JPS60108398A - Growth of silicon ribbon crystal - Google Patents

Growth of silicon ribbon crystal

Info

Publication number
JPS60108398A
JPS60108398A JP21461283A JP21461283A JPS60108398A JP S60108398 A JPS60108398 A JP S60108398A JP 21461283 A JP21461283 A JP 21461283A JP 21461283 A JP21461283 A JP 21461283A JP S60108398 A JPS60108398 A JP S60108398A
Authority
JP
Japan
Prior art keywords
silicon
die
dies
crystal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21461283A
Other languages
Japanese (ja)
Other versions
JPS6140639B2 (en
Inventor
Naoaki Maki
真木 直明
Masanaru Abe
阿部 昌匠
Toshiro Matsui
松井 都四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21461283A priority Critical patent/JPS60108398A/en
Publication of JPS60108398A publication Critical patent/JPS60108398A/en
Publication of JPS6140639B2 publication Critical patent/JPS6140639B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:In the titled method, to prevent precipitation of silicon carbide on one side of silicon crystal, by using a pair of dies consisting of graphites having different thermal conductivity, respectively. CONSTITUTION:A pair of dies 4a'' and 4b'' are set in the silicon melt 3 in a crucible, seed crystal is brought into contact with the silicon melt 3 which rised in the slits of the dies by capillary phenomena, and it is pulled up under a given condition to form the silicon ribbon crystal 5. A pair of the dies used in the above-mentioned method consist of the die 4a'' (having higher thermal conductivity in the Q1 direction) made of a material obtained by cutting pyrolytic graphite in the direction perpendicular to the deposition face 7 and the die 4b'' (having higher thermal conductivity in the Q2 direction) made of a material obtained by cutting it in the direction parallel to the deposition face. Consequently, the tip part of the die 4a'' has a lower temperature than that of the tip part of the die 4b'' (the solid-liquid interface 6''), so that silicon carbide particles are attached only to the die 4a'' side of the silicon ribbon crystal 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ダイを使用したシリコン・リボン結晶の成長
方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of growing silicon ribbon crystals using a die.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、シリコン・リボン結晶は第1図に示す方法で引上
げられる。すなわち、石英ガラスで4’:I+°成され
たるつぼ1内にシリコン材料を収容し、1対の対向する
板状ヒータ2a、2bでシリコン旧制を加熱し、シリコ
ン融液3を作る。このシリコン融液3中に、カーがンで
構成された1対のダイ4a、4bを立設する。カーボン
はシリコン融液に濡れる材料のため、前記シリコン融液
3はダイ4a、4bのスロットの中を毛細管現象により
上昇し、ダイ4a、4bの先端部に到達する。この上昇
したシリコン融液3に種子結晶を接触させ、この種子結
晶を引上げることによって、前記ダイ4a、4bのスロ
ットで規定されたシリコン・りがン結晶5が成長する。
Conventionally, silicon ribbon crystals are pulled by the method shown in FIG. That is, a silicon material is placed in a crucible 1 made of quartz glass with a 4':I+ degree shape, and a silicon melt 3 is produced by heating the silicon material with a pair of opposing plate heaters 2a and 2b. In this silicon melt 3, a pair of dies 4a and 4b made of carbon are set upright. Since carbon is a material that gets wet with the silicon melt, the silicon melt 3 rises through the slots of the dies 4a and 4b due to capillary action and reaches the tips of the dies 4a and 4b. By bringing a seed crystal into contact with this rising silicon melt 3 and pulling up the seed crystal, a silicon/regan crystal 5 defined by the slots of the dies 4a, 4b grows.

ところで、このような従来装置で製造されたシリコン・
リボン結晶の表面には多数のシリコン・カーバイド粒が
存在する。第1図に示す1対のダイ4a、4bは通常カ
ーフ]?ンで構成されている。この場合、ダイ4a、4
bの$f’f成物質成心質カーボンがシリコン融液中に
溶は込みシリコン融液との共晶反応により、シリコン・
カーバイド粒として存在する。このシリコン・カー/S
イド粒は比較的に低い温度であるダイ4a。
By the way, silicon manufactured with such conventional equipment
There are many silicon carbide grains on the surface of the ribbon crystal. The pair of dies 4a and 4b shown in FIG. 1 are usually kerf]? It consists of In this case, dies 4a, 4
The $f'f component of b, the centripetal carbon, is injected into the silicon melt, and due to the eutectic reaction with the silicon melt, silicon and
Exists as carbide grains. This silicon car/S
The die 4a has a relatively low temperature.

4bの先端部に析出する。そして、この析出したシリコ
ン・カーバイド粒が成長するシリコン・リボン結晶中に
取り込まれる。このような結晶に例えば不純物を拡散し
てP−N接合を形成しようとしても、シリコン・カーバ
イド粒のため拡散係数が異なり、所定の平坦なP−N接
合ができない。このため、太陽電池素子として用いた場
合、シリコン・リボン結晶の部分部分で光電変換効率が
異なるようになり、所定のパワーをもつ太陽電池素子を
得ることができない。
It precipitates at the tip of 4b. The precipitated silicon carbide grains are then incorporated into the growing silicon ribbon crystal. Even if an attempt is made to form a P-N junction by diffusing impurities into such a crystal, the diffusion coefficient will be different due to the silicon carbide grains, making it impossible to form a predetermined flat P-N junction. For this reason, when used as a solar cell element, the photoelectric conversion efficiency differs between parts of the silicon ribbon crystal, making it impossible to obtain a solar cell element with a predetermined power.

しかもシリコン・カーバイド粒のため、非常に漏れ電流
の大きい電流−電圧特性が観測される。
Moreover, because of the silicon carbide grains, current-voltage characteristics with extremely large leakage currents are observed.

また表面電極をプリント印圧する場合、マスクの破損、
印圧による破損という問題が生じ易い。
Also, when printing surface electrodes, the mask may be damaged or
The problem of damage due to printing pressure is likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記の41情に鑑みてなされたもので、シリコ
ン・リボン結晶の片面にシリコン・カーバイド粒が析出
しないようにし、このシリコン・カーバイドが析出しな
い面にP−N接合を形成するようにして、例えば太陽電
池素子として用いた場合にも光電変換効率を低下させる
ことがな(、シかも漏れ電流もほとんどないシリコン・
リボン結晶の成長方法を提供することを目的とする。
The present invention has been made in view of the above 41 circumstances, and is designed to prevent silicon carbide grains from precipitating on one side of a silicon ribbon crystal, and to form a P-N junction on the surface where silicon carbide does not precipitate. For example, even when used as a solar cell element, the photoelectric conversion efficiency will not be reduced (silicon material has almost no leakage current).
The purpose is to provide a method for growing ribbon crystals.

〔発明の概要〕[Summary of the invention]

本発明は、シリコン融液を収容したるつぼ内にスリット
を有する1対のダイを立設し、このスリット内を上昇し
たシリコン融液に種子結晶を接触させリボン結晶を引上
げるシリコン・リボン結晶の成長方法において、1対の
ダイ各々を熱伝導率の異なるグラファイト、例えばパイ
ロリティックグラファイトで構成することを特徴とする
シリコン・リボン結晶の成長方法である。
In the present invention, a pair of dies having slits are set upright in a crucible containing a silicon melt, and a seed crystal is brought into contact with the silicon melt rising inside the slit to pull up a ribbon crystal. The present invention is a silicon ribbon crystal growth method characterized in that each of a pair of dies is made of graphite having a different thermal conductivity, such as pyrolytic graphite.

〔発明の実施例〕[Embodiments of the invention]

本発明者等は、シリコン・りがン結晶の片面にシリコン
・カーバイド粒が析出し人いようにするため鋭利研究を
重ねた結果、1対のダイの先端部に温度差を設けるとよ
いことが判明した。
The inventors of the present invention have conducted intensive research to prevent silicon carbide grains from precipitating on one side of a silicon/iron crystal, and have found that it is effective to create a temperature difference between the tips of a pair of dies. There was found.

第1図のダイ4a、4bとリボン厚さ方向の固液界面6
の形状を第2図に示す。第2図の場合、ダイ4a、4b
の先端の温度は同じで固液界面6の形状は平坦となる。
Dies 4a and 4b in FIG. 1 and solid-liquid interface 6 in the ribbon thickness direction
The shape of is shown in Figure 2. In the case of Fig. 2, dies 4a and 4b
The temperature at the tip is the same, and the solid-liquid interface 6 has a flat shape.

この場合、シリコン・カーバイド粒はリボン結晶の両面
に形成される。
In this case, silicon carbide grains are formed on both sides of the ribbon crystal.

ダイ先端に温度差を設ける手段として、第3図に示す方
法がある。第3図の方法はダイの温度勾配を利用するこ
とで、ダイ先端部の高さに差を設ける方法である。この
方法によると、片側のダイ4b′(先端部が低い)が高
温で、他側のダイ4 a/ (先端部が高い)が低温と
なり、固液界面6′は傾斜して、シリコン・カーバイド
粒は低温側のり?ン結晶表面にのみ付着し、高温側には
伺妬°シない。しかし、この方法では、シリコン・カー
バイド粒はリボン結晶の片面には付着しないが、引上げ
の歩留りが大幅に低下し、量産には適していない。
There is a method shown in FIG. 3 as a means for creating a temperature difference at the die tip. The method shown in FIG. 3 uses the temperature gradient of the die to create a difference in the height of the tip of the die. According to this method, the die 4b' on one side (the tip is low) is at a high temperature, the die 4a/ on the other side (the tip is high) is at a low temperature, the solid-liquid interface 6' is inclined, and the silicon carbide Are the grains glue on the low temperature side? It adheres only to the surface of the crystal and does not touch the high temperature side. However, in this method, silicon carbide grains do not adhere to one side of the ribbon crystal, but the pulling yield is significantly reduced, making it unsuitable for mass production.

本発明者等はさらに研究を重ねた結果ダイ先端に温度差
を設ける手段として、1対のダイを熱電導率の異なるグ
ラファイトで構成する方法を見出し、ダイの材料として
i4イロリティックグラファイトを採用した。パイロリ
ティックグラファイトは炭化水素ガスを原料として製造
され、炭素原子は層状に沈積する。従って沈積面に平行
方向と沈積面に垂直方向では物理的性質の異方性が大き
い。特に熱伝導率を比較すると、/七イロリティックグ
ラファイトの沈積面に平行方向では470 KcaA7
’m1Ihr@tl:、パイロリティックグラファイト
の沈積面に垂直方向では11Kcal/m−hr・℃と
大幅に差がある。従って、この物理的異方性を利用して
、ダイの片側はパイロリティックグラファイトの沈積面
に平行方向に切出した材料で、沈積面を水平方向と直交
する方向となるように構成し、ダイの他側は沈積面に垂
直方向に切出した材料で、沈積面を水平方向となるよう
に構成すると、その熱電導率の大幅な差のため、ダイ先
端部に温度差が生じ、低温側にのみシリコン・カーバイ
ドが刺着し、高温側には付着しない。
As a result of further research, the present inventors discovered a method of constructing a pair of dies using graphite with different thermal conductivities as a means of creating a temperature difference at the tip of the die, and adopted i4 Irolytic graphite as the die material. . Pyrolitic graphite is produced from hydrocarbon gas, and carbon atoms are deposited in layers. Therefore, the anisotropy of physical properties is large in the direction parallel to the deposition surface and in the direction perpendicular to the deposition surface. In particular, when comparing the thermal conductivity, it is 470 KcaA7 in the direction parallel to the deposition surface of /7 Irolytic graphite.
'm1Ihr@tl: In the direction perpendicular to the deposition plane of pyrolytic graphite, there is a large difference of 11 Kcal/m-hr·°C. Therefore, by taking advantage of this physical anisotropy, one side of the die is made of a material cut parallel to the deposition surface of pyrolytic graphite, and the deposition surface is configured to be perpendicular to the horizontal direction. The other side is a material cut perpendicular to the deposition surface, and if the deposition surface is configured horizontally, a temperature difference will occur at the die tip due to the large difference in thermal conductivity, and only on the low temperature side. Silicon carbide sticks and does not stick to the high temperature side.

すなわち、第4図に示すように、ダイ4 a Hは、パ
イロリティックグラファイトの沈積面7に垂直方向に切
出した材料で、沈積面7が水平方向となるように構成さ
れ、ダイ4b“は、ノ9イロリティックグラファイトの
沈積面7に平行方向に切出した材料で、沈積面7が水平
方向と直交する方向となるように構成される。
That is, as shown in FIG. 4, the die 4aH is a material cut perpendicularly to the deposition surface 7 of pyrolytic graphite, and is constructed so that the deposition surface 7 is horizontal, and the die 4b'' is It is made of a material cut out in a direction parallel to the deposition surface 7 of 9Irolitic graphite, and is constructed so that the deposition surface 7 is perpendicular to the horizontal direction.

従来例の第1図に示した如く、ダイの加熱源はカーボン
ヒータ2a、2bであり、ホットゾーン構成はダイに対
して左右対称に)l、1.Y成されている。従ってダイ
4a’、4b”への入射輻射量は同じである。第1図で
はダイ4a、4bの熱伝導率が同じであるためダイ4a
、4bの先端部の温度は同温度であるが、第4図ではダ
イ4 aIIと4b”で大幅に熱伝導率が異なるため、
ダイ4a“側では熱の移動はQlとなり、ダイ4a”の
先端部まで熱伝導で伝わる熱量は極端に減少する。とこ
ろが、ダイ4 b’側では熱の移動はQ2となり、ダイ
4b“の先端部まで熱伝導で伝わる熱量の減少はダイ4
a”と比較すると大幅に低下する。故にダイ4 a’の
先端部には少量の熱量しか伝達されず、ダイ4b”の先
端部には多量の熱量が伝達される。従って、ダイ4a“
の先端部は低温となり、ダイ4 b’の先端部は高温と
なり、固液界面6〃は傾斜し、シリコン・カーバイド粒
はダイ4a“側のシリコン・リボン面のみ付着し、ダイ
4b“側のシリコン・リボン面には付光゛しない。また
、ダイ4a〃、4b’の先端部の高さは同じであるゾζ
め、引上げの中断がなく、引上げ歩留りは第1図の場合
と同等である。
As shown in FIG. 1 of the conventional example, the heat sources of the die are carbon heaters 2a, 2b, and the hot zone configuration is symmetrical with respect to the die. Y has been completed. Therefore, the amount of radiation incident on the dies 4a' and 4b'' is the same.In Fig. 1, the thermal conductivity of the dies 4a and 4b is the same,
, 4b'' are at the same temperature, but in Figure 4, the thermal conductivity of dies 4aII and 4b'' is significantly different.
On the die 4a'' side, the heat transfer is Ql, and the amount of heat transmitted to the tip of the die 4a by thermal conduction is extremely reduced. However, on the die 4 b' side, the heat transfer is Q2, and the decrease in the amount of heat transmitted to the tip of die 4 b' by thermal conduction is
a''. Therefore, only a small amount of heat is transferred to the tip of the die 4a', and a large amount of heat is transferred to the tip of the die 4b''. Therefore, die 4a"
The tip of the die 4b' becomes low temperature, the tip of the die 4b' becomes hot, the solid-liquid interface 6 is inclined, and the silicon carbide grains adhere only to the silicon ribbon surface on the die 4a'' side, and on the die 4b'' side. Do not irradiate the silicon ribbon surface. Also, the heights of the tips of the dies 4a and 4b' are the same.
Therefore, there is no interruption in pulling, and the pulling yield is the same as in the case shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述ベゾζように本発明によれば、1対のダイヲパイ
ロリティックグラファイトで構成し、片側のダイは沈積
面を水平方向になるように設け、他側のダイは沈積面を
水平方向と1ば交する方向となるように設けることによ
り、両側のダイの先端部に温度差を設け、低温側のシリ
コン・リボン表面にはシリコン・カーバイド粒が付着し
ないようにすることができる。したがって、シリコン・
カーバイド粒が刺着しない面に不純物を拡散してP−N
接合を形成すると平坦なP−N接合が形成される。この
ため、太陽電池素子として用いた場合、所定の/eクワ
−もつ太陽電池用素子を得ることができる利点がある。
As described above, according to the present invention, a pair of dies are made of pyrolytic graphite, one die is provided with the deposition surface in the horizontal direction, and the other die is provided with the deposition surface in the horizontal direction. By arranging the temperature difference between the die tips on both sides, it is possible to prevent silicon carbide grains from adhering to the silicon ribbon surface on the low temperature side. Therefore, silicon
Diffuse impurities on the surface where carbide grains do not stick to P-N
When the junction is formed, a flat PN junction is formed. Therefore, when used as a solar cell element, there is an advantage that a solar cell element having a predetermined /e quae can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシリコン・す、jrン結晶の成長装置を
示す構成説明図、第2図および第3図はそれぞれ従来の
ダイ構造を示す断面図、第4図は本発明に係るダ付1η
造の一例を示す断面図である。 1・・・石英るつぼ、2 a r 2 b・・・ヒータ
、3・・・シリコン融液、4 a 、 4 b 、 4
g’、 4b’、 4b’。 4b’・・・ダイ、5・・・す?ン結晶’、6.6’、
6“・・・固液界面、7・・・パイロリティックグラフ
ァイトの沈積面。 出1123j人代哩人 弁理士 鈴 江 武 彦第1図 第2図 第3図 7、補正の内容 (1)明細書第9頁第12行と第9頁第13行の間C:
「さらに、この発明により、熱伝導率の低い材料を用い
た側のスリット表面に不純物原子が付着し易い結果が得
られた。このため。 すピン結晶中の平均的な不純物濃度は5本発明を使用し
ないとき数10 ppm、本発明を使用したとき1/1
0ppmとなり大幅に低下する。 従って本発明はりピン結晶中の純度を大幅に向上させ、
ひいては高効率の太陽電池素子を得ることができる。 また1本発明では1対のグイ各々の熱伝導率が異なるた
めグイ各々の温度が異る。従って引上げたリボン結晶中
には厚さ方向に熱歪が存在する。引上げ中の温度低下あ
るいは簡単な熱処理により熱歪にそって、2分割するこ
とが可能となり同時に2枚のIJ、gン結晶を得ること
ができる。」を加入する。 特開昭Gfl−108398(5)
FIG. 1 is a configuration explanatory diagram showing a conventional silicon crystal growth apparatus, FIGS. 2 and 3 are cross-sectional views each showing a conventional die structure, and FIG. 4 is a diagram showing the structure of a conventional silicon crystal growth apparatus. 1η
FIG. 2 is a sectional view showing an example of the structure. 1... Quartz crucible, 2 a r 2 b... Heater, 3... Silicon melt, 4 a, 4 b, 4
g', 4b', 4b'. 4b'...die, 5...su? crystal', 6.6',
6"...solid-liquid interface, 7...deposition surface of pyrolytic graphite. 1123j Takehiko Suzue, Patent Attorney Figure 1 Figure 2 Figure 3 Figure 7 Contents of amendment (1) Details C between page 9, line 12 and page 9, line 13:
``Furthermore, with this invention, we have obtained the result that impurity atoms tend to adhere to the slit surface on the side where a material with low thermal conductivity is used.For this reason, the average impurity concentration in the spin crystal is 5. Several tens of ppm when not using, 1/1 when using the present invention
It becomes 0 ppm, which is a significant decrease. Therefore, the purity in the pin crystal of the present invention is greatly improved,
As a result, a highly efficient solar cell element can be obtained. Furthermore, in the present invention, since the thermal conductivity of each of the pair of gooeys is different, the temperature of each gooey is different. Therefore, thermal strain exists in the thickness direction in the pulled ribbon crystal. By lowering the temperature during pulling or by simple heat treatment, it is possible to divide the crystal into two parts along the thermal strain, making it possible to obtain two IJ, G crystals at the same time. ” to join. Japanese Patent Application Sho Gfl-108398 (5)

Claims (3)

【特許請求の範囲】[Claims] (1) シリコン融液を収容したるつぼ内にスリットを
有する1対のダイを立設し、このスリット内を上昇した
シリコン融液に種子結晶を接触させす?ン結晶を引上げ
るシリコン・す?ン結晶の成長方法において、1対のダ
イ各々を熱伝導率の異なるグラファイトで構成すること
を特徴とするシリコン・す?ン結晶の成長方法。
(1) A pair of dies each having a slit are placed upright in a crucible containing a silicon melt, and a seed crystal is brought into contact with the silicon melt rising through the slit. Is there silicon to pull up the crystal? In the method of growing a silicon crystal, each of a pair of dies is made of graphite having different thermal conductivity. How to grow crystals.
(2)前記1対のダイ各々をノ+イロリティックグラフ
ァイトで構成することを特徴とする特許請求の範囲第1
項記載のシリコン・リボン結晶の成長方法。
(2) Claim 1, characterized in that each of the pair of dies is made of solid graphite.
Method for growing silicon ribbon crystals as described in Section 1.
(3)前記1対のダイの片側はt4イロリティックグラ
ファイトの沈積面が水平方向となるように設け、かつ前
記1対のダイの他側は/fイロリティックグラファイト
の沈積面が水平方向と直交する方向となるように設ける
ことを特徴とする特許請求の範囲第2項記載のシリコン
・リボン結晶の成長方法。
(3) One side of the pair of dies is provided so that the deposition surface of t4 ilorithic graphite is in the horizontal direction, and the other side of the pair of dies is provided so that the deposition surface of /f ilorithic graphite is perpendicular to the horizontal direction. 3. The method of growing a silicon ribbon crystal according to claim 2, wherein the silicon ribbon crystal is provided in a direction in which the silicon ribbon crystal is grown.
JP21461283A 1983-11-15 1983-11-15 Growth of silicon ribbon crystal Granted JPS60108398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21461283A JPS60108398A (en) 1983-11-15 1983-11-15 Growth of silicon ribbon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21461283A JPS60108398A (en) 1983-11-15 1983-11-15 Growth of silicon ribbon crystal

Publications (2)

Publication Number Publication Date
JPS60108398A true JPS60108398A (en) 1985-06-13
JPS6140639B2 JPS6140639B2 (en) 1986-09-10

Family

ID=16658602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21461283A Granted JPS60108398A (en) 1983-11-15 1983-11-15 Growth of silicon ribbon crystal

Country Status (1)

Country Link
JP (1) JPS60108398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769639A1 (en) * 1997-10-10 1999-04-16 Commissariat Energie Atomique Crystal capillary growth die with flat capillary termination face angled to the horizontal
CN103160915A (en) * 2011-12-09 2013-06-19 洛阳金诺机械工程有限公司 Drawing die plate for C-shaped silicon core
US8557112B2 (en) 2007-10-10 2013-10-15 Toray Industries, Inc. Fine bubble diffusing pipe, fine bubble diffusing apparatus, and submerged membrane separation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355484A (en) * 1976-10-29 1978-05-19 Agency Of Ind Science & Technol Manufacturing apparatus for belt-shaped silicon crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355484A (en) * 1976-10-29 1978-05-19 Agency Of Ind Science & Technol Manufacturing apparatus for belt-shaped silicon crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769639A1 (en) * 1997-10-10 1999-04-16 Commissariat Energie Atomique Crystal capillary growth die with flat capillary termination face angled to the horizontal
WO1999019545A1 (en) * 1997-10-10 1999-04-22 Commissariat A L'energie Atomique Die for shaped crystal growth from a molten bath
US6325852B1 (en) 1997-10-10 2001-12-04 Commissariat A L'energie Atomique Die for shaped crystal growth from a molten bath
US8557112B2 (en) 2007-10-10 2013-10-15 Toray Industries, Inc. Fine bubble diffusing pipe, fine bubble diffusing apparatus, and submerged membrane separation apparatus
CN103160915A (en) * 2011-12-09 2013-06-19 洛阳金诺机械工程有限公司 Drawing die plate for C-shaped silicon core

Also Published As

Publication number Publication date
JPS6140639B2 (en) 1986-09-10

Similar Documents

Publication Publication Date Title
CN208649506U (en) A kind of grower of carborundum crystals
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
CA1087758A (en) Process for the manufacture of large surface area bonded to a substrate
CN203393257U (en) Ingot furnace with plurality of heat-conduction bottom plates for producing efficient polycrystalline silicon ingot
JPS60108398A (en) Growth of silicon ribbon crystal
CN106012002B (en) A kind of preparation method of the N-type SiC substrate of the growth of off-axis substrate SiC crystal and high electricity uniformity
US3162507A (en) Thick web dendritic growth
CN102011180A (en) Thermal field structure of single crystal furnace
CN206244914U (en) A kind of process units for preparing low boron impurity concentration SiC single crystal
US3413098A (en) Process for varying the width of sheets of web material
CN105586634B (en) Heater and application method for direct-pulling single crystal furnace thermal field
US20220259757A1 (en) Silicon ingot, silicon block, silicon substrate, manufacturing method for silicon ingot, and solar cell
CN106012021A (en) Seed crystal shaft and method for liquid phase growth of silicon carbide
JP3724870B2 (en) Pyrolytic boron nitride crucible
KR101150848B1 (en) Single crystal growing apparatus having cylindrical heat-reflection means
JPS58208196A (en) Producing device for beltlike silicon crystal
JPS5914436B2 (en) Band-shaped silicon crystal production equipment
Eyer et al. Silicon sheets grown from powder layers by a zone melting process
JPS5932434B2 (en) Band-shaped silicon crystal production equipment
JPS5950631B2 (en) Manufacturing equipment for band-shaped silicon crystals
JP4188725B2 (en) Method for producing plate-like silicon, base plate for producing plate-like silicon, plate-like silicon and solar cell using the plate-like silicon
Pinto et al. First solar cells on silicon ribbons obtained by fast CVD from silane
Zoutendyk Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion
Maciolek et al. Silicon coating of ceramic substrates for low cost solar cell applications
JPS61106490A (en) Growing method of silicon-ribbon crystal