JPH0483789A - Production of lamellar single crystal - Google Patents
Production of lamellar single crystalInfo
- Publication number
- JPH0483789A JPH0483789A JP2195346A JP19534690A JPH0483789A JP H0483789 A JPH0483789 A JP H0483789A JP 2195346 A JP2195346 A JP 2195346A JP 19534690 A JP19534690 A JP 19534690A JP H0483789 A JPH0483789 A JP H0483789A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- melt
- crystal
- melting point
- target substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000000155 melt Substances 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 230000005484 gravity Effects 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- 239000013076 target substance Substances 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 239000010703 silicon Substances 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 6
- 239000000112 cooling gas Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、例えばシリコン太陽電池に用いられるシリコ
ン単結晶基板の様な板状単結晶を製造する方法に関し、
特に広幅(大面積の意味、以下同じ)の板状単結晶を効
率良く製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a plate-shaped single crystal such as a silicon single crystal substrate used for example in a silicon solar cell.
In particular, the present invention relates to a method for efficiently producing a wide-width (meaning a large area, hereinafter the same) plate-shaped single crystal.
[従来の技術]
StやGaAs等の様な無機材料や化合物材料の単結晶
素材は、光産業、半導体産業、ファインセラミックス産
業等で広く利用されている。近年、これらの単結晶素材
は、高性能化や高効率化を図る目的で、より大形化への
要求が高まりつつある。[Prior Art] Single crystal materials such as inorganic materials and compound materials such as St and GaAs are widely used in the optical industry, semiconductor industry, fine ceramics industry, and the like. In recent years, there has been an increasing demand for larger sizes of these single crystal materials in order to improve performance and efficiency.
ところでこうした単結晶素材は、板状の結晶基板として
用いられることが多く、従って広幅の板状単結晶を製造
する技術の確立が望まれている。Incidentally, such single crystal materials are often used as plate-shaped crystal substrates, and therefore, it is desired to establish a technique for manufacturing a wide plate-shaped single crystal.
現在行なわれている板状単結晶の製造技術としては、(
a)単結晶インゴットを切断して板状に加工する方法、
(b)目的物質の融液からメニスカスを形成させながら
上方へ板状単結晶を引き出す方法等が知られている。The currently used manufacturing technology for plate-shaped single crystals is (
a) A method of cutting a single crystal ingot and processing it into a plate shape,
(b) A method is known in which a plate-shaped single crystal is drawn upward from a melt of a target substance while forming a meniscus.
[発明が解決しようとする訝題]
しかしながら、広幅の板状単結晶の製造技術として見た
とき、上記方法は欠点を有しており、いずれも最適な方
法とは言い難いものであった。[Problems to be Solved by the Invention] However, when viewed as a manufacturing technology for a wide plate-shaped single crystal, the above methods have drawbacks and cannot be called optimal methods.
まず上記(a)の方法では、素材となる大型の単結晶イ
ンゴットの製作自体が困難である為、広幅の板状単結晶
を得ることはてきない。しかもこの方法では切断代が大
きくなり、製品歩留りが悪いという問題がある。一方、
(b)の方法では、平坦度や歪の問題を生じ、結晶成長
の操作が困難であり、板状単結晶の幅は数cm程度に限
定されている。First, in the method (a) above, it is difficult to produce a large single crystal ingot as a raw material, so it is not possible to obtain a wide plate-shaped single crystal. Moreover, this method has the problem that the cutting allowance becomes large and the product yield is poor. on the other hand,
The method (b) causes problems with flatness and distortion, making crystal growth difficult to operate, and the width of the plate-shaped single crystal is limited to about several cm.
本発明はこうした状況のもとになされたものであって、
その目的は、従来の方法では製造不可能であった広幅の
単結晶を、効率良く製造する為の方法を提供することに
ある。The present invention was made under these circumstances, and
The purpose is to provide a method for efficiently manufacturing wide single crystals that cannot be manufactured using conventional methods.
[課題を解決する為の手段]
上記目的を達成し得た本発明とは、単結晶化すべき目的
物質よりも比重が大きく且つ融点が低い支持物質を用い
、前記目的物質の融点よりも高い温度条件下で溶融状態
に置かれた前記支持物質の融液表面上に前記目的物質の
固体を供給して溶融し、該目的物質の融液を種結晶の存
在下で冷却して単結晶を育成しつつ、該単結晶を前記支
持物質の融液表面に沿って水平方向に引出す点に要旨を
有する板状単結晶の製造方法である。[Means for Solving the Problems] The present invention that achieves the above object uses a supporting material that has a higher specific gravity and a lower melting point than the target substance to be single crystallized, and a temperature higher than the melting point of the target substance to be single crystallized. Supplying and melting the solid target substance onto the surface of the melt of the support material placed in a molten state under conditions, and growing a single crystal by cooling the melt of the target substance in the presence of a seed crystal. This method of producing a plate-shaped single crystal is characterized in that the single crystal is pulled out horizontally along the melt surface of the support material.
[作用]
本発明者らは、前述した(b)の従来法を改良するとい
う観点から検討を重ねた。(b)の従来法では、固体基
板上で目的物質自体を液体化(溶融)させ、結晶を溶融
液から引き上げつつ結晶化するのを原理としており、平
坦度が悪く歪が生じ易いのは上記固体基板からの引上げ
に際して非常にわずかながらも立上り融液に揺ぎが発生
したり、それに伴う動力作用の変動が生じるといったこ
とが原因しているのではないかと考えられた。そこで木
発明者らは、液体状の支持物質を用い、この表面上で目
的物質を結晶化させつつ水平方向に引出すことかできる
ならば上記不都合が生じず、従って平坦度が高く歪の少
ない板状結晶が製造できるのではないかとの着想を抱く
に至り、この着想を実現するための方法を確立すべく様
々な角度から更に鋭意研究を重ねた結果、上記構成の本
発明を完成するに至った。[Function] The present inventors have made repeated studies from the viewpoint of improving the conventional method (b) described above. In the conventional method (b), the principle is to liquefy (melt) the target substance itself on a solid substrate, and then crystallize it while pulling the crystal out of the melt. It was thought that this may be due to the very slight fluctuations that occur in the rising melt when it is pulled up from the solid substrate, and the resulting fluctuations in the power action. Therefore, the wood inventors discovered that if it were possible to use a liquid support substance and draw out the target substance horizontally while crystallizing it on the surface, the above-mentioned disadvantages would not occur, and therefore a plate with high flatness and less distortion We came up with the idea that it might be possible to produce crystals in the form of crystals, and as a result of further intensive research from various angles to establish a method to realize this idea, we were able to complete the present invention with the above structure. Ta.
本発明では、液体状の支持物質を用い、この支持物質の
液面上を滑らせる様にして単結晶を水平方向に引出す構
成を採用したので、大面積で且つ平滑な平面を支持基盤
として利用することができ、従来方法では達成できない
大面積で且つ平坦度の優れた板状単結晶の育成が可能と
なったのである。In the present invention, a structure is adopted in which a liquid support substance is used and the single crystal is pulled out horizontally by sliding on the liquid surface of this support substance, so a large and smooth plane can be used as a support base. This made it possible to grow a plate-shaped single crystal with a large area and excellent flatness, which could not be achieved using conventional methods.
本発明で用いる支持物質としては、単結晶化すべき目的
物質よりも比重が大きく且つ融点が低い物質であること
が必要である。即ち、支持物質の比重が目的物質の比重
よりも小さければ目的物質が支持物質中に巻き込まれ易
くなり、支持物質の融点が高ければ目的物質が溶融して
も支持物質は熔融せず、従来の固体基板と何ら変わりは
ない。The supporting material used in the present invention needs to have a higher specific gravity and a lower melting point than the target material to be single-crystallized. In other words, if the specific gravity of the support material is smaller than the specific gravity of the target substance, the target substance is likely to get caught up in the support material, and if the melting point of the support material is high, even if the target substance melts, the support material will not melt, and the conventional There is no difference from a solid substrate.
尚本発明で用いる支持物質の融点と沸点の温度差は大き
い程好ましく、また支持物質の沸点は目的物質の融点よ
りも高いものであることが望まれる。It is preferable that the temperature difference between the melting point and the boiling point of the support material used in the present invention be as large as possible, and it is desirable that the boiling point of the support material is higher than the melting point of the target substance.
従来の方法では、目的物質の単結晶を該物質の融体から
引き上げているので、結晶成長がメニスカスにおいて開
始するが、この様な状態ては第2図(a)の原理図から
明らかな様に、高さ方向の温度勾配が大きく従って結晶
成長状況が非常に不安定であり、引上げ速度の制御が困
難なものとなる。これに対し、本発明では、その原理を
第2図(b)に示す様に、結晶成長は平坦な液面に支持
されつつ行なわれるので、水平方向の温度勾配が緩やか
で従って結晶成長状況が非常に安定すると共に、結晶形
成線が液−液界面で構成されるため、成長結晶の平坦性
は非常に良好なものとなる。In the conventional method, since a single crystal of the target substance is pulled from the melt of the substance, crystal growth starts at the meniscus. Moreover, the temperature gradient in the height direction is large, so the crystal growth situation is very unstable, making it difficult to control the pulling rate. On the other hand, in the present invention, as shown in FIG. 2(b), the crystal growth is carried out while being supported by a flat liquid surface, so the temperature gradient in the horizontal direction is gentle, and therefore the crystal growth condition is Since it is very stable and the crystal formation line is composed of a liquid-liquid interface, the flatness of the grown crystal is very good.
以下本発明を実施例によって更に詳細に説明するが、本
発明は下記実施例に限定されるものではなく、前・後記
の趣旨に徴して設計変更することはいずれも本発明の技
術的範囲に含まれるものである。The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples, and any design changes in accordance with the spirit of the preceding and later descriptions are within the technical scope of the present invention. It is included.
[実施例]
第1図は本発明を実施する為に構成される板状単結晶製
造装置例を示す斜視図であり、第3図はその縦断面図で
ある。尚図中1は原料充填槽、2は冷却用ガス供給管、
3は融液(目的物質)、4は支持物質、5はヒータ、6
は成長した単結晶7は種結晶、8はローラを夫々示して
いる。[Example] FIG. 1 is a perspective view showing an example of a plate-shaped single crystal manufacturing apparatus configured to carry out the present invention, and FIG. 3 is a longitudinal sectional view thereof. In the figure, 1 is the raw material filling tank, 2 is the cooling gas supply pipe,
3 is melt (target substance), 4 is support material, 5 is heater, 6
The grown single crystal 7 represents a seed crystal, and the numeral 8 represents a roller.
本発明者らは、第1図および第3図に示した装置を用い
てシリコンの板状単結晶を製造した。このとき支持物質
4としては鉛を用い、この鉛をシリコンの融点直上の1
420〜1440℃に保持し、この溶融した鉛の表面上
に原料充填槽1からシリコン原料を供給して融液3とし
た。尚シリコンおよび鉛の物性は第1表に示す通りであ
る。The present inventors manufactured a plate-shaped single crystal of silicon using the apparatus shown in FIGS. 1 and 3. At this time, lead is used as the supporting material 4, and this lead is
The temperature was maintained at 420 to 1440°C, and a silicon raw material was supplied from the raw material filling tank 1 onto the surface of the molten lead to form a melt 3. The physical properties of silicon and lead are shown in Table 1.
第 1 表
シリコン融液3にシリコンの種結晶7を接触させてシー
ディングした後、冷却用ガス供給管2からArガスを融
液3の上面に供給して冷却しつつ単結晶6を育成し、こ
れを水平方向に引出した。Table 1 After seeding the silicon melt 3 by bringing it into contact with a silicon seed crystal 7, Ar gas is supplied from the cooling gas supply pipe 2 to the upper surface of the melt 3 to cool it and grow the single crystal 6. , which was pulled out horizontally.
その結果、幅500 mm、厚さ1mmの板状シリコン
単結晶を製造することができた。尚シーディングに用い
た種結晶は、最初は引上げ法で作製した棒状の単結晶を
板状に切断したものを使用し、以後は本発明で作製した
板状単結晶を使用した。As a result, a plate-shaped silicon single crystal with a width of 500 mm and a thickness of 1 mm could be manufactured. As the seed crystal used for seeding, a rod-shaped single crystal produced by a pulling method and cut into plate shapes was used at first, and thereafter, a plate-shaped single crystal produced by the present invention was used.
[発明の効果]
以上述べた如く本発明によれば、何らの不都合を発生さ
せることなく、広幅の単結晶を効率良く製造することが
可能となった。[Effects of the Invention] As described above, according to the present invention, it has become possible to efficiently produce a wide single crystal without causing any inconvenience.
第1図は本発明を実施する為に構成される板状単結晶製
造装置例を示す斜視図、第2図(a)は従来方法の原理
を示す説明図、第2図(b)は本発明方法の原理を示す
説明図、第3図は第1図に示した装置の縦断面図である
。FIG. 1 is a perspective view showing an example of a plate-shaped single crystal production apparatus configured to carry out the present invention, FIG. 2(a) is an explanatory diagram showing the principle of the conventional method, and FIG. 2(b) is a book An explanatory diagram showing the principle of the inventive method, FIG. 3 is a longitudinal sectional view of the apparatus shown in FIG. 1.
Claims (1)
融点が低い支持物質を用い、前記目的物質の融点よりも
高い温度条件下で溶融状態に置かれた前記支持物質の融
液表面上に前記目的物質の固体を供給して溶融し、該目
的物質の融液を種結晶の存在下で冷却して単結晶を育成
しつつ、該単結晶を前記支持物質の融液表面に沿って水
平方向に引出すことを特徴とする板状単結晶の製造方法
。(1) Using a support material that has a higher specific gravity and a lower melting point than the target substance to be single-crystallized, the melt surface of the support material is placed in a molten state at a temperature higher than the melting point of the target substance. The solid of the target substance is supplied and melted, and the melt of the target substance is cooled in the presence of a seed crystal to grow a single crystal, while the single crystal is horizontally moved along the surface of the melt of the support substance. A method for producing a plate-shaped single crystal, which is characterized by drawing in a direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195346A JPH0483789A (en) | 1990-07-23 | 1990-07-23 | Production of lamellar single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195346A JPH0483789A (en) | 1990-07-23 | 1990-07-23 | Production of lamellar single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0483789A true JPH0483789A (en) | 1992-03-17 |
Family
ID=16339645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2195346A Pending JPH0483789A (en) | 1990-07-23 | 1990-07-23 | Production of lamellar single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0483789A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002034095A (en) * | 2000-07-19 | 2002-01-31 | Foster Electric Co Ltd | Diaphragm for electro-acoustic transducer |
JP2006502956A (en) * | 2002-10-18 | 2006-01-26 | エバーグリーン ソーラー, インコーポレイテッド | Method and apparatus for crystal growth |
-
1990
- 1990-07-23 JP JP2195346A patent/JPH0483789A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002034095A (en) * | 2000-07-19 | 2002-01-31 | Foster Electric Co Ltd | Diaphragm for electro-acoustic transducer |
JP2006502956A (en) * | 2002-10-18 | 2006-01-26 | エバーグリーン ソーラー, インコーポレイテッド | Method and apparatus for crystal growth |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10253430B2 (en) | Method for preparing polycrystalline silicon ingot | |
US4226834A (en) | Lateral pulling growth of crystal ribbons and apparatus therefor | |
US4670096A (en) | Process and apparatus for producing semi-conductor foils | |
WO2013007108A1 (en) | Method for growing thin-plate silicon crystal | |
JPS6033798B2 (en) | Semiconductor material manufacturing method from coarse crystal to single crystal | |
KR20130059272A (en) | Crystalline silicon ingot and method of fabricating the same | |
US20090139445A1 (en) | Device for Fabricating a Ribbon of Silicon or Other Crystalline Materials and Method of Fabrication | |
JP4060106B2 (en) | Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material | |
JPH0483789A (en) | Production of lamellar single crystal | |
TWI281520B (en) | InP single crystal, GaAs single crystal, and method for producing thereof | |
JP2587932B2 (en) | Silicon ribbon manufacturing method | |
JPS59203798A (en) | Apparatus for preparing belt-shaped silicon crystal | |
JPS6251918B2 (en) | ||
JP2000302431A (en) | Device and method for producing platy silicon | |
US11661672B2 (en) | Method for producing a sheet from a melt by imposing a periodic change in the rate of pull | |
JP6025080B1 (en) | Heat reflector structure of large EFG growth furnace | |
JPH0543216A (en) | Formation of polycrystal silicon sheet by cast ribbon method | |
CN116219531A (en) | Production method and application of low-oxygen-content 12-inch silicon rod | |
JPS6136192A (en) | Crucible for producing single crystal | |
KR101814111B1 (en) | Manufacturing method for Large area Single Crystal Silicon Wafer | |
JP3633212B2 (en) | Single crystal growth method | |
JP3647964B2 (en) | Single crystal substrate manufacturing method and apparatus | |
JP2004059360A (en) | Apparatus and process for manufacturing crystal sheet, and solar cell | |
JPH0367996B2 (en) | ||
TW201925550A (en) | Method of manufacturing semiconductor sheet and manufacture equipment implementing such method |