JP2017111099A - 情報処理装置、測位方法、及びプログラム - Google Patents

情報処理装置、測位方法、及びプログラム Download PDF

Info

Publication number
JP2017111099A
JP2017111099A JP2015247824A JP2015247824A JP2017111099A JP 2017111099 A JP2017111099 A JP 2017111099A JP 2015247824 A JP2015247824 A JP 2015247824A JP 2015247824 A JP2015247824 A JP 2015247824A JP 2017111099 A JP2017111099 A JP 2017111099A
Authority
JP
Japan
Prior art keywords
positioning
error
unit
information processing
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015247824A
Other languages
English (en)
Inventor
勇太朗 美嶋
Yutaro Mishima
勇太朗 美嶋
中島 純
Jun Nakajima
純 中島
大輔 上坂
Daisuke Kamisaka
大輔 上坂
義浩 伊藤
Yoshihiro Ito
義浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2015247824A priority Critical patent/JP2017111099A/ja
Publication of JP2017111099A publication Critical patent/JP2017111099A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】位置情報の精度を高めつつ、消費電力を低減すること。【解決手段】情報処理装置は、1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部と、第1の測位部によって測位される位置に対して推定される第1の誤差と、第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出する演算部と、演算部によって算出された累積誤差に基づいて、第1の測位部による測位と、第2の測位部による測位とを切り替える制御部とを有する。【選択図】図3

Description

本発明の実施形態は、情報処理装置、測位方法、及びプログラムに関する。
ユーザー端末、タブレット端末などの情報処理装置には衛星測位システム(Global Positioning System: GPS)などが搭載されていることが多い。情報処理装置は、該GPSを使用して位置情報を取得する。
位置情報を取得する技術に関して、測位方法選択装置から測位データを取得する技術が知られている(例えば、特許文献1参照)。この技術では、1つ又はそれ以上のアプリケーションは、測位方法選択装置に測位データを要求する。測位方法選択装置は、アプリケーション及び/又はユーザーによって規定される設定に従い、1つ又はそれ以上の測位方法を使用して、このアプリケーションに測位データを提供する。
測位方法選択装置は、アプリケーションから測位要求を受け取り、このアプリケーションによって要求される測位の質を表すパラメータを形成し、測位方法によって提供される測位データの質とアプリケーションによって要求される測位の質とを比較し、測位要求に応答してアプリケーションに測位データを送る。
特開2011−209298号公報
情報処理装置に搭載されている測位方法のうち、例えばGPSは精度よく測位できるが、消費電力が高い。さらに、GPSは、GPSの電波が届かない屋内では使用できない。また、例えば、歩行者向け自律航法(Pedestrian Dead Reckoning: PDR)は、精度はあまり高くないが、消費電力が低い。さらに、PDRは、屋内でも使用できる。
一方、ユーザーに関する情報を情報処理装置から取得し、該ユーザーに関する情報を利用してサービスを提供する技術が知られている。例えば、情報処理装置は、ウェブサーバ(Web server)へ位置情報を送信し、ウェブサーバは該位置情報に関連した情報を送信する。
情報処理装置は、屋外では、GPSの電波に基づいて測位を行うことで精度よく位置情報を取得できるためウェブサーバから正しい情報の提供を受けることができるが、消費電力が高くなる。ここでは、GPSの例を挙げたが、GPS、準天頂衛星(quasi-zenith satellites: QZS)などの全地球航法衛星システム(Global Navigation Satellite System(s): GNSS)についても同様である。
つまり、情報処理装置は、GNSSの電波に基づいて測位を行うことで精度よく位置情報を取得できるためウェブサーバから正しい情報の提供を受けることができるが、消費電力が高くなる。一方、屋内では、PDRに基づいて測位を行うため位置情報の精度が低くなるため、誤った情報の提供を受けるおそれがあるが、消費電力が低くなる。
本発明は、上記問題を解決すべくなされたもので、測位することによって得られる位置情報の精度を高めつつ、消費電力を低減することを目的とする。
(1)本発明の一態様は、1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部と、前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出する演算部と、該演算部によって算出された累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替える制御部とを有する、情報処理装置である。
(2)本発明の一態様は、上記(1)に記載の情報処理装置であって、前記第2の測位部は、前記情報処理装置が移動することによって前記1又は複数のセンサーによって取得された前記情報に基づいて測位を行う、情報処理装置である。
(3)本発明の一態様は、上記(1)又は(2)に記載の情報処理装置であって、前記演算部は、前記第1の測位部による測位から前記第2の測位部による測位に切り替える位置からの移動方位に対して推定される誤差に基づいて、前記第1の誤差を算出する、情報処理装置である。
(4)本発明の一態様は、上記(3)に記載の情報処理装置であって、前記演算部は、前記移動方位に対して推定される誤差を、前記第1の測位部によって測位される複数の位置の各々に対して推定される複数の第1の誤差と、該複数の位置の各々の間隔に基づいて算出する、情報処理装置である。
(5)本発明の一態様は、上記(1)から(4)のいずれか1項に記載の情報処理装置であって、前記演算部は、測位を開始した位置に対して推定される誤差に基づいて、前記第1の誤差を算出する、情報処理装置である。
(6)本発明の一態様は、上記(5)に記載の情報処理装置であって、前記演算部は、前記第1の測位部によって測位される複数の位置に基づいて予測される位置に対する誤差に基づいて、前記第1の誤差を算出する、情報処理装置である。
(7)本発明の一態様は、1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部とを有する情報処理装置によって実行される測位方法であって、前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出するステップと、該累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替えるステップとを有する、測位方法である。
(8)本発明の一態様は、1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部とを有する情報処理装置に、前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出させ、該累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替えさせる、プログラムである。
本発明の実施形態によれば、位置情報の精度を高めつつ、消費電力を低減することができる。
一実施形態に係る情報処理装置の一例を示す図である。 一実施形態に係る情報処理装置のハードウェア構成の一例を示す図である。 一実施形態に係る情報処理装置の機能ブロック図の一例を示す図である。 位置に対する誤差を演算する方法の一例を示す図である。 方位に対する誤差を演算する方法の一例を示す図である。 測位方法を切り替える処理の一例を示す図である。 一実施形態に係る情報処理装置の処理の一例を示すフローチャートである。 一実施形態に係る情報処理装置の機能ブロック図の一例を示す図である。 位置及び方位に対する誤差を演算する方法の一例を示す図である。 一実施形態に係る情報処理装置の処理の一例を示すフローチャートである。 方位に対する誤差を演算する方法の一例を示す図である。
次に、本発明を実施するための形態を、図面を参照しつつ説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。
なお、実施形態を説明するための全図において、同一の機能を有するものは同一符号を用い、繰り返しの説明は省略する。
<第1の実施形態>
<情報処理装置>
図1は、本実施形態に係る情報処理装置を示す。情報処理装置100は、複数の航法衛星300(300a、300b、300c、300d)によって無線送信される航法信号を受信し、該航法信号に基づいて該情報処理装置100の測位を行うことによって位置情報を得る。また、情報処理装置100は、基地局200によって送信される下りリンクの無線信号を受信し、該下りリンクの信号に付帯される位置情報を取得する。
さらに、情報処理装置100は、1又は複数のセンサーを搭載し、該1又は複数のセンサーによって取得される情報に基づいて、該情報処理装置100の測位を行うことによって位置情報を得る。以下、基地局200、航法衛星300などの無線通信装置によって送信される無線信号に基づいて情報処理装置100の測位を行うことを「第1の測位」といい、1又は複数のセンサーによって取得される情報に基づいて情報処理装置100の測位を行うことを「第2の測位」という。
また、情報処理装置100は、第1の測位から第2の測位に切り替える際には、第2の測位の入力値として基準位置と該基準位置からの移動方向とを決定する。この第2の測位の入力値となる基準位置と該基準位置からの移動方向との精度を高くすることによって、第2の測位による測位結果の精度を高くできる。
さらに、情報処理装置100は、第1の測位によって得られた位置に対して推定される誤差と、第2の測位によって得られた位置に対して推定される誤差とを累積することによって累積誤差を演算する。情報処理装置100は、該累積誤差に基づいて、第1の測位と、第2の測位との間で切り替える。情報処理装置100は、消費電力が高い第1の測位と、消費電力が低い第2の測位との間で切り替えることによって、消費電力を低減しつつ、測位した位置に対して推定される誤差を所定の範囲に保つことができる。
情報処理装置100の一例は、スマートフォン、タブレット端末、PC、サーバ、クラウド側の装置などである。航法衛星の一例は、全地球航法衛星システム(Global Navigation Satellite System(s): GNSS)、などである。GNSSの例は、衛星測位システム(Global Positioning System: GPS)、準天頂衛星(quasi-zenith satellites: QZS)などである。センサーの一例は、加速度センサー、ジャイロセンサー、地磁気センサー、気圧センサー、近接センサー、照度センサーなどである。
<情報処理装置の構成>
図2は、情報処理装置100のハードウェア構成例を示す。図2に示される例では、情報処理装置100には、1又は複数のセンサーとして、ジャイロセンサー、及び加速度センサーが搭載される。情報処理装置100にジャイロセンサー、及び加速度センサー以外のセンサーが搭載されてもよい。
情報処理装置100は、航法信号受信部102、ジャイロセンサー104、加速度センサー106、中央演算処理装置(Central Processing Unit: CPU)108、RAM(Random Access Memory)110、EEPROM(Electrically Erasable Programmable Read-Only Memory)112、無線通信部116、近距離無線通信部118、及び各構成要素を図2に示されているように電気的に接続するためのアドレスバスやデータバス等のバスライン150を備える。
航法信号受信部102は、CPU108からの測位命令に応じて、航法衛星300(300a、300b、300c、300d)によって送信された航法信号を受信し、該航法信号を復調する。そして、航法信号受信部102は、復調した航法信号に基づいて、所定の測位演算を行うことによって情報処理装置100の測位を行うことによって位置情報を得る。
航法信号受信部102は、4個の航法衛星300からの航法信号を受信することで正確な受信時刻と受信機座標(3次元空間上の点)とを所定の測位演算によって求める。また、航法信号受信部102は、4個の航法衛星からの航法信号を受信できない場合には、基地局200の位置情報を補助情報として利用することによって測位を行うようにしてもよい。航法信号受信部102は、測位を行うことによって得られた位置情報をCPU108へ入力する。
ジャイロセンサー104は、例えば3軸ジャイロセンサーによって構成され、互いに直交する3軸方向の角速度の大きさをそれぞれ計測する。ジャイロセンサー104は、3軸方向の角速度の大きさを表す情報(以下、「角速度情報」という)をCPU108へ入力する。
加速度センサー106は、例えば3軸加速度センサーによって構成され、互いに直交する3軸方向の加速度の大きさをそれぞれ計測する。加速度センサー106は、3軸方向の加速度の大きさを表す情報(以下、「加速度情報」という)をCPU108へ入力する。
CPU108は、情報処理装置100の全体的な制御を行う。RAM110は、CPU108に作業用のメモリ空間を提供する。EEPROM112は、不揮発性メモリの一種であり、CPU108が実行するプログラム114や、データを格納する。
無線通信部116は、情報処理装置100と他の機器との間で、無線データ通信を行う。例えば、情報処理装置100は、携帯電話の基地局200との間でロングタームエボリューション(Long Term Evolution: LTE)などの携帯電話の通信規格にしたがって無線データ通信を行う。無線通信部116は、基地局200によって送信される下りリンクの信号に付帯される位置情報をCPU108へ入力する。
近距離無線通信部118は、情報処理装置100と他の機器との間で、無線LAN、ビーエルイー(Bluetooth Low Energy: BLE)などの近距離無線通信技術によって無線データ通信を行う。例えば、情報処理装置100は、無線LANの基地局との間でワイファイ(Wireless Fidelity: Wi-Fi)などの無線通信技術の規格、例えばIEEE802.11規格にしたがって無線データ通信を行い、ブルートゥース(登録商標)発信機との間でビーエルイーによって無線データ通信を行う。近距離無線通信部118は、無線LANの基地局、ブルートゥース(登録商標)発信機などのビーコン発信機によって送信される信号に付帯されるビーコン発信機の位置情報をCPU108へ入力する。
ここでは、近距離無線通信技術の例として、無線LAN、ビーエルイーを挙げたが、その他にも、アイアールディーエイ(Infrared Data Association: IrDA)、RFID(Radio Frequency Identification)、トランスファージェット(TransferJet)、WiMedia Alliance、ジグビー(ZigBee)などを適用できる。
<情報処理装置の機能構成>
図3は、本実施形態に係る情報処理装置の機能ブロック図である。情報処理装置100は、位置推定誤差演算部402、方位推定誤差演算部404、自律航法演算部406、自律航法誤差演算部408、累積誤差演算部410、及び測位制御部412を有する。これら各部は、図2に示されている各構成要素のいずれかが、EEPROM112に記憶されているプログラム114に従ったCPU108からの命令によって動作することで実現される。
<情報処理装置の各機能部>
情報処理装置100の各部を詳細に説明する。位置推定誤差演算部402は、図2に示されている航法信号受信部102、無線通信部116、近距離無線通信部118、及びCPU108によって実現され、航法信号受信部102によって入力される位置情報、無線通信部116によって受信される基地局200の位置情報、及び近距離無線通信部118によって受信されるビーコン発信機の位置情報の少なくとも一つに基づいて、情報処理装置100の位置情報に対して推定される誤差(以下、「位置推定誤差」という)を演算する。位置推定誤差の演算方法について詳細に説明する。
<位置推定誤差の演算方法>
図4は、位置推定誤差の演算方法の一例を示す。位置推定誤差演算部402は、航法信号受信部102によって入力された位置情報、無線通信部116によって受信される基地局200の位置情報、及び近距離無線通信部118によって受信されるビーコン発信機の位置情報の少なくとも一つに基づいて、予測区間などの統計処理を行うことによって、これから測位することによって得られる値(以下、「推定位置」という)の範囲を推定する。これによって、推定位置に対する誤差を推定できる。
図4は、4個の位置情報P1、P2、P3、及びP4のX座標及びY座標を、X軸とY座標とからなる平面にプロットすることによって作成した散布図であり、4個の位置情報P1、P2、P3、及びP4に基づいて、推定位置に対する誤差を推定する例が示される。1個−3個の位置情報に基づいて該誤差を推定するようにしてもよいし、5個以上の位置情報に基づいて該誤差を推定するようにしてもよい。
位置推定誤差演算部402は、位置情報P1から位置情報P4に基づいて、回帰直線、対数曲線などの特定の関数を用いて近似する。例えば、位置推定誤差演算部402は、回帰直線を用いて近似する場合には、最小二乗法を適用することによって、想定する関数が位置情報に対してよい近似となるように、残差の二乗和を最小とするような係数を決定する。図4には、位置情報P1から位置情報P4を、回帰直線を用いて近似した例が示される。回帰直線を用いて近似することによって、情報処理装置100が移動する方位(以下、「初期方位」という)を該回帰直線の傾きによって表すことができる。
次に、位置推定誤差演算部402は、位置情報P1から位置情報P4の各々について、各位置情報と回帰直線との間の距離di[m](iは、i=1−4の整数)を演算する。つまり、位置推定誤差演算部402は、位置情報P1から位置情報P4の各々から回帰直線へ下した垂線の長さを求める。次に、位置推定誤差演算部402は、距離diの平均値バーdを演算する。そして、位置推定誤差演算部402は、予測区間の計算式(1)によって位置推定誤差Ep[m]を求める。
Figure 2017111099
式(1)において、diは位置情報と特定の関数(ここでは、回帰直線)との間の距離を示し、バーdはdiの平均値を示し、nは位置情報の数を示す。図4には、回帰直線(推定した方位)に対して、位置推定誤差Ep[m]の間隔を空けて描いた平行線(破線によって表す)によって、推定位置に対する誤差が示される。位置推定誤差演算部402は、位置推定誤差Epを表す情報を累積誤差演算部410へ入力する。
図3に戻り説明を続ける。方位推定誤差演算部404は、図2に示されている航法信号受信部102、無線通信部116、近距離無線通信部118、及びCPU108によって実現され、航法信号受信部102によって入力される位置情報、無線通信部116によって受信される基地局200の位置情報、及び近距離無線通信部118によって受信されるビーコン発信機の位置情報のいずれかに基づいて、情報処理装置100の初期方位に対して推定される誤差(以下、「方位推定誤差」という)を演算する。方位推定誤差の演算方法について詳細に説明する。
<方位推定誤差の演算方法>
図5は、方位推定誤差の演算方法の一例を示す。方位推定誤差演算部404は、航法信号受信部102、無線通信部116、及び近距離無線通信部118の少なくとも一つによって入力された複数の位置情報に基づいて、方位推定誤差を求めるために使用する複数の位置情報を選択する。図5には、方位推定誤差演算部404が、4個の位置情報P300−位置情報P303に基づいて方位推定誤差を推定する例を示す。方位推定誤差演算部404が2個−3個の位置情報に基づいて方位推定誤差を推定するようにしてもよいし、5個以上の位置情報に基づいて方位推定誤差を推定するようにしてもよい。方位推定誤差を推定するために使用する位置情報の数は予め設定されてもよいし、方位推定誤差を推定するときに設定してもよい。
図5には、第1の測位の測位結果である測位値P300、P301、P302及びP303と回帰直線L3とが示されている。また、図5には、測位値P300を中心とする円C_300と、測位値P301を中心とする円C_301と、測位値P302を中心とする円C_302と、測位値P303を中心とする円C_303とが示されている。各円C_300、C_301、C_302、C_303の半径は、該円の中心の各測位値P300、P301、P302、P303の不確からしさに応じた長さである。つまり、測位値の不確からしさが大きいほどに、該測位値を中心にした円の半径は大きくなる。ある測位値の不確からしさは、該測位値が得られた第1の測位の測定時点での第1の測位の測定誤差に基づいて決定される。第1の測位の測定時点での第1の測位の測定誤差を示す誤差情報は、第1の測位の測位結果に含まれている。つまり、第1の測位の測位結果は、測位値と、該測位値が得られた第1の測位の測定時点での第1の測位の測定誤差を示す誤差情報とを含む。
測位値P300、P301、P302及びP303は、同じ主成分分析処理の入力値に含まれる。当該主成分分析処理の結果として回帰直線L3が得られている。当該主成分分析処理の入力値に含まれる測位値のうち、時間的に最も前の測位値は測位値P300であり、時間的に最も後の測位値は測位値P303である。
本実施形態では、方位推定誤差演算部404は、第1の測位の測位結果である複数の測位値を含む入力値に対して主成分分析処理を実行する。この主成分分析処理では、主成分回帰分析が行われる。方位推定誤差演算部404は、該主成分回帰分析の結果として回帰直線を求める。方位推定誤差演算部404が求めた回帰直線の方向は、情報処理装置100が移動する方位(以下、「初期方位」という)に利用できる。方位推定誤差演算部404が求めた回帰直線の方向は、主成分ベクトルの方向である。複数の測位値を含む入力値に対し主成分分析処理を行って初期方位を求めることによって、主成分分析処理を行わずに複数の測位値をそのまま使用して測位値間の方位から初期方位を求める場合に比して、第1の測位の測定誤差による初期方位の精度の低下を防止できる。
測位値P300の座標は座標「x,y」である。測位値P300を中心にした円C_300の半径はAcである。測位値P303の座標は座標「x,y」である。測位値P303を中心にした円C_303の半径はAcである。回帰直線L3の方向つまり初期方位を示す主成分ベクトルの成分は「P,P」である。
方位推定誤差演算部404は、回帰直線L3が得られた主成分分析処理の入力値に含まれる測位値のうち、時間的に最も前の測位値P300と、時間的に最も後の測位値P303との間の距離D_aを計算する。
方位推定誤差演算部404は、次の式(2)によって角度θを計算する。角度θは、回帰直線L3と直線L5とがなす角度である。直線L5は、回帰直線L3が得られた主成分分析処理の入力値に含まれる測位値のうち、時間的に最も前の測位値P300と、時間的に最も後の測位値P303とを含む直線である。
Figure 2017111099
方位推定誤差演算部404は、次の式(3)によって方位誤差の推定値(推定方位誤差)Eを計算する。
Figure 2017111099
図5には、初期方位から推定方位誤差Eによって表される角度をなす直線L4によって、測位値P303を基準の測位値に決定することによって得られる位置情報が初期方位に対して最もずれる場合の方位が示されている。方位推定誤差演算部404は、方位推定誤差Evを表す情報を累積誤差演算部410へ入力する。
図3に戻り説明を続ける。自律航法演算部406は、図2に示されているジャイロセンサー104、加速度センサー106、及びCPU108によって実現され、ジャイロセンサー104によって入力される角速度情報、及び加速度センサー106によって入力される加速度情報に基づいて、情報処理装置100の位置を演算する。
例えば、自律航法演算部406は、自律航法によって、角速度情報に基づいて方向を推定し、加速度情報に基づいて距離を推定することによって、航法信号に基づく測位から1又は複数のセンサーによって取得される情報に基づく測位に切り替えた位置(基準位置)からの相対移動量を推定することによって測位を行う。自律航法演算部406は、基準位置からの相対移動量を表す情報を自律航法誤差演算部408へ入力する。
自律航法誤差演算部408は、図2に示されているCPU108によって実現され、自律航法演算部406によって入力される相対移動量を表す情報に基づいて、自律航法誤差を演算する。例えば、自律航法誤差演算部408は、相対移動量の増加にしたがって増加するように自律航法誤差を演算する。具体的には、自律航法誤差演算部408は、情報処理装置100の初期位置から現在地までの延べ距離によって表される移動距離にセンサーの精度によって発生する一定の誤差によって表される誤差係数を乗算することによって自律航法誤差を演算する。自律航法誤差演算部408は、累積誤差演算部410へ推定した自律航法誤差を表す情報を入力する。
累積誤差演算部410は、図2に示されているCPU108によって実現され、位置推定誤差演算部402によって入力される位置推定誤差Epを表す情報と、方位推定誤差演算部404によって入力される方位推定誤差Evを表す情報と、自律航法誤差演算部408によって入力される自律航法誤差を表す情報とを累積することによって、累積誤差を演算する。例えば、累積誤差演算部410は、所定の演算処理を行うことによって、位置推定誤差Epを表す情報と、方位推定誤差Evを表す情報と、自律航法誤差を表す情報とを累積することによって累積誤差を演算する。具体的には、累積誤差演算部410は、初期位置と測位位置との間のユークリッド距離と方位の誤差から方位誤差を算出する。そして、累積誤差演算部410は、初期位置誤差と、方位誤差と、自律航法誤差との和を求めることによって誤差を累積し、累積誤差を演算する。累積誤差演算部410は、累積誤差を表す情報を測位制御部412に入力する。
測位制御部412は、図2に示されているCPU108によって実現され、累積誤差演算部410によって入力される累積誤差を表す情報に基づいて、第1の測位と、第2の測位との間で切り替える制御を行う。例えば、測位制御部412には、累積誤差の下限(以下、「第1の閾値」という)、及び累積誤差の上限(以下、「第2の閾値」という。第1の閾値<第2の閾値)とする範囲が予め設定される。測位制御部412は、累積誤差が第1の閾値と第2の閾値との間となるように制御する。
測位制御部412は、第1の測位を行っているときの累積誤差が第1の閾値以下である場合には、第2の測位に切り替える。一方、測位制御部412は、第1の測位を行っているときの累積誤差が第1の閾値を超える場合には、第1の測位を継続する。これによって、情報処理装置100は、累積誤差が第1の閾値以下である場合には第2の測位に切り替えるので、消費電力を低減できる。
また、測位制御部412は、第2の測位を行っているときの累積誤差が第2の閾値以上である場合には、第1の測位に切り替える。一方、測位制御部412は、第2の測位を行っているときの累積誤差が第2の閾値未満である場合には、第2の測位を継続する。これによって、情報処理装置100は、累積誤差が第2の閾値以上とならないように制御できる。
図6は、測位制御部412によって第1の測位と第2の測位との間で切り替える処理を示す。図6において、(1)、(5)、及び(9)は累積誤差が減少している移動距離の範囲を示し、(3)、(7)、及び(11)は累積誤差が増加している移動距離の範囲を示す。また、(2)、(6)、及び(10)は累積誤差が第1の閾値となったときの移動距離を示し、(4)、及び(8)は累積誤差が第2の閾値となったときの移動距離を示す。
測位制御部412は、第1の測位を行っているときの累積誤差が第1の閾値を超え、且つ第2の閾値未満である場合には第1の測位を継続し((1)、(5)、(9))、第1の測位を行っているときの累積誤差が第1の閾値以下である場合には、第2の測位に切り替える((2)、(6)、(10))。
測位制御部412は、第2の測位を行っているときの累積誤差が第1の閾値を超え、且つ第2の閾値未満である場合には第2測位を継続し((3)、(7)、(11))、第2の測位を行っているときの累積誤差が第2の閾値以上である場合には、第1の測位に切り替える((4)、(8))。
<情報処理装置の動作>
図7は、本実施形態に係る情報処理装置100の動作の一例を示す。図7に示される例では、情報処理装置100は定期的に測位を行うことによって位置情報を取得する。なお、定期的に位置情報を取得する場合に限らず不定期的に、情報処理装置100が測位を行い、位置情報を取得する場合にも適用できる。
ステップS702では、測位制御部412は、測位のタイミングであるか否かを判断する。測位制御部412は、測位のタイミングでないと判断した場合、測位のタイミングとなるまで待機する。
ステップS704では、測位制御部412は、測位のタイミングであると判断した場合、第1の測位に設定しているか否かを判断する。
ステップS706では、測位制御部412は、第1の測位に設定している場合、航法信号受信部102に測位命令を入力する。航法信号受信部102は、測位命令に応じて第1の測位を実行する。また、ここで、測位制御部412は、第1の測位に設定している場合、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報を取得するようにしてもよい。
ステップS708では、航法信号受信部102によって測位が行われることによって位置情報が得られると、位置推定誤差演算部402は、該航法信号受信部102によって入力される位置情報に基づいて位置推定誤差を推定する。また、ここで、位置推定誤差演算部402は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて位置推定誤差を推定するようにしてもよい。
ステップS710では、方位推定誤差演算部404は、該航法信号受信部102によって入力される位置情報に基づいて方位推定誤差を推定する。また、ここで、方位推定誤差演算部404は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて方位推定誤差を推定するようにしてもよい。
ステップS712では、累積誤差演算部410は、位置推定誤差演算部402によって入力される位置推定誤差と、方位推定誤差演算部404によって入力される方位推定誤差とに基づいて累積誤差を演算し、保持する。なお、累積誤差演算部410は、累積誤差が既に保持されている場合、位置推定誤差演算部402によって入力される位置推定誤差と、方位推定誤差演算部404によって入力される方位推定誤差と、既に保持している累積誤差とに基づいて累積誤差を更新する。
ステップS714では、測位制御部412は、累積誤差が第1の閾値以下であるか否かを判断する。
ステップS716では、測位制御部412は、累積誤差が第1の閾値以下である場合第2の測位へ切り替える。測位制御部412は、累積誤差が第1の閾値以下でない場合、又は累積誤差が第1の閾値以下であり、且つ第2の測位へ切り替えた後に、ステップS702へ移行する。
ステップS718では、ステップS704において第1の測位に設定していない場合、測位制御部412は、自律航法演算部406へ測位命令を入力する。自律航法演算部406は、測位命令に応じて第2の測位を行う。
ステップS720では、位置推定誤差演算部402は、航法信号受信部102によって入力される位置情報に基づいて位置推定誤差を推定する。また、ここで、位置推定誤差演算部402は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて位置推定誤差を推定するようにしてもよい。
ステップS722では、方位推定誤差演算部404は、航法信号受信部102によって入力される位置情報に基づいて方位推定誤差を推定する。また、ここで、方位推定誤差演算部404は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて方位推定誤差を推定するようにしてもよい。
ステップS724では、自律航法演算部406によって測位が行われると、自律航法誤差演算部408は、自律航法演算部406によって入力される相対移動量に基づいて自律航法誤差を演算する。
ステップS726では、累積誤差演算部410は、位置推定誤差演算部402によって入力される位置推定誤差と、方位推定誤差演算部404によって入力される方位推定誤差と、自律航法誤差演算部408によって入力される自律航法誤差に基づいて累積誤差を演算し、保持する。なお、累積誤差演算部410は、累積誤差が既に保持されている場合、自律航法誤差演算部408によって入力される自律航法誤差と、既に保持している累積誤差とに基づいて累積誤差を更新する。
ステップS728では、測位制御部412は、累積誤差が第2の閾値以上であるか否かを判断する。ステップS730では、測位制御部412は、累積誤差が第2の閾値以上である場合、第1の測位へ切り替える。測位制御部412は、累積誤差が第2の閾値以上でない場合、又は累積誤差が第2の閾値以上であり、且つ第1の測位へ切り替えた後に、ステップS702へ移行する。
図7に示すフローチャートにおいて、ステップS708の処理と、ステップS710の処理とを入れ替えてもよい。また、ステップS720の処理と、ステップS722の処理とを入れ替えてもよい。また、ステップS704において、測位制御部412が、測位のタイミングであると判断した場合に、第2の測位に設定しているか否かを判断するようにしてもよい。
本実施形態に係る情報処理装置100によれば、無線通信装置によって送信される無線信号に基づく測位によって得られる位置情報に対して推定される誤差と、1又は複数のセンサーによって取得される情報に基づく測位によって得られる位置に対して推定される誤差とに基づいて累積誤差を算出する。そして、情報処理装置100は、累積誤差に基づいて、無線通信装置によって送信される無線信号に基づく測位と1又は複数のセンサーによって取得される情報に基づく測位の間で自動的に切り替える。
これによって、無線通信装置によって送信される無線信号に基づく測位ができる場合でも、1又は複数のセンサーによって取得される情報に基づく測位に切り替えることができるため、消費電力を低減できる。具体的には、情報処理装置100は、航法衛星によって送信される航法信号に基づく測位ができる屋外に位置する場合でも、累積誤差を所定の範囲に維持しつつ、1又は複数のセンサーによって取得される情報に基づく測位に切り替えることができるため、消費電力を低減できる。
<第2の実施形態>
<情報処理装置>
本実施形態に係る情報処理装置500は、図1、図2を適用できる。
<情報処理装置の機能構成>
図8は、本実施形態に係る情報処理装置の機能ブロック図である。情報処理装置500は、位置方位推定誤差演算部602、自律航法演算部606、自律航法誤差演算部608、累積誤差演算部610、及び測位制御部612を有する。これら各部は、図2に示されている各構成要素のいずれかが、情報処理装置500のEEPROM112に記憶されているプログラム114に従ったCPU108からの命令によって動作することで実現される。
<情報処理装置の各機能部>
情報処理装置500の各部を詳細に説明する。位置方位推定誤差演算部602は、図2に示されている情報処理装置500の航法信号受信部102、無線通信部116、近距離無線通信部118、及びCPU108によって実現される。
位置方位推定誤差演算部602は、航法信号受信部102によって入力される位置情報、無線通信部116によって受信される基地局200の位置情報、及び近距離無線通信部118によって受信されるビーコン発信機の位置情報の少なくとも一つに基づいて、情報処理装置500の位置情報に対して推定される位置推定誤差及び情報処理装置500の初期方位に対して推定される方位推定誤差を演算する。位置推定誤差及び方位推定誤差の演算方法について詳細に説明する。
<位置推定誤差及び方位推定誤差の演算方法>
図9は、位置推定誤差及び方位推定誤差の演算方法の一例を示す。位置方位推定誤差演算部602は、航法信号受信部102によって入力された位置情報、無線通信部116によって受信される基地局200の位置情報、及び近距離無線通信部118によって受信されるビーコン発信機の位置情報のいずれかに基づいて、予測区間などの統計処理を行うことによって、推定位置の範囲を推定する。これによって、推定位置に対する誤差を推定できる。
図9は、5個の位置情報P1、P2、P3、P4、及びP5のX座標及びY座標を、X軸とY座標とからなる平面にプロットすることによって作成した散布図であり、5個の位置情報P1、P2、P3、P4、及びP5に基づいて、推定位置に対する誤差を推定する例が示される。
位置方位推定誤差演算部602は、航法信号受信部102によって入力された複数の位置情報に基づいて、方位推定誤差を求めるために使用する複数の位置情報を選択する。ここでは、位置方位推定誤差演算部602が、5個の位置情報に基づいて方位推定誤差を推定する例を示す。位置方位推定誤差演算部602が2個−4個の位置情報に基づいて位置推定誤差及び方位推定誤差を推定するようにしてもよいし、6個以上の位置情報に基づいて位置推定誤差及び方位推定誤差を推定するようにしてもよい。
位置推定誤差及び方位推定誤差を推定するために使用する位置情報の数が予め設定されてもよいし、位置推定誤差及び方位推定誤差を推定するときに設定してもよい。図9(1)には、複数の位置情報の各々について、各位置情報、測位された時間、推定精度が異なる例が示される。推定精度は、位置情報を中心とする円の半径によって表される。
位置方位推定誤差演算部602は、選択した複数の位置情報の各々について、各位置情報の推定精度を取得する。例えば、位置方位推定誤差演算部602は、航法衛星300から航法信号受信部102へ航法信号が到達する経路において電離層や対流圏での電波特性の変化によって生じる電波伝搬速度の遅延や、受信した航法信号を送信する航法衛星の数や配置によって生じる電波伝搬速度の遅延などに基づいて、推定精度を求める。
また、例えば、位置方位推定誤差演算部602は、基地局200や、ビーコン発信機からの無線信号の受信強度などに基づいて、推定精度を求める。図9(1)には、複数の位置情報の各々を中心とする円の半径によって推定精度が示される。
次に、位置方位推定誤差演算部602は、選択した複数の位置情報の各々について求めた推定精度の平均値バーAcを演算する。図9(2)には、複数の位置情報の各々を中心とする円の半径によって推定精度の平均値バーAcが示される。
位置方位推定誤差演算部602は、位置情報P1から位置情報P5に基づいて、回帰直線、対数曲線などの特定の関数を用いて近似する。例えば、位置方位推定誤差演算部602は、回帰直線を用いて近似する場合には、最小二乗法を適用することによって、想定する関数が測定値に対してよい近似となるように、残差の二乗和を最小とするような係数を決定する。
図9(3)には、位置情報P1から位置情報P5を、回帰直線を用いて近似した例が示される。回帰直線を用いて近似することによって、情報処理装置500が移動する方位(以下、「初期方位」という)を推定できる。
次に、位置方位推定誤差演算部602は、位置情報P1から位置情報P5の各々について、各位置情報と回帰直線との間の距離di[m](iは、i=1−5の整数)を演算する。つまり、位置方位推定誤差演算部602は、位置情報P1から位置情報P5の各々から回帰直線へ下した垂線の長さを求める。次に、位置方位推定誤差演算部602は、距離diの平均値バーdを演算する。そして、位置方位推定誤差演算部602は、上述した予測区間の計算式(1)によって位置推定誤差Ep[m]を求める。
次に、位置方位推定誤差演算部602は、選択した複数の位置情報のうち、最も早い時間に測位された位置情報と、最も遅い時間に測位された位置情報との間の間隔Dを演算する。図9(3)に示される例では、位置情報P1と位置情報P5との間の距離を求めることによって間隔Dが得られる。
ここで、初期位置と進行方向の推定に採用する位置情報のうち、時刻的に最も前に測位された位置情報のx座標をxs、y座標をys、推定精度AcをAcsとする。また、最も後に測位された位置情報のx座標をxe、y座標をye、推定精度AcをAceとする。また、推定された初期方位のベクトルをベクトルp=(Px,Py)とし、最も前に測位された位置と最も後に測位された位置とを結んだ直線をlとする。また、ベクトルpとlとのなす角をθpとする。
次に、位置方位推定誤差演算部602は、上述した式(2)によってθpを求める。
図9(3)には、初期方位から推定方位誤差Evによって表される角度をなす直線によって、推定位置が初期方位に対して最もずれる場合の方位が示される。位置方位推定誤差演算部602は、式(3)によって方位推定誤差Evを求める。位置方位推定誤差演算部602は、位置推定誤差Epを表す情報、及び方位推定誤差Evを表す情報を累積誤差演算部610へ入力する。これによって、位置方位推定誤差演算部602は、位置推定誤差Ep、及び方位推定誤差Evを同じロジックの演算できるため、第1の実施形態と比較して演算処理を簡略化できる。
図8に戻り、説明を続ける。自律航法演算部606、自律航法誤差演算部608、及び測位制御部612は、図3を参照して説明した自律航法演算部406、自律航法誤差演算部408、及び測位制御部412を適用できる。
累積誤差演算部610は、図2に示されているCPU108によって実現され、位置方位推定誤差演算部602によって入力される位置推定誤差Epを表す情報及び方位推定誤差Evを表す情報と、自律航法誤差演算部408によって入力される自律航法誤差を表す情報とを累積することによって、累積誤差を演算する。
例えば、累積誤差演算部610は、所定の演算処理を行うことによって、位置推定誤差Epを表す情報と、方位推定誤差Evを表す情報と、自律航法誤差を表す情報とを累積することによって累積誤差を演算する。具体的には、累積誤差演算部410は、初期位置と測位位置との間のユークリッド距離と方位の誤差から方位誤差を算出する。そして、累積誤差演算部410は、初期位置誤差と、方位誤差と、自律航法誤差との和を求めることによって誤差を累積し、累積誤差を演算する。累積誤差演算部610は、累積誤差を表す情報を測位制御部612に入力する。
<情報処理装置の動作>
図10は、本実施形態に係る情報処理装置500の動作の一例を示す。図10に示される例では、情報処理装置500は定期的に測位を行うことによって位置情報を取得する。
なお、定期的に位置情報を取得する場合に限らず不定期的に、情報処理装置500が測位を行い、位置情報を取得する場合にも適用できる。
ステップS1002−S1006は、図7に示されるステップS702−S706を適用できる。
ステップS1008では、航法信号受信部102によって測位が行われると、位置方位推定誤差演算部602は、航法信号受信部102によって入力される位置情報に基づいて位置推定誤差、及び方位推定誤差を推定する。
また、ここで、位置方位推定誤差演算部602は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて、位置推定誤差、及び方位推定誤差を推定するようにしてもよい。ステップS1010−S1016は、図7に示されるステップS712−S718を適用できる。
ステップS1018では、位置方位推定誤差演算部602は、航法信号受信部102によって入力される位置情報に基づいて位置推定誤差、及び方位推定誤差を推定する。
また、ここで、位置方位推定誤差演算部602は、無線通信部116及び近距離無線通信部118の両方又は一方によって入力される位置情報に基づいて、位置推定誤差、及び方位推定誤差を推定するようにしてもよい。ステップS1020−S1026は、図7に示されるステップS724−S730を適用できる。
本実施形態に係る情報処理装置500によれば、上述した実施形態の効果に加え、位置推定誤差及び方位推定誤差を同じロジックによって推定できるため、処理を簡略化できる。このため、CPUの処理負荷を低減でき、消費電力を低減できる。
<方位誤差の推定方法の他の例>
図11を参照して方位誤差の推定方法の他の例を説明する。図11は、方位誤差の推定方法の一例を示す。図11には、第1の測位の測位結果である測位値P401、P402、P403及びP404と回帰直線L10とが示されている。また、図11には、測位値P401を中心とする円C_401と、測位値P402を中心とする円C_402と、測位値P403を中心とする円C_403と、測位値P404を中心とする円C_404とが示されている。各円C_401、C_402、C_403、C_404の半径は、該円の中心の測位値P401、P402、P403、P404の不確からしさに応じた長さである。つまり、測位値の不確からしさが大きいほどに、該測位値を中心にした円の半径は大きくなる。ある測位値の不確からしさは、該測位値が得られた第1の測位の測定時点での第1の測位の測定誤差に基づいて決定される。第1の測位の測定時点での第1の測位の測定誤差を示す誤差情報は、第1の測位の測位結果に含まれている。つまり、第1の測位の測位結果は、測位値と、該測位値が得られた第1の測位の測定時点での第1の測位の測定誤差を示す誤差情報とを含む。
各円C_401、C_402、C_403、C_404の円周には、等間隔で、それぞれ8個の追加の入力値が示されている。これら各円C_401、C_402、C_403、C_404の円周に示される全ての追加の入力値と、測位値P401、P402、P403及びP404とから構成される主成分分析処理の入力値の集合をpnとする。この集合pnが入力値である主成分分析処理の結果として、初期方位を示す回帰直線L10が得られている。
方位推定誤差演算部404又は位置方位推定誤差演算部602は、集合pnに含まれる各入力値と回帰直線L10との垂直距離の平方和を自由度で割った値に基づいて、平均誤差Acを算出する。集合pnに含まれる各入力値と回帰直線L10との垂直距離の平方和を自由度で割った値は、回帰直線L10に対する集合pnのばらつきを表す。
直線L11及びL12は回帰直線L10に平行な直線である。各直線L11、L12と回帰直線L10との間隔は平均誤差Acである。回帰直線L10と、集合pnに含まれる各入力値から該回帰直線L10への垂線との交点の集合をpn’とする。方位推定誤差演算部404又は位置方位推定誤差演算部602は、集合pn’に含まれる任意の2つの交点の間の距離のうち、最長の距離D_bを算出する。方位推定誤差演算部404又は位置方位推定誤差演算部602は、次の式(4)によって方位誤差の推定値(推定方位誤差)Eを計算する。
Figure 2017111099
図11には、初期方位(回帰直線L10の方向)から推定方位誤差Eによって表される角度をなす直線L13によって、初期方位からの推定されるずれが示されている。
以上、本実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、情報処理装置100、情報処理装置500又は情報処理装置700に、ジャイロセンサー及び加速度センサーの代わりに、又はジャイロセンサー及び加速度センサーとともに、地磁気センサー、気圧センサー、近接センサー、照度センサーなどを搭載してもよい。
そして、情報処理装置100、情報処理装置500又は情報処理装置700に搭載したジャイロセンサー及び加速度センサーの代わりに、又はジャイロセンサー及び加速度センサーとともに搭載した地磁気センサー、気圧センサー、近接センサー、照度センサーなどによって自律航法による測位を行うようにしてもよい。
ジャイロセンサー及び加速度センサーとともに、地磁気センサー、気圧センサー、近接センサー、照度センサーなどを搭載することによって、自律航法による測位精度を向上させることができる。このため、自律航法に基づく測位を長い距離行っても、累積誤差の増加を抑えられるため、さらに情報処理装置100又は情報処理装置500の消費電力を低減できる。
また、上述した情報処理装置が実行するプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えば、DRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含む。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
上述した実施形態において、スマートフォン、タブレット端末、PC、サーバ、クラウド側の装置などは情報処理装置の一例である。また、航法衛星、基地局、ビーコン発信機などは無線通信装置の一例であり、航法衛星受信部は第1の測位部の一例であり、地磁気センサー、加速度センサー、ジャイロセンサー、気圧センサー、近接センサー、照度センサーなどはセンサーの一例である。
また、自律航法演算部は第2の測位部の一例であり、位置推定誤差、方位推定誤差は第1の誤差の一例であり、自律航法誤差は第2の誤差の一例であり、累積誤差演算部は演算部の一例であり、測位制御部は制御部の一例である。
本発明は特定の実施例、変形例を参照しながら説明されてきたが、各実施例、変形例は単なる例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例などを理解するであろう。説明の便宜上、本発明の実施例に従った装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明は上記実施例に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が包含される。
100…情報処理装置
102…航法信号受信部
104…ジャイロセンサー
106…加速度センサー
108…CPU
110…RAM
112…EEPROM
114…プログラム
116…無線通信部
118…近距離無線通信部
150…バスライン
200…基地局
300(300a、300b、300c、300d)…航法衛星
402…位置推定誤差演算部
404…方位推定誤差演算部
406…自律航法演算部
408…自律航法誤差演算部
410…累積誤差演算部
412…測位制御部
500…情報処理装置
602…位置方位推定誤差演算部
606…自律航法演算部
608…自律航法誤差演算部
610…累積誤差演算部
612…測位制御部

Claims (8)

  1. 1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、
    1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部と、
    前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出する演算部と、
    該演算部によって算出された累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替える制御部と
    を有する、情報処理装置。
  2. 前記第2の測位部は、前記情報処理装置が移動することによって前記1又は複数のセンサーによって取得された前記情報に基づいて測位を行う、請求項1に記載の情報処理装置。
  3. 前記演算部は、前記第1の測位部による測位から前記第2の測位部による測位に切り替える位置からの移動方位に対して推定される誤差に基づいて、前記第1の誤差を算出する、請求項1又は請求項2に記載の情報処理装置。
  4. 前記演算部は、前記移動方位に対して推定される誤差を、前記第1の測位部によって測位される複数の位置の各々に対して推定される複数の第1の誤差と、該複数の位置の各々の間隔に基づいて算出する、請求項3に記載の情報処理装置。
  5. 前記演算部は、測位を開始した位置に対して推定される誤差に基づいて、前記第1の誤差を算出する、請求項1から請求項4のいずれか1項に記載の情報処理装置。
  6. 前記演算部は、前記第1の測位部によって測位される複数の位置に基づいて予測される位置に対する誤差に基づいて、前記第1の誤差を算出する、請求項5に記載の情報処理装置。
  7. 1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部とを有する情報処理装置によって実行される測位方法であって、
    前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出するステップと、
    該累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替えるステップと
    を有する、測位方法。
  8. 1又は複数の無線通信装置によって送信される信号に基づいて測位を行う第1の測位部と、1又は複数のセンサーによって取得される情報に基づいて測位を行う第2の測位部とを有する情報処理装置に、
    前記第1の測位部によって測位される位置に対して推定される第1の誤差と、前記第2の測位部によって測位される位置に対して推定される第2の誤差とに基づいて、累積誤差を算出させ、
    該累積誤差に基づいて、前記第1の測位部による測位と、前記第2の測位部による測位とを切り替えさせる、プログラム。
JP2015247824A 2015-12-18 2015-12-18 情報処理装置、測位方法、及びプログラム Pending JP2017111099A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015247824A JP2017111099A (ja) 2015-12-18 2015-12-18 情報処理装置、測位方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247824A JP2017111099A (ja) 2015-12-18 2015-12-18 情報処理装置、測位方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2017111099A true JP2017111099A (ja) 2017-06-22

Family

ID=59080087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247824A Pending JP2017111099A (ja) 2015-12-18 2015-12-18 情報処理装置、測位方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2017111099A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111098A (ja) * 2015-12-18 2017-06-22 Kddi株式会社 情報処理装置、測位システム、情報処理方法、及びコンピュータプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894367A (ja) * 1994-09-23 1996-04-12 Aisin Aw Co Ltd 車両用ナビゲーション装置
JPH09230932A (ja) * 1996-02-26 1997-09-05 Shinko Electric Co Ltd 移動体誘導装置
JP2008089353A (ja) * 2006-09-29 2008-04-17 Honda Motor Co Ltd 車両位置検出システム
JP2010145115A (ja) * 2008-12-16 2010-07-01 Nec Corp 目的地予測システム、目的地予測方法及びプログラム
JP2011017599A (ja) * 2009-07-08 2011-01-27 Fujitsu Ltd 自律測位プログラム、自律測位装置および自律測位方法
US20120299702A1 (en) * 2011-05-26 2012-11-29 Caterpillar Inc. Hybrid positioning system
US20150097724A1 (en) * 2012-12-17 2015-04-09 Topcon Positioning Systems, Inc. Method and apparatus of gnss receiver heading determination
US20150099546A1 (en) * 2013-10-08 2015-04-09 Samsung Electronics Co., Ltd. Location-based service provision method and system of electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894367A (ja) * 1994-09-23 1996-04-12 Aisin Aw Co Ltd 車両用ナビゲーション装置
JPH09230932A (ja) * 1996-02-26 1997-09-05 Shinko Electric Co Ltd 移動体誘導装置
JP2008089353A (ja) * 2006-09-29 2008-04-17 Honda Motor Co Ltd 車両位置検出システム
JP2010145115A (ja) * 2008-12-16 2010-07-01 Nec Corp 目的地予測システム、目的地予測方法及びプログラム
JP2011017599A (ja) * 2009-07-08 2011-01-27 Fujitsu Ltd 自律測位プログラム、自律測位装置および自律測位方法
US20120299702A1 (en) * 2011-05-26 2012-11-29 Caterpillar Inc. Hybrid positioning system
US20150097724A1 (en) * 2012-12-17 2015-04-09 Topcon Positioning Systems, Inc. Method and apparatus of gnss receiver heading determination
US20150099546A1 (en) * 2013-10-08 2015-04-09 Samsung Electronics Co., Ltd. Location-based service provision method and system of electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111098A (ja) * 2015-12-18 2017-06-22 Kddi株式会社 情報処理装置、測位システム、情報処理方法、及びコンピュータプログラム

Similar Documents

Publication Publication Date Title
EP3186654B1 (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
KR101478170B1 (ko) 상향링크 액세스 포인트를 이용한 위치추정장치 및 위치추정방법
US20180313931A1 (en) Single node location system and method
US9832615B2 (en) Mobile device sensor and radio frequency reporting techniques
US10659921B2 (en) Measurement batching
KR101308555B1 (ko) 실내보행 위치산출방법
KR101476663B1 (ko) 위치추적 장치
KR20150018827A (ko) 액세스 포인트들의 위치들을 결정하기 위한 방법 및 장치
JP7288589B2 (ja) 協調測位
KR20110121179A (ko) 단말기에서 상대적인 위치를 추정하는 장치 및 방법
WO2016103498A1 (ja) ロケーション判定システムおよびロケーション判定プログラム
KR20150125533A (ko) 무선 위치 추정 장치 및 그 방법
US20150141042A1 (en) Mobile terminal, system and method
JP2009092594A (ja) 位置推定システム
US20160313448A1 (en) In-band pseudolite wireless positioning method, system and device
CN109525931B (zh) 一种定位无线设备的方法、装置、设备及存储介质
US20160124069A1 (en) Systems and methods for estimating a two-dimensional position of a receiver
US20240151859A1 (en) Method for adaptive location information obtainment in a wireless network
JP2019090669A (ja) 移動体端末、現在位置補正システム及びプログラム
KR20160090199A (ko) 무선 신호를 이용한 실내 위치 측정 장치 및 방법
JP2015224943A (ja) 位置推定システム及び位置推定方法
JP6603122B2 (ja) 情報処理装置、記録方法、及びプログラム
JP2017111099A (ja) 情報処理装置、測位方法、及びプログラム
JP6521853B2 (ja) 情報処理装置、測位システム、情報処理方法、及びコンピュータプログラム
JP2016183921A (ja) サーバコンピュータ、測位システム、測位方法およびプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200114