JP2017084914A - Printed wiring board and method of manufacturing the same - Google Patents

Printed wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2017084914A
JP2017084914A JP2015210228A JP2015210228A JP2017084914A JP 2017084914 A JP2017084914 A JP 2017084914A JP 2015210228 A JP2015210228 A JP 2015210228A JP 2015210228 A JP2015210228 A JP 2015210228A JP 2017084914 A JP2017084914 A JP 2017084914A
Authority
JP
Japan
Prior art keywords
core layer
wiring board
printed wiring
filled
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015210228A
Other languages
Japanese (ja)
Inventor
真理 佐伯
mari Saeki
真理 佐伯
石岡 卓
Taku Ishioka
卓 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015210228A priority Critical patent/JP2017084914A/en
Publication of JP2017084914A publication Critical patent/JP2017084914A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board provided with a plurality of field vias formed by performing field plating of a via hole under hole, in which the field vias are adjoining at narrow intervals, and packing of which is improved, and to provide a method of manufacturing the same.SOLUTION: In a printed wiring board 100 including a core layer 10 having conductive metal layers 2 formed on the opposite sides of an insulation resin 1, and a plurality of field vias formed in the core layer 10 while opening at least one end, the field vias 3 are tapered to become smaller continuously toward the bottom, and at least one of adjoining field vias 3 is formed from the face in the different direction of the front and rear faces of the core layer 10.SELECTED DRAWING: Figure 1

Description

本発明は、印刷配線板およびその製造方法に関する。   The present invention relates to a printed wiring board and a manufacturing method thereof.

近年、電子機器の高機能化・高性能化に伴い、これらの電子機器に使用される半導体装置は、薄型化・小型化が進んでいる。この半導体装置の薄型化・小型化により、印刷配線板の薄型化・高密度実装化が求められている。
印刷配線板の薄型化・高密度実装化のためには、印刷配線板に複数設けられる導体を充填したビアホールの間隙(ピッチ)を狭くする方が好ましい。
In recent years, with the enhancement of functionality and performance of electronic devices, semiconductor devices used in these electronic devices are becoming thinner and smaller. With the thinning and miniaturization of this semiconductor device, there is a demand for thinning and high-density mounting of printed wiring boards.
In order to make the printed wiring board thinner and more densely packed, it is preferable to narrow the gap (pitch) between via holes filled with a plurality of conductors provided on the printed wiring board.

ビアホールの間隙を狭くする印刷配線板として、例えば、以下に示すような印刷配線板がある。
特許文献1には、ビアホール間の間隙を狭くするために、多層コア基板内で、グランド層を絶縁箇所で貫通し電源層に至るテーパ形状のビアホール導体(フィルドビア)と、電源層を絶縁箇所で貫通しグランド層に至るテーパ形状のビアホール導体とを、交互に並設するようにして、ビアホール間の間隙を狭くした多層コア基板が示されている。
また、特許文献2には、コア基板上面から下面に向かい直径が小さくなるテーパ形状のスルーホールと、コア基板下面から上面に向かい直径が小さくなるテーパ形状のスルーホールとを、それぞれレーザ加工により形成した印刷配線板が示されている。
Examples of the printed wiring board that narrows the gap between the via holes include the following printed wiring board.
In Patent Document 1, in order to narrow the gap between via holes, a tapered via-hole conductor (filled via) that penetrates the ground layer through an insulating portion and reaches the power supply layer in the multilayer core substrate, and the power supply layer at the insulating portion. A multilayer core substrate is shown in which tapered via-hole conductors that pass through to the ground layer are alternately arranged in parallel to narrow the gap between the via holes.
Further, in Patent Document 2, a tapered through hole whose diameter decreases from the upper surface to the lower surface of the core substrate and a tapered through hole whose diameter decreases from the lower surface of the core substrate to the upper surface are formed by laser processing, respectively. A printed wiring board is shown.

しかしながら、印刷配線板のビアホールが放熱部となる場合、隣り合うビアホール同士の間隙が狭いと、ビアホール下穴(孔)をレーザで加工する際、レーザの熱の停滞により、コア基板の絶縁樹脂と導電性金属箔の密着が弱くなり、導電性金属箔が剥がれてしまう問題があった。更に、ビアホール下穴に底がある非貫通形状では、レーザの熱の停滞により、意図に反してレーザの加工でビアホール下穴の底を貫通させてしまい、正常な加工とならない問題があった。このビアホール同士の間隙が広ければ、印刷配線板の小型化が困難となる。さらに、フィルドめっきでビアホール内にフィルドビアを形成する場合、片側からの充填ではビアホール内の埋まり性の問題があった。   However, when the via hole of the printed wiring board serves as a heat radiating part, if the gap between adjacent via holes is narrow, when the via hole pilot hole (hole) is processed with a laser, the heat of the laser is stagnated and the insulating resin of the core substrate There was a problem that the adhesion of the conductive metal foil was weakened and the conductive metal foil was peeled off. Furthermore, in the non-penetrating shape having the bottom in the via hole pilot hole, there is a problem that the laser processing causes the bottom of the via hole pilot hole to penetrate through the bottom of the laser due to the stagnation of the heat of the laser. If the gap between the via holes is wide, it is difficult to reduce the size of the printed wiring board. Furthermore, when a filled via is formed in a via hole by filled plating, filling from one side has a problem of filling property in the via hole.

セミアディティブ工法で放熱部となるビアホール導体を形成する場合、パターンめっきを用いて銅ポストを形成するため、フィルドめっきでビアホールを形成するサブトラクティブ工法を用いる場合よりも工程が増えてしまい、基板完成までの所要時間(リードタイム)が長くなり、かつコストが割高となるという問題があった。   When forming a via-hole conductor as a heat dissipation part by the semi-additive method, the copper post is formed by using pattern plating, so the number of processes is increased compared to the case of using the subtractive method of forming a via hole by filled plating. There was a problem that the required time (lead time) was increased and the cost was high.

特開2006−114741号公報JP 2006-114741 A 特開2011−100908号公報JP 2011-100908 A

本発明は、ビアホール下穴にフィルドめっきして形成されたフィルドビアを複数設けた印刷配線板に関して、フィルドビアが狭い間隙で隣り合い、かつその充填性が向上した印刷配線板およびその製造方法を提供することを課題とする。
また、本発明の別の課題は、コストを抑制した印刷配線板の製造方法を提供することである。
The present invention relates to a printed wiring board provided with a plurality of filled vias formed by filling plated via hole pilot holes, and provides a printed wiring board in which filled vias are adjacent to each other in a narrow gap and its filling property is improved, and a manufacturing method thereof. This is the issue.
Moreover, another subject of this invention is providing the manufacturing method of the printed wiring board which suppressed cost.

本発明は、上記課題を解決するべく完成されたものであって、以下の構成からなる。
(1)絶縁樹脂の両面に導電性金属層を形成したコア層と、前記コア層に少なくとも一方が開口して形成された複数のフィルドビアと、を備える印刷配線板であって、隣り合うフィルドビアのうち少なくとも一つが、前記コア層の表裏面における異なる方向の面から形成されたフィルドビアであることを特徴とする印刷配線板。
(2)前記フィルドビアは、底部に向かって連続的に小さくなるテーパ形状である(1)に記載の印刷配線板。
(3)前記フィルドビアが六方充填配置される(1)または(2)に記載の印刷配線板。
(4)前記フィルドビアが正方格子配置される(1)または(2)に記載の印刷配線板。
(5)複数のフィルドビアがそれぞれ電気的に接続される(1)〜(4)のいずれかに記載の印刷配線板。
(6)絶縁樹脂の両面に導電性金属層を形成したコア層を得る工程と、前記コア層の表裏面からそれぞれレーザ加工して、少なくとも一方が開口し、かつ隣り合うビアホール下穴のうち少なくとも一つが、前記コア層の表裏面における異なる方向の面から形成された複数のビアホール下穴を形成する工程と、前記ビアホール下穴にフィルドめっきしてフィルドビアを形成する工程と、を含むことを特徴とする印刷配線板の製造方法。
(7)前記ビアホール下穴は、レーザ加工で、径が底部に向かって連続的に小さくなるテーパ形状に形成され、かつ隣り合うビアホール下穴のうち少なくとも一つはテーパ形状の方向が異なるように形成される(6)に記載の印刷配線板の製造方法。
(8)前記ビアホール下穴は、コア層に対して二次元配置が六方充填配置となるように、コア層の表裏面からそれぞれ形成される(6)または(7)に記載の印刷配線板の製造方法。
(9)前記ビアホール下穴は、コア層に対して二次元配置が正方格子配置となるように、コア層の表裏面からそれぞれ形成される(6)または(7)に記載の印刷配線板の製造方法。
(10)前記コア基板の少なくとも片面に第二の絶縁樹脂層を積層する工程と、前記第二の絶縁樹脂層に、レーザ加工で前記フィルドビアと接続する第二のビアホール下穴を形成し、フィルドめっきして第二のフィルドビアを設ける工程と、をさらに含む(6)〜(9)のいずれかに記載の印刷配線板の製造方法。
The present invention has been completed in order to solve the above problems, and has the following configuration.
(1) A printed wiring board comprising: a core layer in which a conductive metal layer is formed on both surfaces of an insulating resin; and a plurality of filled vias formed by opening at least one of the core layers. At least one of them is a filled via formed from surfaces in different directions on the front and back surfaces of the core layer.
(2) The printed wiring board according to (1), wherein the filled via has a tapered shape that continuously decreases toward the bottom.
(3) The printed wiring board according to (1) or (2), wherein the filled vias are arranged in a hexagonal manner.
(4) The printed wiring board according to (1) or (2), wherein the filled vias are arranged in a square lattice.
(5) The printed wiring board according to any one of (1) to (4), wherein a plurality of filled vias are electrically connected to each other.
(6) A step of obtaining a core layer in which a conductive metal layer is formed on both surfaces of an insulating resin, and laser processing from the front and back surfaces of the core layer, respectively, and at least one of the adjacent via hole pilot holes is open. One includes a step of forming a plurality of via hole pilot holes formed from surfaces in different directions on the front and back surfaces of the core layer, and a step of forming a filled via by plating the via hole pilot holes. A method for manufacturing a printed wiring board.
(7) The via hole pilot hole is formed in a tapered shape whose diameter continuously decreases toward the bottom by laser processing, and at least one of the adjacent via hole pilot holes has a different taper direction. The manufacturing method of the printed wiring board as described in (6) formed.
(8) The via hole pilot hole is formed from the front and back surfaces of the core layer so that the two-dimensional arrangement is a hexagonal filling arrangement with respect to the core layer. (6) or (7) Production method.
(9) The via hole pilot hole is formed from the front and back surfaces of the core layer so that the two-dimensional arrangement is a square lattice arrangement with respect to the core layer. The printed wiring board according to (6) or (7), Production method.
(10) A step of laminating a second insulating resin layer on at least one surface of the core substrate, and forming a second via hole pilot hole connected to the filled via by laser processing on the second insulating resin layer. The method for producing a printed wiring board according to any one of (6) to (9), further comprising: providing a second filled via by plating.

本発明によれば、コア層に形成した隣り合うフィルドビアのうち少なくとも一つが、コア層の表裏面における異なる方向の面から形成されているので、片側だけで形成したフィルドビアより、隣り合うフィルドビア間の間隙が小さくなり、かつ片側に偏るフィルドビアの数が半分に分割されてフィルドビアの充填性が向上する。
また、セミアディティブで形成するよりも製造工程が減るので、製造のコスト減および製造時間の短縮ができる。
According to the present invention, since at least one of the adjacent filled vias formed in the core layer is formed from surfaces in different directions on the front and back surfaces of the core layer, the adjacent filled vias are formed more than the filled via formed only on one side. The gap is reduced, and the number of filled vias that are biased to one side is divided in half, so that the fillability of filled vias is improved.
In addition, since the number of manufacturing steps is less than that of semi-additive formation, manufacturing costs and manufacturing time can be reduced.

本発明に係る印刷配線板の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the printed wiring board which concerns on this invention. 本発明の印刷配線板に係るビアホール下穴を示す説明図である。It is explanatory drawing which shows the via hole pilot hole which concerns on the printed wiring board of this invention. (a)および(b)は、従来の印刷配線板におけるビアホール下穴を示す説明図である。(A) And (b) is explanatory drawing which shows the via hole pilot hole in the conventional printed wiring board. (a)は、本発明の印刷配線板に係るコア層の上面図であり、(b)はその下面図である。(A) is a top view of the core layer which concerns on the printed wiring board of this invention, (b) is the bottom view. (a)は、本発明の印刷配線板に係るコア層の上面図であり、(b)はその下面図である。(A) is a top view of the core layer which concerns on the printed wiring board of this invention, (b) is the bottom view. (a)は、本発明の印刷配線板に係るコア層の上面図であり、(b)はその下面図である。(A) is a top view of the core layer which concerns on the printed wiring board of this invention, (b) is the bottom view. (a)は、本発明の印刷配線板に係るコア層の上面図であり、(b)はその下面図である。(A) is a top view of the core layer which concerns on the printed wiring board of this invention, (b) is the bottom view. 本発明に係る印刷配線板の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the printed wiring board which concerns on this invention. (a)〜(h)は、本発明に係る印刷配線板の製造方法の一実施形態を示す説明図である。(A)-(h) is explanatory drawing which shows one Embodiment of the manufacturing method of the printed wiring board concerning this invention.

本発明の一実施形態である印刷配線板100は、図1に示すように、絶縁樹脂1とこの両面に形成された導電性金属箔2(導電性金属層)とからなるコア層10に、複数のフィルドビア3を設け、このコア層10に積層される第二の絶縁樹脂4とその表面に形成された導電性金属箔2´とに、フィルドビア3に接続される第二のフィルドビア5を設けたものである。
また、フィルドビア3は、コア層10の表裏面(上下面)に対して、隣り合うフィルドビア3のうち少なくとも一つが、コア層10の表裏面における異なる方向の面から形成されており、上面側から形成された上面フィルドビア31と、下面側から形成された下面フィルドビア32とを含む。
As shown in FIG. 1, a printed wiring board 100 according to an embodiment of the present invention has a core layer 10 composed of an insulating resin 1 and a conductive metal foil 2 (conductive metal layer) formed on both surfaces thereof. A plurality of filled vias 3 are provided, and a second filled via 5 connected to the filled via 3 is provided on the second insulating resin 4 laminated on the core layer 10 and the conductive metal foil 2 ′ formed on the surface thereof. It is a thing.
Further, the filled via 3 is formed such that at least one of the adjacent filled vias 3 with respect to the front and back surfaces (upper and lower surfaces) of the core layer 10 is formed from surfaces in different directions on the front and back surfaces of the core layer 10. The upper surface filled via 31 formed and the lower surface filled via 32 formed from the lower surface side are included.

絶縁樹脂1を形成する素材としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などの有機樹脂などが挙げられる。これらの有機樹脂は2種以上を混合して用いてもよい。絶縁体1として有機樹脂を使用する場合、有機樹脂に補強材を配合して使用するのが好ましい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などが挙げられる。これらの補強材は2種以上を併用してもよい。また、絶縁樹脂1は、好ましくはガラス繊維などのガラス材入り有機樹脂から形成される。さらに、絶縁樹脂1には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機充填材が含まれていてもよい。   Examples of the material forming the insulating resin 1 include organic resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, polyphenylene ether (PPE) resin, and the like. These organic resins may be used in combination of two or more. When using an organic resin as the insulator 1, it is preferable to mix and use a reinforcing material in the organic resin. Examples of the reinforcing material include glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Two or more of these reinforcing materials may be used in combination. The insulating resin 1 is preferably formed from an organic resin containing glass material such as glass fiber. Furthermore, the insulating resin 1 may contain inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.

絶縁樹脂1の両面に形成された導電性金属箔2は、電解フィルドめっきのシード層になる。導電性金属箔2としては、電気的に接続されるならば特に制限されないが、例えば、銅箔または薄銅箔であるのが好ましい。   The conductive metal foil 2 formed on both surfaces of the insulating resin 1 serves as a seed layer for electrolytic field plating. The conductive metal foil 2 is not particularly limited as long as it is electrically connected, but for example, a copper foil or a thin copper foil is preferable.

本実施形態におけるフィルドビア3は、コア層10の表裏面に形成される。より詳細には、図2に示すように、コア層10の表裏面における異なる方向の面から、それぞれレーザL(図示した矢印)を照射してビアホール下穴3aを設け、このビアホール下穴3aに導体材料を充填(フィルドめっき)して形成される。この導体材料としては、例えば、銅めっきがよく、銅めっきは化学銅めっき(無電解銅めっき)でもよいが、電解銅めっきの方がより適している。
なお、レーザ加工で用いられるレーザLとしては、CO2レーザ、UV−YAGレーザなどが挙げられる。
The filled via 3 in the present embodiment is formed on the front and back surfaces of the core layer 10. More specifically, as shown in FIG. 2, via holes L3a are provided by irradiating laser L (arrows shown) from the surfaces in different directions on the front and back surfaces of the core layer 10, respectively. It is formed by filling a conductor material (filled plating). As this conductor material, for example, copper plating is good, and the copper plating may be chemical copper plating (electroless copper plating), but electrolytic copper plating is more suitable.
Note that examples of the laser L used in laser processing include a CO 2 laser and a UV-YAG laser.

ビアホール下穴3aは、図2に示すように、コア層10の上下面に対して、上面から形成される上面ビアホール下穴31aと、コア層10の下面から形成される下面ビアホール下穴32aとが、隣り合うよう並設されて構成される。この上面ビアホール下穴31aは、電解フィルドめっきされて上面フィルドビア31となり、下面ビアホール下穴32aは同様に下面フィルドビア32となる。なお、図2では上面ビアホール下穴31aと下面ビアホール下穴32aは交互に形成されているが、決してこの限りではなく、上面ビアホール下穴31aと下面ビアホール下穴32aは、それぞれ隣り合うビアホール下穴3aのうち少なくとも一つが、コア層10の表裏面における異なる方向の面から形成されていればよい。   As shown in FIG. 2, the via-hole prepared hole 3 a includes an upper-surface via-hole prepared hole 31 a formed from the upper surface with respect to the upper and lower surfaces of the core layer 10, and a lower-surface via-hole prepared hole 32 a formed from the lower surface of the core layer 10. Are arranged side by side so as to be adjacent to each other. The upper surface via hole pilot hole 31 a is electrolytically filled to form the upper surface filled via 31, and the lower surface via hole pilot hole 32 a is similarly the lower surface filled via 32. In FIG. 2, the upper surface via hole prepared holes 31a and the lower surface via hole prepared holes 32a are alternately formed. However, the present invention is not limited to this. It is sufficient that at least one of 3a is formed from surfaces in different directions on the front and back surfaces of the core layer 10.

図3(a)に示すように、片面側からレーザLを照射してビアホール下穴30a、30a´を設けるような従来の印刷配線板では、ビアホール下穴30aの間隙Aは広ければ、絶縁樹脂1と導電性金属箔2との密着力が強く、レーザ加工のとき、ビアホール下穴30aの底面の導電性金属箔2が絶縁樹脂1から剥がれることはない。しかし、図3(b)に示すように、ビアホール下穴30a´の間隙Bが狭い場合は、レーザLを受ける銅箔の支えが非常に狭いため、レーザの熱の停滞で絶縁樹脂1と導電性金属箔2との密着力が弱くなり、導電性金属箔2が絶縁樹脂1から剥がれる恐れがある。更に熱の停滞が大きい場合は、レーザ照射時に銅箔が破れ、ビアホール下穴30a´の底面が貫通してしまう。狭間隙ではレーザLを受ける銅箔の支えが非常に狭いため密着強度が弱く、レーザ照射時に銅箔が破れる恐れがある。
図2に示すビアホール下穴3aは、隣り合うビアホール下穴3同士の間隙は狭いが、コア層10の表裏面からそれぞれレーザ加工で設けられるので、同一方向から隣り合うビアホール下穴にレーザLは照射される頻度が少ない。そのため、熱が停滞せずダメージが軽減され。レーザLの貫通(銅箔の破れ)は抑制される。
As shown in FIG. 3A, in the conventional printed wiring board in which the via hole pilot holes 30a and 30a ′ are provided by irradiating the laser L from one side, if the gap A of the via hole pilot hole 30a is wide, the insulating resin 1 and the conductive metal foil 2 are strong, and the conductive metal foil 2 on the bottom surface of the via hole prepared hole 30a is not peeled off from the insulating resin 1 during laser processing. However, as shown in FIG. 3B, when the gap B of the via hole pilot hole 30a ′ is narrow, the support of the copper foil that receives the laser L is very narrow. The adhesive strength with the conductive metal foil 2 is weakened, and the conductive metal foil 2 may be peeled off from the insulating resin 1. Further, when the heat stagnation is large, the copper foil is torn during laser irradiation, and the bottom surface of the via hole prepared hole 30a ′ penetrates. In a narrow gap, the support of the copper foil that receives the laser L is very narrow, so the adhesion strength is weak, and the copper foil may be broken during laser irradiation.
The via hole pilot hole 3a shown in FIG. 2 has a narrow gap between adjacent via hole pilot holes 3, but is provided by laser processing from the front and back surfaces of the core layer 10, respectively. Irradiation frequency is low. Therefore, heat does not stagnate and damage is reduced. The penetration of the laser L (copper foil breakage) is suppressed.

レーザ加工で形成されたビアホール下穴3aは、図2に示すように、径が底部に向かって連続的に小さくなるテーパ形状に形成される。すなわち、このテーパ形状は開口面側Xより底面側Yの径が小さく形成される。先述したように、ビアホール下穴3aの上面ビアホール下穴31aと下面ビアホール下穴32aは、それぞれ隣り合うビアホール下穴3aのうち少なくとも一つが、コア層10の表裏面における異なる方向の面から形成されている。そのため、片面にビアホール下穴3aの開口面側Xと底面側Yとが並設した状態となる。
このように、図2に示すビアホール下穴3aの間隙Cは、図3(a)に示すコア層10の片面のみからビアホール下穴30aを設けた従来の間隙Aよりも、テーパ形状の分狭くすることができる。これにより、片側レーザ加工よりもめっき面積を稼ぐことが可能であり、より高い放熱効果を得ることができる。
さらに、上述した図3(b)のように、ビアホール下穴の間隙が狭くなっても、絶縁樹脂1と導電性金属箔2との密着力が弱くならないため、レーザLがビアホール下穴3aの底面を貫通することはない。
As shown in FIG. 2, the via hole prepared hole 3 a formed by laser processing is formed in a tapered shape whose diameter continuously decreases toward the bottom. That is, this tapered shape is formed such that the diameter on the bottom surface side Y is smaller than the opening surface side X. As described above, the upper surface via hole prepared hole 31a and the lower surface via hole prepared hole 32a of the via hole prepared hole 3a are formed from surfaces in different directions on the front and back surfaces of the core layer 10 at least one of the adjacent via hole prepared holes 3a. ing. Therefore, the opening surface side X and the bottom surface side Y of the via hole pilot hole 3a are arranged in parallel on one side.
As described above, the gap C of the via hole prepared hole 3a shown in FIG. 2 is narrower than the conventional gap A provided with the via hole prepared hole 30a from only one side of the core layer 10 shown in FIG. can do. Thereby, the plating area can be increased as compared with the one-side laser processing, and a higher heat dissipation effect can be obtained.
Further, as shown in FIG. 3B described above, even when the gap between the via hole pilot holes is narrowed, the adhesion between the insulating resin 1 and the conductive metal foil 2 does not become weak. It does not penetrate the bottom.

上面ビアホール下穴31aおよび下面ビアホール下穴32aのテーパ角は、異なっていてもよいが同一であるのがよく、ビアホール下穴3aの垂直線を基準に例えば5〜20度であるのが好ましい。
また、ビアホール下穴3aの開口面側Xと底面側Yの径は、特に限定されないが、例えば、X:Y=5:4であるのが好ましい。
The taper angles of the upper surface via hole prepared hole 31a and the lower surface via hole prepared hole 32a may be different but are preferably the same, and are preferably, for example, 5 to 20 degrees with respect to the vertical line of the via hole prepared hole 3a.
Further, the diameters of the opening surface side X and the bottom surface side Y of the via hole prepared hole 3a are not particularly limited, but for example, X: Y = 5: 4 is preferable.

フィルドビア3を設けたコア層10の少なくとも片面には、第二の絶縁樹脂4が積層され、この絶縁樹脂4とその表面に設けた導電性金属箔2´とに、フィルドビア3に接続される第二のフィルドビア5が設けられる。図1に示す印刷配線板100では、第二の絶縁樹脂4および第二のフィルドビア5は、コア層10の上下面にそれぞれ一層ずつ積層されているが、一層に限定されない。例えば、第二の絶縁樹脂4および第二のフィルドビア5を交互に積層させて多層のビルドアップ層としてもよい。この場合、積層した各絶縁樹脂層にフィルドビアが形成され、それらの複数のフィルドビアは、コア層10のフィルドビア3と電気的に接続される。
なお、フィルドビアが放熱部となる場合、電気的接続は必須ではないが、電解フィルドめっきでフィルドビアを形成しているため、高熱伝導には電気的な接続が最適である。
A second insulating resin 4 is laminated on at least one surface of the core layer 10 provided with the filled via 3, and the first insulating resin 4 and the conductive metal foil 2 ′ provided on the surface thereof are connected to the filled via 3. A second filled via 5 is provided. In the printed wiring board 100 shown in FIG. 1, the second insulating resin 4 and the second filled via 5 are laminated on the upper and lower surfaces of the core layer 10 one by one, but are not limited to one layer. For example, the second insulating resin 4 and the second filled via 5 may be alternately laminated to form a multilayer buildup layer. In this case, filled vias are formed in the laminated insulating resin layers, and the plurality of filled vias are electrically connected to the filled vias 3 of the core layer 10.
In the case where the filled via serves as a heat dissipation portion, electrical connection is not essential, but since the filled via is formed by electrolytic filling plating, electrical connection is optimal for high heat conduction.

印刷配線板100の表面には、ソルダーレジスト(図示せず)を設けてもよい。ソルダーレジストの形成方法は、まず、スプレーコート、ロールコート、カーテンコート、スクリーン法などを用い、感光性液状ソルダーレジストを塗布して乾燥する、あるいは感光性ドライフィルム・ソルダーレジストをロールラミネートで貼り付ける。その後、露光および現像してパッド部分を開口させて加熱硬化させればよい。   A solder resist (not shown) may be provided on the surface of the printed wiring board 100. The solder resist can be formed by spray coating, roll coating, curtain coating, screen method, etc., applying photosensitive liquid solder resist and drying, or pasting photosensitive dry film / solder resist with roll lamination . Thereafter, exposure and development may be performed to open the pad portion and heat cure.

(コア層におけるフィルドビアの配置)
図4〜7は、コア層10におけるフィルドビア3の配置を示すものであり、図4(a)〜図7(a)はそれぞれコア層10の上面図であり、図4(b)〜図7(b)はそれぞれコア層10の下面図(底面図)である。すなわち、コア層10の上面には上面フィルドビア31が設けられ、下面には下面フィルドビア32がそれぞれ設けられる。
上面フィルドビア31と下面フィルドビア32の配置は、それぞれ隣り合うフィルドビア3のうち少なくとも一つが、前記コア層10の表裏面における異なる方向の面から形成されたフィルドビア3となるようになっており、図4〜図6(a)および(b)に示すように、配置が六方充填配置となっている。また、図7(a)および(b)に示す配置は正方格子配置である。このように配置されたフィルドビア3は、片面同士で配置された上面フィルドビア31と下面フィルドビア32とが隣り合う箇所が存在する。
図4〜図7(a)および(b)に示す六方充填配置および正方格子配置は、コア層10の両面でフィルドビア3の密度を確保し、かつコア層10の片面で隣接するフィルドビア3を排除した構造である。すなわち、フィルドビア3(ビアホール下穴3a)を、コア層10の上下面で隣り合うフィルドビア3同士をずらして形成して六方充填配置または正方格子配置すれば、配置されたフィルドビア3の密度が高く、かつコア層の表裏面(上下面)に形成されているので、フィルドビア3の全てをコア層10の片面で形成するより、レーザ加工時の熱のストレスを小さくすることができる。
(Arrangement of filled vias in the core layer)
4 to 7 show the arrangement of the filled vias 3 in the core layer 10, and FIGS. 4A to 7A are top views of the core layer 10, respectively. (B) is a bottom view (bottom view) of the core layer 10. That is, the upper surface filled via 31 is provided on the upper surface of the core layer 10, and the lower surface filled via 32 is provided on the lower surface.
The arrangement of the upper surface filled via 31 and the lower surface filled via 32 is such that at least one of the adjacent filled vias 3 is a filled via 3 formed from surfaces in different directions on the front and back surfaces of the core layer 10. -As shown to Fig.6 (a) and (b), arrangement | positioning is a hexagonal filling arrangement | positioning. The arrangement shown in FIGS. 7A and 7B is a square lattice arrangement. The filled via 3 arranged in this way has a portion where the upper surface filled via 31 and the lower surface filled via 32 arranged on one side are adjacent to each other.
The hexagonal packing arrangement and the tetragonal lattice arrangement shown in FIGS. 4 to 7A and 7B ensure the density of the filled vias 3 on both sides of the core layer 10 and eliminate the adjacent filled vias 3 on one side of the core layer 10. This is the structure. That is, if the filled vias 3 (via hole pilot holes 3a) are formed by shifting the adjacent filled vias 3 on the upper and lower surfaces of the core layer 10 and arranged in a hexagonal filling arrangement or a square lattice arrangement, the density of the filled vias 3 arranged is high, In addition, since it is formed on the front and back surfaces (upper and lower surfaces) of the core layer, thermal stress during laser processing can be reduced as compared with the case where all of the filled vias 3 are formed on one side of the core layer 10.

上述したフィルドビア3は、コア層10の表裏面(上下面)に対して、一方が開口していたが、両方が開口していてもよい。
図8に示す印刷配線板101は、絶縁樹脂1とこの両面に形成された導電性金属箔2(導電性金属層)とからなるコア層10を貫通する複数のフィルドビア3´を設けている。
フィルドビア3´は、コア層10を貫通するスルーホール下孔(図示せず)にフィルドめっきをして形成される。このフィルドビア3´は、コア層10の一方の面(上面)から他方の面(下面)にかけてテーパ形状となった第一貫通フィルドビア33と、コア層10´の他方の面(下面)から一方の面(上面)にかけてテーパ形状となった第二貫通フィルドビア34とが隣り合うように並設される。また、コア層10に対して、上下が開口したフィルドビア3´と一方が開口したフィルドビア3とが混在していてもよい。
One of the filled vias 3 described above is open with respect to the front and back surfaces (upper and lower surfaces) of the core layer 10, but both may be open.
A printed wiring board 101 shown in FIG. 8 is provided with a plurality of filled vias 3 ′ penetrating a core layer 10 composed of an insulating resin 1 and a conductive metal foil 2 (conductive metal layer) formed on both surfaces thereof.
Filled via 3 ′ is formed by filling plated through holes (not shown) penetrating core layer 10. The filled via 3 ′ includes a first through filled via 33 that is tapered from one surface (upper surface) of the core layer 10 to the other surface (lower surface), and one of the other surfaces (lower surface) of the core layer 10 ′. The second through filled via 34 having a tapered shape over the surface (upper surface) is arranged side by side so as to be adjacent to each other. In addition, the filled via 3 ′ with the top and bottom opened and the filled via 3 with one opened may be mixed with the core layer 10.

次に、本発明に係る印刷配線板の一実施形態の製造方法を説明する。本発明に係る印刷配線板の製造方法は、下記の工程(I)〜(VI)を含む。
(I)絶縁樹脂の両面に導電性金属箔が形成されたコア層を準備する工程。
(II)コア層にレーザ加工して、少なくとも一方が開口した複数のビアホール下穴を、隣り合うビアホール下穴のうち少なくとも一つが、前記コア層の表裏面における異なる方向の面から形成されたビアホール下穴となるように形成する工程。
(III)ビアホール下穴の内面をデスミア(樹脂粗化)処理し、導体材料を充填(電解フィルドめっき)した後、ドライフィルムを形成し露光及び現像し、エッチングして、コア層にフィルドビアを形成する工程。
(IV)コア層およびフィルドビアの表面に第二の絶縁樹脂と導電性金属箔を積層する工程。
(V)フィルドビアの直上の第二の絶縁樹脂をレーザ加工して、第二のビアホール下穴を形成する工程。
(VI)第二のビアホール下穴の内面をデスミア(樹脂粗化)処理し、導体材料を充填(電解フィルドめっき)した後、ドライフィルムを形成し露光及び現像し、エッチングして、第二のフィルドビアを形成する工程。
Next, the manufacturing method of one Embodiment of the printed wiring board concerning this invention is demonstrated. The method for producing a printed wiring board according to the present invention includes the following steps (I) to (VI).
(I) A step of preparing a core layer in which a conductive metal foil is formed on both surfaces of an insulating resin.
(II) A plurality of via hole pilot holes, at least one of which is laser-processed into the core layer, wherein at least one of adjacent via hole pilot holes is formed from surfaces in different directions on the front and back surfaces of the core layer. A process of forming a pilot hole.
(III) The inner surface of the via hole pilot hole is desmeared (resin roughening) and filled with conductive material (electrolytic filled plating), then a dry film is formed, exposed and developed, and etched to form a filled via in the core layer Process.
(IV) A step of laminating a second insulating resin and a conductive metal foil on the surfaces of the core layer and filled via.
(V) A step of forming a second via hole prepared hole by laser processing the second insulating resin immediately above the filled via.
(VI) After the inner surface of the second via hole pilot hole is desmeared (resin roughening) and filled with a conductive material (electrolytic field plating), a dry film is formed, exposed and developed, etched, and etched. Forming filled vias;

本発明に係る印刷配線板の製造方法を、図9(a)〜(h)に基づいて説明する。なお、上述した部材についての説明は省略する。   A method for manufacturing a printed wiring board according to the present invention will be described with reference to FIGS. In addition, the description about the member mentioned above is abbreviate | omitted.

まず、絶縁樹脂1の両面に銅箔または薄銅箔などの導電性金属箔2が形成されたコア層10を準備する(図9(a))。   First, the core layer 10 in which the conductive metal foil 2 such as a copper foil or a thin copper foil is formed on both surfaces of the insulating resin 1 is prepared (FIG. 9A).

次に、図9(b)に示すように、コア層10の表裏面からレーザ加工でそれぞれビアホール下穴3aを形成する。このビアホール下穴3aは、隣り合うビアホール下穴3aの少なくとも一方の開口方向がコア層10の表裏面に対して異なるよう形成される。なお、このビアホール下穴3aは、コア層10を貫通するものであってもよい。   Next, as shown in FIG. 9B, via hole prepared holes 3 a are respectively formed from the front and back surfaces of the core layer 10 by laser processing. The via hole prepared hole 3 a is formed such that the opening direction of at least one of the adjacent via hole prepared holes 3 a differs from the front and back surfaces of the core layer 10. The via hole prepared hole 3 a may penetrate the core layer 10.

次に、レーザ加工により、ビアホール下穴3aの内面などに残った開口時のコア層10(絶縁樹脂1)の残渣(図示せず)をデスミア処理により除去したビアホール下穴3aに導体材料を充填(電解フィルドめっき)した後、コア層10の表面に、公知の方法でドライフィルム(図示せず)を貼付して露光および現像し、エッチング後、ドライフィルムを剥離すると、図9(c)に示すようにコア層10にフィルドビア3が形成される。   Next, a conductor material is filled into the via hole prepared hole 3a from which the residue (not shown) of the core layer 10 (insulating resin 1) remaining on the inner surface of the via hole prepared hole 3a by laser processing is removed by desmearing. After (electrolytic filling plating), a dry film (not shown) is attached to the surface of the core layer 10 by a known method, exposed and developed, and after etching, the dry film is peeled off, as shown in FIG. As shown, the filled via 3 is formed in the core layer 10.

次に、図9(d)に示すように、コア層10およびフィルドビア3の表面に、第二の絶縁樹脂4および導電性金属箔2´を積層した後、フィルドビア3の少なくとも開口方向の直上に第二のフィルドビア5を形成するための第二のビアホール下穴5aをレーザ加工により形成する(図9(e)、(f))。また、第二の絶縁樹脂4および導電性金属箔2´の材質は、絶縁樹脂1および導電性金属箔2と同じものであってもよい。
なお、第二のフィルドビア5を形成するための絶縁樹脂4においては、絶縁樹脂1より薄めの層間厚を使用することで、第二のフィルドビア5の電解フィルドめっきの充填性を向上させ、かつ第二のフィルドビア5のテーパ形状を極力抑えて、フィルドビア3で確保しためっき占有率を落とさないようにできる。
Next, as shown in FIG. 9D, after the second insulating resin 4 and the conductive metal foil 2 ′ are laminated on the surfaces of the core layer 10 and the filled via 3, at least directly above the opening direction of the filled via 3. A second via hole prepared hole 5a for forming the second filled via 5 is formed by laser processing (FIGS. 9E and 9F). The materials of the second insulating resin 4 and the conductive metal foil 2 ′ may be the same as those of the insulating resin 1 and the conductive metal foil 2.
In addition, in the insulating resin 4 for forming the second filled via 5, by using a thinner interlayer thickness than the insulating resin 1, the fillability of the electrolytic filled plating of the second filled via 5 is improved, and the first The taper shape of the second filled via 5 can be suppressed as much as possible so that the plating occupancy secured by the filled via 3 is not reduced.

次に、図9(g)に示すように、第二のビアホール下穴5aに、導体材料を充填(フィルドめっき)して、第二のフィルドビア5を形成する。なお、第二のフィルドビア5の形成方法はフィルドビア3と同じため省略する。この第二のフィルドビア5は、フィルドビア3と電気的に接続し、印刷配線板100が完成する。なお、この後、表面の所定の位置にソルダーレジスト(図示せず)を形成してもよい。   Next, as shown in FIG. 9G, the second via hole prepared hole 5a is filled with a conductor material (filled plating) to form the second filled via 5. The method for forming the second filled via 5 is the same as that for the filled via 3 and is omitted. The second filled via 5 is electrically connected to the filled via 3 and the printed wiring board 100 is completed. Thereafter, a solder resist (not shown) may be formed at a predetermined position on the surface.

上記した印刷配線板100の製造方法は、フィルドめっきでフィルドビア3を形成する。そのため、パターンめっきを用いて放熱部となる導体(銅ポスト)を形成するセミアディティブプロセスで放熱部となる銅ポストを形成する場合よりも工程が減り、基板完成までの所要時間を削減でき、かつコストを減らすことができる。
さらに、隣り合うフィルドビア3のうち少なくとも一つがコア層10の表裏面における異なる方向の面から形成したフィルドビア3であり、フィルドビア3間の間隙を狭めることができるため、ビアホールをコア層10の片面から形成する工法よりも高い放熱性を備えた印刷配線板が作成可能である。
In the manufacturing method of the printed wiring board 100 described above, the filled via 3 is formed by filled plating. Therefore, the number of processes is reduced compared to the case of forming a copper post as a heat dissipation part in a semi-additive process of forming a conductor (copper post) as a heat dissipation part using pattern plating, and the time required to complete the substrate can be reduced, and Cost can be reduced.
Furthermore, at least one of the adjacent filled vias 3 is a filled via 3 formed from surfaces in different directions on the front and back surfaces of the core layer 10, and the gap between the filled vias 3 can be narrowed. A printed wiring board having higher heat dissipation than the method of forming can be produced.

1 絶縁樹脂
2、2´ 導電性金属箔
3、3´ フィルドビア
3a ビアホール下穴
4 第二の絶縁樹脂
5 第二のフィルドビア
5a 第二のビアホール下穴
10 コア層
30a、30a´ ビアホール下穴
31 上面フィルドビア
31a 上面ビアホール下穴
32 下面フィルドビア
32a 下面ビアホール下穴
33 第一貫通フィルドビア
34 第二貫通フィルドビア
100、101 印刷配線板
L レーザ
A,B,C 間隙
DESCRIPTION OF SYMBOLS 1 Insulation resin 2, 2 'Conductive metal foil 3, 3' Filled via 3a Via hole pilot hole 4 Second insulating resin 5 Second filled via 5a Second via hole pilot hole 10 Core layer 30a, 30a 'Via hole pilot hole 31 Upper surface Filled via 31a Upper surface via hole pilot hole 32 Lower surface filled via 32a Lower surface via hole pilot hole 33 First through filled via 34 Second through filled via 100, 101 Printed wiring board L Laser A, B, C Gap

Claims (10)

絶縁樹脂の両面に導電性金属層を形成したコア層と、
前記コア層に少なくとも一方が開口して形成された複数のフィルドビアと、を備える印刷配線板であって、
隣り合うフィルドビアのうち少なくとも一つが、前記コア層の表裏面における異なる方向の面から形成されたフィルドビアであることを特徴とする印刷配線板。
A core layer in which a conductive metal layer is formed on both sides of an insulating resin;
A printed wiring board comprising a plurality of filled vias formed by opening at least one of the core layers,
At least one of the adjacent filled vias is a filled via formed from surfaces in different directions on the front and back surfaces of the core layer.
前記フィルドビアは、底部に向かって連続的に小さくなるテーパ形状である請求項1に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the filled via has a tapered shape that continuously decreases toward the bottom. 前記フィルドビアが六方充填配置される請求項1または2に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the filled via is arranged in a hexagonal filling manner. 前記フィルドビアが正方格子配置される請求項1または2に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the filled vias are arranged in a square lattice. 複数のフィルドビアがそれぞれ電気的に接続される請求項1〜4のいずれかに記載の印刷配線板。   The printed wiring board according to claim 1, wherein the plurality of filled vias are electrically connected to each other. 絶縁樹脂の両面に導電性金属層を形成したコア層を得る工程と、
前記コア層の表裏面からそれぞれレーザ加工して、少なくとも一方が開口し、かつ隣り合うビアホール下穴のうち少なくとも一つが、前記コア層の表裏面における異なる方向の面から形成された複数のビアホール下穴を形成する工程と、
前記ビアホール下穴にフィルドめっきしてフィルドビアを形成する工程と、を含むことを特徴とする印刷配線板の製造方法。
Obtaining a core layer having a conductive metal layer formed on both sides of an insulating resin;
Laser processing is performed from the front and back surfaces of the core layer, and at least one of the adjacent via hole pilot holes is below a plurality of via holes formed from surfaces in different directions on the front and back surfaces of the core layer. Forming a hole;
Forming a filled via by plating the via hole pilot hole.
前記ビアホール下穴は、レーザ加工で、径が底部に向かって連続的に小さくなるテーパ形状に形成され、かつ隣り合うビアホール下穴のうち少なくとも一つはテーパ形状の方向が異なるように形成される請求項6に記載の印刷配線板の製造方法。   The via hole pilot hole is formed in a tapered shape whose diameter continuously decreases toward the bottom by laser processing, and at least one of the adjacent via hole pilot holes is formed so that the direction of the tapered shape is different. The manufacturing method of the printed wiring board of Claim 6. 前記ビアホール下穴は、コア層に対して二次元配置が六方充填配置となるように、コア層の表裏面からそれぞれ形成される請求項6または7に記載の印刷配線板の製造方法。   The printed wiring board manufacturing method according to claim 6 or 7, wherein the via hole pilot holes are formed from the front and back surfaces of the core layer so that the two-dimensional arrangement of the core layer is a hexagonal filling arrangement. 前記ビアホール下穴は、コア層に対して二次元配置が正方格子配置となるように、コア層の表裏面からそれぞれ形成される請求項6または7に記載の印刷配線板の製造方法。   The printed wiring board manufacturing method according to claim 6 or 7, wherein the via hole pilot holes are formed from the front and back surfaces of the core layer so that the two-dimensional arrangement is a square lattice arrangement with respect to the core layer. 前記コア基板の少なくとも片面に第二の絶縁樹脂層を積層する工程と、
前記第二の絶縁樹脂層に、レーザ加工で前記フィルドビアと接続する第二のビアホール下穴を形成し、フィルドめっきして第二のフィルドビアを設ける工程と、をさらに含む請求項6〜9のいずれかに記載の印刷配線板の製造方法。
Laminating a second insulating resin layer on at least one side of the core substrate;
The method further comprises: forming a second via hole pilot hole connected to the filled via by laser processing in the second insulating resin layer, and providing a second filled via by filling plating. A method for producing a printed wiring board according to claim 1.
JP2015210228A 2015-10-26 2015-10-26 Printed wiring board and method of manufacturing the same Pending JP2017084914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210228A JP2017084914A (en) 2015-10-26 2015-10-26 Printed wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210228A JP2017084914A (en) 2015-10-26 2015-10-26 Printed wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2017084914A true JP2017084914A (en) 2017-05-18

Family

ID=58711125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210228A Pending JP2017084914A (en) 2015-10-26 2015-10-26 Printed wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017084914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195039A (en) * 2018-05-04 2019-11-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
CN112867236A (en) * 2021-01-21 2021-05-28 上海美维科技有限公司 IC package substrate and manufacturing method thereof
CN115551184A (en) * 2022-09-29 2022-12-30 高德(江苏)电子科技股份有限公司 Printed circuit board interconnected by conical column and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195039A (en) * 2018-05-04 2019-11-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
KR20190127254A (en) * 2018-05-04 2019-11-13 삼성전기주식회사 Printed circuit board
KR102586068B1 (en) * 2018-05-04 2023-10-05 삼성전기주식회사 Printed circuit board
JP7464217B2 (en) 2018-05-04 2024-04-09 サムソン エレクトロ-メカニックス カンパニーリミテッド. Printed Circuit Board
CN112867236A (en) * 2021-01-21 2021-05-28 上海美维科技有限公司 IC package substrate and manufacturing method thereof
CN112867236B (en) * 2021-01-21 2023-06-06 上海美维科技有限公司 IC package substrate and method for manufacturing IC package substrate
CN115551184A (en) * 2022-09-29 2022-12-30 高德(江苏)电子科技股份有限公司 Printed circuit board interconnected by conical column and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101167466B1 (en) Multi-layer printed circuit board and method of manufacturing the same
US20110209905A1 (en) Wiring board and method for manufacturing the same
KR100783467B1 (en) Printed circuit board having inner via hole and manufacturing method thereof
JP2015122545A (en) Multilayer wiring board and manufacturing method of the same
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
WO2016136222A1 (en) Printed wiring board and method for manufacturing same
JP4693861B2 (en) Heat dissipation printed circuit board and manufacturing method thereof
US20140166355A1 (en) Method of manufacturing printed circuit board
JP7097139B2 (en) Wiring board
JP5908003B2 (en) Printed circuit board and printed circuit board manufacturing method
KR101049678B1 (en) Heat spreading printed-circuit-board and method fabricating the same
US20150257268A1 (en) Printed wiring board and method for manufacturing printed wiring board
KR100965341B1 (en) Method of Fabricating Printed Circuit Board
JP2017084914A (en) Printed wiring board and method of manufacturing the same
TW201637522A (en) Printed circuit boards having profiled conductive layer and methods of manufacturing same
KR100704920B1 (en) Pcb and it's manufacturing method used bump board
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
JP2008078343A (en) Printed wiring board and its manufacturing method
JP4219541B2 (en) Wiring board and method of manufacturing wiring board
JP6846862B2 (en) Printed wiring board and its manufacturing method
JP2003124632A (en) Multilayer printed wiring board and its manufacturing method
JP2013074270A (en) Manufacturing method of rigid flexible printed wiring board
KR101089923B1 (en) Manufacturing method of printed circuit board
JP4802402B2 (en) High-density multilayer build-up wiring board and manufacturing method thereof
JP2014072311A (en) Multilayer wiring board and manufacturing method therefor