JP2017113888A - 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物 - Google Patents

三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物 Download PDF

Info

Publication number
JP2017113888A
JP2017113888A JP2015248441A JP2015248441A JP2017113888A JP 2017113888 A JP2017113888 A JP 2017113888A JP 2015248441 A JP2015248441 A JP 2015248441A JP 2015248441 A JP2015248441 A JP 2015248441A JP 2017113888 A JP2017113888 A JP 2017113888A
Authority
JP
Japan
Prior art keywords
composition
dimensional structure
particles
manufacturing
support material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015248441A
Other languages
English (en)
Inventor
大竹 俊裕
Toshihiro Otake
俊裕 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015248441A priority Critical patent/JP2017113888A/ja
Publication of JP2017113888A publication Critical patent/JP2017113888A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

【課題】材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる三次元造形物の製造方法を提供すること。【解決手段】本発明の三次元造形物の製造方法は、所定のパターンで形成された層を積層し、三次元造形物を製造する三次元造形物の製造方法であって、複数個の粒子を含む組成物を吐出する吐出工程と、吐出された前記組成物の粘度を低下させる粘度低下処理を施す粘度低下処理工程と、前記組成物を目的の部位に接触させた後に、前記組成物に含まれる前記粒子を接合させる接合工程と、を含む一連の工程を繰り返し行うことを特徴とする。前記組成物は、前記組成物をゲルゾル相転移させるゲルゾル相転移材料を含むものであるのが好ましい。【選択図】なし

Description

本発明は、三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物に関する。
従来より、例えば、三次元CADソフト、三次元スキャナー等で生成した三次元物体のモデルデータを基にして、三次元造形物を形成する方法が知られている。
三次元造形物を形成する方法として、積層法(三次元造形法)が知られている。積層法では、一般的に、三次元物体のモデルデータを多数の二次元断面層データ(スライスデータ)に分割した後、各二次元断面層データに対応する断面部材を順次造形しつつ、断面部材を順次積層することによって三次元造形物を形成する。
積層法は、造形しようとする三次元造形物のモデルデータさえあれば、直ちに形成することが可能であり、造形に先立って金型を作成するなどの必要がないので、迅速にしかも安価に三次元造形物を形成することが可能である。また、薄い板状の断面部材を一層ずつ積層して形成するので、例えば内部構造を有する複雑な物体であっても、複数の部品に分けることなく一体の造形物として形成することが可能である。
このような積層法として、金属粉末と溶剤とを含む材料を用いて材料層を形成し、当該材料層に光ビームを照射して金属粉末を接合して、三次元造形物を製造する技術が知られている(例えば、特許文献1参照)。
しかしながら、このような技術では、材料層を構成する材料の一部にのみ光ビームを照射して焼結するため、材料層のうち光ビームが照射されない部分を構成するものは除去されるだけの無駄な部分であった。また、所定の光ビームの照射領域に対して、その近傍でも不完全ではあるが金属粉末の焼結が生じるため、三次元造形物の寸法精度が低下するという問題があった。
また、金属粉末と溶剤とを含む組成物を所定のパターンで付与することも考えられるが、このような場合、組成物の粘度が低いものであると、金属粉末(粒子)の沈降を生じてしまい、また、金属粉末(粒子)の沈降を防止するために、組成物の粘度を高いものとすると、いわゆる「尾引き」等を生じ、所望のパターンを形成するのが困難となる。
特開2008−184622号公報
本発明の目的は、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる三次元造形物の製造方法を提供すること、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる三次元造形物製造装置を提供すること、寸法精度に優れた三次元造形物を提供すること、また、寸法精度に優れた三次元造形物の製造に好適に用いることができる三次元造形物製造用組成物を提供することにある。
このような目的は、下記の本発明により達成される。
本発明の三次元造形物の製造方法は、所定のパターンで形成された層を積層し、三次元造形物を製造する三次元造形物の製造方法であって、
複数個の粒子を含む組成物を吐出する吐出工程と、
吐出された前記組成物の粘度を低下させる粘度低下処理を施す粘度低下処理工程と、
前記組成物を目的の部位に接触させた後に、前記組成物に含まれる前記粒子を接合させる接合工程と、
を含む一連の工程を繰り返し行うことを特徴とする。
これにより、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる三次元造形物の製造方法を提供することができる。
本発明の三次元造形物の製造方法では、前記組成物は、前記組成物をゲルゾル相転移させるゲルゾル相転移材料を含むものであることが好ましい。
これにより、三次元造形物の生産性をより優れたものとしつつ、製造される三次元造形物の寸法精度をより優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記粘度低下処理工程において、前記組成物に対して光照射を行うことが好ましい。
これにより、粘度低下処理を容易に行うことができ、三次元造形物の生産性をより優れたものとすることができるとともに、三次元造形物の製造装置の構成を簡易なものとすることができる。
本発明の三次元造形物の製造方法では、前記組成物は、アゾベンゼンをジヒドロアノステロールで機能化した誘導体を含むものであることが好ましい。
これにより、三次元造形物の生産性をより優れたものとしつつ、製造される三次元造形物の寸法精度をより優れたものとすることができる。また、最終的に得られる三次元造形物中に不本意に粘度低下剤が残存することをより効果的に防止することができ、三次元造形物の信頼性をより優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記粘度低下処理工程において、前記組成物の冷却を行うことが好ましい。
これにより、粘度低下処理を容易に行うことができ、三次元造形物の生産性をより優れたものとすることができるとともに、三次元造形物の製造装置の構成を簡易なものとすることができる。また、組成物の構成成分や三次元造形物の製造装置の構成部材の不本意な劣化等を効果的に防止することができ、三次元造形物の生産の安定性、三次元造形物の信頼性等をより優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記組成物は、ポリ(N−イソプロピルアクリルアミド)を含むものであることが好ましい。
これにより、三次元造形物の生産性をより優れたものとしつつ、製造される三次元造形物の寸法精度をより優れたものとすることができる。また、最終的に得られる三次元造形物中に不本意に粘度低下剤が残存することをより効果的に防止することができ、三次元造形物の信頼性をより優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記組成物は、前記粒子として、金属材料、セラミックス材料のうち少なくとも一方を含む材料で構成されたものを含むものであることが好ましい。
これにより、例えば、三次元造形物の質感(高級感)、機械的強度、耐久性等をより優れたものとすることができる。
本発明の三次元造形物の製造方法では、前記接合工程は、レーザーの照射により行うものであることが好ましい。
これにより、三次元造形物の生産性や、エネルギー効率の観点から有利である。また、最終的に得られる三次元造形物の寸法精度、機械的強度、信頼性をより優れたものとすることができる。
本発明の三次元造形物製造装置は、粒子を含む組成物を吐出する吐出手段と、
吐出された前記組成物の粘度を低下させる粘度低下処理を施す粘度低下処理手段と、
前記組成物が目的の部位に接触した後に、前記粒子を接合するためのエネルギーを付与する接合エネルギー付与手段とを備えることを特徴とする。
これにより、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる三次元造形物製造装置を提供することができる。
本発明の三次元造形物は、本発明の三次元造形物製造装置を用いて製造されたものであることを特徴とする。
これにより、寸法精度に優れた三次元造形物を提供することができる。
本発明の三次元造形物製造用組成物は、所定のパターンで形成された層を積層し、三次元造形物を製造するのに用いられる組成物であって、
複数個の粒子と、組成物をゲルゾル相転移させるゲルゾル相転移材料とを含むものであることを特徴とする。
これにより、寸法精度に優れた三次元造形物の製造に好適に用いることができる三次元造形物製造用組成物を提供することができる。
本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。 吐出された組成物の粘度低下処理を施さなかった場合の組成物の吐出物(液滴)の形状を模式的に示す図である。 粘度低下処理された後の組成物の吐出物(液滴)の形状を模式的に示す図である。 本発明の三次元造形物の製造方法の一例を示すフローチャートである。 本発明の三次元造形物製造装置の好適な実施形態を模式的に示す断面図である。
以下、添付する図面を参照しつつ、好適な実施形態について詳細な説明をする。
《三次元造形物の製造方法》
まず、本発明の三次元造形物の製造方法について説明する。
図1〜図12は、本発明の三次元造形物の製造方法の好適な実施形態の工程を模式的に示す縦断面図である。また、図13は、吐出された組成物の粘度低下処理を施さなかった場合の組成物の吐出物(液滴)の形状を模式的に示す図であり、図14は、粘度低下処理された後の組成物の吐出物(液滴)の形状を模式的に示す図である。また、図15は、本発明の三次元造形物の製造方法の一例を示すフローチャートである。
図1〜図12、図15に示すように、本実施形態の三次元造形物10の製造方法は、複数の層1を積層して三次元造形物10を製造する方法であって、複数個の粒子21を含む液状の組成物(三次元造形物製造用組成物)2’を吐出する吐出工程(図1、図6参照)と、吐出された組成物2’の粘度を低下させる粘度低下処理を施す粘度低下処理工程(図2、図7参照)と、粘度低下処理が施された組成物2’を目的の部位に接触させた後(図3、図8参照)に、組成物2’に含まれる粒子21を接合させる接合工程(図5、図10参照)とを有し、これらを含む一連の工程を繰り返し行う。
このように、液状の組成物2’を吐出することにより、粉体としての組成物等をスキージ等の平坦化手段により平坦化して層を形成する場合に比べて、材料の無駄を抑制できる。
ところで、複数個の粒子を含む組成物を吐出する場合において、組成物の粘度が低いものであると、粒子の沈降等を生じてしまい、組成物の吐出自体を行うことができなかったり、組成物を吐出することができても、組成物を用いて形成されるパターンにおける構成成分(例えば、粒子)の分布が不本意に不均一になったりするという問題があり、また、粒子の沈降を防止するために、組成物の粘度を高いものとすると、いわゆる「尾引き」等を生じ、所望のパターンを形成するのが困難となることを、本発明者は、見出していた(図13参照)。そして、上記のような場合、いずれも、寸法精度の高いパターンを形成することができず、最終的に得られる三次元造形物の寸法精度が低いものとなるという問題がある。
そこで、本実施形態では、吐出された液状の組成物2’が目的の部位に接触する前に、当該組成物2’に対し粘度低下処理を施すこととした(図2、図7参照)。
これにより、組成物2’の吐出時には、組成物2’の粘度を適切に高いものとすることができ、組成物2’中における粒子21の沈降等を効果的に防止することができるとともに、吐出された組成物2’に粘度低下処理を施すことにより、組成物2’の変形が生じ易くなり、吐出された組成物2’が目的の部位に接触する前に、当該組成物2’を、球形度の高い球状等のように、尾引きの問題を生じにくい形状に調整することができる(図14参照)。その結果、組成物2’が目的の部位(被着体)に接触して形成されるパターンを所望の形状を有するものとすることができる。したがって、組成物2’の吐出不良等を効果的に防止し、優れた生産性で、寸法精度の高い三次元造形物10を製造することができる。
また、組成物2’中における粒子21の良好な分散状態を保持することができるため、組成物2’の吐出を行う装置において、目詰まり等の問題を効果的に防止することができるため、長期間にわたって安定的に三次元造形物10の製造を行うことができる。また、三次元造形物10の製造装置のメンテナンスも容易になる。
以下、各工程について詳細に説明する。
≪吐出工程≫
吐出工程では、複数個の粒子21と、粒子(分散質)21を分散する分散媒22とを含む液状の組成物(三次元造形物製造用組成物)2’を、所定の部位(形成すべき接合部2に対応する部位)に向けて吐出する(図1、図6参照)。
特に、1層目の層1の形成に用いられる組成物2’を吐出する吐出工程では、ステージ(支持体)M41の表面に向かって組成物2’を吐出し(図1参照)、2層目以降の層1の形成に用いられる組成物2’を吐出する吐出工程では、先に組成物2’を用いて形成された接合部2を有する層1に向かって組成物2’を吐出する(図6参照)。すなわち、1層目の層1の形成に用いられる組成物2’を吐出する吐出工程では、ステージ(支持体)M41が組成物2’の被着体であり(図1参照)、2層目以降の層1の形成に用いられる組成物2’を吐出する吐出工程では、先に形成された層1が組成物2’の被着体である(図6参照)。なお、ステージ(支持体)M41上に金属プレート(図示しない)を載置させ、金属プレートを被着体としてもよい。
組成物2’は、吐出可能な程度の流動性を有するものであればよく、例えば、ペースト状のものであってもよい。
本工程における組成物2’の粘度(粘度低下処理が施されていない状態の組成物2’の粘度)は、100mPa・s以上10000mPa・s以下であるのが好ましく、200mPa・s以上5000mPa・s以下であるのがより好ましい。
これにより、組成物2’中における粒子21の分散安定性、組成物2’の吐出安定性をより優れたものとすることができ、三次元造形物10の生産性をより優れたものとすることができる。また、本工程における組成物2’の粘度が前記範囲内の値であると、粘度低下処理後の組成物2’の粘度を好適に低いものとすることができ、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
なお、本明細書中において、粘度とは、特に条件の指定がない限り、E型粘度計(例えば、東京計器社製 VISCONIC ELD等)を用いて測定される値をいう。
組成物2’は、粘度低下処理によって粘度が低下し得るものであればいかなる組成のものであってもよいが、組成物2’をゲルゾル相転移させるゲルゾル相転移材料を含むものであるのが好ましい。
これにより、例えば、吐出工程時には組成物2’をゲル状態としつつ、粘度低下処理後には、組成物をゾル状態とすることができ、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。
組成物2’については、後に詳述する。
組成物2’の吐出は、例えば、インクジェット装置、各種ディスペンサー等の各種吐出装置等を用いて行うことができるが、本工程では、組成物2’を複数の液滴として吐出するのが好ましい。
これにより、例えば、微細な構造を有する三次元造形物10の製造にもより好適に対応することができ、三次元造形物10の寸法精度をより優れたものとすることができる。
本工程で組成物2’を複数の液滴として吐出する場合、吐出される組成物2’の液滴は、1滴あたりの体積が、1pL以上100pL以下であるのが好ましく、2pL以上80pL以下であるのがより好ましい。
これにより、例えば、微細な構造を有する三次元造形物10の製造にもより好適に対応することができ、三次元造形物10の寸法精度をより優れたものとすることができるとともに、三次元造形物10の生産性をより優れたものとすることができる。
三次元造形物10の製造においては、複数種の組成物2’を用いてもよい。
これにより、例えば、三次元造形物10の各部位に求められる特性に応じて、材料を組み合わせることができ、三次元造形物10全体としての特性(外観、機能性(例えば、弾性、靱性、耐熱性、耐腐食性等)等を含む)をより優れたものとすることができる。
≪粘度低下処理工程≫
前述した吐出工程で吐出された組成物2’が、目的とする部位(被着体)に接触する前のタイミングで、当該組成物2’に対して、粘度低下処理を施す(図2、図7参照)。
これにより、吐出工程で吐出された組成物2’は、変形が生じ易いものとなり、目的の部位に接触する前に、球形度の高い球状等のように、尾引きの問題を生じにくい形状に変形させることができる(図14参照)。その結果、組成物2’が目的の部位(被着体)に接触して形成されるパターンを所望の形状を有するものとすることができる。したがって、最終的に得られる三次元造形物10を寸法精度の高いものとすることができる。
本工程で行う粘度低下処理は、組成物2’の粘度を、吐出工程に比べて低いものとすることができる処理であればいかなるものであってもよく、例えば、組成物2’の組成等により異なる。
例えば、組成物2’が、光照射により組成物2’の粘度を低下させる粘度低下剤を含むものである場合、本工程は、吐出された組成物2’に対する光照射により行うことができる。
これにより、粘度低下処理を容易に行うことができ、三次元造形物10の生産性をより優れたものとすることができるとともに、三次元造形物10の製造装置の構成を簡易なものとすることができる。
例えば、組成物2’が、温度低下により組成物2’の粘度を低下させる粘度低下剤を含むものである場合、本工程は、吐出された組成物2’の冷却により行うことができる。
これにより、粘度低下処理を容易に行うことができ、三次元造形物10の生産性をより優れたものとすることができるとともに、三次元造形物10の製造装置の構成を簡易なものとすることができる。また、組成物2’の構成成分や三次元造形物10の製造装置の構成部材の不本意な劣化等を効果的に防止することができ、三次元造形物10の生産の安定性、三次元造形物10の信頼性等をより優れたものとすることができる。
本工程で組成物2’の粘度を低下させる光の照射を行う場合、当該光は、組成物2’の組成等により異なり、例えば、紫外線、可視光線、赤外線、X線、γ線、電子線、イオンビーム、中性子線、α線等が挙げられるが、これらの中でも、紫外線が好ましい。
これにより、組成物2’の粘度をより効率よく低下させることができる。また、粘度低下剤の選択の幅をより広いものとすることができる。また、三次元造形物10の製造装置をより安価なものとすることができ、三次元造形物10の製造コスト等の観点からも有利である。
前記光の照射方向は、特に限定されないが、吐出された組成物2’に対し、その進行方向(図示の構成では上下方向)を軸に、周方向全体から前記光を照射するのが好ましい(図2、図7参照)。
これにより、吐出された組成物2’の各部位(各方向)での粘度に不本意なばらつきが生じることをより効果的に防止することができる。その結果、三次元造形物10の寸法精度をさらに優れたものとすることができる。
また、本工程で組成物2’の温度を低下させて組成物2’の粘度を低下させる場合、例えば、吐出される組成物2’よりも温度の低い気体を吐出された組成物2’に吹き付けることで組成物2’の粘度を低下させることができる。
これにより、組成物2’の粘度をより効率よく低下させることができる。
前記冷気の吹き付け方向(噴射方向)は、特に限定されないが、吐出された組成物2’に対し、その進行方向(図示の構成では上下方向)を軸に、周方向全体から前記冷気を吹き付けるのが好ましい(図2、図7参照)。また、吐出された組成物2’の噴射方向に沿って前記冷気を吹き付けることによる、組成物2’周囲の温度を低下させて冷却する構成としてもよい。
これにより、吐出された組成物2’の各部位(各方向)での粘度に不本意なばらつきが生じることをより効果的に防止することができる。その結果、三次元造形物10の寸法精度をさらに優れたものとすることができる。
なお、組成物2’が吐出される空間(チャンバー内)の温度を吐出される組成物2’の温度より低いものとすることにより、本工程で組成物2’の温度を所定の温度以下まで低下させてもよい。
これにより、ガスの吹き付け圧力等による組成物2’の不本意な変形をより効果的に防止することができる。
このような場合、例えば、熱交換機等により組成物2’が吐出される空間(チャンバー内)を冷却してもよい。また、吐出工程に供される組成物2’を予め加熱しておき、吐出後に自然冷却してもよい。
本工程で組成物2’の温度を低下させて組成物2’の粘度を低下させる場合、吐出時における組成物2’の温度をT0[℃]、粘度低下処理時における組成物2’の温度(最低温度)をT1[℃]としたとき、5≦T0−T1≦70の関係を満足するのが好ましく、10≦T0−T1≦60の関係を満足するのがより好ましい。
これにより、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。
本工程において、粘度低下処理後の組成物2’の粘度は、特に限定されないが、1mPa・s以上30mPa・s以下であるのが好ましく、2mPa・s以上25mPa・s以下であるのがより好ましい。
これにより、吐出された組成物2’が目的の部位に接触する前に、当該組成物2’を、球形度の高い球状等のように、尾引きの問題を生じにくい形状により好適に調整することができる。なお、尾引きした部位が分離した場合であっても、分離した組成物2’が球状に近い形状に変形しやすくなる。また、吐出された組成物2’が目的の部位に接触する際の当該組成物2’の不本意な変形もより効果的に防止することができる。このようなことから、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
また、吐出時における組成物2’の粘度(粘度低下処理が施されていない状態の組成物2’の粘度)をη0[mPa・s]、粘度低下処理工程での組成物2’の粘度(粘度低下処理が施された状態の組成物2’の粘度)をη1[mPa・s]としたとき、99≦η0−η1≦9970の関係を満足するのが好ましく、198≦η0−η1≦4975の関係を満足するのがより好ましい。
これにより、三次元造形物10の生産性と、三次元造形物10の寸法精度とを、より高いレベルで両立することができる。
また、吐出時における組成物2’の貯蔵弾性率(粘度低下処理が施されていない状態の組成物2’の貯蔵弾性率)と、粘度低下処理工程での組成物2’の貯蔵弾性率(粘度低下処理が施された状態の組成物2’の貯蔵弾性率)との差は、10Pa以上であるのが好ましく、100Pa以上であるのがより好ましく、1000Pa以上であるのがより好ましい。
これにより、三次元造形物10の生産性と、三次元造形物10の寸法精度とを、より高いレベルで両立することができる。
なお、貯蔵弾性率の測定は、例えば、Anton Paar社製レオメーター“Physica MCR301”(登録商標)を用いて行うことができる。また、貯蔵弾性率は、例えば、以下の条件での測定により求めることができる。
・プレート: パラレルプレート(φ25mm)
・プレート間隔: 1mm
・応力: 4dyne/cm
・角周波数: 1rad/s
なお、吐出工程に供される組成物2’が揮発性の溶剤を含むものである場合、当該溶剤を除去するための溶剤除去工程を行ってもよい。
このような溶剤除去工程(組成物2’中に含まれる溶剤の除去)は、いかなるタイミングで行うものであってもよいが、粘度低下処理工程の後であって、組成物2’が目的の部位に接触する前に行うものであるのが好ましい。
これにより、組成物2’が目的の部位に接触する際における不本意な変形等をより効果的に防止することができ、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
溶剤除去工程を行う場合、当該工程は、例えば、加熱処理や減圧処理により行うことができる。
なお、溶剤除去工程は、組成物2’が目的の部位に接触した後に行うものであってもよい。
≪サポート材形成用組成物供給工程≫
本実施形態では、前述した組成物2’とともに、サポート材形成用組成物5’を用いてサポート材(支持部)5を形成する(図4、図9参照)。
これにより、複数の層1を積み重ねる場合において、新たに接合部2を形成すべき部位が、先に形成された層1の接合部2と接触するものでない場合であっても、当該新たに接合部2を形成すべき部位を好適に支持することができる。このようなことから、様々な形状の三次元造形物10を優れた寸法精度で製造することができる。
サポート材形成用組成物5’は、例えば、前述した組成物2’と同様の方法により、吐出することができる。
サポート材形成用組成物5’の形態は、いかなるものであってもよいが、通常、複数個の粒子を含むものであり、流動性を有するものである。
特に、サポート材形成用組成物5’は、複数個の粒子とともに、当該粒子を分散する液状の分散媒を含み、全体として液状をなすものであるのが好ましい。
これにより、サポート材形成用組成物5’を目的の部位により好適に付与することができる。
サポート材形成用組成物5’の付与(吐出)は、例えば、インクジェット装置、各種ディスペンサー等の各種吐出装置等を用いて行うことができるが、本工程では、サポート材形成用組成物5’を複数の液滴として吐出するのが好ましい。
これにより、サポート材形成用組成物5’の使用量を抑制しつつ好適にサポート材5を形成することができる。また、サポート材形成用組成物5’を微細なパターンで付与することができ、三次元造形物10の寸法精度をより優れたものとする上で有利である。
本工程でサポート材形成用組成物5’を複数の液滴として吐出する場合、吐出されるサポート材形成用組成物5’の液滴は、1滴あたりの体積が、1pL以上100pL以下であるのが好ましく、2pL以上80pL以下であるのがより好ましい。
これにより、例えば、微細なパターンでサポート材形成用組成物5’を付与することができ、三次元造形物10の寸法精度をより優れたものとすることができるとともに、三次元造形物10の生産性をより優れたものとすることができる。
液状(ペースト状を含む)のサポート材形成用組成物5’の付与を吐出により行う場合、吐出されたサポート材形成用組成物5’が、目的とする部位(被着体)に接触する前のタイミングで、当該サポート材形成用組成物5’に対して、前述したのと同様な粘度低下処理を施してもよい。
これにより、吐出されたサポート材形成用組成物5’は、変形が生じ易いものとなり、目的の部位に接触する前に、球形度の高い球状等のように、尾引きの問題を生じにくい形状に変形させることができる。その結果、サポート材形成用組成物5’が目的の部位(被着体)に接触して形成されるパターンを所望の形状を有するものとすることができる。したがって、最終的に得られる三次元造形物10の寸法精度をより高いものとすることができる。
なお、サポート材形成用組成物供給工程に供されるサポート材形成用組成物5’が揮発性の溶剤を含むものである場合、当該溶剤を除去するための溶剤除去工程を行ってもよい。
このような溶剤除去工程(サポート材形成用組成物5’中に含まれる溶剤の除去)は、いかなるタイミングで行うものであってもよいが、サポート材形成用組成物5’に対する粘度低下処理の後であって、サポート材形成用組成物5’が目的の部位に接触する前に行うものであるのが好ましい。
これにより、サポート材形成用組成物5’が目的の部位に接触する際における不本意な変形等をより効果的に防止することができ、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
溶剤除去工程を行う場合、当該工程は、例えば、加熱処理や減圧処理により行うことができる。
なお、溶剤除去工程は、サポート材形成用組成物5’が目的の部位に接触した後に行うものであってもよい。
三次元造形物10の製造においては、複数種のサポート材形成用組成物5’を用いてもよい。
サポート材形成用組成物5’については、後に詳述する。
≪接合工程≫
その後、組成物2’を用いて形成されたパターンに含まれる粒子21を接合するための接合処理を施す(図5、図10参照)。
これにより、組成物2’中に含まれる粒子21が接合し、接合部2が形成される。このように接合部2が形成されることにより、その後の粒子21の不本意な移動が防止され、三次元造形物10の寸法精度を優れたものとすることができる。接合部2は、最終的に得られる三次元造形物10の実体部を構成するものである。
接合工程は、粒子21を接合することができればいかなる方法で行ってもよいが、レーザーの照射により行うのが好ましい。
これにより、所望の部位に高い選択性で粒子21の接合に用いるエネルギーを付与することができ、エネルギー効率や三次元造形物10の生産性の観点から有利である。また、所望の部位に高い選択性でエネルギーを付与することにより、好ましくない部位の不本意な変形をより効果的に防止することができ、最終的に得られる三次元造形物10の寸法精度をより高いものとすることができる。
また、レーザー光の照射により形成される接合部2は、一般に、粒子21同士が強固に接合したものとなる。また、本工程で、レーザー光が照射されるパターン(組成物2’によるパターン)よりも下側に、接合部2が形成された層1を有する場合には、一般に、当該下側の層1の接合部2と、新たに形成される接合部2とが、強固に接合したものとなる。このようなことから、最終的に得られる三次元造形物10の機械的強度をより優れたものとすることができる。
また、レーザー光を照射することにより、粒子21の接合を行うとともに、粒子21以外の不要な成分を除去することができる。例えば、バインダー、溶剤等を除去することができ、これらの成分が形成される接合部2中に残存することを効果的に防止することができる。
接合の形態は、粒子21の構成材料等により異なるが、例えば、融着、焼結、溶融固化等が挙げられる。
以下、レーザー光の照射により接合部2を形成する場合について中心的に説明する。
本工程で用いることのできるレーザーとしては、例えば、ルビーレーザー、YAGレーザー、Nd:YAGレーザー、チタンサファイアレーザー、半導体レーザー等の固体レーザー;色素レーザー等の液体レーザー;中性原子レーザー(ヘリウムネオンレーザー等)、イオンレーザー(アルゴンイオンレーザー等)、分子レーザー(炭酸ガスレーザー、窒素レーザー等)、エキシマレーザー、金属蒸気レーザー(ヘリウムカドミニウムレーザー等)等のガスレーザー;自由電子レーザー;酸素−ヨウ素化学レーザー、フッ化水素レーザー等の化学レーザー;ファイバーレーザー等が挙げられる。
本工程で照射されるレーザーのビーム径は、0.5μm以上100μm以下であるのが好ましく、1μm以上15μm以下であるのがより好ましい。
これにより、三次元造形物10の寸法精度をより優れたものとしつつ、接合部2をより効率よく形成することができ、三次元造形物10の生産性をより優れたものとすることができる。
レーザーの出力は、特に限定されないが、50W以上100W以下であるのが好ましい。
これにより、装置の大型化を防止しつつ、効率よく接合部2を形成することができる。
また、サポート材形成用組成物5’が粒子を含むものである場合、本工程において、当該粒子の接合も行ってもよい。
サポート材形成用組成物5’を構成する粒子の接合は、例えば、組成物2’を構成する粒子21の接合の方法、条件として説明したのと同様の方法、条件(例えば、レーザー光の照射条件等)により行うことができる。
本工程においてサポート材形成用組成物5’を構成する粒子の接合を行う場合、当該粒子の接合は、組成物2’を構成する粒子21の接合と、サポート材形成用組成物5’を構成する粒子の接合とは、同一の条件で行うものであってもよいし、異なる条件で行うものであってもよい。
本工程においてサポート材形成用組成物5’を構成する粒子の接合を行う場合、当該粒子の接合は、当該粒子同士の接合強度(例えば、焼結度)が、組成物2’を構成する粒子21同士の接合強度(例えば、焼結度)よりも小さくなるように行うものであってもよい。
これにより、サポート材5としての機能を効果的に発揮させつつ、後述するサポート材除去工程でのサポート材5の除去をより容易に行うことができる。
接合部2を有する層1の厚さは、特に限定されないが、10μm以上500μm以下であるのが好ましく、20μm以上250μm以下であるのがより好ましい。
これにより、三次元造形物10の生産性を優れたものとしつつ、三次元造形物10の寸法精度をより優れたものとすることができる。
≪サポート材(支持部)除去工程≫
そして、前記のような一連の工程を繰り返し行った後に(図11参照)、後処理工程として、サポート材5を除去する(図12参照)。これにより、三次元造形物10が取り出される。
本工程の具体的な方法としては、例えば、刷毛等でサポート材5を払い除ける方法、サポート材5を吸引により除去する方法、空気等の気体を吹き付ける方法、水等の液体を付与する方法(例えば、液体中に前記のようにして得られた積層体を浸漬する方法、液体を吹き付ける方法等)、超音波振動等の振動を付与する方法、粒子が接合することにより形成されたサポート材5を割る等して破壊する方法等が挙げられる。また、これらから選択される2種以上の方法を組み合わせて行うことができる。
前述したような本発明の製造方法によれば、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる。
前述したような三次元造形物の製造方法をフローチャートにまとめると、図15のようになる。
なお、図示の構成では、理解を容易にするために、前述した各工程を順次行うものとして説明したが、造形領域(ステージ上の空間)の各部位で、異なる工程を同時進行的に行ってもよい。また、1つの層1を形成するのに前述した一連の工程を繰り返し行ってもよい。
《三次元造形物製造装置》
次に、本発明の三次元造形物製造装置について説明する。
図16は、本発明の三次元造形物製造装置の好適な実施形態を模式的に示す断面図である。
図16に示すように、三次元造形物製造装置M100は、制御部M2と、粒子21を含む組成物2’を吐出する組成物供給部(吐出手段)M3と、吐出された組成物2’の粘度を低下させる粘度低下処理を施す粘度低下処理手段M5と、組成物2’を用いて形成されたパターン上に粒子21を接合するためのエネルギー線を照射(走査)する接合エネルギー付与手段(レーザー光照射手段)M6と、サポート材(支持部)5の形成に用いるサポート材形成用組成物5’を吐出するサポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8とを備えている。
制御部M2は、コンピューターM21と、駆動制御部M22とを有している。
コンピューターM21は、内部にCPUやメモリ等を備えて構成される一般的な卓上型コンピューター等である。コンピューターM21は、三次元造形物10の形状をモデルデータとしてデータ化し、それを平行な幾層もの薄い断面体にスライスして得られる断面データ(スライスデータ)を駆動制御部M22に対して出力する。
駆動制御部M22は、組成物供給部(吐出手段)M3、層形成部M4、粘度低下処理手段M5、接合エネルギー付与手段(レーザー光照射手段)M6、サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8等をそれぞれに駆動する制御手段として機能する。具体的には、例えば、組成物供給部(吐出手段)M3による組成物2’の吐出パターンや吐出量、サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8によるサポート材形成用組成物5’の吐出パターンや吐出量、粘度低下処理手段M5による光の照射タイミングや照射量、冷気の供給タイミングや供給量、接合エネルギー付与手段(レーザー光照射手段)M6によるレーザー光の照射パターンや照射量、走査速度、ステージ(昇降ステージ)M41の下降量等を制御する。
層形成部M4は、組成物2’およびサポート材形成用組成物5’が供給され、接合部2(組成物2’)およびサポート材5(サポート材形成用組成物5’)で構成された層1を支持するステージ(昇降ステージ)M41と、昇降ステージM41を取り囲む枠体M45とを有している。
昇降ステージM41は、先に形成された層1の上に、新たな層1を形成するのに際して、駆動制御部M22からの指令により所定量だけ順次下降する。この昇降ステージM41の下降量は、新たに形成される層1の厚さと等しくなるように設定される。
ステージM41は、表面(組成物2’およびサポート材形成用組成物5’が付与される部位)が平坦なものである。これにより、厚さの均一性の高い層1を容易かつ確実に形成することができる。
ステージM41は、高強度の材料で構成されたものであるのが好ましい。ステージM41の構成材料としては、例えば、ステンレス鋼等の各種金属材料等が挙げられる。
また、ステージM41の表面(組成物2’およびサポート材形成用組成物5’が付与される部位)には、表面処理が施されていてもよい。これにより、例えば、組成物2’の構成材料やサポート材形成用組成物5’の構成材料がステージM41に強固に付着してしまうことをより効果的に防止したり、ステージM41の耐久性を特に優れたものとし、三次元造形物10のより長期間にわたる安定的な生産を図ったりすることができる。ステージM41の表面の表面処理に用いられる材料としては、例えば、ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられる。
組成物供給部(吐出手段)M3は、駆動制御部M22からの指令により移動し、内部に収容された組成物2’が、ステージM41に所定のパターンで供給されるように構成されている。
組成物供給部(吐出手段)M3は、組成物2’を吐出するように構成されている。
組成物供給部(吐出手段)M3としては、例えば、インクジェットヘッド、各種ディスペンサー等が挙げられるが、特に、組成物2’を液滴として吐出するものであるのが好ましい。これにより、微細なパターンで組成物2’を付与することができ、微細な構造を有する三次元造形物10であっても、特に高い寸法精度、特に高い生産性で製造することができる。
インクジェット法による液滴吐出方式としては、例えば、ピエゾ方式や、組成物2’を加熱して発生した泡(バブル)により組成物2’を吐出させる方式等を用いることができる。
組成物供給部(吐出手段)M3は、駆動制御部M22からの指令により、付与する組成物2’のパターン(形成すべき接合部2に対応するパターン)、量等が制御されている。組成物供給部(吐出手段)M3による組成物2’の吐出パターン、吐出量等は、スライスデータに基づいて決定される。これにより、必要十分な量の組成物2’を付与することができ、所望のパターンの接合部2を確実に形成することができ、三次元造形物10の寸法精度等をより確実に優れたものとすることができる。
組成物供給部(吐出手段)M3の吐出部の大きさ(ノズル径)は、特に限定されないが、10μm以上100μm以下であるのが好ましい。
これにより、三次元造形物10の寸法精度をより優れたものとしつつ、三次元造形物10の生産性をより優れたものとすることができる。
粘度低下処理手段M5は、吐出された組成物2’の粘度を低下させる粘度低下処理を施すものである。
粘度低下処理手段M5は、組成物2’の粘度を、吐出工程に比べて低いものとすることができる処理であればいかなるものであってもよいが、例えば、吐出された組成物2’に対して光を照射する光照射手段や、吐出された組成物2’を冷却する冷却手段を採用することができる。
粘度低下処理手段M5は、吐出されたサポート材形成用組成物5’の粘度を低下させるのに用いてもよい。
接合エネルギー付与手段(レーザー光照射手段)M6は、組成物2’が目的の部位に接触した後に、粒子21を接合するためのエネルギーを付与するものである。
これにより、組成物2’中に含まれる粒子21が接合し、接合部2を形成することができる。
特に、本実施形態では、接合エネルギー付与手段M6は、レーザー光を照射(走査)するレーザー光照射手段である。
これにより、組成物2’に選択的にエネルギーを付与することができ、接合部2の形成のエネルギー効率をより優れたものとすることができる。これにより、粒子21の接合や、バインダー等の除去をより効率よく行うことができ、三次元造形物10の生産性をより優れたものとすることができる。また、エネルギー効率を優れたものとすることができるため、省エネルギーの観点からも有利である。
サポート材形成用組成物5’が粒子を含むものである場合、接合エネルギー付与手段(レーザー光照射手段)M6は、当該粒子の接合も行うものであってもよい。
サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8は、サポート材(支持部)5の形成に用いるサポート材形成用組成物5’を吐出するように構成されている。
サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8としては、前述した組成物供給部(吐出手段)M3と同様に、例えば、インクジェットヘッド、各種ディスペンサー等が挙げられるが、特に、サポート材形成用組成物5’を液滴として吐出するものであるのが好ましい。
これにより、微細なパターンでサポート材形成用組成物5’を付与することができ、サポート材形成用組成物5’の使用量を抑制することができるとともに、微細な構造を有する三次元造形物10であっても特に生産性良く製造することができる。
サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8は、駆動制御部M22からの指令により、形成すべきサポート材5のパターン、付与するサポート材形成用組成物5’の量等が制御されている。サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)M8によるサポート材形成用組成物5’の吐出パターン、吐出量等は、スライスデータに基づいて決定される。これにより、必要十分な量のサポート材形成用組成物5’を付与することができ、所望のパターンのサポート材(支持部)5を確実に形成することができ、三次元造形物10の寸法精度等をより確実に優れたものとすることができる。
本発明では、三次元造形物の製造を雰囲気の組成等が管理されたチャンバー内で行うものであってもよい。これにより、例えば、不活性ガス中で接合工程を行うことができ、粒子の不本意な変性等をより効果的に防止することができる。また、例えば、反応性ガスを含む雰囲気中で接合工程を行うことにより、原料として用いる粒子の組成とは異なる組成の材料で構成された三次元造形物を好適に製造することができる。
前述したような本発明の三次元造形物製造装置によれば、材料の無駄の発生を抑制しつつ、寸法精度に優れた三次元造形物を効率よく製造することができる。
《組成物(三次元造形物製造用組成物)》
次に、三次元造形物の製造に用いる組成物(三次元造形物製造用組成物)について説明する。
本発明の三次元造形物の製造に用いる組成物(三次元造形物製造用組成物)は、複数の層を積層し、三次元造形物を製造するのに用いられる組成物であって、少なくとも複数個の粒子を含むものである。
(粒子)
組成物2’は、粒子21を複数個含むものである。
組成物(三次元造形物製造用組成物)2’が、粒子21を含むものであることにより、三次元造形物10の構成材料の選択の幅を広いものとすることができ、所望の物性、質感等を有する三次元造形物10を好適に得ることができる。例えば、溶媒に溶解した材料を用いて三次元造形物を製造する場合、使用することのできる材料に制限があるが、粒子21を含む組成物2’を用いることによりこのような制限を解消することができる。また、例えば、三次元造形物10の機械的強度、靱性、耐久性等をより優れたものとすることができ、試作用途のみならず実製品として適用することができる。
粒子21の構成材料としては、例えば、金属材料、金属化合物(セラミックス等)、樹脂材料、顔料等が挙げられる。
組成物2’が粒子21として、金属材料、セラミックス材料のうち少なくとも一方を含む材料で構成されたものを含むものであると、例えば、三次元造形物10の質感(高級感)、機械的強度、耐久性等をより優れたものとすることができる。
特に、粒子21が金属材料を含む材料で構成されたものであると、三次元造形物10の高級感、重量感、機械的強度、靱性等を特に優れたものとすることができる。また、粒子21の接合のためのエネルギー(レーザー光によるエネルギー)を付与した後の放熱が効率よく進行するため、三次元造形物10の生産性を特に優れたものとすることができる。
粒子21を構成する金属材料としては、例えば、マグネシウム、鉄、銅、コバルト、チタン、クロム、ニッケルやこれらのうち少なくとも1種を含む合金(例えば、マルエージング鋼、ステンレス、コバルトクロムモリブデン、チタニウム合金、ニッケル基調合金、アルミニウム合金等)等が挙げられる。
粒子21を構成する金属化合物としては、例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化ジルコン、酸化錫、酸化マグネシウム、チタン酸カリウム等の各種金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等の各種金属水酸化物;窒化珪素、窒化チタン、窒化アルミニウム等の各種金属窒化物;炭化珪素、炭化チタン等の各種金属炭化物;硫化亜鉛等の各種金属硫化物;炭酸カルシウム、炭酸マグネシウム等の各種金属の炭酸塩;硫酸カルシウム、硫酸マグネシウム等の各種金属の硫酸塩;ケイ酸カルシウム、ケイ酸マグネシウム等の各種金属のケイ酸塩;リン酸カルシウム等の各種金属のリン酸塩;ホウ酸アルミニウム、ホウ酸マグネシウム等の各種金属のホウ酸塩や、これらの複合化物等が挙げられる。
粒子21を構成する樹脂材料としては、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリスチレン、シンジオタクチック・ポリスチレン、ポリアセタール、変性ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリカーボネート、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリエーテルニトリル、ポリアミド(ナイロン等)、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリイミド、液晶ポリマー、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、フッ素樹脂等が挙げられる。
粒子21を構成する顔料としては、無機顔料および有機顔料のいずれも使用することができる。
無機顔料としては、例えば、ファーネスブラック、ランプブラック、アセチレンブラック、チャネルブラック等のカーボンブラック(C.I.ピグメントブラック7)類、酸化鉄、酸化チタン等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
前記無機顔料の中でも、好ましい白色を呈するためには、酸化チタンが好ましい。
有機顔料としては、例えば、不溶性アゾ顔料、縮合アゾ顔料、アゾレーキ、キレートアゾ顔料等のアゾ顔料、フタロシアニン顔料、ペリレンおよびペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサン顔料、チオインジゴ顔料、イソインドリノン顔料、キノフタロン顔料等の多環式顔料、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレート等)、染色レーキ(塩基性染料型レーキ、酸性染料型レーキ)、ニトロ顔料、ニトロソ顔料、アニリンブラック、昼光蛍光顔料等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
粒子21の形状は、特に限定されず、球状、紡錘形状、針状、筒状、鱗片状等、いかなる形状であってもよく、また、不定形のものであってもよいが、球状をなすものであるのが好ましい。
粒子21の平均粒径は、特に限定されないが、0.1μm以上20μm以下であるのが好ましく、0.2μm以上10μm以下であるのがより好ましい。
これにより、組成物2’の流動性をより好適なものとすることができ、吐出工程をより円滑に行うことができるとともに、接合工程での粒子21の接合をより好適に行うことができる。また、例えば、接合工程におけるバインダー等の除去等を効率よく除去することができ、不本意に粒子21以外の構成材料が最終的な三次元造形物10中に残存することをより効果的に防止することができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の信頼性、機械的強度をより優れたものとすることができ、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度をより優れたものとすることができる。
なお、本発明において、平均粒径とは、体積基準の平均粒径を言い、例えば、サンプルをメタノールに添加し、超音波分散器で3分間分散した分散液をコールターカウンター法粒度分布測定器(COULTER ELECTRONICS INS製TA−II型)にて、50μmのアパチャーを用いて測定することにより求めることができる。
粒子21のDmaxは、0.2μm以上25μm以下であるのが好ましく、0.4μm以上15μm以下であるのがより好ましい。
これにより、組成物2’の流動性をより好適なものとすることができ、吐出工程をより円滑に行うことができるとともに、接合工程での粒子21の接合をより好適に行うことができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の機械的強度をより優れたものとすることができ、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度をより優れたものとすることができる。
組成物2’中における粒子21の含有率は、50質量%以上99質量%以下であるのが好ましく、55質量%以上70質量%以下であるのがより好ましい。
これにより、組成物2’の取扱いのし易さをより優れたものとしつつ、三次元造形物10の製造過程において除去される成分の量をより少ないものとすることができ、三次元造形物10の生産性、生産コスト、省資源の観点等から特に有利である。また、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
なお、粒子21は、三次元造形物10の製造過程(例えば、接合工程等)において、化学反応(例えば、酸化反応等)をする材料で構成されたものであり、組成物2’中に含まれる粒子21の組成と、最終的な三次元造形物10の構成材料とで、組成が異なっていてもよい。
なお、組成物2’は、2種以上の粒子を含むものであってもよい。
(ゲルゾル相転移材料)
組成物2’は、粘度低下処理に粘度が低下し得るものであればいかなる組成のものであってもよいが、組成物2’をゲルゾル相転移させるゲルゾル相転移材料を含むものであるのが好ましい。
これにより、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができ、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。
ゲルゾル相転移材料としては、例えば、光照射により組成物2’の粘度を低下させる粘度低下剤、温度低下により組成物2’の粘度を低下させる粘度低下剤等が挙げられる。
光照射により組成物2’の粘度を低下させる粘度低下剤としては、例えば、アゾベンゼンをジヒドロアノステロールで機能化した誘導体、ジアリールエテンの誘導体等が挙げられるが、アゾベンゼンをジヒドロアノステロールで機能化した誘導体が好ましい。
これにより、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。また、三次元造形物10の製造過程(接合工程等)における粘度低下剤の除去が比較的容易であり、最終的に得られる三次元造形物10中に不本意に粘度低下剤が残存することをより効果的に防止することができる。その結果、三次元造形物10の信頼性をより優れたものとすることができる。
吐出工程に供される組成物2’中に含まれるアゾベンゼンをジヒドロアノステロールで機能化した誘導体としては、例えば、下記式(1)で表されるもの(トランス体)等が挙げられる。
Figure 2017113888
式(1)で表される化合物は、紫外線の照射(粘度低下処理)により、下記式(2)で示される化学構造(シス体)となり、組成物2’の粘度を低下させる。より具体的には、吐出工程に供される組成物2’が式(1)で表される化合物(トランス体)を含むものであると、紫外線の照射(粘度低下処理)により、当該化合物が式(2)で表される化合物(トランス体)となり、組成物2’の状態は、ゲルからゾルへと変化する。
Figure 2017113888
また、温度の低下により組成物2’の粘度を低下させる粘度低下剤としては、例えば、ポリ(N−イソプロピルアクリルアミド)、寒天、ゼラチン等が挙げられるが、ポリ(N−イソプロピルアクリルアミド)が好ましい。
これにより、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。また、三次元造形物10の製造過程(接合工程等)における粘度低下剤の除去が比較的容易であり、最終的に得られる三次元造形物10中に不本意に粘度低下剤が残存することをより効果的に防止することができる。その結果、三次元造形物10の信頼性をより優れたものとすることができる。
組成物2’中における粘度低下剤(ゲルゾル相転移材料)の含有率は、0.2質量%以上10質量%以下であるのが好ましく、0.5質量%以上7.0質量%以下であるのがより好ましい。
これにより、粘度低下処理前後での組成物2’の粘度をいずれもより好適なものとすることができ、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。
(バインダー)
組成物2’は、バインダーを含むものであってもよい。
これにより、例えば、組成物2’を用いて形成されたパターンの不本意な変形をより効果的に防止することができる。その結果、三次元造形物10の寸法精度をより優れたものとすることができる。また、三次元造形物10中における空隙率(空孔率)、三次元造形物10の密度等の調整を好適に行うことができる。
バインダーとしては、接合工程に供される前の組成物2’(組成物2’を用いて形成されたパターン)中において粒子21を仮固定する機能を有するものであればよく、例えば、熱可塑性樹脂、硬化性樹脂等の各種樹脂材料等を用いることができるが、硬化性樹脂を含むのが好ましい。
これにより、例えば、吐出された組成物2’に対して接合工程の前のタイミング(例えば、組成物2’の吐出後であって当該組成物2’が目的の部位(被着体)に接触する前(着弾前)のタイミング(より具体的には、例えば、粘度低下処理後のタイミング等)や、吐出された組成物2’が目的の部位(被着体)に接触(着弾)した後のタイミング)で硬化処理を施すことにより、組成物2’の流動性をより効果的に低下させ、より複雑なパターンや、微細な構造を有するパターン等を好適に形成することができる。したがって、複雑な形状や微細な構造を有する三次元造形物10であってもより好適に製造することができる。また、組成物2’が目的の部位(被着体)に接触した状態での粘度(硬化性樹脂が硬化した状態での組成物2’の粘度)を大きいものとしつつ、吐出時における組成物2’の粘度が過剰に高くなることを防止することができるため、組成物2’の吐出性、三次元造形物10の生産性をより優れたものとすることができる。
なお、硬化処理は、紫外線等のエネルギー線の照射により行うことができる。
以下、バインダーとして硬化性樹脂を含む場合について代表的に説明する。
硬化性樹脂としては、例えば、各種熱硬化性樹脂、光硬化性樹脂等を好適に用いることができる。
硬化性樹脂(重合性化合物)としては、例えば、各種モノマー、各種オリゴマー(ダイマー、トリマー等を含む)、プレポリマー等を用いることができるが、組成物2’は、硬化性樹脂(重合性化合物)として、少なくともモノマー成分を含むものであるのが好ましい。モノマーは、オリゴマー成分等に比べて、一般に、低粘度の成分であるため、硬化性樹脂(重合性化合物)の吐出安定性をより優れたものとする上で有利である。
硬化性樹脂(重合性化合物)としては、エネルギー線の照射により、重合開始剤から生じるラジカル種またはカチオン種等により、付加重合または開環重合が開始され、重合体を生じるものが好ましく使用される。付加重合の重合様式として、ラジカル、カチオン、アニオン、メタセシス、配位重合が挙げられる。また、開環重合の重合様式として、カチオン、アニオン、ラジカル、メタセシス、配位重合が挙げられる。
付加重合性化合物としては、例えば、少なくとも1個のエチレン性不飽和二重結合を有する化合物等が挙げられる。付加重合性化合物として、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物が好ましく使用できる。
エチレン性不飽和重合性化合物は、単官能の重合性化合物および多官能の重合性化合物、またはそれらの混合物の化学的形態をもつ。単官能の重合性化合物としては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)や、そのエステル類、アミド類等が挙げられる。多官能の重合性化合物としては、不飽和カルボン酸と脂肪族の多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族の多価アミン化合物とのアミド類が用いられる。
また、ヒドロキシル基や、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステルまたはアミド類とイソシアネート類、エポキシ類との付加反応物、カルボン酸との脱水縮合反応物等も使用できる。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルまたはアミド類と、アルコール類、アミン類およびチオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルまたはアミド類と、アルコール類、アミン類またはチオール類との置換反応物も使用できる。
不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルであるラジカル重合性化合物の具体例としては、例えば、(メタ)アクリル酸エステルが代表的であり、単官能のもの、多官能のもののいずれも用いることができる。
本発明において、エポキシ基、オキセタン基等の環状エーテル基を分子内に1つ以上有するカチオン開環重合性の化合物を硬化性樹脂(重合性化合物)として好適に用いることができる。
カチオン重合性化合物としては、例えば、開環重合性基を含む硬化性化合物等が挙げられ、中でも、ヘテロ環状基含有硬化性化合物が特に好ましい。このような硬化性化合物としては、例えば、エポキシ誘導体、オキセタン誘導体、テトラヒドロフラン誘導体、環状ラクトン誘導体、環状カーボネート誘導体、オキサゾリン誘導体などの環状イミノエーテル類、ビニルエーテル類等が挙げられ、中でも、エポキシ誘導体、オキセタン誘導体、ビニルエーテル類が好ましい。
組成物2’は、硬化性樹脂(重合性化合物)として、モノマー以外に、オリゴマー(ダイマー、トリマー等を含む)、プレポリマー等を含むものであってもよい。オリゴマー、プレポリマーとしては、例えば、上述したようなモノマーを構成成分としたものを用いることができる。
組成物2’中において、バインダーは、いかなる形態で含まれるものであってもよいが、液状(例えば、溶融状態、溶解状態等)をなすものであるのが好ましい。すなわち、分散媒22の構成成分として含まれているのが好ましい。
これにより、バインダーは、粒子21を分散する分散媒22として機能することができ、組成物2’の吐出性をより優れたものとすることができる。また、接合工程に際してバインダーが粒子21を好適に被覆することができ、接合工程を行う際におけるパターン(組成物2’を用いて形成されたパターン)の形状の安定性をより優れたものとすることができ、三次元造形物10の寸法精度をより優れたものとすることができる。
組成物2’中におけるバインダーの含有率は、0.1質量%以上48質量%以下であるのが好ましく、0.8質量%以上10質量%以下であるのがより好ましい。
これにより、吐出工程での組成物2’の流動性をより適切なものとしつつ、バインダーによる粒子21の仮固定の機能がより効果的に発揮される。また、接合工程でのバインダーの除去をより確実に行うことができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度、信頼性をより優れたものとすることができる。
(溶剤)
組成物2’は、揮発性の溶剤を含むものであってもよい。
これにより、組成物2’の粘度調整を好適に行うことができ、組成物2’の吐出安定性をより優れたものとすることができる。また、溶剤は、組成物2’において、粒子21を分散させる分散媒22として機能することができ、組成物2’の分散状態をより良好なものとすることができる。また、揮発性の溶剤は、三次元造形物10の製造過程において効率よく除去することができるため、最終的に得られる三次元造形物10中に、不本意に残存することによる弊害の発生を効果的に防止することができる。
溶剤としては、例えば、水;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル等の酢酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル−n−ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類;エタノール、プロパノール、ブタノール等のアルコール類;テトラアルキルアンモニウムアセテート類;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤;ピリジン、ピコリン、2,6−ルチジン等のピリジン系溶剤;テトラアルキルアンモニウムアセテート(例えば、テトラブチルアンモニウムアセテート等)等のイオン液体等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
組成物2’が金属材料で構成された粒子21を含むものである場合、溶剤としては、非プロトン性溶剤を用いるのが好ましい。これにより、粒子21の構成材料の不本意な酸化反応等を効果的に防止することができる。
組成物2’中における溶剤の含有量は、0.5質量%以上70質量%以下であるのが好ましく、1質量%以上50質量%以下であるのがより好ましい。
これにより、組成物2’の取扱いのし易さをより優れたものとしつつ、三次元造形物10の製造過程において除去される成分の量をより少ないものとすることができ、三次元造形物10の生産性、生産コスト、省資源の観点等から特に有利である。また、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
(その他の成分)
また、組成物2’は、前述した以外の成分を含むものであってもよい。このような成分としては、例えば、重合開始剤;分散剤;界面活性剤;増粘剤;凝集防止剤;消泡剤;スリップ剤(レベリング剤);染料;重合禁止剤;重合促進剤;浸透促進剤;湿潤剤(保湿剤);定着剤;防黴剤;防腐剤;酸化防止剤;紫外線吸収剤;キレート剤;pH調整剤等が挙げられる。
重合開始剤としては、例えば、ラジカル重合開始剤やカチオン重合開始剤を使用することができるが、ラジカル重合開始剤を使用することが好ましい。ラジカル重合開始剤は、紫外線領域に吸収ピークを有していることが好ましい。
ラジカル重合開始剤としては、例えば、芳香族ケトン類、アシルホスフィンオキサイド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物等)、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アルキルアミン化合物等が挙げられる。
組成物2’が重合開始剤を含むものである場合、組成物2’中において、重合開始剤は、いかなる形態で含まれるものであってもよいが、液状(例えば、溶融状態、溶解状態等)をなすものであるのが好ましい。すなわち、分散媒22の構成成分として含まれているのが好ましい。
これにより、重合開始剤は、粒子21を分散する分散媒22として機能することができ、組成物2’の吐出性をより優れたものとすることができる。また、接合工程に際してバインダー(硬化性樹脂)の硬化物が粒子21を好適に被覆することができ、接合工程を行う際におけるパターン(組成物2’を用いて形成されたパターン)の形状の安定性をより優れたものとすることができ、三次元造形物10の寸法精度をより優れたものとすることができる。
組成物2’中における重合開始剤の含有量は、0.3質量%以上10質量%以下であるのが好ましい。
これにより、吐出工程での組成物2’の流動性をより適切なものとしつつ、バインダー(硬化性樹脂の硬化物)による粒子21の仮固定の機能がより効果的に発揮される。また、接合工程でのバインダーの除去をより確実に行うことができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度、信頼性をより優れたものとすることができる。
《サポート材形成用組成物》
次に、三次元造形物の製造に用いるサポート材形成用組成物について説明する。
サポート材形成用組成物5’は、サポート材5の形成に用いられる組成物である。
(粒子)
サポート材形成用組成物5’は、粒子を複数個含むものであるのが好ましい。
サポート材形成用組成物5’が、粒子を含むものであることにより、形成すべきサポート材5が微細な形状を有するもの等である場合であっても、サポート材5を高い寸法精度で、効率よく形成することができる。
サポート材形成用組成物5’を構成する粒子の構成材料としては、例えば、金属材料、金属化合物(セラミックス等)、樹脂材料、顔料等が挙げられる。
ただし、サポート材形成用組成物5’を構成する粒子は、組成物2’を構成する粒子21よりも高融点の材料で構成されたものであるのが好ましい。
粒子の形状は、特に限定されず、球状、紡錘形状、針状、筒状、鱗片状等、いかなる形状であってもよく、また、不定形のものであってもよいが、球状をなすものであるのが好ましい。
粒子の平均粒径は、特に限定されないが、0.1μm以上20μm以下であるのが好ましく、0.2μm以上10μm以下であるのがより好ましい。
これにより、サポート材形成用組成物5’の流動性をより好適なものとすることができ、サポート材形成用組成物5’の供給をより円滑に行うことができるとともに、接合工程での粒子の接合をより好適に行うことができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度をより優れたものとすることができる。
粒子のDmaxは、0.2μm以上25μm以下であるのが好ましく、0.4μm以上15μm以下であるのがより好ましい。
これにより、サポート材形成用組成物5’の流動性をより好適なものとすることができ、サポート材形成用組成物5’の供給をより円滑に行うことができるとともに、接合工程での粒子の接合をより好適に行うことができる。その結果、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10における不本意な凹凸の発生等をより効果的に防止し、三次元造形物10の寸法精度をより優れたものとすることができる。
サポート材形成用組成物5’中における粒子の含有率は、50質量%以上99質量%以下であるのが好ましく、55質量%以上98質量%以下であるのがより好ましい。
これにより、サポート材形成用組成物5’の取扱いのし易さをより優れたものとしつつ、三次元造形物10の製造過程において除去される成分の量をより少ないものとすることができ、三次元造形物10の生産性、生産コスト、省資源の観点等から特に有利である。また、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
なお、サポート材形成用組成物5’は、2種以上の粒子を含むものであってもよい。
(ゲルゾル相転移材料)
サポート材形成用組成物5’は、サポート材形成用組成物5’をゲルゾル相転移させるゲルゾル相転移材料を含むものであるのが好ましい。
これにより、粘度低下処理に粘度が低下し得るものであればいかなる組成のものであってもよいが、吐出されたサポート材形成用組成物5’に対して粘度低下処理を施すことにより、好適にサポート材形成用組成物5’の粘度を低下させることができ、三次元造形物10の生産性、寸法精度をより優れたものとすることができる。
ゲルゾル相転移材料としては、例えば、組成物2’の構成成分として説明したもの等を用いることができる。
これにより、前述したのと同様の効果が得られる。
サポート材形成用組成物5’中における粘度低下剤(ゲルゾル相転移材料)の含有率は、0.2質量%以上10質量%以下であるのが好ましく、0.5質量%以上7.0質量%以下であるのがより好ましい。
これにより、粘度低下処理前後でのサポート材形成用組成物5’の粘度をいずれもより好適なものとすることができ、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度をより優れたものとすることができる。
(バインダー)
サポート材形成用組成物5’は、粒子に加え、さらにバインダーを含むものであってもよい。
これにより、例えば、サポート材形成用組成物5’を用いて形成されたサポート材5の不本意な変形をより効果的に防止することができる。その結果、三次元造形物10の寸法精度をより優れたものとすることができる。
バインダーとしては、接合工程に供される前のサポート材形成用組成物5’中において粒子を仮固定する機能を有するものであればよく、例えば、熱可塑性樹脂、硬化性樹脂等の各種樹脂材料等を用いることができるが、硬化性樹脂を含むのが好ましい。
これにより、例えば、吐出されたサポート材形成用組成物5’に対して接合工程の前のタイミング(例えば、サポート材形成用組成物5’の吐出後であって当該サポート材形成用組成物5’が目的の部位(被着体)に接触する前(着弾前)のタイミング(より具体的には、例えば、粘度低下処理後のタイミング等)や、吐出されたサポート材形成用組成物5’が目的の部位(被着体)に接触(着弾)した後のタイミング)で硬化処理を施すことにより、サポート材形成用組成物5’の流動性をより効果的に低下させ、より複雑なパターンや、微細な構造を有するパターン等を好適に形成することができる。したがって、複雑な形状や微細な構造を有する三次元造形物10であってもより好適に製造することができる。また、サポート材形成用組成物5’が目的の部位(被着体)に接触した状態での粘度(硬化性樹脂が硬化した状態でのサポート材形成用組成物5’の粘度)を大きいものとしつつ、吐出時におけるサポート材形成用組成物5’の粘度を低いものとすることができるため、サポート材形成用組成物5’の吐出性、三次元造形物10の生産性をより優れたものとすることができる。
なお、硬化処理は、紫外線等のエネルギー線の照射により行うことができる。
サポート材形成用組成物5’が硬化性樹脂を含むものである場合、当該硬化性樹脂としては、例えば、組成物2’の構成成分として説明したもの等を用いることができる。
なお、組成物2’中に含まれる硬化性樹脂と、サポート材形成用組成物5’中に含まれる硬化性樹脂とは、同一の条件(例えば、同一の組成等)のものであってもよいし、異なる条件のものであってもよい。
サポート材形成用組成物5’中におけるバインダーの含有率は、0.5質量%以上48質量%以下であるのが好ましく、1質量%以上43質量%以下であるのがより好ましい。
これにより、サポート材形成用組成物5’の供給時におけるサポート材形成用組成物5’の流動性をより適切なものとしつつ、バインダーによる粒子の仮固定の機能がより効果的に発揮される。また、接合工程でのバインダーの除去をより確実に行うことができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度、信頼性をより優れたものとすることができる。
(溶剤)
サポート材形成用組成物5’は、揮発性の溶剤を含むものであってもよい。
これにより、サポート材形成用組成物5’の粘度調整を好適に行うことができ、サポート材形成用組成物5’の吐出安定性をより優れたものとすることができる。また、溶剤は、サポート材形成用組成物5’において、粒子を分散させる分散媒として機能することができ、サポート材形成用組成物5’の分散状態をより良好なものとすることができる。
サポート材形成用組成物5’が溶剤を含むものである場合、当該溶剤としては、例えば、組成物2’の構成成分として説明したもの等を用いることができる。
なお、組成物2’中に含まれる溶剤と、サポート材形成用組成物5’中に含まれる溶剤とは、同一の条件(例えば、同一の組成等)のものであってもよいし、異なる条件のものであってもよい。
サポート材形成用組成物5’中における溶剤の含有量は、0.5質量%以上30質量%以下であるのが好ましく、1質量%以上25質量%以下であるのがより好ましい。
これにより、サポート材形成用組成物5’の取扱いのし易さをより優れたものとしつつ、三次元造形物10の製造過程において除去される成分の量をより少ないものとすることができ、三次元造形物10の生産性、生産コスト、省資源の観点等から特に有利である。また、最終的に得られる三次元造形物10の寸法精度をより優れたものとすることができる。
(その他の成分)
また、サポート材形成用組成物5’は、前述した以外の成分を含むものであってもよい。このような成分としては、例えば、重合開始剤;分散剤;界面活性剤;増粘剤;凝集防止剤;消泡剤;スリップ剤(レベリング剤);染料;重合禁止剤;重合促進剤;浸透促進剤;湿潤剤(保湿剤);定着剤;防黴剤;防腐剤;酸化防止剤;紫外線吸収剤;キレート剤;pH調整剤等が挙げられる。
サポート材形成用組成物5’が重合開始剤を含むものである場合、サポート材形成用組成物5’中において、重合開始剤は、いかなる形態で含まれるものであってもよいが、液状(例えば、溶融状態、溶解状態等)をなすものであるのが好ましい。すなわち、分散媒の構成成分として含まれているのが好ましい。
これにより、重合開始剤は、粒子を分散する分散媒として機能することができ、サポート材形成用組成物5’の吐出性をより優れたものとすることができる。また、接合工程に際してバインダー(硬化性樹脂)の硬化物が粒子を好適に被覆することができ、接合工程を行う際におけるパターンの形状の安定性をより優れたものとすることができ、三次元造形物10の寸法精度をより優れたものとすることができる。
サポート材形成用組成物5’中における重合開始剤の含有量は、0.5質量%以上10質量%以下であるのが好ましい。
これにより、サポート材形成用組成物5’の供給時におけるサポート材形成用組成物5’の流動性をより適切なものとしつつ、バインダー(硬化性樹脂の硬化物)による粒子の仮固定の機能がより効果的に発揮される。また、接合工程でのバインダーの除去をより確実に行うことができる。このようなことから、三次元造形物10の生産性をより優れたものとしつつ、製造される三次元造形物10の寸法精度、信頼性をより優れたものとすることができる。
《三次元造形物》
本発明の三次元造形物は、前述したような本発明の製造方法、三次元造形物製造装置、三次元造形物製造用組成物を用いて製造することができる。
これにより、寸法精度に優れた三次元造形物を提供することができる。また、前述したような製造方法、製造装置、三次元造形物製造用組成物によれば、様々な組成の粒子を用いることができるため、三次元造形物の構成材料の選択の幅を広いものとすることができ、三次元造形物を所望の物性、質感等を有するものとすることができる。
本発明の三次元造形物の用途は、特に限定されないが、例えば、人形、フィギュア等の鑑賞物・展示物;インプラント等の医療機器等が挙げられる。
また、本発明の三次元造形物は、プロトタイプ、量産品、オーダーメード品のいずれに適用されるものであってもよい。
以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
例えば、本発明の三次元造形物製造装置では、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。
例えば、本発明の三次元造形物製造装置は、図示しない加熱手段や減圧手段を備えていてもよい。これにより、例えば、吐出された三次元造形物製造用組成物やサポート材形成用組成物から溶剤を効率よく除去することができ、三次元造形物の生産性を特に優れたものとすることができる。
また、前述した実施形態では、ステージの表面に直接層を形成する場合について代表的に説明したが、例えば、ステージ上に造形プレートを配置し、当該造形プレート上に層を積層して三次元造形物を製造してもよい。このような場合、三次元造形物の製造過程においては、造形プレートと最下層を構成する粒子とを接合させ、その後、後処理で目的とする三次元造形物から造形プレートを除去してもよい。これにより、例えば、複数の層を積層していく過程での層(積層体)の反りの発生をより効果的に防止することができ、最終的に得られる三次元造形物の寸法精度をより優れたものとすることができる。
また、前述した実施形態では、全ての層が接合部を有するものとして説明したが、接合部が形成されない層を有していてもよい。例えば、ステージとの接触面(ステージの直上)に、接合部が形成されない層(例えば、サポート材で構成された層)を形成し、当該層を犠牲層として機能させてもよい。
また、本発明の三次元造形物の製造方法においては、工程・処理の順番は、前述したものに限定されず、その少なくとも一部を入れ替えて行ってもよい。例えば、前述した実施形態では、サポート材形成用組成物供給工程を、組成物供給工程と接合工程との間に行う場合について代表的に説明したが、サポート材形成用組成物供給工程は、例えば、接合工程の後に行うものであってもよい。また、サポート材形成用組成物は、接合部の形成に用いる組成物(三次元造形物製造用組成物)の吐出と同一工程において、吐出されるものであってもよい。
また、サポート材形成用組成物は接合処理を施すことなく、サポート材として機能するものであってもよい。
また、前述した実施形態では、接合部の形成に用いる組成物(三次元造形物製造用組成物)とともに、サポート材形成用組成物を用いる場合について代表的に説明したが、本発明においては、製造すべき三次元造形物の形状等によっては、サポート材形成用組成物を用いなくてもよい。
また、本発明の製造方法においては、必要に応じて、前処理工程、中間処理工程、後処理工程を行ってもよい。
前処理工程としては、例えば、ステージの清掃工程等が挙げられる。
後処理工程としては、例えば、洗浄工程、バリ取り等を行う形状調整工程、着色工程、被覆層形成工程、粒子の接合強度を向上させるための熱処理工程等が挙げられる。
また、組成物がバインダーを含むものである場合、バインダー除去工程を、接合工程とは別の工程としてさらに有していてもよい。
10…三次元造形物、1…層、2’…組成物(三次元造形物製造用組成物)、21…粒子(分散質)、22…分散媒、2…接合部、5’…サポート材形成用組成物、5…サポート材(支持部)、M100…三次元造形物製造装置、M2…制御部、M21…コンピューター、M22…駆動制御部、M3…組成物供給部(吐出手段)、M4…層形成部、M41…ステージ(昇降ステージ、支持体)、M45…枠体、M5…粘度低下処理手段、M6…接合エネルギー付与手段(レーザー光照射手段)、M8…サポート材形成用組成物供給部(サポート材形成用組成物吐出手段)

Claims (11)

  1. 所定のパターンで形成された層を積層し、三次元造形物を製造する三次元造形物の製造方法であって、
    複数個の粒子を含む組成物を吐出する吐出工程と、
    吐出された前記組成物の粘度を低下させる粘度低下処理を施す粘度低下処理工程と、
    前記組成物を目的の部位に接触させた後に、前記組成物に含まれる前記粒子を接合させる接合工程と、
    を含む一連の工程を繰り返し行うことを特徴とする三次元造形物の製造方法。
  2. 前記組成物は、前記組成物をゲルゾル相転移させるゲルゾル相転移材料を含むものである請求項1に記載の三次元造形物の製造方法。
  3. 前記粘度低下処理工程において、前記組成物に対して光照射を行う請求項1または2に記載の三次元造形物の製造方法。
  4. 前記組成物は、アゾベンゼンをジヒドロアノステロールで機能化した誘導体を含むものである請求項3に記載の三次元造形物の製造方法。
  5. 前記粘度低下処理工程において、前記組成物の冷却を行う請求項1ないし4のいずれか一項に記載の三次元造形物の製造方法。
  6. 前記組成物は、ポリ(N−イソプロピルアクリルアミド)を含むものである請求項5に記載の三次元造形物の製造方法。
  7. 前記組成物は、前記粒子として、金属材料、セラミックス材料のうち少なくとも一方を含む材料で構成されたものを含むものである請求項1ないし6のいずれか1項に記載の三次元造形物の製造方法。
  8. 前記接合工程は、レーザーの照射により行うものである請求項1ないし7のいずれか1項に記載の三次元造形物の製造方法。
  9. 粒子を含む組成物を吐出する吐出手段と、
    吐出された前記組成物の粘度を低下させる粘度低下処理を施す粘度低下処理手段と、
    前記組成物が目的の部位に接触した後に、前記粒子を接合するためのエネルギーを付与する接合エネルギー付与手段とを備えることを特徴とする三次元造形物製造装置。
  10. 請求項9に記載の三次元造形物製造装置を用いて製造されたものであることを特徴とする三次元造形物。
  11. 所定のパターンで形成された層を積層し、三次元造形物を製造するのに用いられる組成物であって、
    複数個の粒子と、組成物をゲルゾル相転移させるゲルゾル相転移材料とを含むものであることを特徴とする三次元造形物製造用組成物。
JP2015248441A 2015-12-21 2015-12-21 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物 Pending JP2017113888A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248441A JP2017113888A (ja) 2015-12-21 2015-12-21 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248441A JP2017113888A (ja) 2015-12-21 2015-12-21 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物

Publications (1)

Publication Number Publication Date
JP2017113888A true JP2017113888A (ja) 2017-06-29

Family

ID=59233510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248441A Pending JP2017113888A (ja) 2015-12-21 2015-12-21 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物

Country Status (1)

Country Link
JP (1) JP2017113888A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952961A (zh) * 2017-10-23 2018-04-24 南京航空航天大学 一种基于相变尺寸效应自动调控激光加工成形精度的方法
CN115557758A (zh) * 2022-12-06 2023-01-03 湖南大学 一种全尾砂基3d打印增材及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952961A (zh) * 2017-10-23 2018-04-24 南京航空航天大学 一种基于相变尺寸效应自动调控激光加工成形精度的方法
CN107952961B (zh) * 2017-10-23 2019-09-20 南京航空航天大学 一种基于相变尺寸效应自动调控激光加工成形精度的方法
CN115557758A (zh) * 2022-12-06 2023-01-03 湖南大学 一种全尾砂基3d打印增材及其应用
CN115557758B (zh) * 2022-12-06 2023-03-14 湖南大学 一种全尾砂基3d打印增材及其应用

Similar Documents

Publication Publication Date Title
CN107097416B (zh) 三维造形物的制造方法及其装置以及三维造形物
JP2017031490A (ja) 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物
US11648728B2 (en) Three-dimensional shaped article producing composition, production method for three-dimensional shaped article, and three-dimensional shaped article production apparatus
JP2018059131A (ja) 三次元造形物製造用組成物および三次元造形物の製造方法
EP3375595B1 (en) Three-dimensional modeled-object manufacturing composition and three-dimensional modeled-object manufacturing method
JP2015189007A (ja) 造形物の製造方法
JP2017031495A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2017171958A (ja) 三次元造形物の製造方法
JP2017113888A (ja) 三次元造形物の製造方法、三次元造形物製造装置、三次元造形物および三次元造形物製造用組成物
JP2017136712A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2017160471A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
JP2016179584A (ja) 三次元造形物製造用組成物および三次元造形物
US11383303B2 (en) Production method for three-dimensional shaped article
JP2017106082A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
CN110366464B (zh) 三维造型物制造用组合物、三维造型物的制造方法以及三维造型物制造装置
JP2018052084A (ja) 三次元造形物製造用組成物、三次元造形物製造用組成物セット、三次元造形物の製造方法および三次元造形物製造装置
JP2018159110A (ja) 組成物および三次元造形物の製造方法
EP3375594A1 (en) Three-dimensional modeled-object manufacturing composition and three-dimensional modeled-object manufacturing method
JP2016187943A (ja) 三次元造形物の製造方法および三次元造形物
JP2017171959A (ja) 三次元造形物の製造方法