
Furthermore, in the case of thick band-shaped silicon crystals (~0.8+a), irregular grain boundaries that bisect the thickness were occasionally observed in the past, but in this embodiment, a temperature difference was created in the thickness direction of the die. As a result, these irregular grain boundaries disappeared and improved crystallinity was also confirmed. Particularly when high-speed pulling is performed, it is necessary to maintain good crystallinity, and the apparatus of this embodiment is considered to function effectively.

以上、説明したように、本発明によれば、ダイ上部に、
ヒータからの熱輻射を制御する4個の温度調整部材を設
置することにより、ダイの厚み方向に温度勾配を設定す
ることが可能となり、帯状シリコン結晶に付着する84
0粒を、太陽車−池の変換効率改善に不可欠である、一
方の面において、著しく低下させることができた。
As explained above, according to the present invention, at the top of the die,
By installing four temperature adjustment members that control heat radiation from the heater, it is possible to set a temperature gradient in the thickness direction of the die, and the 84
In one aspect, which is essential for improving the solar wheel-pond conversion efficiency, it was possible to significantly reduce the number of grains.

また、ダイの幅方向の温度分布の補正にも効果があり、
□幅の広い結晶を成長させることもできるようになった
。同様の効果を補助ヒータを用いて電気的吟行う場合に
比べて、新たな電源部が不要の一ヒに、制御機構が比較
的簡単であるために、成長装置が小型化できる利点もあ
る。従って、本発明装置は幅の広い、結晶性の良好な帯
状シリコン結晶を歩留りよく、しかもより安価に製造す
ることが可能となり、太陽電池の低コスト化に大きく寄
力する。
It is also effective in correcting the temperature distribution in the width direction of the die.
□It is now possible to grow wide crystals. Compared to the case where the same effect is achieved electrically using an auxiliary heater, this method has the advantage that a new power source is not required, and the control mechanism is relatively simple, so that the growth apparatus can be made smaller. Therefore, the apparatus of the present invention makes it possible to produce wide band-shaped silicon crystals with good crystallinity at a high yield and at a lower cost, which greatly contributes to lowering the cost of solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、帯状シリコン結晶を成長させる従−1〇− 来の装置を示す炉内中面の模式図、第2図と第3図は、
第1図の装置にヒートスクリーンを組み込んだ本発明の
一実施例の炉内正面図と側方向からの断面図、第4図は
、同じくヒートスクリーンの配置を示す平面図、第5図
はヒートスクリーンの位置の定め方を示す図である。 11・・・シリコン融液、12・・・石英ガラス製ルツ
デ、13L 、 13b l・・・グイ、14・・・熱
遮蔽&、rs・・・ルツがホルダー、16a、16b・
・・抵抗加熱ヒータ、17・・・切込み、18・・・チ
ャンバー側壁、x9−B、22a、22b、22c。 22d・・・ヒートスクリーン(温度調整部材)、23
 a 、 23 b 、 23’ c 、 23 d 
−’連結治具、24・・・グイ固定板、25・・・ルツ
ボ受は台、26・・・帯状シリコン結晶。 出願人代理人  弁理士 鈴 江 武 彦=11− 胃
Figure 1 is a schematic diagram of the inside of the furnace showing a conventional apparatus for growing band-shaped silicon crystals, and Figures 2 and 3 are
FIG. 1 is a front view of the inside of the furnace and a cross-sectional view from the side of an embodiment of the present invention in which a heat screen is incorporated into the apparatus, FIG. 4 is a plan view showing the arrangement of the heat screen, and FIG. 5 is a heat screen. It is a figure which shows how to determine the position of a screen. 11...Silicon melt, 12...Quartz glass lugs, 13L, 13b l...Gui, 14...Heat shield &, rs...Rutsuga holder, 16a, 16b.
...Resistance heater, 17... Notch, 18... Chamber side wall, x9-B, 22a, 22b, 22c. 22d... Heat screen (temperature adjustment member), 23
a, 23 b, 23' c, 23 d
-' Connecting jig, 24... Gui fixing plate, 25... Crucible holder is stand, 26... Band-shaped silicon crystal. Applicant's representative Patent attorney Takehiko Suzue = 11- Stomach

Claims (2)

【特許請求の範囲】[Claims] (1)  シリコン融液を収納したルツデにスリットを
有するキャピラリ・ダイを配し、前記スリットを介して
上昇した融液に種子結晶を接触させ、この種子結晶を引
上げることにより帯状シリコン結晶を引上げる抵抗加熱
型引上げ装置Wにおいて、前記ルッ♂上部に前記ダイを
固定する固定板および一定空間を設けて更に上に前記ダ
イの先端部が露出する窓を有する熱遮蔽板を有し、前記
ダイ固定板上に接して前記ダイの長手方向に平行に移動
可能とした4個の温度調整部材を前記ダイの1vみ方向
の両側に2個ずつ配置したことを特徴とする帯状シリコ
ン結晶の製造装置。
(1) A capillary die having a slit is arranged in a luge containing a silicon melt, a seed crystal is brought into contact with the melt rising through the slit, and the band-shaped silicon crystal is pulled by pulling up the seed crystal. A resistance heating type pulling device W for lifting the die includes a fixing plate for fixing the die and a heat shielding plate having a fixed space above the die and a window for exposing the tip of the die above the die. An apparatus for producing a band-shaped silicon crystal, characterized in that four temperature adjustment members that are in contact with a fixed plate and movable in parallel to the longitudinal direction of the die are arranged, two on each side of the die in the 1V direction. .
(2)温度調整部材はカーデン製ブロックからなるヒー
トスクリーンである特許請求の範囲第1項記載の帯状シ
リコン結晶の製造装置。
(2) The apparatus for producing a band-shaped silicon crystal according to claim 1, wherein the temperature adjusting member is a heat screen made of a block made of Kaden.
JP56145807A 1981-09-16 1981-09-16 Band-shaped silicon crystal production equipment Expired JPS5932434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145807A JPS5932434B2 (en) 1981-09-16 1981-09-16 Band-shaped silicon crystal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145807A JPS5932434B2 (en) 1981-09-16 1981-09-16 Band-shaped silicon crystal production equipment

Publications (2)

Publication Number Publication Date
JPS5849690A true JPS5849690A (en) 1983-03-23
JPS5932434B2 JPS5932434B2 (en) 1984-08-08

Family

ID=15393594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145807A Expired JPS5932434B2 (en) 1981-09-16 1981-09-16 Band-shaped silicon crystal production equipment

Country Status (1)

Country Link
JP (1) JPS5932434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016767U (en) * 1984-06-28 1985-02-04 工業技術院長 Band-shaped silicon crystal production equipment
US4534664A (en) * 1982-04-26 1985-08-13 Silver Seiko Ltd. Printing mechanism having a plurality of type plates
JP6025080B1 (en) * 2015-12-26 2016-11-16 並木精密宝石株式会社 Heat reflector structure of large EFG growth furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818776U (en) * 1971-07-10 1973-03-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818776U (en) * 1971-07-10 1973-03-02

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534664A (en) * 1982-04-26 1985-08-13 Silver Seiko Ltd. Printing mechanism having a plurality of type plates
JPS6016767U (en) * 1984-06-28 1985-02-04 工業技術院長 Band-shaped silicon crystal production equipment
JP6025080B1 (en) * 2015-12-26 2016-11-16 並木精密宝石株式会社 Heat reflector structure of large EFG growth furnace
JP2017114757A (en) * 2015-12-26 2017-06-29 並木精密宝石株式会社 Heat reflection plate structure of growth furnace for large-sized egf method

Also Published As

Publication number Publication date
JPS5932434B2 (en) 1984-08-08

Similar Documents

Publication Publication Date Title
US5156978A (en) Method of fabricating solar cells
CA1087758A (en) Process for the manufacture of large surface area bonded to a substrate
Novak et al. The production of EFG sapphire ribbon for heteroepitaxial silicon substrates
CN105951172A (en) Manufacturing method of N type/P type monocrystalline silicon crystal ingot
JPS5849690A (en) Production unit for ribbonlike silicon crystal
EP0369574A2 (en) An improved method of fabricating solar cells
GB2041781A (en) Die-pulling of silicon
CN106119956B (en) A kind of polysilicon fritting casting ingot method
US20220259757A1 (en) Silicon ingot, silicon block, silicon substrate, manufacturing method for silicon ingot, and solar cell
CN106048718B (en) A kind of polysilicon fritting ingot casting sundries discharging method
US4602422A (en) Flash compression process for making photovoltaic cells
KR100428699B1 (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
CN102453962A (en) Method for growing large-size sapphire monocrystalline
US4125425A (en) Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
US4251206A (en) Apparatus for and method of supporting a crucible for EFG growth of sapphire
CN201212066Y (en) Temperature gradient regulator for crystal zone of single-crystal growth device
KR20090046301A (en) Manufacturing method of single crystal substrate and manufacturing method of solar cell using it
JPS6111914B2 (en)
JPS60108398A (en) Growth of silicon ribbon crystal
CN209555410U (en) Crystalline silicon ingot casting device
Rao et al. Large area silicon sheet by EFG
US8545944B2 (en) Method for producing solar grade films from semiconductor powders
JP2009084149A (en) Linear processing member for manufacturing plate-like silicon, method for manufacturing base plate, base plate, plate-like silicon, and solar cell
DE19625207A1 (en) Process for plate like silicon@ crystal prodn. - comprises forming melt layer on cylindrical raw material rod, interposing cover with slit, and pulling rod
KR20010017991A (en) Apparatus for improved single crystal growing furnace