JP2017100081A - Desalination processor of water - Google Patents

Desalination processor of water Download PDF

Info

Publication number
JP2017100081A
JP2017100081A JP2015235416A JP2015235416A JP2017100081A JP 2017100081 A JP2017100081 A JP 2017100081A JP 2015235416 A JP2015235416 A JP 2015235416A JP 2015235416 A JP2015235416 A JP 2015235416A JP 2017100081 A JP2017100081 A JP 2017100081A
Authority
JP
Japan
Prior art keywords
temperature
sensitive drug
phase
phase separation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015235416A
Other languages
Japanese (ja)
Other versions
JP6447477B2 (en
Inventor
亮 功刀
Akira Kunugi
亮 功刀
渕上 浩司
Koji Fuchigami
浩司 渕上
戸村 啓二
Keiji Tomura
啓二 戸村
藤原 茂樹
Shigeki Fujiwara
茂樹 藤原
彩 大里
Aya Osato
彩 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015235416A priority Critical patent/JP6447477B2/en
Publication of JP2017100081A publication Critical patent/JP2017100081A/en
Application granted granted Critical
Publication of JP6447477B2 publication Critical patent/JP6447477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for performing rapidly phase separation between a temperature sensitive medicine rich phase and a salt rich phase in a desalination processor of water for separating to obtain plain water from sea water.SOLUTION: A desalination processor of water includes a mixing means 9 of mixing water to be treated 101 containing salts and a solution in which a temperature sensitive agent having a lower limit critical solution temperature is dissolved in water, a first phase separation tank 3, a heating step 4, a second phase separation tank 5, a cooling means 8, a first circulation means, a membrane separator 7 for membrane separating a temperature sensitive agent dilution solution 104 separated by a second phase separation tank to obtain plain water 106 and the temperature sensitive agent recovery solution 107, a second circulation means, and a phase separation acceleration agent addition means 10 for adding a phase separation acceleration agent to a mixed solution and/or temperature sensitive agent rich solution 102.SELECTED DRAWING: Figure 1

Description

この発明は、例えば海水を温度感応性薬剤と半透膜を用いて淡水を製造する方法と装置に関するものである。   The present invention relates to a method and an apparatus for producing fresh water from, for example, seawater using a temperature-sensitive drug and a semipermeable membrane.

海水を半透膜を用いて淡水化する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。一方、半透膜を介して海水より高濃度の塩溶液を存在させれば、加圧せずとも浸透圧で水をこの塩溶液に移動させることができる。そして、この塩溶液(誘引溶液)として揮発性ガスを溶解させた溶液を用いれば、この塩溶液を蒸留することにより揮発性ガスを蒸発、分離させて淡水を得ることができる。この正浸透法として、揮発性ガスとしてアンモニアと二酸化炭素の組合せを用いた方法が既に開発されている。   Various methods for desalinating seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. Since this method requires pressurization to a high pressure, there is a problem that the equipment cost and operation cost are high. On the other hand, if a salt solution having a higher concentration than seawater is present through the semipermeable membrane, water can be transferred to the salt solution by osmotic pressure without applying pressure. If a solution in which a volatile gas is dissolved is used as the salt solution (attraction solution), the salt solution can be distilled to evaporate and separate the volatile gas to obtain fresh water. As this forward osmosis method, a method using a combination of ammonia and carbon dioxide as a volatile gas has already been developed.

一方、この誘引溶液に、曇点を有する溶質を用いたものも知られている(特許文献1)。   On the other hand, what used the solute which has a cloud point for this attraction solution is also known (patent document 1).

特許文献1の方法は、海水を正浸透システムに送って、そこで半透膜を介して誘引溶液と接触させて海水中の水を浸透圧により半透膜を透過させて誘引溶液へ移動させる。水が誘引溶液に移動して残った濃縮海水は正浸透システムから流出する。一方、海水中の水で希釈された希釈誘引溶液は加熱器を備えた沈殿システムに送られ、そこで相分離あるいは沈殿を生じた希釈誘引溶液はポンプで加圧されてろ過システムに送られる。その際、溶質の曇点より低い温度の液を添加することができる。ろ過された膜ろ過水は後処理部でさらに精製されて飲料水となる。曇点を有する溶質には、各種の界面活性剤、分散剤、発泡剤、乳化剤など、例えば、ポリエチレングリコールやポリプロピレングリコールが使用され、ろ過システムのろ材にはナノろ過膜や逆浸透膜が使用されている。   In the method of Patent Document 1, seawater is sent to a forward osmosis system, where it is brought into contact with an attracting solution through a semipermeable membrane, and water in the seawater is transferred to the attracting solution through the semipermeable membrane by osmotic pressure. Concentrated seawater left after the water has moved into the attraction solution flows out of the forward osmosis system. On the other hand, the diluted attraction solution diluted with water in seawater is sent to a precipitation system equipped with a heater, where the diluted attraction solution that causes phase separation or precipitation is pressurized by a pump and sent to a filtration system. At that time, a liquid having a temperature lower than the cloud point of the solute can be added. The filtered membrane filtrate is further purified in the post-processing section to become drinking water. Various surfactants, dispersants, foaming agents, emulsifiers such as polyethylene glycol and polypropylene glycol are used for the solute having a cloud point, and nanofiltration membranes and reverse osmosis membranes are used for the filter media of the filtration system. ing.

また、温度応答性高分子(感温剤)に塩分を添加すると、下限臨界溶液温度(LCST、または曇点と呼ばれる。)が低下し、感温剤だけでは凝集しない温度で凝集が起こることが知られている。そこで、本原理を利用して感温剤に海水を混合し、感温剤濃厚相と塩濃厚相を取り出し、それぞれを膜分離することで飲料水と濃厚塩水を取り出すことを提案したプロセスがある(特許文献2)。感温剤として使用されているのはポリ−N−ビニルカプロラクタム(PVCL)である。   Further, when salt is added to the temperature-responsive polymer (thermosensitive agent), the lower critical solution temperature (referred to as LCST or cloud point) is lowered, and aggregation may occur at a temperature that does not aggregate with the thermosensitive agent alone. Are known. Therefore, there is a process that proposes to extract drinking water and concentrated salt water by mixing the temperature sensitive agent with seawater using this principle, taking out the temperature sensitive agent rich phase and salt rich phase, and separating them from each other by membrane separation. (Patent Document 2). Poly-N-vinylcaprolactam (PVCL) is used as a temperature sensitive agent.

このプロセスの概略を図2に示す。まず、3.4%のNaClを含む海水を5%のPVCL水溶液を混合器に入れ、良く攪拌した後、この混合物を静置槽に入れて相分離させる。相分離された、NaClが3,400ppm未満でPVCLが約6,000ppmの抽出相E1と、NaClが50,000ppmでPVCLが600ppm未満の抽残相R1を別々に取り出し、それぞれ相分離する。抽出相E1からは、膜分離により、NaClが低濃度でPVCLを約10,000ppm含む水相PEM1とNaClが3,400ppm未満でPVCLがほぼ0.0ppmの水相EM1に分けられる。水相PEM1は、混合器に返送し、水相EM1は、必要により、逆浸透膜でNaClを分離して飲料水とする。抽残相R1からは、膜分離により、NaClが低濃度でPVCLが高濃度の水相PRM1とNaClが高濃度でPVCLがほぼ0.0ppmの水相RM1に分けられる。水相PRM1は混合器に返送し、水相RM1は廃棄する。   An overview of this process is shown in FIG. First, seawater containing 3.4% NaCl is mixed with 5% PVCL aqueous solution in a mixer and stirred well, and then the mixture is placed in a stationary tank and phase separated. The phase-separated extraction phase E1 with NaCl of less than 3,400 ppm and PVCL of about 6,000 ppm and the extracted residual phase R1 with NaCl of 50,000 ppm and PVCL of less than 600 ppm are taken out separately and phase-separated. The extraction phase E1 is separated by membrane separation into an aqueous phase PEM1 containing a low concentration of NaCl and about 10,000 ppm of PVCL and an aqueous phase EM1 of less than 3,400 ppm of NaCl and about 0.0 ppm of PVCL. The aqueous phase PEM1 is returned to the mixer, and the aqueous phase EM1 separates NaCl with a reverse osmosis membrane as necessary to make drinking water. The extracted residual phase R1 is separated into an aqueous phase PRM1 having a low NaCl concentration and a high PVCL concentration and an aqueous phase RM1 having a high NaCl concentration and a PVCL of approximately 0.0 ppm by membrane separation. The aqueous phase PRM1 is returned to the mixer and the aqueous phase RM1 is discarded.

米国特許第2010/0155329A1号明細書US 2010/0155329 A1 特開2010−274252号公報JP 2010-274252 A

海水を半透膜で分離する特許文献1の方法より、先に相分離を行う特許文献2の方法のほうが、原理的にコスト面で優れているが、特許文献2の方法では、感温剤と塩水の混合液は、速やかには層状分離しないため、滞留時間の大きな巨大な沈殿槽か遠心分離器等が必要になり、装置コストが高くなる、という問題があった。また、PVCLのような感温剤は高価であり、単位製造水あたりの薬剤コストが高くなる、という問題があった。   In principle, the method of Patent Document 2 in which phase separation is first performed is superior in cost to the method of Patent Document 1 in which seawater is separated by a semipermeable membrane. Since the mixed solution of salt water and salt water is not promptly separated into layers, a large sedimentation tank or a centrifugal separator having a long residence time is required, resulting in an increase in apparatus cost. In addition, a temperature sensitive agent such as PVCL is expensive, and there is a problem that a chemical cost per unit production water increases.

本発明の目的は、海水のような塩類を含有する被処理水に下限臨界溶液温度を有する温度感応性薬剤(感温剤)の水溶液を混合して温度感応性薬剤濃厚相と塩類濃厚相に相分離させ、温度感応性薬剤濃厚相から淡水を分離取得する水の脱塩処理装置において、温度感応性薬剤濃厚相と塩類濃厚相に速やかに相分離させる手段を提供することにある。   The object of the present invention is to mix an aqueous solution of a temperature-sensitive drug (temperature-sensitive agent) having a lower critical solution temperature with water to be treated containing salts such as seawater to obtain a temperature-sensitive drug concentrated phase and a salt-rich phase. An object of the present invention is to provide means for rapidly separating a temperature-sensitive drug-rich phase and a salt-rich phase in a water desalting apparatus that separates and acquires fresh water from a temperature-sensitive drug-rich phase.

本発明の別の目的は、このような作用を有する温度感応性薬剤に安価な薬剤を用いて薬剤コストを低減させることにある。   Another object of the present invention is to reduce the drug cost by using an inexpensive drug as the temperature-sensitive drug having such an action.

本発明は、上記課題を解決した手段を提供するものであり、相分離される混合液に予め相分離促進剤を添加しておくことにより、相分離槽内での温度感応性薬剤濃厚相と塩類濃厚相への分離がしやすくなって重力分離が容易になり、上記混合液を加温することによってさらに分離が容易になることを見出してなされたものである。   The present invention provides means for solving the above problems, and by adding a phase separation accelerator in advance to a liquid mixture to be phase-separated, a temperature-sensitive drug-rich phase in a phase separation tank and It has been made by finding that the separation into a salt-rich phase is facilitated and the gravity separation is facilitated, and that the separation is further facilitated by heating the above mixed liquid.

すなわち、本発明は、塩類を含有する被処理水と下限臨界溶液温度を有する温度感応性薬剤を水に溶解した溶液とを混合する混合手段と、前記混合手段から流出する混合液を温度感応性薬剤濃厚相と塩類濃厚相とに相分離する第1相分離槽と、前記第1相分離槽から流出する温度感応性薬剤濃厚相液を前記下限臨界溶液温度以上の温度に加温する加温手段と、前記加温手段で加温された温度感応性薬剤濃厚相液を温度感応性薬剤を主体とする温度感応性薬剤濃厚溶液と、淡水を主体とし、少量の温度感応性薬剤を含有する温度感応性薬剤希薄溶液とに相分離する第2相分離槽と、前記第2相分離槽で分離された前記温度感応性薬剤濃厚溶液を前記下限臨界溶液温度以下の温度まで冷却する冷却手段と、前記冷却手段で冷却された温度感応性薬剤濃厚溶液を前記混合手段に循環する第1循環手段と、前記第2相分離槽で分離された前記温度感応性薬剤希薄溶液を膜分離し、淡水と温度感応性薬剤回収液を得る膜分離装置と、前記温度感応性薬剤回収液を前記温度感応性薬剤濃厚相液に循環する第2循環手段と、前記混合液および/または前記温度感応性薬剤濃厚溶液に相分離促進剤を添加する相分離促進剤添加手段を有することを特徴とする水の脱塩処理装置を提供するものである。   That is, the present invention provides a mixing means for mixing the water to be treated containing salts and a solution in which a temperature sensitive drug having a lower critical solution temperature is dissolved in water, and the temperature sensitivity of the mixed solution flowing out from the mixing means. A first phase separation tank that separates a drug-rich phase and a salt-rich phase, and a temperature-sensitive drug-rich phase liquid that flows out of the first phase separation tank is heated to a temperature equal to or higher than the lower critical solution temperature. Means, a temperature-sensitive drug concentrated phase liquid heated by the heating means, a temperature-sensitive drug concentrated solution mainly composed of a temperature-sensitive drug, and a fresh water mainly containing a small amount of the temperature-sensitive drug. A second phase separation tank that phase-separates into a temperature-sensitive drug dilute solution; and a cooling means that cools the temperature-sensitive drug concentrated solution separated in the second phase separation tank to a temperature equal to or lower than the lower critical solution temperature. The temperature sensitive drug cooled by the cooling means A membrane separation apparatus for separating fresh water and a temperature-sensitive drug recovery liquid by membrane-separating the temperature-sensitive drug dilute solution separated in the second phase separation tank with a first circulation means for circulating a concentrated solution to the mixing means A second circulation means for circulating the temperature-sensitive drug recovery liquid to the temperature-sensitive drug concentrated phase liquid, and a phase separation in which a phase separation accelerator is added to the liquid mixture and / or the temperature-sensitive drug concentrated solution. The present invention provides a water desalting apparatus characterized by having an accelerator addition means.

また、温度感応性薬剤に、特許文献2で使用されているポリ−N−ビニルカプロラクタム(PVCL)に代えて、安価なポリオキシエチレン・ポリオキシプロピレングリコール系共重合体を用いて、良好な相分離が得られることも見出した。   In addition, instead of poly-N-vinylcaprolactam (PVCL) used in Patent Document 2, an inexpensive polyoxyethylene / polyoxypropylene glycol-based copolymer is used as a temperature sensitive drug, and a good phase is obtained. It was also found that separation was obtained.

従って、本発明は、前記下限臨界溶液温度を有する温度感応性薬剤が、ポリオキシエチレン・ポリオキシプロピレングリコール系共重合体であることを特徴とする上記の水の脱塩処理装置をも提供するものである。   Accordingly, the present invention also provides the water desalting apparatus as described above, wherein the temperature-sensitive drug having the lower critical solution temperature is a polyoxyethylene / polyoxypropylene glycol copolymer. Is.

相分離促進剤としては、例えばカチオン系界面活性剤を用い、これを添加することにより、第1相分離槽で温度感応性薬剤濃厚相と塩類濃厚相に分離しやすくなり、重力分離が容易となる。相分離促進剤による分離促進現象のメカニズムは完全には解明されていないが、温度感応性薬剤濃厚相と塩類濃厚相との界面張力が関係していると考えられる。   As a phase separation accelerator, for example, a cationic surfactant is used, and by adding this, it becomes easy to separate into a temperature-sensitive drug-rich phase and a salt-rich phase in the first phase separation tank, and gravity separation is easy. Become. Although the mechanism of the separation promotion phenomenon by the phase separation accelerator has not been completely elucidated, it is considered that the interfacial tension between the temperature sensitive drug concentrated phase and the salt concentrated phase is related.

本発明により、海水などの塩類を含有する被処理水に下限臨界溶液温度を有する温度感応性薬剤の水溶液を混合して温度感応性薬剤濃厚相と塩類濃厚相に相分離させる際に相分離促進剤を添加しておくことにより、この相分離を速やかに行わせて、相分離槽をコンパクトにできるとともに、温度感応性薬剤濃厚相から淡水を効率よく取得することができ、また、この温度感応性薬剤にポリオキシエチレン・ポリオキシプロピレングリコール系共重合体を用いれば薬剤コストを低減させることができる。   According to the present invention, phase separation is promoted when an aqueous solution of a temperature-sensitive drug having a lower critical solution temperature is mixed with water to be treated containing salts such as seawater to cause phase separation into a temperature-sensitive drug concentrated phase and a salt-rich phase. By adding an agent, this phase separation can be performed quickly, the phase separation tank can be made compact, and fresh water can be efficiently obtained from the temperature-sensitive drug-rich phase. If a polyoxyethylene / polyoxypropylene glycol-based copolymer is used for the active drug, the drug cost can be reduced.

本発明の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the apparatus of this invention. 従来の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the conventional apparatus.

本発明の水の脱塩処理装置は、混合手段と第1相分離槽と加温手段と第2相分離槽と冷却手段と循環手段と膜分離装置と第2循環手段と相分離促進剤添加手段よりなっている。   The water desalination apparatus of the present invention comprises a mixing means, a first phase separation tank, a heating means, a second phase separation tank, a cooling means, a circulation means, a membrane separation apparatus, a second circulation means, and a phase separation accelerator. It consists of means.

混合手段
混合手段は、塩類を含有する被処理水と下限臨界溶液温度を有する温度感応性薬剤を水に溶解した溶液とを混合する手段である。
Mixing means The mixing means is means for mixing the water to be treated containing salts with a solution obtained by dissolving a temperature-sensitive drug having a lower critical solution temperature in water.

被処理水は塩類を含有する水であればよいが、例示すれば、海水、湖沼水、河川水、工場廃水などである。   The water to be treated may be water containing salts, but for example, seawater, lake water, river water, factory wastewater, and the like.

温度感応性薬剤は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、親水性〜疎水性に変化する温度が下限臨界温度あるいは曇点と呼ばれる。この温度に達すると疎水性化した温度感応性薬剤が析出して白濁あるいは相分離が起こる。徐々に加温する際に、薬剤によって白濁するが速やかに相分離しないもの、白濁した後更に加温すると速やかに相分離するもの、白濁状態を経ずに相分離するものがあるが、本発明に用いられる薬剤は加温後速やかに相分離するものであって、ここでいう下限臨界温度とは相分離する温度を意味する。   Temperature-sensitive drugs are substances that are hydrophilic and well soluble in water at low temperatures, but become hydrophobic and their solubility decreases at a certain temperature or higher.The temperature at which they change from hydrophilic to hydrophobic is the lower critical temperature or cloud point. be called. When this temperature is reached, a hydrophobized temperature-sensitive drug is precipitated, resulting in white turbidity or phase separation. When gradually warming, there are those that become cloudy by the drug but do not phase-separate quickly, those that become cloudy and then further heated, phase-separate quickly, and those that phase-separate without going cloudy. The chemical used in the above is one that undergoes phase separation immediately after warming, and the lower critical temperature herein means the temperature at which phase separation occurs.

この温度感応性薬剤は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコール、アルキル基、グリコール類、または脂肪酸とエチレングリコールの化合物(水溶性ポリアルキレングリコール誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシテトラメチレンポリオキシエチレングリコール、ポリオキシエチレンポリオキシプロピレントリメチロールプロパン,ポリオキシエチレンポリオキシプロピレングリセリルエーテル,ポリオキシエチレンポリオキシプロピレンペンタエリスリトールエーテルなど)アルキル基または脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、エチレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体、ブチルグリコールやヘキシルグリコールなどのグリコールなどであり、好ましくは、ポリエチレングリコールとポリプロピレン/ポリブチレングリコールのブロックまたはランダム共重合体、グリセロールエトキシレートブトキシレート、トリメチロールプロパンエトキシブトキシレート等である。これらのなかで好ましいものはポリオキシエチレン・ポリオキシプロピレングリコール系共重合体である。   This temperature-sensitive agent is used as various surfactants, dispersants, emulsifiers, and the like. For example, alcohols, alkyl groups, glycols, or fatty acid and ethylene glycol compounds (water-soluble polyalkylene glycol derivatives, Polyoxyethylene polyoxypropylene alkyl ether, polyoxytetramethylene polyoxyethylene glycol, polyoxyethylene polyoxypropylene trimethylolpropane, polyoxyethylene polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene pentaerythritol ether, etc.) alkyl group Or fatty acid and propylene oxide compound, acrylamide and alkyl group compound, ethylene glycol fatty acid ester, glycerin fatty acid ester, sorbi Fatty acid ester ethylene oxide adduct, amino acids and derivatives thereof, glycols such as butyl glycol and hexyl glycol, preferably a block or random copolymer of polyethylene glycol and polypropylene / polybutylene glycol, glycerol ethoxylate butoxylate, And trimethylolpropane ethoxybutoxylate. Among these, a polyoxyethylene / polyoxypropylene glycol copolymer is preferable.

本発明において使用する温度感応性薬剤としては、下限臨界溶液温度が30℃〜80℃の範囲、特に40℃〜70℃の範囲のものが好ましい。この下限臨界溶液温度は塩分を加えると低下するので、海水を加えたときの下限臨界溶液温度が20〜50℃となることが好ましい。   As the temperature-sensitive drug used in the present invention, those having a lower critical solution temperature in the range of 30 ° C to 80 ° C, particularly in the range of 40 ° C to 70 ° C are preferable. Since the lower critical solution temperature decreases when salt is added, the lower critical solution temperature when seawater is added is preferably 20 to 50 ° C.

温度感応性薬剤水溶液における温度感応性薬剤の濃度は、要は、被処理水と混合したときに温度感応性薬剤濃厚相と塩類濃厚相とに分相できればよい。具体的には40〜80%が好ましい。   The concentration of the temperature-sensitive drug in the temperature-sensitive drug aqueous solution suffices as long as it can be separated into a temperature-sensitive drug-rich phase and a salt-rich phase when mixed with the water to be treated. Specifically, 40 to 80% is preferable.

被処理水と温度感応性薬剤水溶液との混合手段は、2液を混合する公知の手段を用いればよく、攪拌機のついた攪拌槽を用いる外、インラインミキサーなどを用いて配管内で混合してもよく、あるいは、相分離槽に攪拌機等を付設して混合手段を兼用させることもできる。   The mixing means of the water to be treated and the temperature-sensitive chemical aqueous solution may be a known means for mixing the two liquids. In addition to using a stirrer equipped with a stirrer, mixing in a pipe using an inline mixer or the like. Alternatively, a stirrer or the like may be attached to the phase separation tank to also serve as a mixing means.

第1相分離槽
第1相分離槽は、前記混合手段から流出する混合液を温度感応性薬剤濃厚相と塩類濃厚相とに相分離するものである。これは、通常は、混合液を受け入れて静置する槽でよいが、遠心分離機などを用いて強制的に相分離するものであってもよい。
First Phase Separation Tank The first phase separation tank separates the mixed solution flowing out from the mixing means into a temperature sensitive drug concentrated phase and a salt concentrated phase. Usually, this may be a tank that receives the liquid mixture and is allowed to stand, but it may be one that forcibly phase-separates using a centrifuge or the like.

加温手段
加温手段は、第1相分離槽から流出する温度感応性薬剤濃厚相液を下限臨界溶液温度以上の温度に加温する手段である。この加温手段では、相分離を促進するために下限臨界溶液温度より5℃以上、好ましくは10℃以上まで加温することが望ましい。温度の上限は、より安価な低温の熱源を使用することを考えると、90℃以下程度が好ましい。この加温手段は問わないが、熱交換器を用いて工場廃熱を利用することが好ましい。
Heating means The heating means is means for heating the temperature-sensitive drug concentrated phase liquid flowing out from the first phase separation tank to a temperature equal to or higher than the lower critical solution temperature. In this heating means, in order to promote phase separation, it is desirable to heat the lower critical solution temperature to 5 ° C. or higher, preferably 10 ° C. or higher. The upper limit of the temperature is preferably about 90 ° C. or less in consideration of using a cheaper low-temperature heat source. Although this heating means is not ask | required, it is preferable to utilize a factory waste heat using a heat exchanger.

第2相分離槽
加温手段で加温された温度感応性薬剤濃厚相液を温度感応性薬剤を主体とする温度感応性薬剤濃厚溶液と、淡水を主体とし、少量の温度感応性薬剤を含有する温度感応性薬剤希薄溶液とに相分離する槽であり、通常は、温度感応性薬剤濃厚相液を受け入れて静置する槽でよいが、遠心分離機などを用いて強制的に相分離するものであってもよい。
Second phase separation tank Concentrated solution of temperature-sensitive drug heated by heating means, concentrated solution of temperature-sensitive drug mainly composed of temperature-sensitive drug, and a small amount of temperature-sensitive drug mainly composed of fresh water This is a tank that phase separates into a dilute solution of temperature-sensitive drug, and usually a tank that accepts the temperature-sensitive drug concentrated phase liquid and is allowed to stand still, but forcibly phase-separates using a centrifuge or the like. It may be a thing.

冷却手段・第1循環手段
冷却手段は、第2相分離槽で分離された温度感応性薬剤濃厚溶液を下限臨界溶液温度以下の温度まで冷却する手段であり、熱交換器などを利用することができる。循環手段は冷却された温度感応性薬剤濃厚溶液を前記混合手段に循環する手段であり、通常、ポンプと配管よりなる。これらの手段によって温度感応性薬剤濃厚溶液を分相しうる状態にして塩類を含有する被処理水と混合する。
Cooling means / first circulation means The cooling means is means for cooling the temperature-sensitive drug concentrated solution separated in the second phase separation tank to a temperature below the lower critical solution temperature, and a heat exchanger or the like can be used. it can. The circulation means is a means for circulating the cooled temperature-sensitive drug concentrated solution to the mixing means, and usually comprises a pump and piping. By these means, the temperature-sensitive drug concentrated solution is made into a phase-separable state and mixed with the water to be treated containing salts.

膜分離装置
膜分離装置では、第2相分離槽で分離された温度感応性薬剤希薄溶液を膜分離し、淡水と温度感応性薬剤回収液を得る。膜には、温度感応性薬剤を通過させない膜を用いればよく、ナノろ過膜や逆浸透膜などを使用できる。これらの膜を用いた膜分離装置は市販のものを使用すればよい。
Membrane separator In the membrane separator, the temperature-sensitive drug dilute solution separated in the second phase separation tank is subjected to membrane separation to obtain fresh water and a temperature-sensitive drug recovery solution. As the membrane, a membrane that does not allow a temperature sensitive drug to pass through may be used, and a nanofiltration membrane, a reverse osmosis membrane, or the like can be used. Commercially available membrane separation apparatuses using these membranes may be used.

第2循環手段
第2循環手段は、膜分離装置で分離された温度感応性薬剤回収液を温度感応性薬剤濃厚相に循環する手段である。これは、温度感応性薬剤希薄溶液から、温度感温性薬剤を回収するためのものである。この第2循環手段も、通常、ポンプと配管からなる。
Second circulation means The second circulation means is means for circulating the temperature-sensitive drug recovery liquid separated by the membrane separator to the temperature-sensitive drug concentrated phase. This is for recovering the temperature-sensitive drug from the temperature-sensitive drug dilute solution. This second circulation means is also usually composed of a pump and piping.

相分離促進剤添加手段
第1相分離槽で相分離される混合液に相分離促進剤を添加する手段である。
Phase separation accelerator addition means A means for adding a phase separation accelerator to the mixed liquid phase-separated in the first phase separation tank.

相分離促進剤は、第1相分離槽で温度感応性薬剤濃厚相と塩類濃厚相への相分離を促進するものである。この相分離促進剤には、カチオン系界面活性剤、非イオン性界面活性剤を使用することができる。カチオン系界面活性剤の例としては、第4級アンモニウム塩、例えばドデシルトリメチルアンモニウムクロライドを挙げることができる。非イオン性界面活性剤の例としては、アセチレングリコール、およびその誘導体が挙げられる。添加量は、1〜10%程度が適当である。相分離促進剤の添加位置は、要は、第1相分離槽内の混合液中に存在していればよいが、例えば、第2相分離槽で分離された温度感応性薬剤濃厚溶液に添加することができる。その外、例えば、被処理水と混合される温度感応性薬剤水溶液に添加してもよい。この添加手段は、通常、相分離促進剤を収容するタンク、定量ポンプあるいはバルブ、流量計測器等からなる。   The phase separation accelerator promotes phase separation into a temperature-sensitive drug-rich phase and a salt-rich phase in the first phase separation tank. As the phase separation accelerator, a cationic surfactant or a nonionic surfactant can be used. Examples of the cationic surfactant include quaternary ammonium salts such as dodecyltrimethylammonium chloride. Examples of nonionic surfactants include acetylene glycol and its derivatives. The addition amount is suitably about 1 to 10%. The addition position of the phase separation accelerator may be present in the mixed liquid in the first phase separation tank. For example, it is added to the temperature-sensitive drug concentrated solution separated in the second phase separation tank. can do. In addition, for example, it may be added to a temperature sensitive chemical aqueous solution mixed with water to be treated. This adding means usually comprises a tank containing a phase separation accelerator, a metering pump or valve, a flow rate measuring device, or the like.

本発明の水の脱塩処理装置の一例の構成を図1に示す。   The structure of an example of the desalinization apparatus of the water of this invention is shown in FIG.

この装置は、砂ろ過等の前処理装置1、加温器2、混合手段としての混合槽9、第1相分離槽3、加温手段としての熱交換器4、第2相分離槽5、冷却器6、膜分離装置7、冷却手段としての熱交換器8および相分離促進剤添加手段10からなっている。   This apparatus includes a pretreatment device 1 such as sand filtration, a heater 2, a mixing tank 9 as a mixing means, a first phase separation tank 3, a heat exchanger 4 as a heating means, a second phase separation tank 5, It comprises a cooler 6, a membrane separator 7, a heat exchanger 8 as a cooling means, and a phase separation accelerator adding means 10.

被処理水である海水101は、まず前処理装置1で前処理され、加温器2で加温されて、混合槽9に入れられる。混合槽9では、第2相分離槽で分離されて送られてきた温度感応性薬剤濃厚溶液105と混合されて、混合液は第1相分離槽3に入れられる。そこで、上層に相分離した温度感応性薬剤濃厚相液102は、熱交換器4で下限臨界溶液温度以上に加温されて、第2相分離槽5に入れられる。一方、第1相分離槽3で下層に相分離した塩類濃厚相液103は廃棄海水となる。第2相分離槽5で上層に相分離した温度感応性薬剤希薄溶液104は、冷却器6で冷却されて、膜分離装置7に送られる。一方、第2相分離槽5で下層となった温度感応性薬剤濃厚溶液105は、熱交換器8で冷却されて、相分離促進剤添加手段10で相分離促進剤が添加され、混合槽9に返送される。膜分離装置7では、温度感応性薬剤希薄溶液104に含まれている温度感応性薬剤が分離回収されて淡水106として取り出される。分離回収された温度感応性薬剤回収液107は、第1相分離槽3で分離された温度感応性薬剤濃厚相液102に返送されて合流する。   The seawater 101 that is the water to be treated is first pretreated by the pretreatment device 1, heated by the heater 2, and put into the mixing tank 9. In the mixing tank 9, it is mixed with the temperature sensitive drug concentrated solution 105 separated and sent in the second phase separation tank, and the mixed liquid is put into the first phase separation tank 3. Therefore, the temperature-sensitive drug concentrated phase liquid 102 phase-separated into the upper layer is heated to the lower critical solution temperature or higher by the heat exchanger 4 and put into the second phase separation tank 5. On the other hand, the salt-rich phase liquid 103 phase-separated in the lower layer in the first phase separation tank 3 becomes waste seawater. The temperature-sensitive drug diluted solution 104 phase-separated into the upper layer in the second phase separation tank 5 is cooled by the cooler 6 and sent to the membrane separation device 7. On the other hand, the temperature-sensitive drug concentrated solution 105 which is the lower layer in the second phase separation tank 5 is cooled by the heat exchanger 8, and the phase separation accelerator is added by the phase separation accelerator addition means 10. Will be returned. In the membrane separation device 7, the temperature sensitive drug contained in the temperature sensitive drug dilute solution 104 is separated and recovered and taken out as fresh water 106. The separated temperature-sensitive drug recovery liquid 107 is returned to and merged with the temperature-sensitive drug concentrated phase liquid 102 separated in the first phase separation tank 3.

本発明により、海水等の塩類を含有する被処理水と下限臨界溶液温度を有する温度感応性薬剤の水溶液との相分離を促進して被処理水から効率よく塩類を除去できるので、海水等から温度感応性薬剤を用いて淡水を製造する装置に広く利用できる。   According to the present invention, the salt can be efficiently removed from the treated water by promoting phase separation between the treated water containing salts such as seawater and the aqueous solution of the temperature sensitive drug having the lower critical solution temperature. It can be widely used in apparatuses for producing fresh water using a temperature sensitive drug.

1 前処理装置
2 加温器
3 第1相分離槽
4 熱交換器(加温手段)
5 第2相分離槽
6 冷却器
7 膜分離装置
8 熱交換器(冷却手段)
9 混合槽(混合手段)
10 相分離促進剤添加手段
101 海水(被処理水)
102 温度感応性薬剤濃厚相液
103 塩類濃厚相液
104 温度感応性薬剤希薄溶液
105 温度感応性薬剤濃厚溶液
106 淡水
107 温度感応性薬剤回収液
DESCRIPTION OF SYMBOLS 1 Pretreatment apparatus 2 Heater 3 First phase separation tank 4 Heat exchanger (heating means)
5 Second phase separation tank 6 Cooler 7 Membrane separator 8 Heat exchanger (cooling means)
9 Mixing tank (mixing means)
10 Phase separation accelerator addition means 101 Seawater (treated water)
102 Temperature Sensitive Agent Concentrated Solution 103 Salt Concentrated Phase Solution 104 Temperature Sensitive Agent Dilute Solution 105 Temperature Sensitive Agent Concentrated Solution 106 Fresh Water 107 Temperature Sensitive Agent Recovery Solution

Claims (2)

塩類を含有する被処理水と下限臨界溶液温度を有する温度感応性薬剤を水に溶解した溶液とを混合する混合手段と、前記混合手段から流出する混合液を温度感応性薬剤濃厚相と塩類濃厚相とに相分離する第1相分離槽と、前記第1相分離槽から流出する温度感応性薬剤濃厚相液を前記下限臨界溶液温度以上の温度に加温する加温手段と、前記加温手段で加温された温度感応性薬剤濃厚相液を温度感応性薬剤を主体とする温度感応性薬剤濃厚溶液と、淡水を主体とし、少量の温度感応性薬剤を含有する温度感応性薬剤希薄溶液とに相分離する第2相分離槽と、前記第2相分離槽で分離された前記温度感応性薬剤濃厚溶液を前記下限臨界溶液温度以下の温度まで冷却する冷却手段と、前記冷却手段で冷却された温度感応性薬剤濃厚溶液を前記混合手段に循環する第1循環手段と、前記第2相分離槽で分離された前記温度感応性薬剤希薄溶液を膜分離し、淡水と温度感応性薬剤回収液を得る膜分離装置と、前記温度感応性薬剤回収液を前記温度感応性薬剤濃厚相液に循環する第2循環手段と、前記混合液および/または前記温度感応性薬剤濃厚溶液に相分離促進剤を添加する相分離促進剤添加手段を有することを特徴とする水の脱塩処理装置。   Mixing means for mixing the water to be treated containing salts and a solution in which a temperature-sensitive drug having a lower critical solution temperature is dissolved in water, and the mixture flowing out from the mixing means is mixed with a temperature-sensitive drug-rich phase and a salt-rich liquid. A first phase separation tank for phase separation into phases, a heating means for heating a temperature-sensitive drug concentrated phase liquid flowing out of the first phase separation tank to a temperature equal to or higher than the lower critical solution temperature, and the heating The temperature-sensitive drug concentrated phase liquid heated by means of the temperature-sensitive drug concentrated solution mainly composed of temperature-sensitive drug and the temperature-sensitive drug dilute solution mainly composed of fresh water and containing a small amount of temperature-sensitive drug. A second phase separation tank that phase-separates into two, a cooling means that cools the temperature-sensitive drug concentrated solution separated in the second phase separation tank to a temperature that is equal to or lower than the lower critical solution temperature, and is cooled by the cooling means The prepared temperature-sensitive drug concentrated solution A first circulation means that circulates in stages, a membrane separator that separates the temperature-sensitive drug dilute solution separated in the second phase separation tank to obtain fresh water and a temperature-sensitive drug recovery liquid, and the temperature-sensitive A second circulation means for circulating the chemical recovery liquid to the temperature sensitive drug concentrated phase liquid, and a phase separation accelerator addition means for adding a phase separation accelerator to the mixed liquid and / or the temperature sensitive drug concentrated solution. An apparatus for desalinating water, comprising: 前記下限臨界溶液温度を有する温度感応性薬剤が、ポリオキシエチレン・ポリオキシプロピレングリコール系共重合体であることを特徴とする請求項1に記載の水の脱塩処理装置。   The water desalting apparatus according to claim 1, wherein the temperature-sensitive drug having the lower critical solution temperature is a polyoxyethylene / polyoxypropylene glycol copolymer.
JP2015235416A 2015-12-02 2015-12-02 Water desalination equipment Expired - Fee Related JP6447477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235416A JP6447477B2 (en) 2015-12-02 2015-12-02 Water desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235416A JP6447477B2 (en) 2015-12-02 2015-12-02 Water desalination equipment

Publications (2)

Publication Number Publication Date
JP2017100081A true JP2017100081A (en) 2017-06-08
JP6447477B2 JP6447477B2 (en) 2019-01-09

Family

ID=59015255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235416A Expired - Fee Related JP6447477B2 (en) 2015-12-02 2015-12-02 Water desalination equipment

Country Status (1)

Country Link
JP (1) JP6447477B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274252A (en) * 2009-05-27 2010-12-09 Hirotake Katayama Seawater desalination process based on extraction and removal of salt in seawater by aqueous two-phase extraction using temperature responsive polymer
WO2015156404A1 (en) * 2014-04-11 2015-10-15 Jfeエンジニアリング株式会社 Temperature-sensitive absorbent, water treatment method, and water treatment apparatus
JP2015182055A (en) * 2014-03-26 2015-10-22 Jfeエンジニアリング株式会社 Water treatment equipment
WO2016027865A1 (en) * 2014-08-21 2016-02-25 旭化成株式会社 Solvent separation system and method
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274252A (en) * 2009-05-27 2010-12-09 Hirotake Katayama Seawater desalination process based on extraction and removal of salt in seawater by aqueous two-phase extraction using temperature responsive polymer
JP2015182055A (en) * 2014-03-26 2015-10-22 Jfeエンジニアリング株式会社 Water treatment equipment
WO2015156404A1 (en) * 2014-04-11 2015-10-15 Jfeエンジニアリング株式会社 Temperature-sensitive absorbent, water treatment method, and water treatment apparatus
WO2016027865A1 (en) * 2014-08-21 2016-02-25 旭化成株式会社 Solvent separation system and method
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility

Also Published As

Publication number Publication date
JP6447477B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6495207B2 (en) Recovery of retrograde solubility solutes for forward osmosis water treatment
JP6149627B2 (en) Water treatment method with semipermeable membrane
JP6149626B2 (en) Water treatment method with semipermeable membrane
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
CN102325581A (en) Systems and methods for forward osmosisfluid purification
JP7117718B2 (en) Water treatment method and water treatment system
JP2016067989A (en) Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP6210033B2 (en) Water desalination method and apparatus
JP6382034B2 (en) Draw solution and forward osmosis water treatment method
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
JP6028645B2 (en) Water treatment equipment
JP6463620B2 (en) Desalination system and desalination method
JP2014100692A (en) Water treatment method
JP6210008B2 (en) Water treatment equipment
JP6447477B2 (en) Water desalination equipment
JP6210034B2 (en) Water desalination method and apparatus
JP6414528B2 (en) Water desalination method and apparatus
JP6465301B2 (en) Water desalination equipment
JP7186579B2 (en) Working media and water treatment systems for use in water treatment
JP2015037771A (en) Water treatment method
JP2018012080A (en) Water treatment method and water treatment device
JP6974797B2 (en) Forward osmosis water treatment method and equipment
JP2016010767A (en) Water treatment apparatus
JP6210011B2 (en) Water treatment method and apparatus
JP2019155289A (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees