JPS592523B2 - Concentration method - Google Patents

Concentration method

Info

Publication number
JPS592523B2
JPS592523B2 JP53100031A JP10003178A JPS592523B2 JP S592523 B2 JPS592523 B2 JP S592523B2 JP 53100031 A JP53100031 A JP 53100031A JP 10003178 A JP10003178 A JP 10003178A JP S592523 B2 JPS592523 B2 JP S592523B2
Authority
JP
Japan
Prior art keywords
membrane
aqueous solution
concentration
organic solvent
hydrophilic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53100031A
Other languages
Japanese (ja)
Other versions
JPS5527071A (en
Inventor
五郎 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP53100031A priority Critical patent/JPS592523B2/en
Publication of JPS5527071A publication Critical patent/JPS5527071A/en
Publication of JPS592523B2 publication Critical patent/JPS592523B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は、水溶液の濃縮方法に関し、詳しくは、目的物
質を含有する水溶液を半透膜を介して特定の親水性有機
溶媒と接触させることにより、該溶液中の水分およびあ
る種の夾雑物質を該有機溶媒中に移行させて目的物質を
濃縮する方法に関するものであり、その目的とするとこ
ろは、常温あるいは必要に応じて冷却しながら、すなわ
ち温和な条件下で特に熱に対して不安定な物質の分解あ
るいは変性を防止しつつ、かつある種の夾雑物質を除去
しつつ、効率良く、しかも簡単に濃縮する方法を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for concentrating an aqueous solution, and more specifically, the present invention relates to a method for concentrating an aqueous solution. It also relates to a method for concentrating a target substance by transferring certain contaminants into the organic solvent. The present invention provides an efficient and simple method for concentrating substances while preventing the decomposition or denaturation of heat-labile substances and removing certain types of contaminants.

従来、熱に対して不安定な物質の濃縮法としては■熱不
安定物質水溶液中の水分を凍結させて除去する凍結濃縮
法■分子篩膜等の膜を用い、機械的圧力あるいは浸透圧
によって脱水する方法(逆浸透法などの膜濃縮法)■冷
却乾燥空気により水分を蒸発させて濃縮する方法などが
ある。
Conventionally, methods for concentrating heat-labile substances include - Freeze concentration method, in which water in an aqueous solution of heat-labile substances is frozen and removed; - Dehydration by mechanical pressure or osmotic pressure using a membrane such as a molecular sieve membrane. (Membrane concentration method such as reverse osmosis method) ■ Method to evaporate water using cooled dry air and concentrate.

これらの方法のうち分子篩膜等を用いる膜濃縮法は、高
分子化合物の濃縮には比較的好都合であるが、低分子化
合物、特に塩類を含む溶液を濃縮する際には高圧力を必
要とするため膜強度を考慮しなければならず、そればか
りか、濃縮と同時に目的物質の損失が避けられない場合
もあり、効率の良い濃縮は望めない。
Among these methods, the membrane concentration method using a molecular sieve membrane is relatively convenient for concentrating high molecular compounds, but requires high pressure when concentrating low molecular compounds, especially solutions containing salts. Therefore, the strength of the membrane must be taken into consideration, and not only that, but also the loss of the target substance may be unavoidable at the same time as concentration, making it impossible to achieve efficient concentration.

また、凍結濃縮および乾燥空気を用いる濃縮法は効率が
良くない。
Also, freeze concentration and concentration methods using dry air are not efficient.

本発明者は、前述の技術的背景に鑑み、水溶液、特に熱
不安定物質の水溶液の濃縮法について種々、検討した結
果、水溶液を、半透膜を介して特定の親水性有機溶媒と
接触させると、該溶液中の水分およびある種の夾雑物質
は親水性有機溶媒中に移行するが、該溶液中のその他の
成分は分子量の大小にかかわりなく親水性有機溶媒中に
移行しないという意外な現象を見出し、本発明を完成し
た。
In view of the above-mentioned technical background, the present inventor investigated various methods for concentrating an aqueous solution, particularly an aqueous solution of a thermally unstable substance, and as a result, the inventors determined that the aqueous solution is brought into contact with a specific hydrophilic organic solvent through a semipermeable membrane. An unexpected phenomenon is that water and certain impurities in the solution migrate into the hydrophilic organic solvent, but other components in the solution do not migrate into the hydrophilic organic solvent regardless of their molecular weights. They discovered this and completed the present invention.

本発明は、水溶液を、水および夾雑物質に対する選択的
透過性を有し、または有さない半透膜を介して炭素数1
〜3のアルコール類と接触させ、該溶液中の水分のみを
あるいは水分とをもにある種の夾雑物質を該アルコール
類中に移行させて該溶液を濃縮することを特徴とする水
溶液の濃縮方法である。
In the present invention, an aqueous solution is passed through a semipermeable membrane having a carbon number of 1 to
A method for concentrating an aqueous solution, which comprises contacting the solution with the alcohol according to item 3 above, and concentrating the solution by transferring some kind of contaminant to the alcohol, either only or together with the water in the solution. It is.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

なお、以下の説明において「親水性有機溶媒」とは「炭
素数1〜3のアルコール類」を意味する場合もある。
In addition, in the following description, "hydrophilic organic solvent" may mean "alcohol having 1 to 3 carbon atoms."

濃縮の対象となる水溶液 本発明において濃縮の対象となる水溶液は、目的物質あ
るいは目的物質とある種の夾雑物質とを含有する水溶液
である。
Aqueous solution to be concentrated The aqueous solution to be concentrated in the present invention is an aqueous solution containing the target substance or the target substance and a certain type of contaminant.

目的物質6コ、その物質を含有する水溶液を、半透膜を
介して親水性有機溶媒と接触させた際に、親水性有機溶
媒中に移行しない物質であればよい。
Any substance may be used as long as it does not migrate into the hydrophilic organic solvent when the target substance 6 and an aqueous solution containing the substance are brought into contact with the hydrophilic organic solvent through a semipermeable membrane.

特に熱に不安定な物質を目的物質とする場合に本発明方
法の効果は顕著である。
The effects of the method of the present invention are particularly significant when the target substance is a thermally unstable substance.

なお、本発明方法によって濃縮しうる目的物質は、膜の
種類、有機溶媒の種類および濃縮条件によって異なり、
一義的な性質をもって定義づけることは困難である。
Note that the target substance that can be concentrated by the method of the present invention varies depending on the type of membrane, the type of organic solvent, and concentration conditions.
It is difficult to define it with unambiguous properties.

たとえば、目的物質の分子量と膜のポアー・サイズの膜
透過性に関する関係は、従来の膜処理における両者の関
係をそのままあて(1めること(′;1できない。
For example, the relationship between the molecular weight of the target substance and the membrane pore size regarding membrane permeability cannot be directly applied to the relationship between the two in conventional membrane processing.

また、水溶液が、目的物質を単独で含有するか、他の夾
雑物質とともに含有するかによって、これらの物質の膜
の透過性が異る場合もある。
Furthermore, the membrane permeability of these substances may differ depending on whether the aqueous solution contains the target substance alone or together with other impurities.

ただし、一般的には、濃縮しうる目的物質は、本発明に
おいて使用する親水性有機溶媒に対して比較的難溶性の
物質である。
However, the target substance that can be concentrated is generally a substance that is relatively sparingly soluble in the hydrophilic organic solvent used in the present invention.

本発明者の経験的知見によれば、具体的な目的物質さし
て、核酸2ヌクレオシド・トリりん酸。
According to the present inventor's empirical findings, the specific target substance is nucleic acid dinucleoside triphosphate.

ヌクレオシド・ジりん酸、ヌクレオシド・モノりん酸、
サイクリック・ヌクレオチドおよびこれらの誘導体(た
とえば、ダイブチリル・サイクリック・ヌクレオナトな
ど)およびその他の核酸関連物質(たとえば、S−アデ
ノシル−L−メチオニンなど)、葉酸などのビタミン類
、各種酵素C親水性有機溶媒に対して安定な酵素であれ
ばほとんど対象さなりつる。
Nucleoside diphosphate, nucleoside monophosphate,
Cyclic nucleotides and their derivatives (e.g. dibutyryl cyclic nucleonate, etc.) and other nucleic acid-related substances (e.g. S-adenosyl-L-methionine, etc.), vitamins such as folic acid, various enzymes C hydrophilic organic Most enzymes that are stable to solvents are suitable.

)1.各種アミノ酸(混合物でもよい。)1. Various amino acids (mixtures may be used.

)、各種ホルモンおよび各種糖類などが挙げられる。), various hormones, and various sugars.

また、本発明における「夾雑物質」とは、水溶液を半透
膜を介して親水性有機溶媒と接触させた際に、水分とと
もに半透膜を透過して親水性有機溶媒中に移行する物質
であり、一般的には本発明で使用す番親水性有機溶媒に
対して比較的易溶性の物質である。
Furthermore, the term "contaminant" in the present invention refers to a substance that passes through the semipermeable membrane together with water and migrates into the hydrophilic organic solvent when an aqueous solution is brought into contact with a hydrophilic organic solvent through the semipermeable membrane. Generally, it is a substance that is relatively easily soluble in the hydrophilic organic solvent used in the present invention.

具体的にはヌクレオシド、アンモニア、遊離の有機酸(
たとえば、乳酸、酢酸など)および鉱酸(たとえば、塩
酸、硫酸など)などである。
Specifically, nucleosides, ammonia, and free organic acids (
Examples include lactic acid, acetic acid, etc.) and mineral acids (eg, hydrochloric acid, sulfuric acid, etc.).

半透膜の種類 本発明における半透膜、!:は、親水性有機溶媒に対し
て安定で、この半透膜を介して特定の親水性有機溶媒と
接触させる際には水溶液中の水分およびある種の夾雑物
質を選択的に親水性有機溶媒中に移行させる膜であるが
、逆浸透法または水に対する透析法など通常の膜処理法
においては目的物を透過する場合もあり、水および夾雑
物質に対する選択的透過性は必ずしも必要とせず、膜の
耐圧性、分画分子量および食塩阻止率等に(4限定され
ない。
Types of semipermeable membranes Semipermeable membranes in the present invention! : is stable against hydrophilic organic solvents, and when brought into contact with a specific hydrophilic organic solvent through this semipermeable membrane, water and certain impurities in the aqueous solution are selectively removed from the hydrophilic organic solvent. However, in normal membrane treatment methods such as reverse osmosis or water dialysis, the target substance may pass through the membrane, and selective permeability to water and contaminants is not necessarily required. pressure resistance, molecular weight cut-off, salt rejection rate, etc. (not limited to 4).

このような膜としては通常の透析用膜、イオン交換膜、
逆浸透用膜および限外濾過用膜のうち、有機溶媒に安定
な膜が挙げられるが、特に透析用膜が好適である。
Such membranes include ordinary dialysis membranes, ion exchange membranes,
Among the membranes for reverse osmosis and the membranes for ultrafiltration, membranes that are stable in organic solvents can be mentioned, and membranes for dialysis are particularly suitable.

膜の材質として(1、ポリビニルアルコール系、セロフ
ァン、セルロースアセテートなどのセルロース系、ポリ
エステル系、ポリアクリロニトリル系、ポリアミド系、
動物の胃。
Membrane materials include (1) polyvinyl alcohol, cellulose such as cellophane, cellulose acetate, polyester, polyacrylonitrile, polyamide,
animal stomach.

腸、ぼうこうなどの組織膜などが挙げられるが、これら
のうち特に有機溶媒に対して安定なポリビニルアルコー
ル系およびセルロース、9好まLい。
Examples include tissue membranes such as intestines and bladder, but among these, polyvinyl alcohol and cellulose, which are stable against organic solvents, are particularly preferred.

これらの膜に該当する市販品の一例としては、ポリビニ
ルアルコール系中空繊維膜KL−1およびKL−2のA
、BおよびCタイプ((株)クラレ製)ならびにセロフ
ァン膜であるヴイスキング・チューブ(米国ヴイスキン
グ社製)などが挙げられる。
Examples of commercial products corresponding to these membranes include A of polyvinyl alcohol hollow fiber membranes KL-1 and KL-2.
, B and C types (manufactured by Kuraray Co., Ltd.), and VISKING tube, which is a cellophane membrane (manufactured by VISKING Co., Ltd., USA).

なお、膜の形態として(」、平膜、チューブ状および中
空繊維状などいずれも使用し得るが、工業的規模で連続
的に濃縮する際には中空繊維状のものが好ましく、小規
模に回分式で濃縮する際にはチューブ状のものが簡便で
ある。
Note that any form of membrane can be used, such as a flat membrane, a tube, or a hollow fiber, but a hollow fiber is preferable for continuous concentration on an industrial scale, and for small-scale batch concentration. When concentrating in a formula, a tube-shaped one is convenient.

親水性有機溶媒の種類 本発明に使用する特定の親水性有機溶媒とは、目的物の
溶解度が高くなく、親水性が強く、水と任意の割合で混
和して均一相を形成する性質を有する溶媒である。
Types of hydrophilic organic solvents The specific hydrophilic organic solvent used in the present invention does not have high solubility of the target product, has strong hydrophilic properties, and has the property of forming a homogeneous phase by mixing with water in any proportion. It is a solvent.

このような親水性有機溶媒としては、エタノール、メタ
ノール等の1価アルコールまた(1グリセリン、エチレ
ングリコール、プロピレングリコール等の多価アルコー
ルなどの炭素数1〜3のアルコール類が挙げられる。
Examples of such hydrophilic organic solvents include monohydric alcohols such as ethanol and methanol, and alcohols having 1 to 3 carbon atoms such as polyhydric alcohols such as glycerin, ethylene glycol, and propylene glycol.

親水性有機溶媒の濃度および使用量 本発明において、親水性有機溶媒の濃度は重要な要素の
一つであり、含水量の少い、高濃度のものを使用しなけ
ればならない。
Concentration and Usage Amount of Hydrophilic Organic Solvent In the present invention, the concentration of the hydrophilic organic solvent is one of the important factors, and one with a low water content and high concentration must be used.

親水性有機溶媒の濃度が低下すると、目的物質の損失が
大きくなり好ましくない。
If the concentration of the hydrophilic organic solvent decreases, the loss of the target substance will increase, which is undesirable.

その好適な濃度範囲は親水性有機溶媒の種類によって多
少異るが、およそ80%以上、好ましくは90%以上で
あれば本発明の目的を達成できる。
The preferred concentration range varies somewhat depending on the type of hydrophilic organic solvent, but the object of the present invention can be achieved if it is about 80% or more, preferably 90% or more.

親水性有機溶媒の使用量は、水溶液(濃縮前)の7〜1
0倍量程度が適当である。
The amount of hydrophilic organic solvent used is 7 to 1 of the aqueous solution (before concentration).
Approximately 0 times the amount is appropriate.

接触方法 水溶液を半透膜を介して親水性有機溶媒と接触させる方
法は特に限定されるものではなく、特別な装置は必要な
いが、透析法などに通常採用されている公知の接触方法
が好適である。
Contact Method The method of bringing an aqueous solution into contact with a hydrophilic organic solvent through a semipermeable membrane is not particularly limited and does not require any special equipment, but known contact methods commonly employed in dialysis methods are suitable. It is.

ただし、濃縮の過程で、親水性有機溶媒が水によって希
釈されるので、常に高濃度の親水性有機溶媒を供給しう
る接触方法、すなわち親水性有機溶媒を膜表面に流通さ
せて脱水する方法が好ましい。
However, in the process of concentration, the hydrophilic organic solvent is diluted with water, so a contact method that can constantly supply a high concentration of hydrophilic organic solvent, that is, a method of dehydrating the hydrophilic organic solvent by flowing it over the membrane surface, is recommended. preferable.

希釈された親水性有機溶媒ζ4、そのまま放流して他の
用途に用いてもよいが、蒸留法および/または脱水剤に
より濃縮(脱水)して循環使用する方式が大規模の濃縮
においては有利である。
The diluted hydrophilic organic solvent ζ4 may be discharged as is and used for other purposes, but it is advantageous for large-scale concentration to concentrate (dehydrate) it using a distillation method and/or a dehydrating agent and recycle it. be.

また、水溶液を連続的に濃縮する際には膜面を流通させ
、バッチ式で濃縮する際には膜面に滞留させる接触方法
を採用すればよい。
Further, a contact method may be adopted in which the aqueous solution is allowed to flow through the membrane surface when concentrating the aqueous solution continuously, and is allowed to remain on the membrane surface when the aqueous solution is concentrated batchwise.

水溶液と親水性有機溶媒の両方を流通させる際には、向
流または並流のいずれの方式で流通させてもよい。
When flowing both the aqueous solution and the hydrophilic organic solvent, they may be caused to flow in either countercurrent or cocurrent flow.

接触温度 水溶液と親水性有機溶媒とを半透膜を介して接触させる
際に両者の温度はほぼ同程度に保てばよい。
Contact Temperature When an aqueous solution and a hydrophilic organic solvent are brought into contact with each other through a semipermeable membrane, the temperatures of both may be maintained at approximately the same level.

接触温度が高ければ濃縮速度は早いが、目的物質は分解
または変性を受けやすくなる。
If the contact temperature is high, the concentration rate will be faster, but the target substance will be more susceptible to decomposition or denaturation.

逆に、接触温度が低ければ、目的物質は安定であるが、
濃縮速度は遅い。
Conversely, if the contact temperature is low, the target substance is stable;
Concentration rate is slow.

したがって、接触温度を一律に特定することはできない
が、上限は目的物質の分解温度あるいは変性温度および
有機溶媒の沸点より低い温度であり、下限は水溶液の凍
結温度より高い温度であればよい。
Therefore, the contact temperature cannot be uniformly specified, but the upper limit may be a temperature lower than the decomposition temperature or denaturation temperature of the target substance and the boiling point of the organic solvent, and the lower limit may be a temperature higher than the freezing temperature of the aqueous solution.

本発明の特徴 (1)本発明方法は、高濃度の親水性有機溶媒の脱水力
を利用する方法であり、他の熱的あるいは機械的エネル
ギーを必要としない。
Features of the present invention (1) The method of the present invention utilizes the dehydration power of a highly concentrated hydrophilic organic solvent and does not require any other thermal or mechanical energy.

(2)温和な条件下で濃縮を行えるので、目的物質の分
解あるいは変性がほとんどない。
(2) Since concentration can be performed under mild conditions, there is almost no decomposition or denaturation of the target substance.

(3)親水性有機溶媒は希釈されても、脱水あるいは蒸
留が容易である。
(3) Hydrophilic organic solvents can be easily dehydrated or distilled even when diluted.

(4)単一の操作で目的物質の濃縮と夾雑物質との分別
(精製)が可能である。
(4) It is possible to concentrate the target substance and separate it from contaminants (purification) in a single operation.

(5)本発明は、透析法、逆浸透法または限外濾過法な
どの従来の膜処理法とは全く概念を異にするものであり
、新規な技術思想に基〈発明である。
(5) The present invention is completely different in concept from conventional membrane treatment methods such as dialysis, reverse osmosis, or ultrafiltration, and is an invention based on a novel technical idea.

各成分分析法 (1)核酸開運物質 成分が単一の場合には0. I N塩酸中での紫外線(
260nm)の吸光度より算出した。
Each component analysis method (1) If the nucleic acid good luck substance component is single, 0. Ultraviolet light in IN hydrochloric acid (
It was calculated from the absorbance at 260 nm).

二成分以上の場合には濾紙電気泳動法および/またはペ
ーパークロマトグラフ法により各成分を分離し、各スポ
ットを0.IN塩酸で抽出した後、前記と同様に紫外線
の吸光度より算出した。
In the case of two or more components, each component is separated by filter paper electrophoresis and/or paper chromatography, and each spot is divided into 0. After extraction with IN hydrochloric acid, it was calculated from the absorbance of ultraviolet rays in the same manner as above.

なお、吸光度の測定には、(株)日立製作断裂のスペク
トロ・フォトメーター124型を使用した。
In addition, a spectrophotometer model 124 manufactured by Hitachi, Ltd. was used to measure the absorbance.

(2)酵素(活性) (a) 核酸分解酵素(ヌクレアーゼP1)リボ核酸
を基質とし、70℃、pH4,8で30分間酵素反応さ
せ、ウラニウム試薬可溶部の260nmにおける吸光度
より力価を算出した。
(2) Enzyme (activity) (a) Nucleolytic enzyme (nuclease P1) Using ribonucleic acid as a substrate, perform an enzymatic reaction at 70°C and pH 4, 8 for 30 minutes, and calculate the titer from the absorbance at 260 nm of the uranium reagent-soluble portion. did.

(b) ホスファターゼ 5′−シチジル酸ナトリウムを基質とし、45°C,p
H4,8で30分間酵素反応させ、60%過塩素酸で反
応を停止した後、アミトール試薬とモリブデート試薬で
発色させ、750 nmの吸光度より遊離した無機りん
酸量を測定し、力価を算出した。
(b) Using sodium phosphatase 5'-cytidylate as a substrate, at 45°C, p
After enzymatic reaction with H4,8 for 30 minutes and stopping the reaction with 60% perchloric acid, color was developed with amitor reagent and molybdate reagent, and the amount of inorganic phosphoric acid released was measured from the absorbance at 750 nm, and the titer was calculated. did.

(3) 葉酸 265nmの吸光度より算出した。(3) Folic acid Calculated from absorbance at 265 nm.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 5′−イノシン酸(遊離型) 348 mgを含む水溶
液50 mllをヴイスキング・チューブ(米国ヴイス
キング社製、接触面積91 crIL=7czX 13
cm)に詰め、回収エタノール(濃度95%)600m
#に浸漬し、攪拌しながら室温で2時間放置した結果、
膜内液は6.8m#に濃縮されていた。
Example 1 50 ml of an aqueous solution containing 348 mg of 5'-inosinic acid (free form) was placed in a Wiesking tube (manufactured by Wiesking, USA, contact area 91 crIL = 7czX 13
cm) and collected ethanol (concentration 95%) 600m
As a result of soaking in # and leaving it at room temperature for 2 hours while stirring,
The membrane fluid was concentrated to 6.8 m#.

膜内液および膜外液(エタノール中)の57−イノシン
酸を分析した結果、膜内液に343.82mg(回収率
98.8%)の57−イノシン酸が残存しており、エタ
ノール中に滲出した5′−イノシン酸は4.17mg(
1,2%)であり、分解は全く起らなかった。
As a result of analyzing the 57-inosinic acid in the membrane fluid and the membrane fluid (in ethanol), it was found that 343.82 mg (recovery rate 98.8%) of 57-inosinic acid remained in the membrane fluid, and 57-inosinic acid remained in the membrane fluid. The amount of leached 5'-inosinic acid was 4.17 mg (
1.2%), and no decomposition occurred.

実施例 2 中空繊維膜、KL−1,Aタイプ((株)クラし製、接
触面積240i)を試薬1級エタノール(濃度99.5
%、氷?′+)500mA’に浸漬し、S−アデノシル
−L−メチオニンの濃度6.5 mVmllの水溶液(
水冷)を膜内側に40m11/時間の流速で通液した結
果、25m!l/時間の速度で連続的に濃縮された。
Example 2 A hollow fiber membrane, KL-1, A type (manufactured by Kurashi Co., Ltd., contact area 240i) was mixed with the reagent grade 1 ethanol (concentration 99.5
%,ice? '+) 500 mA', and an aqueous solution of S-adenosyl-L-methionine with a concentration of 6.5 mVml (
As a result of passing the liquid (water-cooled) inside the membrane at a flow rate of 40 m11/hour, the result was 25 m! It was concentrated continuously at a rate of l/h.

開始後、1時間の濃縮液を分析したところ、S−アデノ
シル−L−メチオニンの回収率は98.8%であった。
When the concentrated solution was analyzed for 1 hour after the start, the recovery rate of S-adenosyl-L-methionine was 98.8%.

実施例 3 葉酸50mgを含有する水溶液50m#をヴイスキング
・チューブ(接触面積96.2CrIt)に詰め、試薬
1級エタノール(濃度99.5%)500m7に浸漬し
、攪拌しながら室温で2時間放置した結果、膜内液は7
.6m11に濃縮されていた。
Example 3 50 m# of an aqueous solution containing 50 mg of folic acid was packed in a Wiesking tube (contact area 96.2 CrIt), immersed in 500 m7 of reagent primary ethanol (concentration 99.5%), and left at room temperature for 2 hours with stirring. As a result, the membrane fluid was 7
.. It was concentrated to 6ml.

膜内液および膜外液の葉酸を分析した結果、膜内液に4
7.9mg(回収率95.8%)の葉酸が残存しており
、エタノール中に滲出した葉酸ハ2.2mg(4,4%
)であった。
As a result of analyzing folic acid in the intramembrane fluid and extramembrane fluid, it was found that 4
7.9 mg (recovery rate 95.8%) of folic acid remained, and the folic acid leached into ethanol was 2.2 mg (4.4%).
)Met.

実施例 4 ヌクレアーゼP1 (ペニシリウム・シトリナム由来の
核酸分解酵素、ヤマサ醤油(株)製)の粗酵素′液(5
08000Unit/mA)50mljヴイスキング・
チューブ(接触面積91cIIt)に詰め、試薬1級エ
タノール(濃度99.5%)500m#に浸漬し、1〜
3℃で4時間、攪拌しながら放置した結果、膜内液?j
17.8m#に濃縮されていた。
Example 4 Nuclease P1 (nucleolytic enzyme derived from Penicillium citrinum, manufactured by Yamasa Soy Sauce Co., Ltd.) crude enzyme solution (5
08000Unit/mA) 50mlj VIS KING
Packed into a tube (contact area 91 cIIt), immersed in 500 m# of reagent grade 1 ethanol (concentration 99.5%),
As a result of being left at 3℃ for 4 hours with stirring, the liquid inside the membrane? j
It was concentrated to 17.8 m#.

膜内液と洗液を50m#にもどじ、酵素活性を測定した
きころ495000Unit/mA(膜内液を17.8
mlとして換算すると1390449Unit7miす
であり、活性の回収率は97、44%であった。
The membrane solution and washing solution were returned to 50 m#, and the roller used to measure the enzyme activity was heated to 495,000 Units/mA (the membrane solution was 17.8
When converted to ml, it was 1390449 Units7mi, and the recovery rate of activity was 97.44%.

実施例 5 ホスファターゼ(黒麹カビ、アスペルギルス・ニガー由
来、ヤマサ醤油(株)製)の粗酵素液(13929Un
it/m#)50m#をヴイスキング・チューブ(接触
面積91CrIt)に詰め、試薬1級エタノール(濃度
99.5%)50077L#に浸漬し、1〜3℃で4時
間、攪拌しながら放置した結果、膜内液は13.6mA
に濃縮されていた。
Example 5 Crude enzyme solution (13929Un) of phosphatase (derived from black koji mold, Aspergillus niger, manufactured by Yamasa Soy Sauce Co., Ltd.)
It/m#) 50m# was packed in a VISKING tube (contact area 91CrIt), immersed in 50077L# of reagent primary ethanol (concentration 99.5%), and left at 1-3℃ for 4 hours with stirring. , membrane liquid is 13.6mA
was concentrated in.

膜内液と洗液を50m11にもどし、酵素活性を測定し
たところ13869 Un it/mA’(13,6m
Aに換算すると50989 Un it/m# )であ
り、活性の回収率は99.67%であった。
When the membrane solution and washing solution were returned to 50ml and the enzyme activity was measured, it was found to be 13869 Unit/mA' (13.6m
When converted to A, it was 50989 Unit/m#), and the recovery rate of activity was 99.67%.

実施例 6 5′−アデニル酸347mg(1ミIJモル)およびア
デノシン267mg(1ミリモル)を含む水溶液50m
1Jをヴイスキング・チューブ(接触面積91d)に詰
め、試薬1級メタノール(濃度99%)500mi!に
浸漬し、攪拌しながら室温で2時間放置した結果、膜内
液は9.4m11に濃縮されていた。
Example 6 50 ml of an aqueous solution containing 347 mg (1 mmol) of 5'-adenylic acid and 267 mg (1 mmol) of adenosine
Pack 1J into a Wiesking tube (contact area 91d) and add the reagent primary methanol (concentration 99%) to 500mi! As a result of immersing the membrane in water and leaving it for 2 hours at room temperature while stirring, the liquid in the membrane was concentrated to 9.4 ml.

膜外液の紫外線吸光度を測定したところ、紫外線吸収物
質の46.2%が膜外液に移行していたが、膜外液を分
析した結果、紫外線吸収物質の95係がアデノシンであ
り、5′−アデニル酸はわずかに検出される程度であっ
た。
When we measured the ultraviolet absorbance of the extra-membrane liquid, we found that 46.2% of the ultraviolet-absorbing substances had migrated to the extra-membrane liquid, but analysis of the extra-membrane liquid revealed that 95% of the ultraviolet-absorbing substances were adenosine; '-Adenylic acid was only slightly detected.

実施例 7 アデノシン・ジりん酸500mJを含む水溶液50mA
’をヴイスキング・チューブ(接触面積91 cr!
)に詰め、試薬1級エタノール(濃度99.5%)50
0m/に浸漬し、1〜3℃で2時間30分、攪拌しなが
ら放置した結果、膜内液ハ22m11に濃縮されていた
Example 7 50 mA of aqueous solution containing 500 mJ of adenosine diphosphate
'Visking tube (contact area 91 cr!
) and reagent 1st grade ethanol (concentration 99.5%) 50
As a result of immersing the membrane in a water temperature of 0.0 m/m and leaving it for 2 hours and 30 minutes at 1 to 3° C. with stirring, the liquid in the membrane was concentrated to 22 ml.

膜内液の紫外線吸光度を測定したところ、紫外線吸収物
質の97.0%が回収された。
When the ultraviolet absorbance of the membrane liquid was measured, 97.0% of the ultraviolet absorbing substance was recovered.

また、アデノシン・ジりん酸の分解は認められなかった
Furthermore, no decomposition of adenosine diphosphate was observed.

Claims (1)

【特許請求の範囲】 1 目的物質を含有する水溶液を、半透膜を介し、炭素
数1〜3のアルコール類と接触させ、該溶液中の水分を
該アルコール類中に移行させて該溶液を濃縮することを
特徴とする水溶液の濃縮方法。 2 目的物質と夾雑物質を含有する水溶液を、半透膜を
介し、炭素数1〜3のアルコール類と接触させ、該溶液
中の水分、および半透膜を透過して該アルコール類に移
行する性質を有し、かつ該アルコール類に易溶性である
夾雑物質を該アルコール類中に移行させ、目的物質を濃
縮すると同時に夾雑物質を分別することを特徴とする水
溶液の濃縮方法。
[Scope of Claims] 1. An aqueous solution containing a target substance is brought into contact with an alcohol having 1 to 3 carbon atoms through a semipermeable membrane, and water in the solution is transferred into the alcohol to transform the solution. A method for concentrating an aqueous solution characterized by concentrating it. 2. An aqueous solution containing the target substance and impurities is brought into contact with an alcohol having 1 to 3 carbon atoms through a semipermeable membrane, and water in the solution passes through the semipermeable membrane and is transferred to the alcohol. 1. A method for concentrating an aqueous solution, which comprises transferring contaminants having the properties and being easily soluble in the alcohol into the alcohol, concentrating the target substance, and separating the contaminants at the same time.
JP53100031A 1978-08-18 1978-08-18 Concentration method Expired JPS592523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53100031A JPS592523B2 (en) 1978-08-18 1978-08-18 Concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53100031A JPS592523B2 (en) 1978-08-18 1978-08-18 Concentration method

Publications (2)

Publication Number Publication Date
JPS5527071A JPS5527071A (en) 1980-02-26
JPS592523B2 true JPS592523B2 (en) 1984-01-19

Family

ID=14263154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53100031A Expired JPS592523B2 (en) 1978-08-18 1978-08-18 Concentration method

Country Status (1)

Country Link
JP (1) JPS592523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382034B2 (en) * 2014-09-01 2018-08-29 株式会社Kri Draw solution and forward osmosis water treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140379A (en) * 1974-04-01 1975-11-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140379A (en) * 1974-04-01 1975-11-11

Also Published As

Publication number Publication date
JPS5527071A (en) 1980-02-26

Similar Documents

Publication Publication Date Title
CN101812009B (en) Novel technique for extracting L-tryptophan from fermentation broth
DK167283B1 (en) SULPHADENOSYL-L-METHIONAL SALTS AND PROCEDURES FOR PREPARING THEREOF, AND PHARMACEUTICAL PREPARATIONS CONTAINING ONE OR MORE SUCH SALTS
CN102597253B (en) Process for economically manufacturing xylose from hydrolysate using electrodialysis and direct recovery method
CN101550101B (en) Method for clean purifying L-tryptophan by utilizing fermented liquid
BR112020004892A2 (en) process for the purification of a neutral human milk oligosaccharide, and, method for producing a neutral human milk oligosaccharide.
CN104892710A (en) A method of purifying reduced form beta-nicotinamide adenine dinucleotide
FI77043C (en) FREEZING FOR SUSPENSION OF SULFOADENOCYL-L-METHIONINSALTER.
US8173837B1 (en) Process for the production of L-citrulline from watermelon flesh and rind
DK173272B1 (en) Process for recovering 2-keto-L-gulonic acid from a fermentation medium
CN104098465A (en) Technological method for extraction of protocatechuic acid from Blumea riparia (Bl.) DC
JPS592523B2 (en) Concentration method
CN1243009C (en) Technique for preparing 5'nucleotide bi-sodium
CN106279197A (en) The purification of isosorbide reaction solution and crystallization processes
CN104892439B (en) A kind of production technology of L Lysine Acetates
CN103819522A (en) Method for separating and purifying citicoline in issatchenkia orientalis biotransformation liquid
CN105524052A (en) Method for separating and purifying puerarin through membrane technology
CN105237596A (en) Draxxin purification process
US3941770A (en) Method for purifying 3',5'-cyclic-adenylic acid or 3',5'-cyclic-deoxyadenylic acid
CN110540570A (en) method for separating and purifying fusidic acid through ion exchange resin
US5965028A (en) Process for treating a liquid
RU2121848C1 (en) Method of inulin preparing
CN108752224A (en) A kind of preparation method of Lysine Acetate bulk pharmaceutical chemicals
CN111072620A (en) Extraction technology for industrially producing high-purity tea polyphenol
CN1038816C (en) Process for concentrating aqueous solution of clavulanate
SU786856A3 (en) Method of preparing escine