JP2015058407A - Draw solution, water treatment apparatus and water treatment method - Google Patents

Draw solution, water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2015058407A
JP2015058407A JP2013194540A JP2013194540A JP2015058407A JP 2015058407 A JP2015058407 A JP 2015058407A JP 2013194540 A JP2013194540 A JP 2013194540A JP 2013194540 A JP2013194540 A JP 2013194540A JP 2015058407 A JP2015058407 A JP 2015058407A
Authority
JP
Japan
Prior art keywords
water
induction solution
osmotic pressure
liquid
forward osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013194540A
Other languages
Japanese (ja)
Inventor
聡 ▲柳▼瀬
聡 ▲柳▼瀬
Satoshi Yanase
長久 佐藤
Nagahisa Sato
長久 佐藤
佐藤 祐也
Yuya Sato
祐也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2013194540A priority Critical patent/JP2015058407A/en
Publication of JP2015058407A publication Critical patent/JP2015058407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a draw solution used for a forward osmosis method capable of recovering a water component at a low cost and quickly.SOLUTION: A draw solution 211 is used for water treatment using a forward osmosis method, dissolves water-soluble gas 212 into water at such a concentration as to exhibit an osmotic pressure larger than an osmotic pressure of liquid 221 to be treated and recovers a water component by release to atmosphere after completion of forward osmosis operation. The draw solution is preferably prepared such that an osmotic pressure after 1 hr elapse since the release to atmosphere is 0 to 10% of the osmotic pressure upon the starting of the release to atmosphere. A water treatment apparatus 100 provided with a treatment tank 200 which brings the draw solution into contact with liquid to be treated via a forward osmosis membrane 230, and a water treatment method which includes a forward osmosis operation process of bringing the liquid to be treated into contact with the draw solution prepared by dissolving water-soluble gas with the concentration via the forward osmosis membrane and moving the water component in the liquid to be treated to the draw solution; and a water component recovery process of releasing the draw solution after the forward osmosis operation process to the atmosphere, separating the water-soluble gas from the draw solution and recovering the water component contained in the draw solution are provided.

Description

本発明は、正浸透法による水処理に用いる誘導溶液に関する。また該誘導溶液を用いる水処理装置と水処理方法とに関する。   The present invention relates to an induction solution used for water treatment by a forward osmosis method. The present invention also relates to a water treatment apparatus and a water treatment method using the induction solution.

従来、逆浸透法は水処理分野での有力な方法として知られている。しかし逆浸透法に代わる水処理方法として、正浸透法(Forward Osmosis、FO法)が注目される。FO法を用いる水処理方法においては、被処理液と誘導溶液とをFO法用半透膜を介して接触させ、被処理液中の水分を誘導溶液に吸収させる。続いて被処理液の水分を吸収させた誘導溶液から水分を分離回収して、高純度の水を得ることができる。   Conventionally, the reverse osmosis method is known as an effective method in the field of water treatment. However, the forward osmosis method (FO method) attracts attention as a water treatment method that replaces the reverse osmosis method. In the water treatment method using the FO method, the liquid to be treated and the induction solution are brought into contact with each other through the FO method semipermeable membrane, and the water in the liquid to be treated is absorbed by the induction solution. Subsequently, high-purity water can be obtained by separating and collecting the water from the induction solution that has absorbed the water of the liquid to be treated.

FO法は、被処理液から誘導溶液への水分の移動を被処理液と誘導溶液との浸透圧差を利用して行う。そのためFO法は、RO法と比較して海水やかん水の淡水化や排水の処理にかかるエネルギーコストを低減することができる。特許文献1および特許文献2には、FO法による水処理について開示されている。   In the FO method, moisture is transferred from the liquid to be treated to the induction solution using an osmotic pressure difference between the liquid to be treated and the induction solution. Therefore, the FO method can reduce the energy cost for the desalination of seawater and brine and the treatment of wastewater as compared with the RO method. Patent Documents 1 and 2 disclose water treatment by the FO method.

特許文献1には、複数の蒸留カラムを使用して、誘導溶液から、誘導溶液の溶質と生成した溶媒を分離するための方法等が開示される。該分離方法は、誘導溶液としてアンモニアと二酸化炭素とを水に溶解させた溶液を用いる。そのような誘導溶液から被処理液から移動させた水分を分離回収する場合、誘導溶液を減圧加熱させなければならない。そのため上記の方法は、熱エネルギーが必要となる。   Patent Document 1 discloses a method for separating the solute of the induction solution and the generated solvent from the induction solution using a plurality of distillation columns. In the separation method, a solution in which ammonia and carbon dioxide are dissolved in water is used as the induction solution. When separating and recovering moisture transferred from the liquid to be treated from such an induction solution, the induction solution must be heated under reduced pressure. Therefore, the above method requires heat energy.

特許文献2には、嫌気性処理後の排水をFO法とRO法とを用いて有機物濃度および溶存イオン濃度が低い処理水を得る排水処理方法等が開示される。該排水処理方法の正浸透分離工程では、誘導溶液として電解質や有機物質を水に溶解させた溶液を用いる。上記の方法においてはFO法工程の後、誘導溶液からの水分回収のため、RO膜やナノフィルターを用いる。そのような膜を用いる膜分離法は、高圧で濾過操作が行われるため、ポンプを管理するための電気エネルギーが必要となる。   Patent Document 2 discloses a wastewater treatment method and the like for obtaining treated water having low organic matter concentration and low dissolved ion concentration by using FO method and RO method for wastewater after anaerobic treatment. In the forward osmosis separation step of the wastewater treatment method, a solution in which an electrolyte or an organic substance is dissolved in water is used as the induction solution. In the above method, after the FO method step, an RO membrane or a nanofilter is used for water recovery from the induction solution. In the membrane separation method using such a membrane, a filtration operation is performed at a high pressure, and thus electric energy for managing the pump is required.

上記のとおり、従来のFO法を用いる水処理方法においては誘導溶液からの水分回収工程でエネルギーコストがかかる。そのため、さらに低コストで水分を回収できる水処理方法の開発が望まれる。   As described above, in the water treatment method using the conventional FO method, an energy cost is required in the water recovery process from the induction solution. Therefore, it is desired to develop a water treatment method that can recover water at a lower cost.

特開2009−539584号公報JP 2009-539584 A 特開2011−173040号公報JP 2011-173040 A

本発明の課題は、FO法による水処理方法において、低コストで迅速に水分を回収できる誘導溶液を提供することである。   The subject of this invention is providing the induction | guidance | derivation solution which can collect | recover water | moisture contents quickly at low cost in the water treatment method by FO method.

本発明は、正浸透法による水処理に用いられ、水溶性ガスを、被処理液の浸透圧Pより大きい浸透圧Pd1を発現させる濃度で水に溶解させてなり、かつ正浸透操作終了後に行われる大気解放により水分を回収する誘導溶液である。上記の誘導溶液は、大気解放開始時から1時間経過時の浸透圧Pd3が、大気解放開始時の浸透圧Pd2の0%以上10%以下である。上記の水溶性ガスがジメチルエーテルであることが好ましい。 The present invention is used for water treatment by the forward osmosis method, wherein a water-soluble gas is dissolved in water at a concentration that expresses an osmotic pressure P d1 greater than the osmotic pressure P f of the liquid to be treated, and the forward osmosis operation ends. It is an induction solution that recovers moisture by the atmospheric release performed later. In the above-described induction solution, the osmotic pressure P d3 after 1 hour from the start of the atmospheric release is 0% or more and 10% or less of the osmotic pressure P d2 at the start of the atmospheric release. The water-soluble gas is preferably dimethyl ether.

本発明は、被処理液と、上記の誘導溶液とを正浸透膜を介して接触させる処理槽を備える水処理装置を包含する。また本発明は、被処理液と、被処理液の浸透圧Pより大きな浸透圧Pd1を発現させる濃度で水溶性ガスを水に溶解させてなる誘導溶液とを正浸透膜を介して接触させ、被処理液の水分を誘導溶液に移動させる正浸透操作工程と、正浸透操作工程終了後の誘導溶液を大気解放して誘導溶液から水溶性ガスを分離させ、誘導溶液に含有される水分を回収する水分回収工程とを含む水処理方法を包含する。上記の水分回収工程においては、正浸透操作終了後の誘導溶液を大気解放して、大気解放開始時から1時間経過時の浸透圧Pd3を、大気解放開始時の誘導溶液の浸透圧Pd2の0%以上10%以下に低下させることが好ましい。 This invention includes a water treatment apparatus provided with the processing tank which makes a to-be-processed liquid and said induction | guidance | derivation solution contact through a forward osmosis membrane. In addition, the present invention provides a contact between a liquid to be treated and an induction solution obtained by dissolving a water-soluble gas in water at a concentration that expresses an osmotic pressure P d1 greater than the osmotic pressure P f of the liquid to be treated through a forward osmosis membrane. The normal osmosis operation step in which the moisture of the liquid to be treated is transferred to the induction solution, and the induction solution after the completion of the normal osmosis operation step is released to the atmosphere to separate the water-soluble gas from the induction solution, and the moisture contained in the induction solution A water recovery method including a water recovery step of recovering water. In the above water recovery step, the induction solution after the end of the normal osmosis operation is released to the atmosphere, and the osmotic pressure P d3 when 1 hour has elapsed from the start of the release to the osmotic pressure P d2 of the induction solution at the start of the release of the atmosphere. It is preferable to reduce it to 0% or more and 10% or less.

本発明の正浸透法に用いる誘導溶液は、低コストかつ迅速に水分を分離させることができる。これにより上記の誘導溶液を用いた正浸透法による水処理方法においては、エネルギーコストを抑制し、迅速に水分回収を行うことができる。   The induction solution used in the forward osmosis method of the present invention can quickly separate moisture at a low cost. Thereby, in the water treatment method by the forward osmosis method using the above-described induction solution, the energy cost can be suppressed and water can be recovered quickly.

本発明の水処理装置の例を示す概略図である。It is the schematic which shows the example of the water treatment apparatus of this invention.

本発明の正浸透法による水処理に用いられる誘導溶液は、水溶性ガスを水に溶解させてなる。水溶性ガスの溶解量は、誘導溶液の浸透圧Pd1が被処理液の浸透圧Pより大きくなるように調節される。そのような浸透圧を備える上記誘導溶液は、正浸透操作により被処理液の水分を吸収する。本発明の誘導溶液に溶解させる水溶性ガスは、揮発性が高い。そのため正浸透操作終了後、該誘導溶液を大気解放すると、誘導溶液から水溶性ガスが揮発する。その結果、本発明は誘導溶液から容易に水分を回収できる。 The induction solution used for water treatment by the forward osmosis method of the present invention is obtained by dissolving a water-soluble gas in water. The dissolved amount of the water-soluble gas is adjusted so that the osmotic pressure P d1 of the induction solution is larger than the osmotic pressure P f of the liquid to be treated. The induction solution having such osmotic pressure absorbs moisture of the liquid to be treated by forward osmosis operation. The water-soluble gas dissolved in the induction solution of the present invention is highly volatile. Therefore, when the induction solution is released to the atmosphere after the forward osmosis operation is completed, the water-soluble gas is volatilized from the induction solution. As a result, the present invention can easily recover moisture from the induction solution.

本発明は、正浸透操作終了後、大気解放するだけで水分を回収できる。すなわち本発明は、水分回収のために誘導溶液に対し圧力調節や温度調節等を行う必要がない。したがって水分回収のエネルギーコストや管理コストを抑制できる。以下、図1を用いて、本発明を説明する。   In the present invention, after the forward osmosis operation is completed, the moisture can be recovered simply by releasing to the atmosphere. That is, according to the present invention, it is not necessary to adjust the pressure or temperature of the induction solution for water recovery. Therefore, the energy cost and management cost of moisture recovery can be suppressed. Hereinafter, the present invention will be described with reference to FIG.

図1は、本発明の水処理装置の一例を示す概略図である。図1において100は水処理装置、200は処理槽、210は誘導溶液室、220は被処理液室、230は正浸透膜である。211は誘導溶液タンク、212は水溶性ガスタンク、213は誘導溶液送液ポンプ、221は被処理液タンク、222は被処理液送液ポンプである。誘導溶液タンク211と処理槽200の誘導溶液室210とは誘導溶液が循環可能に接続される。また被処理液タンク221と被処理液室220とは被処理液が循環可能に接続される。   FIG. 1 is a schematic view showing an example of the water treatment apparatus of the present invention. In FIG. 1, 100 is a water treatment apparatus, 200 is a treatment tank, 210 is an induction solution chamber, 220 is a liquid chamber to be treated, and 230 is a forward osmosis membrane. Reference numeral 211 denotes an induction solution tank, 212 denotes a water-soluble gas tank, 213 denotes an induction solution liquid feed pump, 221 denotes a liquid tank to be processed, and 222 denotes a liquid supply pump to be processed. The induction solution tank 211 and the induction solution chamber 210 of the treatment tank 200 are connected so that the induction solution can be circulated. Further, the liquid to be processed is connected to the liquid tank to be processed 221 and the liquid chamber 220 to be processed so that the liquid to be processed can circulate.

水溶性ガスタンク212から誘導溶液タンク211へ供給された水溶性ガスは、誘導溶液タンク211内の水に溶解し、所定の浸透圧を備える誘導溶液として誘導溶液タンク211に貯蔵される。誘導溶液タンク211内の誘導溶液は、誘導溶液送液ポンプ213を用いて処理槽200の誘導溶液室210に送液される。一方、被処理液タンク221に貯蔵される被処理液は、被処理液送液ポンプ222を用いて処理槽200の被処理液室220に送液される。   The water-soluble gas supplied from the water-soluble gas tank 212 to the induction solution tank 211 is dissolved in water in the induction solution tank 211 and stored in the induction solution tank 211 as an induction solution having a predetermined osmotic pressure. The induction solution in the induction solution tank 211 is sent to the induction solution chamber 210 of the processing tank 200 using the induction solution liquid feed pump 213. On the other hand, the liquid to be processed stored in the liquid tank 221 to be processed is sent to the liquid chamber 220 of the processing tank 200 using the liquid feed pump 222.

処理槽200の誘導溶液室210と被処理液室220とにそれぞれ送液された誘導溶液と被処理液とは、正浸透膜230を介して接触する。誘導溶液室210に送液される誘導溶液は、その浸透圧Pd1が被処理液の浸透圧Pより大きくなるように、水溶性ガスの濃度が調節される。そのため被処理液と誘導溶液とが接触すると、被処理液の水分は正浸透膜230を透過して、被処理液室220から誘導溶液室210へ移動する。 The induction solution and the liquid to be processed, which are sent to the induction solution chamber 210 and the liquid chamber 220 to be processed, respectively, of the processing tank 200 are in contact with each other through the forward osmosis membrane 230. The concentration of the water-soluble gas is adjusted so that the osmotic pressure P d1 of the induction solution fed to the induction solution chamber 210 is larger than the osmotic pressure P f of the liquid to be treated. For this reason, when the liquid to be treated and the induction solution come into contact with each other, the water in the liquid to be treated passes through the forward osmosis membrane 230 and moves from the liquid chamber 220 to be treated to the induction solution chamber 210.

被処理液の浸透圧と誘導溶液の浸透圧との浸透圧差が大きいほど、被処理液から誘導溶液への水分移動量は大きくなる。水分移動量を大きくする観点からは、本発明の浸透圧は被処理液の浸透圧より高く、その浸透圧差が大きいほど好ましい。正浸透操作開始時の被処理液の浸透圧Pとの浸透圧差が0MPa以上0.3MPa未満である場合、被処理液から誘導溶液への水分移動が起こらない、または水分移動量が少量になるなど、効率的な水処理を行うことができない。誘導溶液や被処理液の浸透圧は、氷点降下法など従来公知の方法により測定できる。 The greater the osmotic pressure difference between the osmotic pressure of the liquid to be treated and the osmotic pressure of the induction solution, the greater the amount of moisture transferred from the liquid to be processed to the induction solution. From the viewpoint of increasing the amount of moisture transfer, the osmotic pressure of the present invention is higher than the osmotic pressure of the liquid to be treated, and the osmotic pressure difference is preferably as large as possible. When the osmotic pressure difference from the osmotic pressure P f of the liquid to be treated at the start of the forward osmosis operation is 0 MPa or more and less than 0.3 MPa, no water movement from the liquid to be treated to the induction solution occurs or the amount of water movement is small. Efficient water treatment cannot be performed. The osmotic pressure of the induction solution or the liquid to be treated can be measured by a conventionally known method such as a freezing point depression method.

本発明の誘導溶液と接触させる被処理液としては、有機化合物、無機物化合物、無機イオン、有機イオン、微粒子等を含有する工業排水や家庭排水、かん水、海水等が挙げられる。工業排水や家庭排水の浸透圧はおおよそ0.1〜3MPaの範囲と例示できる。かん水の浸透圧はおおよそ0.5〜2.5MPaであり、海水の浸透圧は、2.3〜2.7MPaである。   Examples of the liquid to be treated to be brought into contact with the induction solution of the present invention include industrial wastewater, domestic wastewater, brine, and seawater containing organic compounds, inorganic compounds, inorganic ions, organic ions, and fine particles. The osmotic pressure of industrial wastewater and household wastewater can be exemplified as a range of about 0.1 to 3 MPa. The osmotic pressure of brackish water is approximately 0.5 to 2.5 MPa, and the osmotic pressure of seawater is 2.3 to 2.7 MPa.

したがって本発明の誘導溶液を用いた正浸透操作開始時の浸透圧Pd1は、工業用水や家庭排水を処理する場合には、0.4〜10MPaがより好ましく、1〜10MPaがさらに好ましく、2〜10MPaが特に好ましい。誘導溶液の正浸透操作開始時の浸透圧Pd1は、上記の好ましい範囲内で被処理溶液の浸透圧Pより大きく、かつ該非処理溶液と誘導溶液との浸透圧差が0.3MPa以上になるように調節される。浸透圧Pd1が0.3MPaより低い場合、被処理液の浸透圧との浸透圧差が小さくなりやすく効率的な水処理を行えなくなる。浸透圧Pd1が10MPaを超える誘導溶液を本発明で開示する方法を用いて調整することは実質的に困難である。 Therefore, the osmotic pressure P d1 at the start of the forward osmosis operation using the induction solution of the present invention is preferably 0.4 to 10 MPa, more preferably 1 to 10 MPa, and more preferably 2 to 10 MPa when treating industrial water or domestic wastewater. Is particularly preferred. The osmotic pressure P d1 at the start of the forward osmosis operation of the induction solution is larger than the osmotic pressure P f of the solution to be treated within the above preferable range, and the osmotic pressure difference between the non-treatment solution and the induction solution is 0.3 MPa or more. Adjusted to. If osmotic pressure P d1 is less than 0.3 MPa, osmotic pressure difference is impossible to easily efficient water treatment reduced the osmotic pressure of the liquid to be treated. It is substantially difficult to osmotic pressure P d1 is adjusted using the methods disclosed in the present invention the draw solution in excess of 10 MPa.

本発明の誘導溶液は、水を溶媒とし、水溶性ガスを溶質とする。また、本発明の作用効果を阻害しない限りにおいて少量の添加物を含みうる。添加物としては、二酸化炭素、フッ化メチル、二酸化塩素、有機電解質、無機電解質、有機物、無機物等が挙げられる。これらの添加物は、大気解放や膜ろ過等の手段を用いて除去することができる。   The induction solution of the present invention uses water as a solvent and water-soluble gas as a solute. Moreover, a small amount of additives can be included as long as the effects of the present invention are not impaired. Examples of the additive include carbon dioxide, methyl fluoride, chlorine dioxide, organic electrolyte, inorganic electrolyte, organic substance, and inorganic substance. These additives can be removed using means such as air release or membrane filtration.

該誘導溶液の正浸透操作開始時の浸透圧Pd1は、水溶性ガスの濃度、誘導溶液の温度、分子量等により調節される。また後に説明する加圧装置を用いる場合は、加圧装置により誘導溶液にかかる圧力も考慮して調節される。25℃の条件下で、上記の好ましい範囲内の浸透圧Pd1を備える本発明の誘導溶液は、水溶性ガスの濃度を好ましくは、1〜20質量%、より好ましくは3〜15質量%、さらに好ましくは5.0〜10質量%になるように水溶性ガスを溶解させることで得ることができる。水溶性ガスの濃度が、1質量%未満の場合、誘導溶液の浸透圧Pd1が低くなり、被処理液からの水分移動量が抑制される。水溶性ガスの濃度が20質量%を超える誘導溶液を本発明で開示させる方法を用いて調整することは実質的に困難である。 The osmotic pressure P d1 at the start of the forward osmosis operation of the induction solution is adjusted by the concentration of the water-soluble gas, the temperature of the induction solution, the molecular weight, and the like. Moreover, when using the pressurization apparatus demonstrated later, it adjusts also in consideration of the pressure concerning induction solution by a pressurization apparatus. Under the condition of 25 ° C., the induction solution of the present invention having an osmotic pressure P d1 within the above preferred range preferably has a water-soluble gas concentration of 1 to 20% by mass, more preferably 3 to 15% by mass, More preferably, it can be obtained by dissolving a water-soluble gas so as to be 5.0 to 10% by mass. When the concentration of the water-soluble gas is less than 1% by mass, the osmotic pressure Pd1 of the induction solution becomes low, and the amount of moisture transferred from the liquid to be treated is suppressed. It is substantially difficult to prepare a derivative solution having a water-soluble gas concentration exceeding 20% by mass using the method disclosed in the present invention.

水溶性ガスの誘導溶液に対する溶解量は、誘導溶液に対する水溶性ガスの供給量の測定や、後に説明する水分回収工程における、大気解放開始時の誘導溶液と、大気解放開始時から1時間経過時の誘導溶液との質量変化に基づいて測定することができる。   The amount of water-soluble gas dissolved in the induction solution is determined by measuring the supply amount of the water-soluble gas in the induction solution and in the water recovery process described later, the induction solution at the start of air release, and when 1 hour has elapsed from the start of air release. It can measure based on the mass change with the induction solution.

本発明に用いられる水溶性ガスは、その溶解度が大きいほど好ましい。ここで溶解度とは水100gに溶解する水溶性ガスの質量(g単位)で定義される。具体的には1気圧、20℃の条件下において1〜25であることが好ましく、3〜15であることがより好ましい。溶解度が1より小さい水溶性ガスを用いる場合、水溶性ガスが水に溶けにくく、誘導溶液の浸透圧が上記の好ましい範囲内の値になりにくくなる。ただしそのような場合も撹拌、加圧等を行うことにより水溶性ガスの溶解を促進し、誘導溶液の浸透圧を所望の値に調整することができる。溶解度が25を超える場合は、水溶性ガスを揮発させるのに時間がかかる。そのため正浸透操作終了後、大気解放による水分回収を簡便かつ迅速に行うことが困難になる。   The water-soluble gas used in the present invention is preferable as its solubility increases. Here, the solubility is defined by the mass (in g) of a water-soluble gas dissolved in 100 g of water. Specifically, it is preferably 1 to 25, more preferably 3 to 15 under conditions of 1 atm and 20 ° C. When a water-soluble gas having a solubility of less than 1 is used, the water-soluble gas is difficult to dissolve in water, and the osmotic pressure of the induction solution is unlikely to become a value within the above preferred range. However, even in such a case, dissolution of the water-soluble gas can be promoted by stirring, pressurizing, and the osmotic pressure of the induction solution can be adjusted to a desired value. When the solubility exceeds 25, it takes time to volatilize the water-soluble gas. For this reason, it becomes difficult to easily and quickly recover the water by releasing the atmosphere after the forward osmosis operation.

大気解放による水分回収を簡便迅速に行う観点からは、本発明においては揮発性が高い水溶性ガスが好ましく用いられる。揮発性の指標としては、誘導溶液を大気解放以後の浸透圧低下性が挙げられる。すなわち、正浸透操作終了後の誘導溶液の大気解放において、大気解放開始時の誘導溶液の浸透圧をPd2とする場合、大気解放開始時から1時間経過時の誘導溶液の浸透圧Pd3が、浸透圧Pd2の0〜10%であることが好ましく、0〜5%であることがより好ましい。 In the present invention, a highly volatile water-soluble gas is preferably used from the viewpoint of simply and quickly collecting water by releasing into the atmosphere. Examples of the volatility index include osmotic pressure lowering ability after the induction solution is released to the atmosphere. That is, in the atmospheric release of the induction solution after the end of the normal osmosis operation, when the osmotic pressure of the induction solution at the start of the atmospheric release is P d2 , the osmotic pressure P d3 of the induction solution after 1 hour from the start of the atmospheric release is The osmotic pressure P d2 is preferably 0 to 10%, more preferably 0 to 5%.

本発明に用いられる水溶性ガスは、上記の溶解度と揮発性とを備える水溶性ガスが好ましく用いられる。具体例としては、ジメチルエーテル、二酸化炭素、フッ化メチル、二酸化塩素等が挙げられる。そのような水溶性ガスを上記に説明した濃度で含有させてなる本発明の誘導溶液は、正浸透操作により多量の水分を被処理液から移動させることができ、かつ正浸透操作終了後、大気解放することで、簡便迅速、かつ低コストで純度の良好な水を回収することができる。本発明の誘導溶液を用いた正浸透操作で得られる水は、その溶質濃度が、被処理液からの混入溶質と残留する水溶性ガスの和として、5〜10000ppmに抑制される。その純度に応じて、飲料水、工業用水等に利用できる。   As the water-soluble gas used in the present invention, a water-soluble gas having the above-described solubility and volatility is preferably used. Specific examples include dimethyl ether, carbon dioxide, methyl fluoride, chlorine dioxide and the like. The induction solution of the present invention containing such a water-soluble gas in the concentration described above can move a large amount of water from the liquid to be treated by forward osmosis operation, and after the forward osmosis operation is finished, By releasing, water with good purity can be recovered simply and quickly at low cost. The water obtained by the forward osmosis operation using the induction solution of the present invention has its solute concentration suppressed to 5 to 10,000 ppm as the sum of the mixed solute from the liquid to be treated and the remaining water-soluble gas. Depending on its purity, it can be used for drinking water, industrial water and the like.

[水処理装置]
本発明の水処理装置は、上記の所定の誘導溶液と被処理液とを正浸透膜を介して接触させることで、誘導溶液と被処理液との浸透圧差により、被処理液の水分を誘導溶液に移動させることができる。本発明の装置構成の具体例としては、図1に示される水処理装置が挙げられる。
[Water treatment equipment]
The water treatment apparatus of the present invention induces moisture of the liquid to be treated by bringing the predetermined induction solution and the liquid to be treated into contact with each other through the forward osmosis membrane, and the difference in osmotic pressure between the induction solution and the liquid to be treated. Can be moved to solution. A specific example of the apparatus configuration of the present invention is the water treatment apparatus shown in FIG.

すなわち本発明は、正浸透膜により区画される誘導溶液室と被処理液室とを備える処理槽を備える。被処理液室には、被処理液を供給する被処理液タンクが接続される。誘導溶液室には誘導溶液を供給する誘導溶液タンクが接続される。誘導溶液タンクには、所定の水溶性ガスを供給する水溶性ガスタンクが接続される。水溶性ガスタンクから誘導溶液タンクへの水溶性ガスの供給量を調節し、誘導溶液の浸透圧が被処理液の浸透圧より大きくなる濃度に誘導溶液の水溶性ガスの濃度を調節することができる。水溶性ガスの溶解性を向上させるため、誘導溶液タンクに加圧装置や撹拌装置を設けてもよい。   That is, the present invention includes a processing tank including an induction solution chamber and a liquid chamber to be processed that are partitioned by a forward osmosis membrane. A liquid tank to be processed for supplying the liquid to be processed is connected to the liquid chamber to be processed. An induction solution tank for supplying an induction solution is connected to the induction solution chamber. A water-soluble gas tank that supplies a predetermined water-soluble gas is connected to the induction solution tank. By adjusting the amount of water-soluble gas supplied from the water-soluble gas tank to the induction solution tank, the concentration of the water-soluble gas in the induction solution can be adjusted to a concentration at which the osmotic pressure of the induction solution is greater than the osmotic pressure of the liquid to be treated. . In order to improve the solubility of the water-soluble gas, a pressure device or a stirring device may be provided in the induction solution tank.

誘導溶液タンクに加圧装置を設ける場合、該加圧装置により誘導溶液にかかる圧力を、誘導溶液の浸透圧と被処理液の浸透圧との浸透圧差より小さくする。具体的には、圧力をかけて水溶性ガスを溶解させた誘導溶液の浸透圧と被処理液との浸透圧差が0.3〜10MPaになるようにする。誘導溶液への加圧には、誘導溶液へ供給する水溶性ガスを貯蔵する水溶性ガスタンクの内圧を利用してもよい。上記の加圧装置により誘導溶液にかかる圧力は、誘導溶液の浸透圧を調節する場合に考慮される。すなわち上記誘導溶液に係る圧力と誘導溶液の浸透圧との和と、被処理液の浸透圧との浸透圧差が、上記の好ましい範囲内になるように調節される。   When a pressure device is provided in the induction solution tank, the pressure applied to the induction solution by the pressure device is made smaller than the osmotic pressure difference between the osmotic pressure of the induction solution and the osmotic pressure of the liquid to be treated. Specifically, the difference between the osmotic pressure of the induction solution in which the water-soluble gas is dissolved by applying pressure and the liquid to be treated is 0.3 to 10 MPa. For pressurization of the induction solution, the internal pressure of a water-soluble gas tank that stores the water-soluble gas supplied to the induction solution may be used. The pressure applied to the induction solution by the above-described pressurization device is considered when adjusting the osmotic pressure of the induction solution. That is, the osmotic pressure difference between the sum of the pressure related to the induction solution and the osmotic pressure of the induction solution and the osmotic pressure of the liquid to be treated is adjusted so as to be within the preferable range.

処理槽内の温度条件は、0〜50℃が好ましく、10〜30℃がより好ましい。誘導溶液タンクから処理槽の誘導溶液室に誘導溶液が供給され、被処理液タンクから処理槽の被処理液室に被処理液が供給され、上記の好ましい温度条件の処理槽内で誘導溶液と被処理液とが正浸透膜を介して接触することにより、被処理液の水分が誘導溶液に吸収される。処理槽内の温度が0℃より低い場合は凍結の恐れがある。50℃より高い場合、水溶性ガスが誘導溶液中に溶解し難くなる。本発明においては、半浸透性を備える正浸透膜を制限なく用いることができる。具体的には、セルロース、酢酸セルロース、架橋ポリアミド等を主要な素材とした複合膜が用いられる。   0-50 degreeC is preferable and, as for the temperature conditions in a processing tank, 10-30 degreeC is more preferable. The induction solution is supplied from the induction solution tank to the induction solution chamber of the treatment tank, and the treatment liquid is supplied from the treatment liquid tank to the treatment liquid chamber of the treatment tank. When the liquid to be treated comes into contact with the forward osmosis membrane, the moisture of the liquid to be treated is absorbed by the induction solution. If the temperature in the treatment tank is lower than 0 ° C, there is a risk of freezing. When it is higher than 50 ° C., the water-soluble gas is hardly dissolved in the induction solution. In the present invention, a forward osmosis membrane having semi-permeability can be used without limitation. Specifically, a composite film made mainly of cellulose, cellulose acetate, crosslinked polyamide or the like is used.

[水処理方法]
本発明の水処理方法は、所定の正浸透操作工程と水分回収工程とを含む。25℃の温度条件下の浸透圧がPである被処理液の淡水化に本発明を適用する場合、まず誘導溶液の浸透圧Pd1を被処理液の浸透圧Pより大きくなるように調節する。正浸透操作開始時の誘導溶液の浸透圧Pd1と被処理液の浸透圧Pとの浸透圧差dは、は、0.3〜8MPaが好ましく、0.5〜8MPaがより好ましく、1〜8MPaがさらに好ましい。被処理液の浸透圧Pに基づいて、上記の浸透圧差になるように誘導溶液の水溶性ガスの濃度を調節し、適切な浸透圧Pd1にする。上記の浸透圧差dは、0.3MPa以上であれば大きいほど水分移動量を大きくできる。しかし、誘導溶液の水溶性ガス濃度は、水分回収工程で迅速に水溶性ガスを誘導溶液から分離できる濃度にする必要がある。そのため誘導溶液の浸透圧Pd1は、好ましくは、0.3〜10MPaに調節される。その結果、浸透圧差dは上記の範囲が好ましい。
[Water treatment method]
The water treatment method of the present invention includes a predetermined forward osmosis operation step and a water recovery step. When applying the present invention to desalination of a liquid to be treated having an osmotic pressure of P f under a temperature condition of 25 ° C., first, the osmotic pressure P d1 of the induction solution is set to be larger than the osmotic pressure P f of the liquid to be treated. Adjust. The osmotic pressure difference d between the osmotic pressure P d1 of the induction solution and the osmotic pressure P f of the liquid to be treated at the start of the forward osmosis operation is preferably 0.3 to 8 MPa, more preferably 0.5 to 8 MPa, and further preferably 1 to 8 MPa. . Based on the osmotic pressure P f of the liquid to be treated, the concentration of the water-soluble gas in the induction solution is adjusted so as to achieve the above osmotic pressure difference, so that an appropriate osmotic pressure P d1 is obtained. As the osmotic pressure difference d is greater than or equal to 0.3 MPa, the moisture transfer amount can be increased. However, the concentration of the water-soluble gas in the induction solution needs to be a concentration at which the water-soluble gas can be quickly separated from the induction solution in the moisture recovery process. Osmotic pressure P d1 of therefore draw solution is preferably adjusted to 0.3 to 10 MPa. As a result, the osmotic pressure difference d is preferably in the above range.

誘導溶液と被処理液とが正浸透膜を介して接触させ正浸透操作を開始すると、被処理液の水分だけが正浸透膜を透過して誘導溶液へ移動する。その結果、誘導溶液の浸透圧は低下し、被処理液の浸透圧は上昇する。そのため、誘導溶液と被処理液との浸透圧差は、正浸透操作開始時の浸透圧差dを最大として、正浸透操作終了時まで徐々に小さくなる。理論的には浸透圧差がなくなるまで被処理液から誘導溶液への水分移動は可能であり、正浸透操作を継続できる。   When the induction solution and the liquid to be treated are brought into contact with each other through the forward osmosis membrane and the forward osmosis operation is started, only moisture of the liquid to be treated passes through the forward osmosis membrane and moves to the induction solution. As a result, the osmotic pressure of the induction solution decreases and the osmotic pressure of the liquid to be processed increases. Therefore, the osmotic pressure difference between the induction solution and the liquid to be treated gradually decreases until the osmotic pressure difference d at the start of the forward osmosis operation is maximized until the forward osmosis operation ends. Theoretically, it is possible to transfer moisture from the liquid to be treated to the induction solution until the osmotic pressure difference disappears, and the normal osmosis operation can be continued.

正浸透操作終了後の誘導溶液は、水分回収工程を行うため回収される。本発明における水分回収は、誘導溶液を大気解放するだけで足りる。大気解放中の誘導溶液の温度条件は、0〜50℃が好ましく、15〜35℃がより好ましい。本発明に用いられる誘導溶液は揮発性が高い所定の水溶性ガスを溶質とするため、圧力操作等を行わなくても大気解放されることで自然と水溶性ガスを揮発させることができる。そのため、簡便に誘導溶液を淡水化することができる。   The induction solution after completion of the forward osmosis operation is collected for performing a moisture collecting step. The water recovery in the present invention is only required to release the induction solution to the atmosphere. The temperature condition of the induction solution during the air release is preferably 0 to 50 ° C, more preferably 15 to 35 ° C. Since the induction solution used in the present invention uses a predetermined water-soluble gas having high volatility as a solute, the water-soluble gas can be volatilized naturally by being released to the atmosphere without performing a pressure operation or the like. Therefore, the induction solution can be easily desalted.

本発明においては、上記の大気解放により迅速に誘導溶液を淡水化することができる。本発明の水分回収工程においては、大気解放開始時から1時間経過時の誘導溶液の浸透圧Pd3が、大気解放開始時の誘導溶液の浸透圧Pd2の0〜10%に低下し、より好ましくは0〜5%に低下する。すなわち本発明は、大気解放後の誘導溶液中の水溶性ガスの揮発速度が速く、迅速に淡水化処理を行うことができる。浸透圧の低下率が上記の範囲から外れる場合は、誘導溶液を撹拌や脱気膜、真空脱気塔等の手段を用いてもよい。これにより誘導溶液の浸透圧の低下率を好ましい範囲内にすることができる。 In the present invention, the induction solution can be quickly desalinated by the above-described release into the atmosphere. In the water recovery step of the present invention, the osmotic pressure P d3 of the induction solution after 1 hour has elapsed from the start of the atmospheric release is reduced to 0 to 10% of the osmotic pressure P d2 of the induction solution at the start of the atmospheric release. Preferably it falls to 0-5%. That is, according to the present invention, the volatilization rate of the water-soluble gas in the induction solution after being released into the atmosphere is high, and the desalination treatment can be performed quickly. When the decrease rate of the osmotic pressure is out of the above range, means such as stirring the induction solution, a degassing membrane, or a vacuum degassing tower may be used. Thereby, the decreasing rate of the osmotic pressure of the induction solution can be within a preferable range.

誘導溶液から分離させた水溶性ガスを、処理槽に供給するために誘導溶液を貯留する誘導溶液タンクに導入して再利用することも好ましい。これにより、本発明の水処理方法はさらなる低コスト化を実現できる。   It is also preferable to introduce the water-soluble gas separated from the induction solution into an induction solution tank that stores the induction solution and reuse it in order to supply the treatment tank. Thereby, the water treatment method of this invention can implement | achieve further cost reduction.

本発明は、迅速に誘導溶液から水溶性ガスを分離させることができるため、3〜24時間大気解放することにより、溶質濃度が5〜10000ppmの水を得ることができる。さらに大気解放時間を延長することで、より高純度の水を得ることができる。本発明の水処理方法は、工業排水や家庭排水の浄水に好適であり、かん水や海水の淡水化にも適用しうる。得られた処理水は、飲料水、工業用水等に用いることができる。   Since the present invention can quickly separate water-soluble gas from the induction solution, water having a solute concentration of 5 to 10000 ppm can be obtained by releasing to the atmosphere for 3 to 24 hours. Furthermore, water with higher purity can be obtained by extending the air release time. The water treatment method of the present invention is suitable for purification of industrial wastewater and domestic wastewater, and can also be applied to brine or seawater desalination. The obtained treated water can be used for drinking water, industrial water and the like.

本発明を実施例を用いて更に説明する。ただし本発明は以下の実施例に限定されない。
[実施例]
図1に示される装置構成を備える水処理装置を用いて、本発明を用いた水処理を行った。本実施例において誘導溶液と被処理液との浸透圧測定は、氷点降下法により行った。
The present invention will be further described with reference to examples. However, the present invention is not limited to the following examples.
[Example]
Water treatment using the present invention was performed using a water treatment apparatus having the apparatus configuration shown in FIG. In this example, the osmotic pressure of the induction solution and the liquid to be treated was measured by the freezing point depression method.

被処理液としては、0.5質量%の塩化ナトリウム水溶液を用いた。上記の被処理液の浸透圧は、0.42MPaであった。被処理液は、被処理液タンクに貯蔵し、被処理液送液ポンプを用いて処理槽の被処理液室へ送液した。水溶性ガスタンクにはガス状のジメチルエーテル(DME)を貯蔵した。水溶性ガスタンクから誘導溶液タンクへ上記のDMEを供給して、水を溶媒とする誘導溶液に溶解させ、DME濃度7質量%の誘導溶液を調製した。   A 0.5% by mass sodium chloride aqueous solution was used as the liquid to be treated. The osmotic pressure of the liquid to be treated was 0.42 MPa. The liquid to be processed was stored in a liquid tank to be processed and was sent to the liquid chamber of the processing tank using a liquid feed pump. Gaseous dimethyl ether (DME) was stored in the water-soluble gas tank. The above DME was supplied from the water-soluble gas tank to the induction solution tank and dissolved in the induction solution using water as a solvent to prepare an induction solution having a DME concentration of 7% by mass.

上記の誘導溶液の浸透圧Pd1は、2.07MPaであった。またDME供給時に誘導溶液に係る圧力は、0.12MPaであった。したがって本実施例における正浸透操作開始時の誘導溶液の浸透圧と誘導溶液にかかる圧力との差は1.95MPaであり、被処理液の浸透圧0.42MPaとの差は、1.53MPaであった。上記の誘導溶液を処理槽の誘導溶液室に送液した。 Osmotic pressure P d1 of the draw solution was 2.07 MPa. Moreover, the pressure concerning an induction | guidance | derivation solution at the time of DME supply was 0.12 MPa. Therefore, the difference between the osmotic pressure of the induction solution and the pressure applied to the induction solution at the start of the forward osmosis operation in this example was 1.95 MPa, and the difference between the osmotic pressure of the liquid to be treated and 0.42 MPa was 1.53 MPa. The above induction solution was fed to the induction solution chamber of the treatment tank.

処理槽に送液された上記の誘導溶液0.5Lと被処理液0.5Lとを温度条件25℃で面積60cmの架橋ポリアミド製半透膜(ダウケミカル社製SW30)を介して60分間接触させ、被処理液の水分を誘導溶液へ移動させた後、正浸透操作を終了した。移動した水分の透過速度は、正浸透膜面積1m換算で1時間当たり2.9Lであった。正浸透操作終了時の誘導溶液の浸透圧を測定したところ、2.01MPaであった。また被処理液に含有される塩化ナトリウムの阻止率は、91.8%であった。 The induction solution 0.5L sent to the treatment tank and the treatment solution 0.5L are brought into contact with each other through a cross-linked polyamide semipermeable membrane (SW30, Dow Chemical Co., Ltd.) having an area of 60 cm 2 at a temperature condition of 25 ° C. for 60 minutes. After the moisture of the liquid to be treated was moved to the induction solution, the forward osmosis operation was terminated. The permeation rate of the moved water was 2.9 L per hour in terms of the forward osmosis membrane area of 1 m 2 . When the osmotic pressure of the induction solution at the end of the forward osmosis operation was measured, it was 2.01 MPa. Further, the rejection rate of sodium chloride contained in the liquid to be treated was 91.8%.

正浸透操作終了後、被処理液の水分を吸収した誘導溶液50ccを100ccのビーカーに回収した。回収した誘導溶液を25℃で大気解放した。大気解放開始時の誘導溶液の浸透圧Pd2は、2.01MPaであった。大気解放開始後1時間経過時の誘導溶液の浸透圧Pd3は、0.16MPaで、大気解放開始時の浸透圧Pd2の8%であった。すなわち大気解放開始時からの浸透圧低下率は、92%であった。 After completion of the forward osmosis operation, 50 cc of the induction solution that absorbed the moisture of the liquid to be treated was collected in a 100 cc beaker. The recovered induction solution was opened to the atmosphere at 25 ° C. Osmolality P d2 draw solution at atmospheric release initiation was 2.01MPa. The osmotic pressure P d3 of the induction solution after 1 hour from the start of the atmospheric release was 0.16 MPa, 8% of the osmotic pressure P d2 at the start of the atmospheric release. That is, the rate of decrease in osmotic pressure from the start of air release was 92%.

さらに大気解放を継続し、大気解放開始時から24時間後、再び誘導溶液の浸透圧を測定した。大気解放開始時から24時間後の誘導溶液の浸透圧は0.03MPaであった。なお、上記の誘導溶液には、正浸透操作工程で被処理液から誘導溶液に混入した塩化ナトリウムが410ppm混入していた。上記の塩化ナトリウムに起因する浸透圧は0.035MPaであると推測される。すなわち、本発明においては大気解放するだけで誘導溶液中の水溶性ガスを迅速かつ簡便に分離させ、純度の高い水を得ることができる。さらに上記の塩化ナトリウムを逆浸透膜やナノフィルターを用いて除去することにより、得られる水の純度をさらに向上させることができる。   Furthermore, air release was continued, and osmotic pressure of the induction solution was measured again 24 hours after the start of air release. The osmotic pressure of the induction solution after 24 hours from the start of the atmospheric release was 0.03 MPa. The induction solution was mixed with 410 ppm of sodium chloride mixed in the induction solution from the liquid to be treated in the forward osmosis operation step. The osmotic pressure due to the sodium chloride is estimated to be 0.035 MPa. That is, in the present invention, it is possible to quickly and easily separate the water-soluble gas in the induction solution simply by releasing it to the atmosphere, and to obtain highly pure water. Furthermore, the purity of the water obtained can further be improved by removing said sodium chloride using a reverse osmosis membrane or a nano filter.

[比較例]
誘導溶液を3.5質量%、浸透圧2.56MPaの塩化マグネシウム水溶液としたこと、誘導溶液に対する加圧を行わなかったことの他は、実施例と同様にして正浸透操作工程と水分回収工程を行った。正浸透操作により被処理液から誘導溶液に移動した水分の透過速度は、正浸透膜面積1m換算で1時間当たり3.2Lであった。
[Comparative example]
The forward osmosis operation step and the water recovery step were performed in the same manner as in Example except that the induction solution was a magnesium chloride aqueous solution of 3.5% by mass and osmotic pressure 2.56 MPa, and no pressure was applied to the induction solution. . The permeation rate of the moisture transferred from the liquid to be treated to the induction solution by the forward osmosis operation was 3.2 L per hour in terms of the forward osmosis membrane area of 1 m 2 .

正浸透操作開始時と、大気解放開始時と、大気解放開始時から60分経過時と、大気解放開始位から24時間経過時とにおいて誘導溶液の浸透圧を測定した。それぞれの測定結果は、正浸透操作開始時の浸透圧が2.56MPa、大気解放開始時の浸透圧が2.36MPa、大気解放開始時から60分経過後および24時間経過後の浸透圧は、大気解放開始時から変化せず、2.36MPaであった。上記の誘導溶液においては、大気解放だけでは塩化マグネシウムを分離させることができず、純水を得られなかった。   The osmotic pressure of the induction solution was measured at the start of forward osmosis operation, at the start of atmospheric release, at 60 minutes after the start of atmospheric release, and at 24 hours after the start of atmospheric release. Each measurement result shows that the osmotic pressure at the start of forward osmosis operation is 2.56 MPa, the osmotic pressure at the start of atmospheric release is 2.36 MPa, and the osmotic pressure after 60 minutes and 24 hours have elapsed from the start of atmospheric release. There was no change from the beginning, and it was 2.36 MPa. In the above induction solution, magnesium chloride could not be separated only by opening to the atmosphere, and pure water could not be obtained.

100 水処理装置
200 処理槽
210 誘導溶液室
211 誘導溶液タンク
212 水溶性ガスタンク
213 誘導溶液送液ポンプ
220 被処理液室
221 被処理液タンク
222 被処理液送液ポンプ
230 正浸透膜
DESCRIPTION OF SYMBOLS 100 Water treatment apparatus 200 Treatment tank 210 Induction solution chamber 211 Induction solution tank 212 Water-soluble gas tank 213 Induction solution liquid feed pump 220 To-be-treated liquid chamber 221 To-be-treated liquid tank 222 To-be-treated liquid feed pump 230 Forward osmosis membrane

Claims (6)

正浸透法による水処理に用いられ、水溶性ガスを、被処理液の浸透圧Pより大きい浸透圧Pd1を発現させる濃度で水に溶解させてなり、かつ正浸透操作終了後に行われる大気解放により水分を回収する誘導溶液。 Atmosphere used for water treatment by the forward osmosis method, wherein a water-soluble gas is dissolved in water at a concentration that causes an osmotic pressure P d1 greater than the osmotic pressure P f of the liquid to be treated, and is performed after completion of the forward osmosis operation. An induction solution that collects moisture upon release. 大気解放開始時から1時間経過時の浸透圧Pd3が、大気解放開始時の浸透圧Pd2の0%以上10%以下である請求項1に記載の誘導溶液。 2. The induction solution according to claim 1, wherein an osmotic pressure P d3 at the time when 1 hour has elapsed from the start of the atmospheric release is 0% or more and 10% or less of the osmotic pressure P d2 at the start of the atmospheric release. 水溶性ガスがジメチルエーテルである、請求項1または請求項2に記載の誘導溶液。   The induction solution according to claim 1 or 2, wherein the water-soluble gas is dimethyl ether. 被処理液と、請求項1ないし請求項3のいずれか1項に記載の誘導溶液とを正浸透膜を介して接触させる処理槽を備える水処理装置。   A water treatment apparatus provided with the processing tank which makes a to-be-processed liquid and the induction | guidance | derivation solution of any one of Claims 1 thru | or 3 contact through a forward osmosis membrane. 被処理液と、被処理液の浸透圧Pより大きな浸透圧Pd1を発現させる濃度で水溶性ガスを水に溶解させてなる誘導溶液とを正浸透膜を介して接触させ、被処理液の水分を誘導溶液に移動させる正浸透操作工程と、正浸透操作工程終了後の誘導溶液を大気解放して誘導溶液から水溶性ガスを分離させ、誘導溶液に含有される水分を回収する水分回収工程とを含む水処理方法。 The liquid to be treated is brought into contact with the inducing solution formed by dissolving a water-soluble gas in water at a concentration that expresses an osmotic pressure P d1 greater than the osmotic pressure P f of the liquid to be treated through the forward osmosis membrane. Moisture recovery for recovering the water contained in the induction solution by separating the water-soluble gas from the induction solution by releasing the induction solution to the atmosphere after the forward osmosis operation step is completed. A water treatment method including a process. 正浸透操作終了後の誘導溶液を大気解放して、大気解放開始時から1時間経過時の浸透圧Pd3を、大気解放開始時の誘導溶液の浸透圧Pd2の0%以上10%以下に低下させる水分回収工程を含む、請求項5に記載の水処理方法。
After the forward osmosis operation is completed, the induction solution is released to the atmosphere, and the osmotic pressure P d3 after 1 hour from the start of the release to 0% or more and 10% or less of the osmotic pressure P d2 of the induction solution at the start of the release to the atmosphere The water treatment method of Claim 5 including the water | moisture-content recovery process to reduce.
JP2013194540A 2013-09-19 2013-09-19 Draw solution, water treatment apparatus and water treatment method Pending JP2015058407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194540A JP2015058407A (en) 2013-09-19 2013-09-19 Draw solution, water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194540A JP2015058407A (en) 2013-09-19 2013-09-19 Draw solution, water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2015058407A true JP2015058407A (en) 2015-03-30

Family

ID=52816372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194540A Pending JP2015058407A (en) 2013-09-19 2013-09-19 Draw solution, water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2015058407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597540A (en) * 2016-02-02 2016-05-25 华中科技大学 Forward permeating absorbing fluid, application thereof, organic phosphine compound applied to forward permeating absorbing fluid and preparation method thereof
JP2018023933A (en) * 2016-08-10 2018-02-15 株式会社神鋼環境ソリューション Water treatment device and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597540A (en) * 2016-02-02 2016-05-25 华中科技大学 Forward permeating absorbing fluid, application thereof, organic phosphine compound applied to forward permeating absorbing fluid and preparation method thereof
CN105597540B (en) * 2016-02-02 2018-06-12 华中科技大学 It is a kind of it is positive infiltration draw liquid and its application and it is a kind of for just permeate draw organic phosphine compound of liquid and preparation method thereof
JP2018023933A (en) * 2016-08-10 2018-02-15 株式会社神鋼環境ソリューション Water treatment device and water treatment method

Similar Documents

Publication Publication Date Title
EP2367612B1 (en) Improved solvent removal
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
KR101398352B1 (en) Thermal desalination
JP5567468B2 (en) Method and apparatus for treating organic wastewater
JP2008223115A (en) Method for treating salt water
JP2009095821A (en) Method of treating salt water
EP2969981A1 (en) Ion sequestration for scale prevention in high-recovery desalination systems
JP2018503514A (en) Brine concentration
EP3265214A1 (en) Purification of highly saline feeds
WO2016057764A1 (en) Osmotic separation systems and methods
JP2008080277A (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP6415159B2 (en) Organic solvent purification system and method
WO2015087063A1 (en) Forward osmosis
US20130277308A1 (en) Water Treatment System and Method for Continuous Forward Osmosis Process Using Osmotically Active Compound with Phase Transition
JP7016619B2 (en) Water absorption liquid, draw solution and forward osmosis water treatment method
KR102042043B1 (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
KR101328716B1 (en) Method and apparatus recovering draw solute by membrane/vaccum distillation in forward osmosis process
JP6028645B2 (en) Water treatment equipment
JP6463620B2 (en) Desalination system and desalination method
JP2007307561A5 (en)
JP2007307561A (en) High-purity water producing apparatus and method
JP2015058407A (en) Draw solution, water treatment apparatus and water treatment method
JP5962538B2 (en) Water treatment method and apparatus
JP2000015257A (en) Apparatus and method for making high purity water

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527