JP6382034B2 - Draw solution and forward osmosis water treatment method - Google Patents

Draw solution and forward osmosis water treatment method Download PDF

Info

Publication number
JP6382034B2
JP6382034B2 JP2014176709A JP2014176709A JP6382034B2 JP 6382034 B2 JP6382034 B2 JP 6382034B2 JP 2014176709 A JP2014176709 A JP 2014176709A JP 2014176709 A JP2014176709 A JP 2014176709A JP 6382034 B2 JP6382034 B2 JP 6382034B2
Authority
JP
Japan
Prior art keywords
water
solution
draw solution
draw
soluble liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014176709A
Other languages
Japanese (ja)
Other versions
JP2016049500A (en
Inventor
淳 丹羽
淳 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2014176709A priority Critical patent/JP6382034B2/en
Publication of JP2016049500A publication Critical patent/JP2016049500A/en
Application granted granted Critical
Publication of JP6382034B2 publication Critical patent/JP6382034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は正浸透法におけるドロー溶液及び正浸透水処理方法に関する。   The present invention relates to a draw solution and a forward osmosis water treatment method in a forward osmosis method.

正浸透法は、濃度すなわち浸透圧が異なる二種類の溶液を、半透膜を介して接触させ、これらの二種類の溶液の浸透圧差を小さくする方向に、すなわち濃度が低い溶液から濃度が高い溶液に水が移動する現象を利用するものである。ここで浸透圧が低い溶液を供給液、浸透圧が高い溶液をドロー溶液と呼ぶ。
正浸透法では、ドロー溶液に求められる性質として、浸透圧が高いことが挙げられる。ドロー溶液の浸透圧が高ければ供給液から効率的に水を吸収できる。また、ドロー溶液は供給液から水分を吸収したのち、容易に水とドロー溶液の溶質(ドロー溶質)とに分離できることが必要である。これにより、供給液から吸収した水分を効率的に回収できるとともに、供給液から水分を吸収して希薄濃度となったドロー溶液(希薄ドロー溶液)を高濃度化して再生利用できる。
In the forward osmosis method, two kinds of solutions having different concentrations, that is, osmotic pressures are brought into contact with each other through a semipermeable membrane, and the osmotic pressure difference between these two kinds of solutions is reduced, that is, the concentration is increased from a solution having a low concentration. This utilizes the phenomenon of water moving into the solution. Here, a solution having a low osmotic pressure is called a supply solution, and a solution having a high osmotic pressure is called a draw solution.
In the forward osmosis method, the property required for the draw solution is high osmotic pressure. If the osmotic pressure of the draw solution is high, water can be efficiently absorbed from the feed solution. In addition, the draw solution needs to be able to be easily separated into water and a solute of the draw solution (draw solute) after absorbing moisture from the supply solution. Accordingly, moisture absorbed from the supply liquid can be efficiently recovered, and a draw solution (dilute draw solution) that has been diluted by absorbing moisture from the supply liquid can be highly concentrated and recycled.

特許文献1には、アンモニアおよび二酸化炭素をドロー溶質とするドロー溶液に関する技術が記載されている。本技術では希薄ドロー溶液を加熱することでアンモニア及び二酸化炭素ガスとして分離する。   Patent Document 1 describes a technique related to a draw solution using ammonia and carbon dioxide as a draw solute. In the present technology, the dilute draw solution is heated and separated as ammonia and carbon dioxide gas.

特許文献2には、曇点を有するポリエチレングリコールの長鎖脂肪酸エステルをドロー溶質とするドロー溶液に関する技術が記載されている。希薄ドロー溶液を曇点以上に加熱することで、ポリエチレングリコールの長鎖脂肪酸エステルが凝集し沈澱を生じる、または懸濁状態となり、水から分離することができる。   Patent Document 2 describes a technique relating to a draw solution in which a long-chain fatty acid ester of polyethylene glycol having a cloud point is used as a draw solute. By heating the dilute draw solution above the cloud point, the long-chain fatty acid ester of polyethylene glycol aggregates to form a precipitate or is suspended and can be separated from water.

特許文献3には、感温性ポリマー水溶液をドロー溶液とした正浸透水処理方法に関する技術が記載されている。希薄ドロー溶液を下限臨界溶液温度以上に加熱することで、感温性ポリマーが凝集し沈澱を生じる、または懸濁状態となり、水から分離することができる。   Patent Document 3 describes a technology related to a forward osmosis water treatment method using a temperature-sensitive polymer aqueous solution as a draw solution. By heating the dilute draw solution above the lower critical solution temperature, the thermosensitive polymer aggregates to form a precipitate or is suspended and can be separated from water.

特表2013−509295号公報Special table 2013-509295 gazette US2012/0267297A1号公報US2012 / 0267297A1 特開2013−194240号公報JP 2013-194240 A

特許文献1に記載された技術では、希薄ドロー溶液を加熱することでアンモニア及び二酸化炭素ガスとして分離するが、この加熱温度では希薄ドロー溶液から回収される水に微量のアンモニアが混入することが避けられない。アンモニアは分子の大きさや極性が水とほぼ同じなので、さらに逆浸透膜を用いても除去率は90%程度であり、アンモニアと水との完全分離はできない。またガスとなって揮発するアンモニアおよび二酸化炭素の回収率が悪く、濃厚ドロー溶液を再生するには基質を外部から供給しなくてはならない。   In the technique described in Patent Document 1, the diluted draw solution is separated as ammonia and carbon dioxide gas by heating. However, at this heating temperature, it is avoided that a small amount of ammonia is mixed in the water recovered from the diluted draw solution. I can't. Ammonia has almost the same molecular size and polarity as water, so even if a reverse osmosis membrane is used, the removal rate is about 90%, and ammonia and water cannot be completely separated. In addition, the recovery rate of ammonia and carbon dioxide, which are volatilized as gas, is poor, and the substrate must be supplied from the outside in order to regenerate the concentrated draw solution.

特許文献2に記載された技術では、希薄ドロー溶液を曇点以上に加熱することで、ポリエチレングリコールの長鎖脂肪酸エステルが凝集し沈澱を生じる、または懸濁状態となるが、沈澱または懸濁状態のポリエチレングリコールの長鎖脂肪酸エステルの除去には濾過システムが必要である。使用するポリエチレングリコールの長鎖脂肪酸エステルの種類・濃度および加熱温度によっては非常に細かな微粒子となって懸濁状態となるので、その除去には限外濾過システムあるいはナノ濾過システムが必要である。
またポリエチレングリコールの長鎖脂肪酸エステルの分子量は300以上であり、濃厚溶液を調製しても高浸透圧にはならない。例えば分子量400、密度0.95のポリエチレングリコールの長鎖脂肪酸エステルの75%水溶液でも計算上浸透圧は4.4MPaにしかならない。またポリエチレングリコールの長鎖脂肪酸エステルの濃厚溶液は高粘度であり、送液にエネルギーを要する。
In the technique described in Patent Document 2, by heating the dilute draw solution to a cloud point or higher, the long-chain fatty acid ester of polyethylene glycol aggregates to form a precipitate, or is in a suspended state. A filtration system is required to remove the long-chain fatty acid esters of polyethylene glycol. Depending on the type and concentration of the long-chain fatty acid ester of polyethylene glycol to be used and the heating temperature, it becomes a fine fine particle and becomes a suspended state. Therefore, an ultrafiltration system or a nanofiltration system is necessary for the removal.
In addition, the molecular weight of polyethylene glycol long-chain fatty acid ester is 300 or more, and even if a concentrated solution is prepared, high osmotic pressure is not obtained. For example, even with a 75% aqueous solution of a polyethylene glycol long-chain fatty acid ester having a molecular weight of 400 and a density of 0.95, the calculated osmotic pressure is only 4.4 MPa. Further, a concentrated solution of a long-chain fatty acid ester of polyethylene glycol has a high viscosity and requires energy for liquid feeding.

特許文献3に記載された技術では、希薄ドロー溶液を下限臨界溶液温度以上に加熱することで、感温性ポリマーが凝集し沈澱を生じる、または懸濁状態となるが、沈澱または懸濁状態の感温性ポリマーの除去には精密濾過システムが必要である。また感温性ポリマーの分子量が大きいので、濃厚溶液を調製しても高浸透圧にはならない。例えば分子量8123の感温性ポリマー0.25g/mlの実測浸透圧は29.1気圧(2.9MPa)にしかならない。   In the technique described in Patent Document 3, by heating the dilute draw solution above the lower critical solution temperature, the temperature-sensitive polymer aggregates to form a precipitate or becomes a suspended state. A microfiltration system is required to remove the temperature sensitive polymer. Moreover, since the molecular weight of the thermosensitive polymer is large, even if a concentrated solution is prepared, a high osmotic pressure is not obtained. For example, the actually measured osmotic pressure of 0.25 g / ml of a temperature-sensitive polymer having a molecular weight of 8123 is only 29.1 atm (2.9 MPa).

以上のように、従来の技術は、種々の課題を有している。
本発明の目的は、希薄ドロー溶液を高濃度化して再生利用することが容易で、また低粘度でしかも高浸透圧なドロー溶液を提供し、そのドロー溶液を用いた正浸透水処理方法を提供することである。
As described above, the conventional techniques have various problems.
An object of the present invention is to provide a draw solution having a low viscosity and a high osmotic pressure, which is easy to recycle by diluting a diluted draw solution, and provides a forward osmosis water treatment method using the draw solution. It is to be.

上記課題を解決するために、本発明者は鋭意検討を行った結果、本発明を完成した。すなわち、本発明は、以下の技術的手段から構成される。   In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, completed the present invention. That is, the present invention comprises the following technical means.

〔1〕 水分を含む溶液と半透膜を介して接触させるドロー溶液であって、前記ドロー溶液が一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)または前記一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)と水からなり、前記一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)と水との混合物が下限臨界溶液温度を有することを特徴とするドロー溶液。
[式中、
、Rは互いに独立して、水素原子、炭素数1〜8の直鎖状または炭素数3〜8の分岐状若しくは環状アルキル基、炭素数1〜2のアシル基、置換されてもよいフェニル基および置換されてもよいベンジル基の内のいずれか一つを表すが、R 、R の少なくとも一方は水素原子ではなく、R 、R の炭素数の合計が3以上であり、
、Rは互いに独立して、水素原子および炭素数1〜4の直鎖状または分岐状アルキル基の内のいずれか一つを表すが、R 、R の少なくとも一方は水素原子であり、
nは1〜4の整数を表す。]
〔2〕 前記一般式(1)の水溶性液体化合物が
‐イソブトキシエタノール、
2‐[2‐(ベンジルオキシ)エトキシ]エタノール、
1‐エトキシ‐2‐(2‐エトキシエチル)エタン、
2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパン、
1−アセトキシ‐2‐(2‐エトキシエトキシ)エタン、
2,5,8,11‐テトラオキサペンタデカンおよび
1‐プロポキシ‐2‐プロパノールからなる群から選択される一つの化合物であることを特徴とする前記〔1〕に記載のドロー溶液。
〔3〕 前記〔1〕又は〔2〕のいずれかに記載のドロー溶液と、水分を含む供給溶液とを半透膜を介して接触させることで、前記供給溶液中の水分を前記ドロー溶液に吸収させることを特徴とする正浸透水処理方法。
〔4〕 前記供給溶液から水分を吸収して希薄になった前記ドロー溶液(以下適宜「希薄ドロー溶液」という)を前記希薄ドロー溶液の下限臨界溶液温度より高い温度に加熱することで液体‐液体の二層に相分離させ、液体‐液体に相分離した希薄ドロー溶液から分液により水分を分離し、ドロー溶液を高濃度化して再生することを特徴とする前記〔3〕に記載の正浸透水処理方法。
[1] a draw solution is contacted through the solution and a semipermeable membrane containing water, the draw solution is a water-soluble liquid compound represented by the general formula (1) (except for 2-butoxyethanol) or the general formula A mixture of a water-soluble liquid compound represented by ( 1) (excluding 2-butoxyethanol) and water, and a mixture of the water-soluble liquid compound represented by the general formula (1) (excluding 2-butoxyethanol) and water draw solution characterized in Rukoto which have a lower critical solution temperature.
[Where:
R 1 and R 2 are each independently a hydrogen atom, a straight chain having 1 to 8 carbon atoms, a branched or cyclic alkyl group having 3 to 8 carbon atoms, an acyl group having 1 to 2 carbon atoms, or a substituent. Although any one of a phenyl group and an optionally substituted benzyl group table, that at least one of the hydrogen atoms of R 1, R 2, R 1, the total number of carbon atoms of R 2 is 3 or more And
R 3, R 4 independently of one another, a table Kan any one of straight-chain or branched alkyl group having 1 to 4 hydrogen atoms and carbon atoms, at least one of hydrogen R 3, R 4 Is an atom,
n represents an integer of 1 to 4. ]
[2] wherein the water-soluble liquid compound of the general formula (1) is,
2 -isobutoxyethanol,
2- [2- (benzyloxy) ethoxy] ethanol,
1-ethoxy-2- (2- ethoxyethyl) ethane,
2- [2- (2-methoxyethoxy) ethoxy] propane,
1-acetoxy-2- (2-ethoxyethoxy) ethane,
The draw solution as described in [1] above, which is one compound selected from the group consisting of 2,5,8,11-tetraoxapentadecane and 1-propoxy-2-propanol.
[3] By bringing the draw solution according to any one of [1] or [2] above into contact with a supply solution containing moisture through a semipermeable membrane, moisture in the supply solution is brought into the draw solution. A forward osmosis water treatment method characterized by absorbing.
[4] Liquid-liquid by heating the draw solution diluted by absorbing moisture from the supply solution (hereinafter referred to as “dilute draw solution” as appropriate) to a temperature higher than the lower critical solution temperature of the diluted draw solution The forward osmosis as set forth in [3] , wherein water is separated from the dilute draw solution phase-separated into two layers by liquid separation by liquid separation, and the draw solution is concentrated and regenerated. Water treatment method.

本発明によれば、希薄ドロー溶液からドロー溶質と水とを分離しドロー溶液を高濃度化して再生利用することが容易なドロー溶液を提供することが可能である。また、本発明によれば、低粘度でしかも高浸透圧なドロー溶液を提供することが可能である。   According to the present invention, it is possible to provide a draw solution that can be easily recycled by separating the draw solute and water from the dilute draw solution to increase the concentration of the draw solution. Moreover, according to the present invention, it is possible to provide a draw solution having a low viscosity and a high osmotic pressure.

また本発明によれば、低エネルギーで処理水から水分を吸収できる正浸透水処理方法を提供することが可能である。   Moreover, according to this invention, it is possible to provide the normal osmosis water processing method which can absorb a water | moisture content from treated water with low energy.

図1は、本発明の正浸透水処理方法の処理手順の一例を示したフローチャート図である。FIG. 1 is a flowchart showing an example of the processing procedure of the forward osmosis water treatment method of the present invention. 図2は、本発明の正浸透水処理方法を実施するための装置の一例を示す模式図である。FIG. 2 is a schematic view showing an example of an apparatus for carrying out the forward osmosis water treatment method of the present invention.

本発明のドロー溶液は、水分を含む溶液と半透膜を介して接触させるドロー溶液であって、前記ドロー溶液が前記〔1〕に記載の一般式(1)で示される水溶性液体化合物または前記一般式(1)で示される水溶性液体化合物と水からなる溶液である。   The draw solution of the present invention is a draw solution brought into contact with a water-containing solution through a semipermeable membrane, wherein the draw solution is a water-soluble liquid compound represented by the general formula (1) described in [1] or A solution comprising a water-soluble liquid compound represented by the general formula (1) and water.

そして、前記〔1〕に記載の一般式(1)で示される水溶性液体化合物は、温度20℃において任意の割合で純水と混和し、純水と緩やかにかき混ぜた場合に、流動がおさまった後も当該混合液が均一な外観を維持する。そして、前記水溶性液体化合物と水との混合物は、下限臨界溶液温度を有する。   The water-soluble liquid compound represented by the general formula (1) described in [1] described above is mixed with pure water at an arbitrary ratio at a temperature of 20 ° C., and the flow is suppressed when gently mixed with pure water. After that, the mixed solution maintains a uniform appearance. The mixture of the water-soluble liquid compound and water has a lower critical solution temperature.

前記〔1〕に記載の一般式(1)で示される水溶性液体化合物は、前記前記一般式(1)において、R、Rの少なくとも一方は水素原子ではなく、R、Rの少なくとも一方は水素原子であることが好ましい。 In the water-soluble liquid compound represented by the general formula (1) described in [1], in the general formula (1), at least one of R 1 and R 2 is not a hydrogen atom, but R 3 and R 4 At least one is preferably a hydrogen atom.

さらに好ましい前記水溶性液体化合物としては、2‐ブトキシエタノール、2‐イソブトキシエタノール、2‐[2‐(ベンジルオキシ)エトキシ]エタノール、1‐エトキシ‐2−(2‐エトキシエトキシ)エタン、2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパン、1−アセトキシ‐2‐(2‐エトキシエトキシ)エタン、2,5,8,11‐テトラオキサペンタデカンおよび1‐プロポキシ‐2‐プロパノールを例示することができる。   More preferable water-soluble liquid compounds include 2-butoxyethanol, 2-isobutoxyethanol, 2- [2- (benzyloxy) ethoxy] ethanol, 1-ethoxy-2- (2-ethoxyethoxy) ethane, 2- Illustrating [2- (2-methoxyethoxy) ethoxy] propane, 1-acetoxy-2- (2-ethoxyethoxy) ethane, 2,5,8,11-tetraoxapentadecane and 1-propoxy-2-propanol Can do.

本発明のドロー溶液は、前記水溶性液体化合物を単独で用いることができるが、前記水溶性液体化合物と水からなる水溶液として用いても良い。その場合、前記水溶性液体化合物と水の組成比は、前記供給溶液よりも高い浸透圧が達成できれば制限はないが、前記供給溶液からの給水量を多くするためには、また前記供給溶液の濃縮倍率を大きくするためには、前記水溶性液体化合物の組成比はできるだけ大きいほうが好ましい。通常は、ドロー溶液中に30%以上の前記水溶性液体化合物を含む必要がある。   In the draw solution of the present invention, the water-soluble liquid compound can be used alone, but it may be used as an aqueous solution comprising the water-soluble liquid compound and water. In that case, the composition ratio of the water-soluble liquid compound and water is not limited as long as an osmotic pressure higher than that of the supply solution can be achieved. However, in order to increase the amount of water supplied from the supply solution, the composition ratio of the supply solution is not limited. In order to increase the concentration factor, the composition ratio of the water-soluble liquid compound is preferably as large as possible. Usually, it is necessary to contain 30% or more of the water-soluble liquid compound in the draw solution.

より具体的には、供給溶液が3.5%食塩水相当の海水(浸透圧2.9MPa)で供給溶液とドロー溶液が同体積のとき、供給溶液を二倍濃縮し供給溶液の二分の一の体積の水分の吸収可能にするには、水溶性液体の分子量が200、密度が0.95の場合、水溶性液体と水との組成比は体積比で38:62〜100:0が必要である。   More specifically, when the feed solution is seawater equivalent to 3.5% saline (osmotic pressure of 2.9 MPa) and the feed solution and the draw solution have the same volume, the feed solution is concentrated twice and is half of the feed solution. In order to be able to absorb a volume of water, when the molecular weight of the water-soluble liquid is 200 and the density is 0.95, the composition ratio of the water-soluble liquid to water needs to be 38:62 to 100: 0 by volume. It is.

本発明の正浸透水処理方法の手順について説明する。図1は、ドロー溶液として一般式(1)で示される水溶性液体化合物と水からなるドロー溶液を用いる場合の本発明の正浸透水処理方法の処理手順を示したフローチャート図である。   The procedure of the forward osmosis water treatment method of the present invention will be described. FIG. 1 is a flowchart showing the processing procedure of the forward osmosis water treatment method of the present invention when a draw solution comprising a water-soluble liquid compound represented by the general formula (1) and water is used as the draw solution.

まず、水溶性液体と水と混合しドロー溶液を調製する第一ステップ(S01)を実施する。なお、この第一ステップ(S01)は、ドロー溶液として一般式(1)で示される水溶性液体化合物と水からなるドロー溶液を用いる場合は省略することができる。次いで、ドロー溶液と供給溶液とを半透膜を介して接触させ、供給溶液の水分をドロー溶液に吸収させる第二ステップ(S02)を実施する。続いて、水分を吸収した希薄ドロー溶液を下限臨界溶液温度(LCST)より高い温度に加熱し、密度に応じて上層と下層に水溶性液体層と水層とに相分離させる第三ステップ(S03)を実施する。さらに続いて、下層または上層の水層を清澄水として回収し、同時に上層または下層の高濃度化した水溶性液体層を回収する第四ステップ(S04)を実施する。   First, a first step (S01) is performed in which a water-soluble liquid and water are mixed to prepare a draw solution. In addition, this 1st step (S01) can be skipped when using the draw solution which consists of the water-soluble liquid compound shown by General formula (1) and water as a draw solution. Next, a second step (S02) is performed in which the draw solution and the supply solution are brought into contact with each other through the semipermeable membrane and the water in the supply solution is absorbed by the draw solution. Subsequently, the diluted draw solution that has absorbed moisture is heated to a temperature higher than the lower critical solution temperature (LCST), and a third step (S03) is performed to phase-separate the upper and lower layers into a water-soluble liquid layer and an aqueous layer according to the density. ). Subsequently, a fourth step (S04) is performed in which the lower or upper water layer is recovered as clear water, and at the same time, the upper or lower water-soluble liquid layer having a high concentration is recovered.

第一ステップ(S01)では、水溶性液体と水分とを所定の組成比で混合しドロー溶液を調製する。水は使用せず水溶性液体をそのままドロー溶液とすることもできる。第一ステップはドロー液調製容器で行ってもよいし、後述のドロー液/水分離システム内で行ってもよい。またドロー溶質として水と任意の割合で混和する水溶性液体化合物を用いることで、高濃度ドロー溶液さらには組成比100%のドロー溶液すなわち高浸透圧ドロー溶液を調製することができる。水溶性液体の分子量が200、密度が0.95の場合、組成比100%のドロー溶液の浸透圧は理論上11.7MPa、組成比75%のドロー溶液の浸透圧は理論上8.8MPa、を達成することが可能である。   In the first step (S01), a water-soluble liquid and water are mixed at a predetermined composition ratio to prepare a draw solution. A water-soluble liquid can be used as it is as a draw solution without using water. The first step may be performed in a draw liquid preparation container or in a draw liquid / water separation system described later. In addition, by using a water-soluble liquid compound that is miscible with water at an arbitrary ratio as the draw solute, a high-concentration draw solution or a draw solution having a composition ratio of 100%, that is, a high osmotic pressure draw solution can be prepared. When the molecular weight of the water-soluble liquid is 200 and the density is 0.95, the osmotic pressure of a draw solution having a composition ratio of 100% is theoretically 11.7 MPa, the osmotic pressure of a draw solution having a composition ratio of 75% is theoretically 8.8 MPa, Can be achieved.

第二ステップ(S02)では、ドロー溶液と供給溶液とを半透膜を介して接触させさせることで、供給溶液中の水分をドロー溶液に吸収させる。
前記の供給溶液は、供給溶液中の水分を除去して他の成分を濃縮させる必要があるものであれば特に限定されないが、例示すると、海水、各種排水、嗜好飲料、果汁、有用物質含有希薄溶液などを挙げることができる。
また、前記半透膜としては、とくに限定はされず、通常は市販の半透膜を使用することができる。
In the second step (S02), the draw solution and the supply solution are brought into contact with each other through the semipermeable membrane, so that the water in the supply solution is absorbed by the draw solution.
The supply solution is not particularly limited as long as it is necessary to remove water in the supply solution and concentrate other components. For example, seawater, various wastewaters, beverages, fruit juices, dilute containing useful substances A solution etc. can be mentioned.
Moreover, it does not specifically limit as said semipermeable membrane, Usually, a commercially available semipermeable membrane can be used.

前記のようにドロー溶液は高浸透圧なので、供給溶液から効率良く水分を吸収することができる。浸透圧の低い供給溶液から浸透圧の高いドロー溶液への水分の吸収は正浸透という現象で自然に起こるので、第二ステップ(S02)では、供給溶液から低エネルギーで水分を吸収することができる。本発明の正浸透水処理方法を供給溶液濃縮の目的で使用する場合は、第二ステップで水分を吸収され濃縮された供給溶液が目的物となる。第二ステップは水分吸収システム内で実施される。   As described above, since the draw solution has a high osmotic pressure, moisture can be efficiently absorbed from the supply solution. Since the absorption of moisture from the supply solution having a low osmotic pressure into the draw solution having a high osmotic pressure occurs naturally by a phenomenon called forward osmosis, in the second step (S02), the water can be absorbed from the supply solution with low energy. . When the forward osmosis water treatment method of the present invention is used for the purpose of concentration of the feed solution, the feed solution that has been absorbed and concentrated in the second step is the target product. The second step is performed in the moisture absorption system.

第三ステップ(S03)では、水分を吸収した希薄ドロー溶液を下限臨界溶液温度(LCST)より高い温度に加熱する。下限臨界溶液温度(LCST)より高い温度に加熱することで、希薄ドロー溶液は溶質である水溶性液体と水とに相分離する。水溶性液体の密度が1.00よりも小さい場合は、下層が水層、上層が水溶性液体層になり、水溶性液体の密度が1.00よりも大きい場合は、下層が水溶性液体層、上層が水層になる。第三ステップはドロー液/水分離システム内で実施される。   In the third step (S03), the diluted draw solution that has absorbed moisture is heated to a temperature higher than the lower critical solution temperature (LCST). By heating to a temperature higher than the lower critical solution temperature (LCST), the dilute draw solution is phase-separated into a water-soluble liquid as a solute and water. When the density of the water-soluble liquid is smaller than 1.00, the lower layer is an aqueous layer and the upper layer is a water-soluble liquid layer. When the density of the water-soluble liquid is larger than 1.00, the lower layer is a water-soluble liquid layer. The upper layer becomes an aqueous layer. The third step is performed in a draw liquid / water separation system.

第四ステップ(S04)では、下層または上層の水層と上層または下層の高濃度水溶性液体層を分離する。ドロー溶質は液体なので、この分離には濾過システムは必要なく、分液により容易に分離を行うことができる。第四ステップで分離した高濃度水溶性液体はそのまま第一ステップ(S01)のドロー溶液として用いることができる。   In the fourth step (S04), the lower or upper water layer and the upper or lower high-concentration water-soluble liquid layer are separated. Since the draw solute is a liquid, this separation does not require a filtration system and can be easily separated by liquid separation. The high-concentration water-soluble liquid separated in the fourth step can be used as it is as the draw solution in the first step (S01).

第四ステップで分離した水層は清澄水として回収する。本発明の正浸透水処理方法で得られる清澄水には、ドロー溶質が混入している可能性があり、清澄水は用途に応じて更なる精製工程を経る。例えば蒸溜や逆浸透膜による純水の獲得である。本発明の清澄水の不純物はドロー溶質のみであり、供給溶液から直接蒸溜や逆浸透膜により純水の獲得する場合よりも装置への負荷が小さくなる。たとえば、蒸溜の際の不純物の混入が非常に小さい、装置の腐食がない、蒸溜残渣を生じない、逆浸透膜のファウリングや劣化が非常に小さい、などの利点がある。   The aqueous layer separated in the fourth step is recovered as clear water. The clarified water obtained by the forward osmosis water treatment method of the present invention may contain a draw solute, and the clarified water undergoes further purification steps depending on the application. For example, the acquisition of pure water by distillation or reverse osmosis membrane. The impurity of the clear water of the present invention is only the draw solute, and the load on the apparatus is smaller than when pure water is obtained directly from the supply solution by distillation or reverse osmosis membrane. For example, there are advantages such as very small contamination of impurities during distillation, no corrosion of the apparatus, no distillation residue, and very little fouling and deterioration of the reverse osmosis membrane.

図2は、本発明の正浸透水処理方法を実施するための装置の一例を示す模式図である。   FIG. 2 is a schematic view showing an example of an apparatus for carrying out the forward osmosis water treatment method of the present invention.

[相分離参考例1]
2‐ブトキシエタノール10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度(LCST)は51℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は39%であった。
[Phase separation reference example 1]
10 ml of 2-butoxyethanol and 10 ml of pure water were put into a 30 ml screw tube and mixed by shaking at 20 ° C. by hand. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature (LCST) at which the mixed solution did not show a uniform appearance was 51 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 39%.

[相分離実施例2]
2‐イソブトキシエタノール10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、28℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は29%であった。
[Phase separation example 2]
10 ml of 2-isobutoxyethanol and 10 ml of pure water were put into a 30 ml screw tube and mixed by shaking at 20 ° C. by hand. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 28 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 29%.

[相分離実施例3]
2‐[2‐(ベンジルオキシ)エトキシ]エタノール10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、38℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は30%であった。
[Phase separation example 3]
10 ml of 2- [2- (benzyloxy) ethoxy] ethanol and 10 ml of pure water were placed in a 30 ml screw tube and mixed by shaking at 20 ° C. by hand. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 38 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 30%.

[相分離実施例4]
1‐エトキシ‐2−(2‐エトキシエトキシ)エタン10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、32℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は9%であった。
[Phase separation example 4]
10 ml of 1-ethoxy-2- (2-ethoxyethoxy) ethane and 10 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 32 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 9%.

[相分離実施例5]
2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパン10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、47℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は11%であった。
[Phase separation example 5]
10 ml of 2- [2- (2-methoxyethoxy) ethoxy] propane and 10 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 47 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 11%.

[相分離実施例6]
1−アセトキシ‐2‐(2‐エトキシエトキシ)エタン10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、43℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は17%であった。
[Phase Separation Example 6]
10 ml of 1-acetoxy-2- (2-ethoxyethoxy) ethane and 10 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 43 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 17%.

[相分離実施例7]
2,5,8,11‐テトラオキサペンタデカン10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、39℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は8%であった。
[Phase separation example 7]
2,5,8,11-Tetraoxapentadecane (10 ml) and pure water (10 ml) were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 39 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 8%.

[相分離実施例8]
1‐プロポキシ‐2‐プロパノール10mlと純水10mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を加熱しながら外観の変化を観察した。混合溶液が均一な外観を示さなくなる下限臨界溶液温度は、31℃であった。下限臨界溶液温度以上の各温度で、表1に示した体積比で水層と水溶性液体層に分離した。70℃における水溶性液体層の含水量は22%であった。
[Phase separation example 8]
10 ml of 1-propoxy-2-propanol and 10 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. Changes in the appearance were observed while heating the mixture. The lower critical solution temperature at which the mixed solution did not exhibit a uniform appearance was 31 ° C. At each temperature equal to or higher than the lower critical solution temperature, the aqueous layer and the water-soluble liquid layer were separated at the volume ratio shown in Table 1. The water content of the water-soluble liquid layer at 70 ° C. was 22%.

[相分離実施例9]
1‐エトキシ‐2−(2‐エトキシエトキシ)エタン16mlと純水4mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を70℃に加熱すると、水溶性液体層83%で分離した。
[Phase Separation Example 9]
16 ml of 1-ethoxy-2- (2-ethoxyethoxy) ethane and 4 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. When this mixed solution was heated to 70 ° C., it was separated by 83% of the water-soluble liquid layer.

[相分離実施例10]
1‐エトキシ‐2−(2‐エトキシエトキシ)エタン4mlと純水16mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を70℃に加熱すると、水溶性液体層7%で分離した。
[Phase Separation Example 10]
4 ml of 1-ethoxy-2- (2-ethoxyethoxy) ethane and 16 ml of pure water were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. When this mixed liquid was heated to 70 ° C., it was separated by 7% of the water-soluble liquid layer.

[相分離実施例11]
2,5,8,11‐テトラオキサペンタデカン16mlと純水4mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を70℃に加熱すると、水溶性液体層82%で分離した。
[Phase Separation Example 11]
16 ml of 2,5,8,11-tetraoxapentadecane and 4 ml of pure water were placed in a 30 ml screw tube and mixed by shaking at 20 ° C. by hand. This mixed liquid maintained a uniform appearance even after the flow stopped. When this mixed solution was heated to 70 ° C., it was separated by 82% of the water-soluble liquid layer.

[相分離実施例12]
2,5,8,11‐テトラオキサペンタデカン4mlと純水16mlとを30mlのスクリュー管に入れ、20℃において手で振り混ぜ混合した。この混合液は流動がおさまった後も均一な外観を維持した。この混合液を70℃に加熱すると、水溶性液体層17%で分離した。
[Phase separation example 12]
2,5,8,11-Tetraoxapentadecane (4 ml) and pure water (16 ml) were placed in a 30 ml screw tube and shaken and mixed by hand at 20 ° C. This mixed liquid maintained a uniform appearance even after the flow stopped. When this mixed solution was heated to 70 ° C., it was separated by 17% of the water-soluble liquid layer.

相分離実施例4、9、10から、1‐エトキシ‐2−(2‐エトキシエトキシ)エタンは純水との混合比20:80〜80:20の範囲で加熱により相分離することがわかる。
相分離実施例7、11、12から、2,5,8,11‐テトラオキサペンタデカンは純水との混合比20:80〜80:20の範囲で加熱により相分離することがわかる。
From the phase separation examples 4, 9, and 10 it can be seen that 1-ethoxy-2- (2-ethoxyethoxy) ethane is phase-separated by heating in the range of 20:80 to 80:20 mixing ratio with pure water.
From the phase separation examples 7, 11, and 12, it is understood that 2,5,8,11-tetraoxapentadecane is phase-separated by heating in the range of 20:80 to 80:20 mixing ratio with pure water.

実施例1〜8の70℃で相分離したときの水溶性液体層にはそれぞれ相当量の水を含んでいるが、その含水量あるいはやや多めの含水量の水溶性液体をドロー溶液として、海水相当の浸透圧の処理液(3.5%食塩水)から水分を吸収することを確認するために吸水実施例1〜8を実施した。   Each of the water-soluble liquid layers when phase-separated at 70 ° C. in Examples 1 to 8 contains a considerable amount of water, but the water content or a slightly higher water content of the water-soluble liquid was used as a draw solution, Water absorption Examples 1 to 8 were carried out in order to confirm that water was absorbed from a treatment solution (3.5% saline) having a considerable osmotic pressure.

[吸水参考例1]
2‐ブトキシエタノールと純水との体積比60:40の混合溶液(計算浸透圧11.4MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、2‐ブトキシエタノール層は64mlに、食塩水層は36mlになった。
[Water absorption reference example 1]
2-butoxyethanol and a mixture solution of a volume ratio of 60:40 and pure water (calculated osmotic pressure 11.4MPa) and 50ml and 3.5% saline (calculated osmotic pressure 2.9 MPa) 50ml, the area 28cm 2 Horiaki The cellophane sheet “wrap in cello pack” manufactured by Co., Ltd. was contacted and allowed to stand. After 8 hours, the 2-butoxyethanol layer became 64 ml and the saline layer became 36 ml.

[吸水実施例2]
2‐イソブトキシエタノールと純水との体積比70:30の混合溶液(計算浸透圧13.3MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート 『ラップインセロパック』を介して接触させ静置した。8時間後、2‐イソブトキシエタノール層は58mlに、食塩水層は42mlになった。
[Water absorption example 2]
50 ml of a mixed solution of 70:30 volume ratio (calculated osmotic pressure 13.3 MPa) of 2-isobutoxyethanol and pure water and 50 ml of 3.5% saline (calculated osmotic pressure 2.9 MPa) with an area of 28 cm 2 . The cellophane sheet made by Horiaki Co., Ltd. was contacted via “wrap-in cello pack” and allowed to stand. After 8 hours, the 2-isobutoxyethanol layer became 58 ml and the saline layer became 42 ml.

[吸水実施例3]
2‐[2‐(ベンジルオキシ)エトキシ]エタノールと純水との体積比70:30の混合溶液(計算浸透圧9.6MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、2‐[2‐(ベンジルオキシ)エトキシ]エタノール層は56mlに、食塩水層は44mlになった。
[Water absorption example 3]
50 ml of a mixed solution (calculated osmotic pressure 9.6 MPa) of 2- [2- (benzyloxy) ethoxy] ethanol and pure water in a volume ratio of 70:30 (calculated osmotic pressure 9.6 MPa) and 50 ml of 3.5% saline (calculated osmotic pressure 2.9 MPa). Were brought into contact with each other via a cellophane sheet “wrap-in cello pack” manufactured by Horiaki Co., Ltd. having an area of 28 cm 2 . After 8 hours, the 2- [2- (benzyloxy) ethoxy] ethanol layer was 56 ml and the saline layer was 44 ml.

[吸水実施例4]
1‐エトキシ‐2−(2‐エトキシエトキシ)エタンと純水との体積比90:10の混合溶液(計算浸透圧12.5MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、1‐エトキシ‐2−(2‐エトキシエトキシ)エタン層は79mlに、食塩水層は21mlになった。
[Water absorption example 4]
50 ml of a mixed solution of 90:10 volume ratio of 1-ethoxy-2- (2-ethoxyethoxy) ethane and pure water (calculated osmotic pressure 12.5 MPa) and 3.5% saline (calculated osmotic pressure 2.9 MPa) 50 ml was contacted via a cellophane sheet “wrap-in cello pack” manufactured by Horiaki Co., Ltd. having an area of 28 cm 2 and left to stand. After 8 hours, the 1-ethoxy-2- (2-ethoxyethoxy) ethane layer was 79 ml and the saline layer was 21 ml.

[吸水実施例5]
2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパンと純水との体積比80:20の混合溶液(計算浸透圧11.1MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパン層は78mlに、食塩水層は22mlになった。
[Water absorption example 5]
2- [2- (2-methoxyethoxy) ethoxy] propane and pure water in a volume ratio of 80:20 (calculated osmotic pressure 11.1 MPa) 50 ml and 3.5% saline (calculated osmotic pressure 2.9 MPa) ) 50 ml was contacted via a cellophane sheet “wrap-in cello pack” manufactured by Horiaki Co., Ltd. having an area of 28 cm 2 and left to stand. After 8 hours, the 2- [2- (2-methoxyethoxy) ethoxy] propane layer was 78 ml and the saline layer was 22 ml.

[吸水実施例6]
1−アセトキシ‐2‐(2‐エトキシエトキシ)エタンと純水との体積比80:20の混合溶液(計算浸透圧11.3MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、1−アセトキシ‐2‐(2‐エトキシエトキシ)エタン層は71mlに、食塩水層は29mlになった。
[Water absorption example 6]
50 ml of a mixed solution of 1: acetoxy-2- (2-ethoxyethoxy) ethane and pure water in a volume ratio of 80:20 (calculated osmotic pressure 11.3 MPa) and 3.5% saline (calculated osmotic pressure 2.9 MPa) 50 ml was contacted via a cellophane sheet “wrap-in cello pack” manufactured by Horiaki Co., Ltd. having an area of 28 cm 2 and left to stand. After 8 hours, the 1-acetoxy-2- (2-ethoxyethoxy) ethane layer was 71 ml and the saline layer was 29 ml.

[吸水実施例7]
2,5,8,11‐テトラオキサペンタデカンと純水との体積比90:10の混合溶液(計算浸透圧9.6MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、2,5,8,11‐テトラオキサペンタデカン層は77mlに、食塩水層は23mlになった。
[Water absorption example 7]
50 ml of a mixed solution (calculated osmotic pressure 9.6 MPa) of 2,5,8,11-tetraoxapentadecane and pure water in a volume ratio of 90:10 and 50 ml of 3.5% saline (calculated osmotic pressure 2.9 MPa) Were brought into contact with each other via a cellophane sheet “wrap-in cello pack” manufactured by Horiaki Co., Ltd. having an area of 28 cm 2 . After 8 hours, the 2,5,8,11-tetraoxapentadecane layer became 77 ml and the saline layer became 23 ml.

[吸水実施例8]
1‐プロポキシ‐2‐プロパノールと純水との体積比70:30の混合溶液(計算浸透圧13.0MPa)50mlと3.5%食塩水(計算浸透圧2.9MPa)50mlとを、面積28cmのホリアキ株式会社製 セロファンシート『ラップインセロパック』を介して接触させ静置した。8時間後、1‐プロポキシ‐2‐プロパノール層は73mlに、食塩水層は27mlになった。
[Water absorption example 8]
A mixed solution of 1-propoxy-2-propanol and pure water in a volume ratio of 70:30 (calculated osmotic pressure 13.0 MPa) and 50 ml of 3.5% saline (calculated osmotic pressure 2.9 MPa) were mixed with an area of 28 cm. It contacted through the cellophane sheet "wrap in cello pack" of No. 2 Holia Co., Ltd., and left still. After 8 hours, the 1-propoxy-2-propanol layer was 73 ml and the saline layer was 27 ml.

本発明のドロー溶液を用いた及び正浸透水処理方法は、海水または排水からの飲料水・工業用水または農業用水の回収、排水の体積低減、正浸透発電、嗜好飲料の濃縮、果汁の濃縮、有用物質含有希薄溶液の濃縮、などに用いられる。

The forward osmosis water treatment method using the draw solution of the present invention is the recovery of drinking water, industrial water or agricultural water from seawater or wastewater, volume reduction of wastewater, forward osmosis power generation, concentration of favorite beverages, concentration of fruit juice, Used for concentration of dilute solutions containing useful substances.

Claims (4)

水分を含む溶液と半透膜を介して接触させるドロー溶液であって、前記ドロー溶液が一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)または前記一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)と水からなり、前記一般式(1)で示される水溶性液体化合物(2‐ブトキシエタノールを除く)と水との混合物が下限臨界溶液温度を有することを特徴とするドロー溶液。
[式中、
、Rは互いに独立して、水素原子、炭素数1〜8の直鎖状または炭素数3〜8の分岐状若しくは環状アルキル基、炭素数1〜2のアシル基、置換されてもよいフェニル基および置換されてもよいベンジル基の内のいずれか一つを表すが、R 、R の少なくとも一方は水素原子ではなく、R 、R の炭素数の合計が3以上であり、
、Rは互いに独立して、水素原子および炭素数1〜4の直鎖状または分岐状アルキル基の内のいずれか一つを表すが、R 、R の少なくとも一方は水素原子であり、
nは1〜4の整数を表す。]
A draw solution is contacted through the solution and a semipermeable membrane containing water, the draw solution is a water-soluble liquid compound represented by the general formula (1) (except for 2-butoxyethanol) or the general formula (1) A mixture of a water-soluble liquid compound (excluding 2-butoxyethanol ) represented by general formula (1) and water is a lower critical solution. draw solution characterized in Rukoto which have a temperature.
[Where:
R 1 and R 2 are each independently a hydrogen atom, a straight chain having 1 to 8 carbon atoms, a branched or cyclic alkyl group having 3 to 8 carbon atoms, an acyl group having 1 to 2 carbon atoms, or a substituent. Although any one of a phenyl group and an optionally substituted benzyl group table, that at least one of the hydrogen atoms of R 1, R 2, R 1, the total number of carbon atoms of R 2 is 3 or more And
R 3, R 4 independently of one another, a table Kan any one of straight-chain or branched alkyl group having 1 to 4 hydrogen atoms and carbon atoms, at least one of hydrogen R 3, R 4 Is an atom,
n represents an integer of 1 to 4. ]
前記一般式(1)の水溶性液体化合物が
‐イソブトキシエタノール、
2‐[2‐(ベンジルオキシ)エトキシ]エタノール、
1‐エトキシ‐2‐(2‐エトキシエチル)エタン、
2‐[2‐(2‐メトキシエトキシ)エトキシ]プロパン、
1−アセトキシ‐2‐(2‐エトキシエトキシ)エタン、
2,5,8,11‐テトラオキサペンタデカンおよび
1‐プロポキシ‐2‐プロパノールからなる群から選択される一つの化合物であることを特徴とする請求項1に記載のドロー溶液。
Wherein the water-soluble liquid compound of the general formula (1) is,
2 -isobutoxyethanol,
2- [2- (benzyloxy) ethoxy] ethanol,
1-ethoxy-2- (2- ethoxyethyl) ethane,
2- [2- (2-methoxyethoxy) ethoxy] propane,
1-acetoxy-2- (2-ethoxyethoxy) ethane,
The draw solution according to claim 1, which is one compound selected from the group consisting of 2,5,8,11-tetraoxapentadecane and 1-propoxy-2-propanol.
請求項1又は請求項2のいずれかに記載のドロー溶液と、水分を含む供給溶液とを半透膜を介して接触させることで、前記供給溶液中の水分を前記ドロー溶液に吸収させることを特徴とする正浸透水処理方法。 The draw solution according to claim 1 and the supply solution containing moisture are brought into contact with each other through a semipermeable membrane, thereby allowing the draw solution to absorb moisture in the supply solution. A forward osmosis water treatment method. 前記供給溶液から水分を吸収して希薄になった前記ドロー溶液(以下適宜「希薄ドロー溶液」という)を前記希薄ドロー溶液の下限臨界溶液温度より高い温度に加熱することで液体‐液体の二層に相分離させ、液体‐液体に相分離した希薄ドロー溶液から分液により水分を分離し、ドロー溶液を高濃度化して再生することを特徴とする請求項3に記載の正浸透水処理方法。 A liquid-liquid two-layer solution by heating the draw solution diluted with water from the feed solution (hereinafter referred to as “dilute draw solution” as appropriate) to a temperature higher than the lower critical solution temperature of the dilute draw solution. 4. The forward osmosis water treatment method according to claim 3 , wherein water is separated from the dilute draw solution phase-separated into liquid and liquid by liquid separation, and the draw solution is concentrated to regenerate.
JP2014176709A 2014-09-01 2014-09-01 Draw solution and forward osmosis water treatment method Expired - Fee Related JP6382034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176709A JP6382034B2 (en) 2014-09-01 2014-09-01 Draw solution and forward osmosis water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176709A JP6382034B2 (en) 2014-09-01 2014-09-01 Draw solution and forward osmosis water treatment method

Publications (2)

Publication Number Publication Date
JP2016049500A JP2016049500A (en) 2016-04-11
JP6382034B2 true JP6382034B2 (en) 2018-08-29

Family

ID=55657449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176709A Expired - Fee Related JP6382034B2 (en) 2014-09-01 2014-09-01 Draw solution and forward osmosis water treatment method

Country Status (1)

Country Link
JP (1) JP6382034B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7016619B2 (en) * 2016-06-24 2022-02-07 株式会社Kri Water absorption liquid, draw solution and forward osmosis water treatment method
JP2018009118A (en) * 2016-07-15 2018-01-18 株式会社Kri Temperature sensitive phase separation liquid
JP2018016667A (en) * 2016-07-25 2018-02-01 株式会社Kri Temperature-sensitive phase separation fluid
JP2018108538A (en) * 2016-12-28 2018-07-12 大阪瓦斯株式会社 Forward osmosis membrane separation method and water treatment facility and power generation facility for performing the same
JP6854196B2 (en) * 2017-06-09 2021-04-07 株式会社Kri Water absorption liquid, draw solution and forward osmosis water treatment method
KR102463595B1 (en) * 2021-02-16 2022-11-03 부산대학교 산학협력단 Freshwater system using liquid desiccant and desalination method using thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820645B2 (en) * 1975-09-29 1983-04-25 株式会社クラレ Dehydration concentration method using solute osmotic pressure
JPS592523B2 (en) * 1978-08-18 1984-01-19 ヤマサ醤油株式会社 Concentration method
JP3246694B2 (en) * 1994-03-16 2002-01-15 株式会社トクヤマ How to wash goods
JP2003116432A (en) * 2001-08-09 2003-04-22 Minoru Kobayashi Squid-fishing hook and device for squid fishing
JP2014097483A (en) * 2012-10-17 2014-05-29 Jfe Engineering Corp Water treatment method and apparatus
JP2015098833A (en) * 2013-11-19 2015-05-28 株式会社東芝 Cyclic osmotic power generation system and work medium

Also Published As

Publication number Publication date
JP2016049500A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6382034B2 (en) Draw solution and forward osmosis water treatment method
Chung et al. Forward osmosis processes: Yesterday, today and tomorrow
Dutta et al. Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process
US9399194B2 (en) Methods for treating a liquid using draw solutions
WO2015156404A1 (en) Temperature-sensitive absorbent, water treatment method, and water treatment apparatus
BR112021009850A2 (en) process to obtain a concentrated flavor mixture and use it
WO2013032742A1 (en) Methods and systems for treating liquids using switchable solvents
AU2010202280A1 (en) Process for the purification of organic acids
JP6149627B2 (en) Water treatment method with semipermeable membrane
JP2018519992A (en) Purification of salt water containing lithium
Pei et al. Emerging forward osmosis and membrane distillation for liquid food concentration: A review
JP7016619B2 (en) Water absorption liquid, draw solution and forward osmosis water treatment method
JP6149626B2 (en) Water treatment method with semipermeable membrane
JP6649310B2 (en) Water treatment system and working medium
JP6210033B2 (en) Water desalination method and apparatus
JP2018108538A (en) Forward osmosis membrane separation method and water treatment facility and power generation facility for performing the same
JP7258805B2 (en) Working medium and water treatment system
JP2014100692A (en) Water treatment method
JP6210034B2 (en) Water desalination method and apparatus
JP2017035672A (en) Draw solution, and positive osmosis water treatment method
US11261111B2 (en) Methods and systems for treating an aqueous solution
JP6210008B2 (en) Water treatment equipment
JP7068116B2 (en) Draw solution used in water treatment systems and water treatment systems
JP2016087504A (en) Desalination system and desalination method
JP2015058407A (en) Draw solution, water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees