JP2017091910A - リチウムイオン伝導体及びこれを用いたリチウムイオン電池 - Google Patents

リチウムイオン伝導体及びこれを用いたリチウムイオン電池 Download PDF

Info

Publication number
JP2017091910A
JP2017091910A JP2015223013A JP2015223013A JP2017091910A JP 2017091910 A JP2017091910 A JP 2017091910A JP 2015223013 A JP2015223013 A JP 2015223013A JP 2015223013 A JP2015223013 A JP 2015223013A JP 2017091910 A JP2017091910 A JP 2017091910A
Authority
JP
Japan
Prior art keywords
lithium ion
electrode layer
composition ratio
ion conductor
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015223013A
Other languages
English (en)
Inventor
新納 英明
Hideaki Niino
英明 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015223013A priority Critical patent/JP2017091910A/ja
Publication of JP2017091910A publication Critical patent/JP2017091910A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】安全性が高く、かつ大気ばく露後もリチウムイオン伝導性が高いリチウムイオン伝導体、並びにこれを用いたリチウムイオン電池を提供すること。【解決手段】下記一般式(1):Lix−a+bLay−bM2+bM3+cBzM4+2−aM5+aO12+α・・・(1){式(1)中、M2+は、Ca、Sr、及びBaからなる群から選択される少なくとも一つの元素を表し、Bはホウ素を示し、M3+は、Al、Ga、及びCrからなる群から選択される少なくとも一つの元素を表し、M4+は、Zr、及びHfからなる群から選択される少なくとも一つの元素を表し、M5+は、Nb、及びTaからなる群から選択される少なくとも一つの元素を表し、x−a+bはLiの組成比を表し、aはM5+元素の組成比を表し、bはM2+元素の組成比を表し、6≦x≦16、0≦a≦2、0≦b≦1であり、y−bはLaの組成比を表し、2.5≦y≦3.5であり、cはM3+元素の組成比を表し、0≦c≦1であり、zはBの組成比を表し、0<z≦2であり、12+αは酸素原子の組成比を表し、−1≦α≦10である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、及び34.1±1.0°の範囲にピークを有する、リチウムイオン伝導体。【選択図】なし

Description

本発明は、リチウムイオン伝導体及びこれを用いたリチウムイオン電池に関する。
近年、ノートパソコン、タブレット端末、携帯電話、スマートフォン、及び電気自動車(EV)等の電源として、高出力かつ高容量の電池の開発が求められている。その中でも比較的エネルギー密度が高く、繰り返し放充電が可能なリチウムイオン電池の開発が盛んに行われている。
リチウムイオン電池としては、有機溶媒などの液体電解質を用いるリチウムイオン電池と並んで、液体電解質を固体電解質層に変えた全固体リチウムイオン電池が提案されている。全固体リチウムイオン電池は、安全性、製造コスト、及び生産性に優れるという点で注目を集めている。
リチウムイオン電池の正極層及び負極層は、リチウムイオンの吸蔵及び放出を助けるため、リチウムイオン伝導体を含有することがある。また、全固体リチウムイオン電池の場合、少なくとも固体電解質層にリチウムイオン伝導体を含有する。電池の高出力化の観点から、リチウムイオン伝導性が高いリチウムイオン伝導体の開発が求められている。
このようなリチウムイオン伝導体としては、例えば、硫化物固体電解質、チタン系酸化物固体電解質、及び非チタン系酸化物固体電解質が提案されている。
例えば、特許文献1(特許第5132639号明細書)は、「リチウム(Li)とランタン(La)とジルコニウム(Zr)と酸素(O)と、アルミニウム(Al)とを含有し、ガーネット型又はガーネット型類似の結晶構造を有する、セラミックス材料」を記載している。
特許文献2(国際公開第2011/118801号)は、「M元素(例えばLi元素)、M元素(例えばGe元素およびP元素)、およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=29.5°±0.50°の位置にピークを有し、上記2θ=29.5°±0.50°のピーク回折強度をIとし、2θ=27.33°±0.50°のピーク回折強度をIとした場合に、I/Iの値が0.50未満であることを特徴とする硫化固体電解質材料」を記載している。
特許第5132639号明細書 国際公開第2011/118801号
特許文献1に記載されているようなガーネット型又はガーネット型類似の結晶構造を有するセラミックス材料は、安全性の観点から好ましいものの、大気ばく露によりリチウムイオン伝導性が低下するという課題がある。また、特許文献2に記載されているような硫化物固体電解質は、酸化物系固体電解質に比べてリチウムイオン伝導性が高いものの、水や電極活物質と反応しやすい。そのため、安全性が高く、かつリチウムイオン伝導性が高い固体電解質が求められている。
本発明は、安全性が高く、かつ大気ばく露後もリチウムイオン伝導性が高いリチウムイオン伝導体、並びにこれを用いたリチウムイオン電池を提供することを目的とする。
本発明は以下のとおりである。
[1] 下記一般式(1):
Lix−a+bLay−b2+ 3+ 4+ 2−a5+ 12+α ・・・(1)
{式(1)中、M2+は、Ca、Sr、及びBaからなる群から選択される少なくとも一つの元素を表し、Bはホウ素を示し、M3+は、Al、Ga、及びCrからなる群から選択される少なくとも一つの元素を表し、M4+は、Zr、及びHfからなる群から選択される少なくとも一つの元素を表し、M5+は、Nb、及びTaからなる群から選択される少なくとも一つの元素を表し、x−a+bはLiの組成比を表し、aはM5+元素の組成比を表し、bはM2+元素の組成比を表し、6≦x≦16、0≦a≦2、0≦b≦1であり、y−bはLaの組成比を表し、2.5≦y≦3.5であり、cはM3+元素の組成比を表し、0≦c≦1であり、zはBの組成比を表し、0<z≦2であり、12+αは酸素原子の組成比を表し、−1≦α≦10である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、及び34.1±1.0°の範囲にピークを有する、リチウムイオン伝導体。
[2] 前記金属酸化物は、4≦x−a+b−3z≦12である、項目[1]に記載のリチウムイオン伝導体。
[3] 正極層、負極層、及び前記正極層と前記負極層との間にセパレータを有するリチウムイオン電池であって、前記正極層、前記負極層、又は前記セパレータの少なくともいずれかに、項目[1]又は[2]に記載のリチウムイオン伝導体を有する、リチウムイオン電池。
[4] 正極層、負極層、及び前記正極層と前記負極層との間に固体電解質層を有する全固体リチウムイオン電池であって、前記正極層、前記負極層、又は前記固体電解質層の少なくともいずれかに、項目[1]又は[2]に記載のリチウムイオン伝導体を有する、全固体リチウムイオン電池。
本発明のリチウムイオン伝導体は、特定の組成式を有し、特定の範囲にX線回折ピークを有する金属酸化物を含有するため、安全性が高く、かつ大気ばく露後もリチウムイオン伝導性が高いリチウムイオン伝導体、及びこれを用いたリチウムイオン電池を提供することができる。
なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を記載したものとみなしてはならない。
以下、本発明の代表的な実施形態を例示する目的でより詳細に説明するが、本発明はこれらの実施形態に限定されない。
《リチウムイオン伝導体》
〈組成〉
本発明の一実施形態におけるリチウムイオン伝導体は、下記一般式(1):
Lix−a+bLay−b2+ 3+ 4+ 2−a5+ 12+α ・・・(1)
{式(1)中、M2+は、Ca、Sr、及びBaからなる群から選択される少なくとも一つの元素を表し、Bはホウ素を示し、M3+は、Al、Ga、及びCrからなる群から選択される少なくとも一つの元素を表し、M4+は、Zr、及びHfからなる群から選択される少なくとも一つの元素を表し、M5+は、Nb、及びTaからなる群から選択される少なくとも一つの元素を表し、x−a+bはLiの組成比を表し、aはM5+元素の組成比を表し、bはM2+元素の組成比を表し、6≦x≦16、0≦a≦2、0≦b≦1であり、y−bはLaの組成比を表し、2.5≦y≦3.5であり、cはM3+元素の組成比を表し、0≦c≦1であり、zはBの組成比を表し、0<z≦2であり、12+αは酸素原子の組成比を表し、−1≦α≦10である。}で表される金属酸化物を含む。
本発明の一実施形態のリチウムイオン伝導体は、上記一般式で表される金属酸化物を含むため、安全性に優れ、かつ大気ばく露後のリチウムイオン伝導性が良好である。
式(1)中、M2+は、Ca、Sr、及びBaからなる群から選択される少なくとも一つの元素を表す。これらの元素のイオンは、La(ランタン)とイオン半径が近く、Laを置換することが可能である。3価のLaを2価のM2+で置換すると、チャージバランスを維持し、かつ結晶構造を保つ観点から、M2+と同数のLiが組成上増加する(すなわち、M2+の組成比bの分だけ、Laの組成比は減少し、かつLiの組成比は増加する)。M2+は、金属酸化物の融点を低減させ、焼結を容易にする観点から、Ca、及びSrからなる群から選択される少なくとも一つであることが好ましい。
式(1)中、Bはホウ素を表す。理論に限定されないが、金属酸化物がB(ホウ素)を含むことにより、結晶構造内のリチウムと、大気中の水や二酸化炭素との反応を防ぐことができるため、大気ばく露後もリチウムイオン伝導性が高いリチウムイオン伝導体、並びにこれを用いたリチウムイオン電池を提供することができると考えられる。
式(1)中、M3+は、Al、Ga、及びCrからなる群から選択される少なくとも一つの元素を表す。M3+を金属酸化物に添加することにより、選択的に立方晶を生成することが可能である。リチウムイオン電導度の観点から、金属酸化物は立方晶を有することが好ましい。M3+は、合成の容易性の観点から、Al、及びCrからなる群から選択される少なくとも一つであることが好ましい。
式(1)中、M4+は、Zr、及びHfからなる群から選択される少なくとも一つの元素を表す。合成の容易性から、M4+はZrであることが好ましい。M4+を金属酸化物に添加することにより、金属酸化物中のリチウムイオンの濃度を高めることが可能である。
5+は、Nb、及びTaからなる群から選択される少なくとも一つの元素を表す。これらの元素のイオンは、M4+の元素のイオンとイオン半径が近く、M4+を置換することが可能である。4価のM4+を5価のM5+で置換すると、チャージバランスを維持し結晶構造を保つ観点からM5+と同数のLiが組成上減少する(すなわち、M5+の組成比aの分だけ、M4+の組成比が減少し、かつLiの組成比が減少する)。M5+を金属酸化物に添加することにより、立方晶の形成が容易となる。合成の容易性から、M5+はNbであることが好ましい。
式(1)中、x−a+bはLiの組成比を表し、aはM5+元素の組成比を表し、bはM2+元素の組成比を表す。
xは、6≦x≦16であればよく、不純物相が少なく調製できる観点から、6≦x≦14であることが好ましい。立方晶を選択的に調製する観点からは、6≦x≦12であることが好ましい。
aは、0≦a≦2であればよく、例えばa=0、0≦a<2、0<a≦2、又はa=2とすることができる。
bは、0≦b≦1であればよく、例えばb=0、0≦b<1、0<b≦1、又はb=1とすることができる。
式(1)中、y−bはLaの組成比を表し、2.5≦y≦3.5であればよく、例えば、2.7≦y≦3.33、2.8≦y≦3.2、又は2.9≦y≦3.1とすることができる。
式(1)中、cはM3+元素の組成比を表し、0≦c≦1であればよく、例えば、c=0、0≦c<0.5、0<c≦0.5、c=0.5、又は0.5≦c≦1とすることができる。
式(1)中、zはB(ホウ素)の組成比を表し、0<z≦2であればよく、例えば、0<z≦1、1≦z≦2、又は1<z≦2とすることができる。
式(1)中、(12+α)は酸素原子の組成比を表し、−1≦α≦10であればよく、例えば、−1≦α≦8、−1≦α≦7、−1≦α≦6、−1≦α≦5、又は−1≦α≦4とすることができる。
金属酸化物は、4≦x−a+b−3z≦12であると、副結晶が少なくなるため、生産性の観点から好ましい。x−a+b−3z<4では、焼成条件が適切でないとLiを含まない副結晶が多く生成し、12<x−a+b−3zでは、焼成条件が適切でないとLiを含む副結晶が多く生成する。立方晶を選択的に調製する観点から、より好ましくは、5≦x−a+b−3z≦10であり、さらに好ましくは、5≦x−a+b−3z≦9である。
〈X線回折ピーク、及び結晶構造〉
本発明の一実施形態において、金属酸化物は、CuKα線をX線源とするX線回折(以下、単に「XRD」ともいう)における回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、及び34.1±1.0°の範囲にピークを有する。なお、本発明においてXRDとは、CuKα線をX線源として測定したXRDのことを指す。ここで、「ピークを有する」とは、XRDパターンにおいて、回折角2θ=5°以上50°以下での範囲における最大強度を縦軸のフルスケールとしたX線回折図上において、少なくとも目視でピークを認識できるか、又は波形処理装置がバックグラウンドノイズと明確に区別してピークと認識できる場合をいう。リチウムイオン伝導性の観点から、好ましくは、回折角2θ=5°以上50°以下での範囲における最大強度のピーク高さに対し、少なくとも0.5%のピーク強度、より好ましくは1.0%を有することが好ましい。
本願発明者らは、上記にわたって説明した組成を有する金属酸化物が、上記範囲にX線回折ピークを有することにより、安全性が高く、かつ大気ばく露後もリチウムイオン伝導性が高いことを見出した。その理由は定かではないが、この範囲にピークを有する化合物は、ホウ素共存下でも結晶構造を維持でき、さらにホウ素の作用により結晶構造内のリチウムと、大気中の水や二酸化炭素との反応を防ぐためであると考えられる。
特に上記範囲にX線回折ピークを有する金属酸化物は、ガーネット型又はガーネット型類似の結晶構造を有すると、リチウムイオン伝導性能が高く好ましい。ガーネット型またはガーネット類似の結晶構造を有する場合、さらに38.2±1.0°、43.2±1.0°、53.1±1.0°に比較的強いピークを有する。また、さらに51.1±1.0°、52.1±1.0°に少なくとも1本ずつピークを有する場合がある。
ガーネット型又はガーネット型類似の結晶構造としては、立方晶および正方晶が知られている。立方晶のXRDパターンの例としては、PDFカード番号00−045−0109のLiLaNb12が知られており、正方晶のXRDパターンの例としては、PDFカード番号01−078−6708のLiLaZr12が知られている。正方晶のXRDパターンは、16.9±0.5°、25.9±0.5°、30.9±1.0°、及び34.1±1.0°いずれのピークも2本以上に割れているが、立方晶のXRDパターンは、16.9±0.5°、25.9±0.5°、30.9±1.0°、及び34.1±1.0°いずれのピークも割れていないことから、ガーネット型またはガーネット類似の結晶構造が立方晶か正方晶か区別することができる。ガーネット型またはガーネット類似の結晶構造が立方晶であると、電気化学的特性に異方性が無い場合が多く、好ましい。金属酸化物は、立方晶および正方晶の両方の結晶系を有する、ガーネット型またはガーネット類似の結晶構造を有していても構わない。
〈リチウムイオン拡散係数〉
本発明の一実施形態において、金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13/s以上であることが好ましい。80℃におけるリチウムイオン拡散係数は、より好ましくは1.0×10−12/s以上であり、更に好ましくは1.0×10−11/s以上である。80℃におけるリチウムイオン拡散係数が上記の範囲内であると、リチウムイオン伝導性がより高くなる傾向にある。
〈その他〉
本発明の一実施形態において、金属酸化物は、一次粒子の平均径が3μm以上500μm以下である粉体であることが好ましい。一次粒子の平均径は、好ましくは3μm以上300μm以下、より好ましくは3μm以上200μm以下、さらに好ましくは5μm以上100μm以下とすることができる。一次粒子の平均径は、SEMにより観測される一次粒子1000個のフェレー径により算出することができる。
《リチウムイオン伝導体の製造方法》
リチウムイオン伝導体は、固相反応により製造することが可能である。固相反応の原料としては、Li(リチウム)、La(ランタン)、元素M2+(Ca、Sr、及びBaからなる群から選択される少なくとも一つ)、元素M3+(Al、Ga、及びCrからなる群から選択される少なくとも一つ)、B(ホウ素)、元素M4+(Zr、及びHfからなる群から選択される少なくとも一つ)及び元素M5+(Nb、及びTaからなる群から選択される少なくとも一つ)の酸化物、水酸化物、塩化物、炭酸塩、酢酸塩、硝酸塩、硫酸塩、アンモニウム塩、アルコキシド等を用いることができる。
ホウ素源としては、オルトホウ酸(HBO)やメタホウ酸(HBO)や四ホウ酸(H)等のホウ酸、三酸化二ホウ素(B)等のホウ素酸化物、ホウ酸三リチウム(LiBO)やメタホウ酸リチウム(LiBO)や四ホウ酸リチウム(Li)や五ホウ酸リチウム(LiB)や過ホウ酸リチウム(Li)等のホウ酸のリチウム塩および、四ホウ酸リチウム五水和物等のホウ酸のリチウム塩の水和物、メタホウ酸アンモニウム(NHBO)や四ホウ酸アンモニウム((NH)や五ホウ酸アンモニウム((NHO・5B)や八ホウ酸アンモニウム((NH13)等のホウ酸のアンモニウム塩および、五ホウ酸アンモニウム八水和物や四ホウ酸アンモニウム四水和物等のホウ酸のアンモニウム塩の水和物、三臭化ホウ素、ホウ素アルコキシド等を用いることができる。
原料を、例えば、ボールミル、遊星ボールミルなど等で粉砕混合した後、焼成することにより、リチウムイオン伝導体を得ることができる。混合効率の観点から、各種原料を溶媒に投入後、均一な溶液または懸濁液となるように撹拌混合し、混合液を蒸発乾固した後、焼成する方法が好ましい。溶媒としては、アルコール等の有機溶媒も使用可能であるが、溶解度の観点から水が好ましい。各種原料を混合した際、反応により沈殿を生じてもよい。蒸発乾固は、エバポレーターを使用するなどして、減圧下で行っても良い。また、混合後沈殿の無い均一溶液を用いて、噴霧乾燥法により蒸発乾固し、得られた蒸発乾固体を焼成して、リチウムイオン伝導体を調製しても良い。噴霧乾燥法による蒸発乾固温度は、100℃〜300℃で行うことが好ましい。噴霧乾燥は、簡易的には、100℃〜300℃に加熱した鉄板などのプレート上に、原料調合液を噴霧して行うことができる。
水溶媒への溶解性の低い元素は、シュウ酸、クエン酸、酒石酸、リンゴ酸等の有機配位子を配位させた錯体溶液を原料溶液としても良い。例えばNbやTaは、シュウ酸錯体水溶液を原料溶液として用いることが好ましい。シュウ酸/ニオブおよびシュウ酸/タンタルのモル比は、1以上10以下であり、好ましくは2以上4以下である。
水溶媒中での原料の溶解性、分散性を向上するために、過酸化水素水を添加しても良い。例えば、過酸化水素水/ニオブのモル比は、好ましくは0.5以上10以下、より好ましくは2以上6以下である。
水溶媒を使用して材料を混合する際には、溶解度と熱分解性の観点から、用いる原料は、シュウ酸溶液や酢酸塩等の有機金属錯体や、有機塩、硝酸塩、塩化物が好ましい。
粉砕混合後の原料や、溶媒を用いて混合した原料の蒸発乾固体の焼成温度は、リチウムイオン伝導体の組成や構造により適宜選択される。X線回折における回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、34.1±1.0°にピークを有しやすくなる観点から、800℃以上で焼成する工程を含むことが好ましい。焼成時間を短くし、生産性を高める観点から、900℃以上で焼成する工程を含むことがより好ましい。焼成後に目的生成物が固化し、るつぼ壁で生成する不純物との分離が容易となる観点から、1000℃以上で焼成する工程を含むことがさらに好ましい。リチウムの揮発を少なくし、組成の制御を容易にする観点から、1300℃以下で焼成することが好ましい。
分解温度の異なる原料を使用する際には、各原料の分解温度の低い順に、各原料の分解温度で多段焼成することが好ましい。調製の均一性の観点から、各原料の分解温度での焼成後、粉砕を行うことが好ましい。粉砕は、乳鉢やボールミル、遊星ボールミル等、公知の粉砕方法を使用することができる。
焼成時間は、原料の分解や、リチウムイオン伝導体生成の反応の進行度合いに応じて、適宜選択されるが、一焼成温度条件での焼成時間で30分以上50時間以内が好ましく、より好ましくは1時間以上24時間以内である。
焼成時の雰囲気は、空気でもよいが、αを所望の値とするために、純酸素、窒素、アルゴン等の雰囲気で焼成してもよい。また、シュウ酸等有機物を添加して焼成することで、還元的に焼成し、α<0とすることができる。
800℃を超える温度で焼成する際には、リチウムの揮発が起こるため、原料混合時、リチウム原料を多めに配合することや、焼成時に蓋をして揮発を防ぐことが好ましい。焼成後、リチウム塩の水溶液やリチウム溶融塩を使用して、リチウムイオン伝導体中にLiをイオン交換の要領で添加し、リチウムイオン伝導体のリチウム濃度を高めても良い。
焼成の際、金型プレス成形、CIP成形等を行い、成形体とした後、焼成しても構わない。また、リチウムイオン伝導体を成形する際には、金型プレス成形、CIP成形、キャスト成形、射出成形、押し出し成形、グリーンシート成形等の成形方法を用いることが可能である。成形後、焼成し、緻密な焼結体とすることが、イオン伝導性能の観点から好ましい。成形の際には、ポリビニルアルコールや、シリカ、アルミナ等の各種成形助剤を添加しても良い。
《リチウムイオン電池》
本発明の一実施形態におけるリチウムイオン電池は、正極層、負極層、及び正極層と負極層との間にセパレータを有しており、正極層、負極層、又は前記セパレータの少なくともいずれかに、本発明のリチウムイオン伝導体を有する。正極層及び/又は負極層が本発明のリチウムイオン伝導体を有することによって、正極層及び/又は負極層からのリチウムイオンの放出及び吸蔵を助けることができる。セパレータが本発明のリチウムイオン伝導体を有することによって、正極と負極との間のリチウムイオン伝導を助けることができる。
リチウムイオン電池が、正極層、負極層、及び上記正極層と上記負極層との間に固体電解質層を有する全固体リチウムイオン電池である場合、上記正極層、上記負極層、又は上記固体電解質層の少なくともいずれかに、本発明のリチウムイオン伝導体を有する。
正極層は正極活物質を含み、必要に応じて本発明のリチウムイオン伝導体、導電助剤、バインダー等を含有し、本発明のリチウムイオン伝導体以外の固体電解質を更に含有してもよい。また、正極層上に本発明のリチウムイオン伝導体をコーティングしてもよい。
負極層は負極活物質を含み、必要に応じて本発明のリチウムイオン伝導体、導電助剤、バインダー等を含有し、本発明のリチウムイオン伝導体以外の固体電解質を更に含有してもよい。また、負極層上に本発明のリチウムイオン伝導体をコーティングしてもよい。
正極層及び負極層における本発明のリチウムイオン伝導体の含有量又はコーティング量は、それぞれ独立して、好ましくは5質量%以上70質量%以下、より好ましくは10質量%以上60質量%以下とすることができる。
正極活物質としては、リチウムイオンを放電の際に吸蔵し、充電の際に放出することができる任意の物質とすることができる。正極活物質としては、例えばLiNiCoO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO等が挙げられる。
負極活物質としては、リチウムイオンを放電の際に放出し、充電の際に吸蔵することができる任意の物質とすることができる。負極活物質としては、例えばグラファイト等の炭素材料、金属酸化物、金属窒化物、及び金属硫化物等を挙げることができる。
セパレータとしては、正極層と負極層との電気的接触を防止する機能を有すれば任意の物質とすることができる。セパレータの材料としては、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、及びポリアミド等の樹脂材料が挙げられる。セパレータの形態としては、不織布、及び多孔質体等が挙げられる。
セパレータが本発明のリチウムイオン伝導体を有する場合、例えば、セパレータ中に本発明のリチウムイオン伝導体を含有させてもよく、セパレータ上に本発明のリチウムイオン伝導体をコーティングしてもよい。
固体電解質層はリチウムイオン伝導体を含み、必要に応じて本発明のリチウムイオン伝導体、及びバインダー等を含有する。固体電解質層における本発明のリチウムイオン伝導体の含有量及びコーティング量は、好ましくは70質量%以上、より好ましくは80質量%以上とすることができる。
本発明のリチウムイオン伝導体以外の固体電解質としては、リチウムイオン伝導性を有し、常温(15〜25℃)において固体である任意の物質とすることができる。固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、及び高分子系固体電解質等が挙げられる。
本発明のリチウムイオン電池、及び全固体リチウムイオン電池の製造方法としては、特に限定されない。例えば、上記で説明した正極層、セパレータ、及び負極層をこの順に積層して積層体を作製し、積層体に任意の電解液を含侵することによって、本発明のリチウムイオン電池を製造することができる。また、上記で説明した正極層、固体電解質層、及び負極層をこの順に積層することによって、全固体リチウムイオン電池を製造することができる。
以下の実施例において、本開示の実施形態をより具体的に説明するが、本発明の範囲はこれに限定されるものではない。
[大気ばく露後のリチウムイオン拡散係数の測定法]
大気ばく露後のリチウムイオン拡散係数は、パルス磁場勾配NMR法(PFG−NMR法)を用いて、以下のように測定した。まず、リチウムイオン伝導体試料を調製後、温度25℃相対湿度50%の室内で大気下1週間保管した後、試料高さが約5mmとなるように、直径5mmのシゲミ製NMR対称型ミクロ試料管中に導入し、日本電子社製ECA400装置を使用して、測定温度80℃で、NMRシーケンスとしてStimulated Echo法を用いて、Li−NMRスペクトルを測定した。SHIM調整は、外部標準物質としてNMR対称型ミクロ試料管に導入したDMSO―d6を用いて行った。核スピンの磁気回転比をγ(T−1・s−1)、磁場勾配パルス(PFG)の強度をg(T/m)、PFGの幅をδ(s)、二つのPFG間隔をΔ(s)とし、Δ=20×10−3(s)、δ=0.3×10−3(s)、g=0.2(T/m)、Grad recover=0.5(ms)として、NMRピーク強度Eを測定し、さらにΔとδを固定して、gを0.2(T/m)からLn(E/E)≦−3となる範囲で10点以上変化させ、NMRピーク強度(E)を測定し、縦軸をLn(E/E)、横軸をγδ(Δ−δ/3)としてプロットを行い、このプロットの傾きから拡散係数D(m/s)を、下記式(2)を利用し算出した。
Ln(E/E)=−D×γδ(Δ−δ/3) ・・・(2)
[組成分析法]
リチウムイオン伝導体試料30mgを、30ccの白金製るつぼに取り、炭酸カリウムナトリウム3gと四ホウ酸ナトリウム1gとを添加し、バーナー炎で加熱溶融後、塩酸により完全溶解し、さらに純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。リチウムイオン伝導体試料がカリウム及び/又はナトリウムを含有する場合、組成の定量は、試料を王水に加熱分解後、不溶物を沈殿させ、上澄み液に純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。
[X線回折(XRD)]
ブルカー・エイエックスエス(株)製D8 ADVANCE型X線回折装置を使用して、X線回折(XRD)の測定を行った。リチウムイオン伝導体試料を、メノウ乳鉢で粉砕後、XRD測定用セルに載せ、表面を平らにして測定した。X線源はCuKα1+CuKα2、管電圧は40kV、管電流は40mA、発散スリット(DS):0.3°、Step幅:0.02°/step、計数Time:0.5sec、測定範囲:2θ=5°〜70°とした。
回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、34.1±1.0°の範囲にピークを有した場合には、表1の欄に「○」、検出されなければ「×」と記載した。
また、XRDのパターンが、PDFカード番号00−045−0109のLiLaNb12のスペクトルパターンの様に、2θ=16.9±0.5°、25.9±0.5°、30.9±1.0°、34.1±1.0°いずれのピークも2本以上に割れていなければ、表1の欄に「立方晶」、パターンがPDFカード番号01−078−6708のLiLaZr12のスペクトルパターンの様に、2θ=16.9±0.5°、25.9±0.5°、30.9±1.0°、34.1±1.0°いずれのピークも2本以上に割れていれば、表1の欄に「正方晶」と記載した。
[ニオブ原料液の調製]
純水94gにNb換算で76質量%を含有するニオブ酸8gと、シュウ酸二水和物[H・2HO]15.58gとを加え、撹拌下、60℃に加熱して溶解させた後、30℃に冷却してニオブ原料液とした。
[実施例1]
30ccのアルミナ製るつぼに、硝酸ジルコニル二水和物[ZrO(NO・2HO]0.855gと、純水15.0g、硝酸リチウム[LiNO]1.10g、硝酸ランタン六水和物[La(NO・6HO]2.08gと、四ホウ酸リチウム三水和物0.0902gを加え、さらにヒュームドアルミナ(日本アエロジル社製、商品名AEROXIDE Alu130)0.0408gを添加した。150℃のホットスターラー上で沈殿物を蒸発乾固させた後、乾固した沈殿物を電気炉にて1100℃で1時間焼成し、るつぼに付着した茶色部分を除いて白色固形分を回収し、実施例1のリチウムイオン伝導体0.811gを得た。
実施例1のリチウムイオン伝導体は、組成分析の結果、Li7.65質量%、B1.15質量%、Al1.42質量%、La43.8質量%、Zr19.2質量%、残部が酸素であり、組成式はLi10.5LaAl0.5BZr16であった。
XRDを測定した結果、2θ=16.7°、25.7°、27.5°、30.8°、及び33.8°にピークを有しており、スペクトルパターンは立方晶の特徴を有していた。さらに、2θ=38.0°、43.0°、50.7°、51.8°、及び52.8°にもピークを有していた。
大気ばく露後のリチウムイオン拡散係数を測定した結果、1.7×10−11/sであった。
[実施例2]
実施例1において、硝酸リチウム[LiNO]1.32gとした他は同様に調製し、焼成後るつぼに付着した茶色部分を除いて黄色固形分を回収し、実施例2のリチウムイオン伝導体0.853gを得た。
実施例2のリチウムイオン伝導体は、組成分析の結果、Li8.83質量%、B1.11質量%、Al1.37質量%、La42.4質量%、Zr18.6質量%、残部が酸素であり、組成式はLi12.5LaAl0.5BZr17であった。
XRDを測定した結果、2θ=16.6°、25.4°、27.1°、30.4°、及び33.6°にピークを有しており、スペクトルパターンは正方晶の特徴を有していた。さらに、2θ=37.7°、42.4°、51.4°、52.2°、及び53.4°にもピークを有していた。
リチウムイオン拡散係数を測定した結果、1.1×10−11/sであった。
[実施例3]
30ccのアルミナ製るつぼに、ニオブ原料液6.68gと、硝酸リチウム[LiNO]0.855gと、四ホウ酸リチウム三水和物0.0673gを加え、さらに4.0gの純水に溶解した硝酸ストロンチウム[Sr(NO]0.275gと、8.0gの純粋に溶解した硝酸ランタン六水和物[La(NO・6HO]1.13gとを添加し、沈殿物を生じさせた。150℃のホットスターラー上で沈殿物を蒸発乾固させた後、乾固した沈殿物を電気炉にて1100℃で1時間焼成し、得られた焼成物を粉砕して、実施例3のリチウムイオン伝導体の粉体1.14gを得た。
実施例3のリチウムイオン伝導体は、組成分析の結果、Li7.91質量%、B1.15質量%、Sr9.99質量%、La31.7質量%、Nb21.2質量%、残部が酸素であり、組成式はLi10LaSrB0.93Nb15.4であった。
XRDを測定した結果、2θ=16.8°、25.8°、27.6°、31.0°、及び34.0°にピークを有しており、スペクトルパターンは立方晶の特徴を有していた。さらに、2θ=38.2°、43.2°、51.0°、52.1°、及び53.1°にもピークを有していた。
大気ばく露後のリチウムイオン拡散係数を測定した結果、1.3×10−12/sであった。
[比較例1]
30ccのアルミナ製るつぼに、硝酸ジルコニル二水和物[ZrO(NO・2HO]0.855gと、純水15.0g、硝酸リチウム[LiNO]0.690g、硝酸ランタン六水和物[La(NO・6HO]2.08gに加え、ヒュームドアルミナ(日本アエロジル社製、商品名AEROXIDE Alu130)0.0408gを添加した。150℃のホットスターラー上で沈殿物を蒸発乾固させた後、乾固した沈殿物を電気炉にて1100℃で1時間焼成し、比較例1のリチウムイオン伝導体1.37gを得た。
比較例1のリチウムイオン伝導体は、組成分析の結果、Li5.08質量%、Al1.58質量%、La48.8質量%、Zr21.4質量%、残部が酸素であり、組成式はLi6.25LaAl0.5Zr12.4であった。
XRDを測定した結果、2θ=16.7°、25.7°、27.5°、30.8°、33.8°にピークを有しており、スペクトルパターンは立方晶の特徴を有していた。さらに、2θ=37.9°、42.9°、50.7°、51.7°、52.8°にもピークを有していた。
大気ばく露後のリチウムイオン拡散係数は、拡散係数が極めて小さく、算出できなかった。
Figure 2017091910

Claims (4)

  1. 下記一般式(1):
    Lix−a+bLay−b2+ 3+ 4+ 2−a5+ 12+α ・・・(1)
    {式(1)中、M2+は、Ca、Sr、及びBaからなる群から選択される少なくとも一つの元素を表し、Bはホウ素を示し、M3+は、Al、Ga、及びCrからなる群から選択される少なくとも一つの元素を表し、M4+は、Zr、及びHfからなる群から選択される少なくとも一つの元素を表し、M5+は、Nb、及びTaからなる群から選択される少なくとも一つの元素を表し、x−a+bはLiの組成比を表し、aはM5+元素の組成比を表し、bはM2+元素の組成比を表し、6≦x≦16、0≦a≦2、0≦b≦1であり、y−bはLaの組成比を表し、2.5≦y≦3.5であり、cはM3+元素の組成比を表し、0≦c≦1であり、zはBの組成比を表し、0<z≦2であり、12+αは酸素原子の組成比を表し、−1≦α≦10である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=16.9±0.5°、25.9±0.5°、27.6±1.0°、30.9±1.0°、及び34.1±1.0°の範囲にピークを有する、リチウムイオン伝導体。
  2. 前記金属酸化物は、4≦x−a+b−3z≦12である、請求項1に記載のリチウムイオン伝導体。
  3. 正極層、負極層、及び前記正極層と前記負極層との間にセパレータを有するリチウムイオン電池であって、
    前記正極層、前記負極層、又は前記セパレータの少なくともいずれかに、請求項1又は2に記載のリチウムイオン伝導体を有する、リチウムイオン電池。
  4. 正極層、負極層、及び前記正極層と前記負極層との間に固体電解質層を有する全固体リチウムイオン電池であって、
    前記正極層、前記負極層、又は前記固体電解質層の少なくともいずれかに、請求項1又は2に記載のリチウムイオン伝導体を有する、全固体リチウムイオン電池。
JP2015223013A 2015-11-13 2015-11-13 リチウムイオン伝導体及びこれを用いたリチウムイオン電池 Pending JP2017091910A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015223013A JP2017091910A (ja) 2015-11-13 2015-11-13 リチウムイオン伝導体及びこれを用いたリチウムイオン電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015223013A JP2017091910A (ja) 2015-11-13 2015-11-13 リチウムイオン伝導体及びこれを用いたリチウムイオン電池

Publications (1)

Publication Number Publication Date
JP2017091910A true JP2017091910A (ja) 2017-05-25

Family

ID=58768137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015223013A Pending JP2017091910A (ja) 2015-11-13 2015-11-13 リチウムイオン伝導体及びこれを用いたリチウムイオン電池

Country Status (1)

Country Link
JP (1) JP2017091910A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010661A (zh) * 2020-09-03 2020-12-01 深圳市飞粤新材料科技有限公司 一种锂电池正极材料用匣钵及其制备方法
WO2021130920A1 (ja) * 2019-12-25 2021-07-01 株式会社恒大新能源日本研究院 蓄電デバイス及び蓄電デバイス用シート状固体電解質
WO2021177346A1 (ja) * 2020-03-05 2021-09-10 株式会社カネカ Liイオン伝導体およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130920A1 (ja) * 2019-12-25 2021-07-01 株式会社恒大新能源日本研究院 蓄電デバイス及び蓄電デバイス用シート状固体電解質
WO2021177346A1 (ja) * 2020-03-05 2021-09-10 株式会社カネカ Liイオン伝導体およびその製造方法
CN115210185A (zh) * 2020-03-05 2022-10-18 株式会社钟化 Li离子导体及其制造方法
CN115210185B (zh) * 2020-03-05 2024-05-03 株式会社钟化 Li离子导体及其制造方法
CN112010661A (zh) * 2020-09-03 2020-12-01 深圳市飞粤新材料科技有限公司 一种锂电池正极材料用匣钵及其制备方法

Similar Documents

Publication Publication Date Title
JP2017091953A (ja) リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091955A (ja) リチウムイオン伝導体及びこれを用いたリチウムイオン電池
KR101731240B1 (ko) 가넷형 화합물의 제조 방법, 가넷형 화합물 및 상기 가넷형 화합물을 포함한 전고체 리튬 2차 전지
CN104124467B (zh) 一种利用锂镧锆氧前驱体包覆粉体制备固体电解质的方法
JP7025620B2 (ja) 全固体リチウム電池用電極積層体の製造方法、全固体リチウム電池用電極複合体及びその製造方法
JP2017033926A (ja) ガーネット型酸化物焼結体及びその製造方法
KR102316442B1 (ko) 세라믹 분말 재료, 세라믹 분말 재료의 제조 방법 및 전지
Zhang et al. Preparation of cubic Li7La3Zr2O12 solid electrolyte using a nano-sized core–shell structured precursor
US20210119251A1 (en) Ceramic powder, sintered body and battery
JP2018073503A (ja) リチウムイオン固体電解質及びこれを用いたリチウムイオン電池
JP6832073B2 (ja) 全固体電池用正極活物質材料の製造方法
JP2016213181A (ja) リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2016213178A (ja) リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091910A (ja) リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2016006005A (ja) リチウム含有複合酸化物粉末の製造方法
EP4005999B1 (en) Ceramic powder material and method for producing ceramic powder material
US11637316B2 (en) Ceramic powder material, sintered body, and battery
KR102016916B1 (ko) Llzo 산화물 고체 전해질 분말의 제조방법