JP2017077609A - ロボットの手首部の機構パラメータを校正する校正装置および校正方法 - Google Patents

ロボットの手首部の機構パラメータを校正する校正装置および校正方法 Download PDF

Info

Publication number
JP2017077609A
JP2017077609A JP2015207224A JP2015207224A JP2017077609A JP 2017077609 A JP2017077609 A JP 2017077609A JP 2015207224 A JP2015207224 A JP 2015207224A JP 2015207224 A JP2015207224 A JP 2015207224A JP 2017077609 A JP2017077609 A JP 2017077609A
Authority
JP
Japan
Prior art keywords
target
robot
imaging device
distance
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015207224A
Other languages
English (en)
Inventor
聖 吉野
Sei Yoshino
聖 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2015207224A priority Critical patent/JP2017077609A/ja
Priority to CN201610811513.XA priority patent/CN106610624A/zh
Priority to DE102016119605.3A priority patent/DE102016119605A1/de
Priority to US15/298,808 priority patent/US10189161B2/en
Publication of JP2017077609A publication Critical patent/JP2017077609A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39008Fixed camera detects reference pattern held by end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39044Estimate error model from error at different attitudes and points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39046Compare image of plate on robot with reference, move till coincidence, camera

Abstract

【課題】より簡素な態様で手首部の機構パラメータを校正できる校正装置を提供する。【解決手段】校正装置は、ロボット1の手先に最も近い関節J6に対して予め定められる位置に固定されたターゲット5と、ロボット1の周囲に設置された撮像装置4と、を利用して、ロボット1の手首部15を表す機構モデルのパラメータを校正する。所定の初期位置からターゲット5の姿勢を変化させて複数の予備位置が生成される。それら予備位置を始点として、ターゲット5を撮像して得られる画像上において、ターゲット5が撮像装置4に対して所定の位置関係になるようなロボットの終点位置を算出する。構成装置は、算出された終点位置に基づいて、手首部15の機構パラメータを校正する。【選択図】図1

Description

本発明は、機構パラメータを校正する校正装置および校正方法に関する。
産業用ロボットにおいては、ティーチングプレイバックによるプログラミングが広く採用されている。この方法によれば、プログラムによって教示される教示位置までロボットが繰返し移動する。
ロボット制御装置は、ロボットを数学的に表現した機構モデルを利用して数値計算を行い、プログラムの教示位置をロボットの座標系における指令位置に変換する。機構モデルは、実際のロボットの機構に対して幾分の誤差を含んでいるのが一般的であり、ロボットの手先が到達する位置は、指令位置には完全には一致しない。すなわち、実際の手先の到達位置と指令位置との間の誤差が小さければ、位置決め精度が高くなる。
機構モデルに含まれるパラメータ(以下、「機構パラメータ」と称することがある。)は、ロボットの構成部品の加工誤差または組立誤差を含んでおり、個々のロボットごとに異なる固有の値である。そのため、ロボットの構成部品が交換されたときには、機構パラメータを調整しないと、ロボットの位置決め精度が低下する虞がある。
モータの交換前に構成部品に目印を付与しておき、モータ交換後に目印が合致するように構成部品の位置を調整する方法(以下、「目印基準法」と称することがある。)が公知である。
また、特許文献1には、ロボットの機体に凹凸部を形成するとともに、計測装置によって凹凸部の位置を検出することによって軸の原点を決定する方法が開示されている。特許文献2には、ロボットに取付けられた受光素子およびレーザ光発射部を利用して原点を校正する方法が開示されている。
特許文献3には、ロボットの姿勢を変化させた後のロボットの先端位置の3次元位置を測定することによって、機構パラメータを校正する方法が開示されている。特許文献4には、ロボットの手先に取付けられたワイヤの長さが、ロボットの姿勢に応じて変化することを利用して、機構パラメータを校正する方法が開示されている。特許文献5には、ロボットの姿勢を変化させた後のターゲットの位置と、受光デバイスとターゲットとの間の距離に応じてロボットを移動させ、その結果から機構パラメータを校正する方法が開示されている。
特開昭54−162565号公報 特開平1−087182号公報 特開2001−018182号公報 特開2001−105357号公報 特開2008−012604号公報
1つの軸を駆動するために使用されるモータまたは減速機の交換は、前述した目印基準法などの公知の方法を用いて比較的簡単に機構パラメータを校正できる。しかしながら、手首部をまとめて交換する場合では、手首部のリンク長などの機構パラメータを調整しないと、交換後の位置決め精度が低下する虞がある。
そのため、広い作業空間を確保できる場所にロボットを移動させ、ロボット全体の機構パラメータを校正する必要がある。特許文献5に記載された発明では、ロボットの手先に取付けられるカメラまたはターゲットの位置が未知であるので、手首軸の原点誤差を計算できず、手首部の機構パラメータを校正できない。
したがって、より簡便な態様で手首部の機構パラメータを校正できる校正装置および校正方法が求められている。
本願の1番目の発明によれば、ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手首部を表す機構モデルのパラメータを校正する校正装置であって、前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成する予備位置生成部と、前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得するターゲット検出部と、前記複数の予備位置をそれぞれ始点とし、前記ターゲット検出部によって検出される前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶する終点位置記憶部と、前記終点位置記憶部によって記憶された前記終点の位置に基づいて、前記機構モデルのパラメータを算出するパラメータ算出部と、
を備える、校正装置が提供される。
本願の2番目の発明によれば、1番目の発明に係る校正装置において、前記パラメータ算出部は、非線形関数の最適化法に従って前記パラメータを算出するように構成される。
本願の3番目の発明によれば、1番目または2番目の発明に係る校正装置において、前記ターゲット検出部は、前記ターゲットの長さ情報を含む幾何学的特徴に基づいて、前記距離を算出するように構成される。
本願の4番目の発明によれば、1番目から3番目のいずれかの発明に係る校正装置において、前記ターゲット検出部は、前記ターゲットから発生される光に基づいて、前記ターゲットの位置および前記距離を検出するように構成される。
本願の5番目の発明によれば、1番目から4番目のいずれかの発明に係る校正装置において、前記ターゲット検出部は、前記撮像装置によって取得される2次元画像に基づいて、前記ターゲットの位置および前記距離を検出するように構成される。
本願の6番目の発明によれば、ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手首部を表す機構モデルのパラメータを校正する校正方法であって、前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成し、前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得し、前記複数の予備位置をそれぞれ始点とし、検出された前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶し、記憶された前記終点の位置に基づいて、前記機構モデルのパラメータを算出すること、を含む、校正方法が提供される。
これらおよび他の本発明の目的、特徴および利点は、添付図面に示される本発明の例示的な実施形態に係る詳細な説明を参照することによって、より明らかになるであろう。
本発明に係る校正装置および校正方法によれば、ロボットの手先に固定されたターゲット手首部を撮像装置で撮像して得られる画像上における情報に基づいて機構パラメータを算出できるので、簡便な態様で機構パラメータを校正できるようになる。
一実施形態に係るロボットシステムの構成例を示す図である。 ロボット制御装置の機能ブロック図である。 ターゲットが取付けられた手首部を示す拡大図である。 撮像装置側から見たターゲットを示す拡大図である。 一実施形態に係る校正装置によって実行される処理の流れを示すフローチャートである。 ビジュアルフィードバックを利用した処理の流れを示すフローチャートである。
以下、添付図面を参照して本発明の実施形態を説明する。図示される実施形態の構成要素は、本発明の理解を助けるために寸法が適宜変更されている。また、同一または対応する構成要素には、同一の参照符号が使用される。
図1および図2を参照して、本発明の一実施形態に係る校正装置について説明する。図1は、ロボット1と、ロボット1を制御するロボット制御装置2と、撮像装置4と、を備えたロボットシステム10を示している。
ロボット1は、ベース11、旋回胴12、下腕13、上腕14および手首部15を備えた6軸垂直多関節ロボットである。ロボット1は、関節軸J1〜J6を有しており、関節軸J1〜J6をモータ(図示せず)で駆動することによって、手首部15に取付けられたエンドエフェクタを所望の姿勢で所望の位置に位置決めできるように構成される。このようなロボット1の構成および機構は周知であるので、本明細書では詳細には説明しない。
ロボット1は、有線または無線の公知の通信手段を介してロボット制御装置2に接続されている。ロボット制御装置2は、互いにバスで接続された不揮発性記憶装置21、揮発性記憶装置22、演算処理装置23を備えている。
不揮発性記憶装置21には、ロボット1を制御するための制御プログラム、およびロボット1の機構パラメータの校正を行うための計算プログラムなどが格納されている。
揮発性記憶装置22は、不揮発性記憶装置21から読出された計算プログラムなどを一時記憶するために使用される。
演算処理装置23は、ロボット制御装置2のCPUであり、揮発性記憶装置22に記憶されたプログラムに従って種々の演算を実行する。
ロボット制御装置2は、外部装置、例えば入力装置および表示装置に接続されるインタフェイス(図示せず)を備えている。
ロボット1の手首部15には、撮像装置4の撮像対象となるターゲット5がエンドエフェクタとして取付けられている。ターゲット5は、ロボット1が動作するのに連動してその位置および姿勢が変化するように手首部15に固定されている。
ターゲット5は、幾何学的特徴として複数の円形の模様が表面に付与された板状の部材である。それら円は、格子状に配列されており、予め定められる距離だけ中心の位置が互いに離間している。ターゲット5は、ロボット1の手先に最も近い関節J6に対して予め定められる位置に取付けられている。すなわち、関節J6に対するターゲット5の位置、ひいては各々の円の中心の位置は、予め分かっている。
ターゲット5に付与される幾何学的特徴は、前述した円形の模様に限定されない。幾何学的特徴は、特定の代表点を観念しうる他の図形、例えば多角形であってもよいし、三次元図形であってもよい。或いは、発光ダイオードなどの発光体によって、幾何学的特徴がターゲット5に付与されてもよい。幾何学的特徴の配列は、格子状の配列に限定されず、一定の規則性を有する他の配列、例えば千鳥状の配列であってもよい。
図3は、ターゲット5が取付けられた手首部15を拡大して示す拡大図である。図4は、撮像装置4の側から見たターゲット5を示す拡大図である。
図4に示されるように、ターゲット5には、幾何学的特徴として、等間隔に配列された9個の円51からなる模様が付与されている。幾何学的特徴の代表点は、適宜設定されるものの、本実施形態においては、9個の円51のうち、中央に配置された代表円52の中心521に設定される。
代表円52の中心521は、手首部15に対して設定されるメカニカルインタフェイス座標系ΣfのXZ平面上に配置されている。メカニカルインタフェイス座標系Σfは、関節J6の回転軸線と、ターゲット5が取付けられた手首部15の取付面との交点を原点とし、回転J6の回転軸線に対して平行であって、取付面から離れる方向をZ軸の正方向とし、取付面に対して平行に延びていて、回転J6の関節軸が0度を指す方向をX軸の正方向とするように設定される座標系である。しかしながら、代表円52の中心521の位置は、前述した例に限定されないことに留意されたい。
撮像装置4は、対象物を撮像することにより、二次元画像を受光面で検出する機能を有する。撮像装置4は、例えば、予め定められる焦点距離を有するレンズを備えたCCDカメラである。
ロボット制御装置2は、ロボット1の機構パラメータを校正する校正装置としての機能を有する。以下、ロボット制御装置2の校正装置としての機能について説明する。
図2は、ロボット制御装置2の機能ブロック図である。図2に示されるように、ロボット制御装置2は、軸制御部31と、表示部32と、操作部33と、予備位置生成部34と、ターゲット検出部35と、終点位置記憶部36と、パラメータ算出部37と、を備えている。
軸制御部31は、ロボット1の関節軸J1〜J6を制御する指令を生成する。表示部32は、ロボット制御装置2に接続された表示装置を介してロボット1に関する情報を表示する。操作部33は、オペレータによって操作される入力デバイスに接続されていて、操作の内容に応じたデータ生成、編集などの処理を実行する。
予備位置生成部34は、ターゲット5が、撮像装置4の視野に含まれるような位置に配置されているときのロボット1の位置を初期位置とし、ターゲット5の位置を変更することなくターゲット5の姿勢を変化させたときに得られるロボット1の複数の位置をそれぞれ複数の予備位置として生成する。
ターゲット検出部35は、撮像装置4によって取得される画像上におけるターゲット5の像に基づいて、当該画像上におけるターゲット5の位置、およびターゲット5と撮像装置4との間の距離に関する情報を取得する。
一実施形態において、ターゲット検出部35は、ターゲット5の長さ情報を含む幾何学的特徴に基づいて、ターゲット5と撮像装置4との間の距離を算出するように構成されてもよい。また、一実施形態において、ターゲット検出部35は、撮像装置4によって取得される2次元画像に基づいて、ターゲット5の位置およびターゲット5と撮像装置4との間の距離を検出するように構成されてもよい。
また、ターゲット5の幾何学的特徴が発光体によって付与される実施形態の場合、ターゲット検出部35は、ターゲット5から発生される光に基づいて、ターゲット5の位置およびターゲット5と撮像装置4との間の距離を検出するように構成されてもよい。
終点位置記憶部36は、予備位置生成部34によって生成された複数の予備位置をそれぞれ始点とし、ターゲット検出部35によって検出されるターゲット5の位置および距離が、予め定められる位置および距離にそれぞれ近づくように、ロボット1を並進移動させたときに、並進移動した後のロボット1の位置をそれぞれ終点として記憶する。
パラメータ算出部37は、終点位置記憶部36によって記憶された前記終点の位置に基づいて、手首部15の機構モデルのパラメータを算出する。一実施形態において、パラメータ算出部37は、非線形関数の最適化法に従って、手首部15の機構パラメータを算出するように構成されてもよい。
図5を参照して、ロボット制御装置2によって実行される処理の流れについて説明する。
ステップS501において、ロボット1の手首部15の機構パラメータを仮校正する。例えば、手首部15の関節の原点位置について、目視で原点位置近傍まで移動させ、移動後の位置を仮の原点に設定するとともに、仮の原点を不揮発性記憶装置21に記憶する。リンク長を表すパラメータ値など、手首部15の交換前後で変化の程度が小さい機構パラメータについては、交換前と同じ値を仮のパラメータ値として使用してもよい。
ステップS502において、撮像装置4によってターゲット5の幾何学的特徴を撮像できるように、ロボット1を動作させて、ターゲット5と撮像装置4との間の位置関係を調整する。撮像装置4に対するターゲット5の位置は、特定の位置である必要はなく、ターゲット5が撮像装置4の視野の範囲内に入っていればよい。周辺装置によって作業空間が制限される場合であっても、作業空間内の適切な位置が任意に選択される。そのため、周辺装置またはロボット1の設置位置を移動させる必要はない。
ステップS503において、ビジュアルフィードバックに従ってロボット1を動作させる。ステップS503の詳細な処理について、図6を参照して説明する。
ステップS601において、手首部15に取付けられたターゲット5の幾何学的特徴(図4参照)を撮像装置4によって撮像する。
ステップS602において、ターゲット検出部35が、ターゲット5を撮像して得られた画像上における幾何学的特徴の代表点(例えば、図4に示される代表円52の中心521)の位置を取得する。代表点の位置は、画像上における所定位置に対する相対的位置として取得される。一実施形態において、ステップS602で取得される代表点の位置は、受光面の中心点に対する位置であってもよい。画像上における位置関係は、互いの間の距離が、二次元平面として表される画像の縦方向および横方向それぞれにおける「画素」の何個分に相当するかに応じて算出される。
ステップS603において、ターゲット検出部35が、撮像装置4とターゲット5の代表点との間の距離を取得する。ターゲット5の幾何学的特徴を撮像して得られる画像上では、撮像装置4とターゲット5とが正対する関係にない場合、幾何学的特徴を構成する円は、楕円として表される。このことを考慮して、画像上における代表円52の中心521の位置と、代表円52に隣接する円51の中心の位置との間の距離が検出される。画像処理の方法は、種々の公知技術を適用できるので、本明細書では詳細な説明を省略する。
画像上における楕円の中心間距離と、予め定められる画素の一辺の長さと、予め定められる実際の円51と代表円52との間の中心間距離と、撮像装置4のレンズの焦点距離と、に基づいて、ターゲット5と撮像装置4との間の距離が計算される。公知のピンホールカメラモデルに従った計算方法を適用できるので、本明細書では詳細な説明を省略する。
ステップS604において、ステップS602で計算された相対的位置関係、およびステップS603で計算された距離が、予め定められる目標位置および目標距離になるように、ロボット1の動作量を計算する。目標位置および目標距離としては、不揮発性記憶装置21に記憶された値を使用できる。具体的には、算出された位置および距離と、目標位置および目標距離との差に応じて、それらの差が所定値以下になるように、ロボット1の動作量を計算する。
ステップS605において、ステップS604で計算された動作量に応じてロボット1を動作させる。
図6を参照して説明したビジュアルフィードバックを利用したロボットの動作制御は公知であり、例えば特許文献5に記載された方法を適用できる。
ビジュアルフィードバックを利用してロボットを動作させれば、撮像装置4を用いたターゲット5の計測は非接触の態様で実行される。したがって、ターゲット5の摩耗等が生じないので、計算結果の精度が時間とともに低下する虞がない。
また、動作後のロボットの位置は、演算処理装置23によって自動的に計算されるので、ロボットの終点位置を精度よく取得できる。さらに、ロボットの動作中に作業者がロボットに近づく必要がないので、作業者の安全が確保されるとともに、作業者の負担が減る。
図5に戻り、ステップS504において、動作後のロボット1の位置を初期位置として不揮発性記憶装置21に記憶する。
ステップS505において、予備位置生成部34が、複数の予備位置を算出し、不揮発性記憶装置21に記憶する。複数の予備位置は、ロボット1の初期位置に対応する幾何学的特徴の代表点の位置を変更することなくターゲット5の姿勢のみを変更することによってそれぞれ得られる。
ステップS506において、計数値iに「1」が入力される。
ステップS507において、ロボット1をi番目の予備位置まで動作させる。前述したように、予備位置までの動作においては、初期位置の状態から代表点の位置が変更されない。したがって、ロボット1が動作する範囲は小さくなるので、作業領域が制限された場合であっても、ステップS507の処理を安全に実行できる。
ステップS508において、ステップS503と同様に、ビジュアルフィードバックに従ってロボット1を動作させる。
ステップS509において、終点位置記憶部36が、動作後のロボット1の位置を不揮発性記憶装置21に終点位置として記憶する。
ステップS510において、計数値iと予備位置の数nとを比較する。「i=n」が成立しないと判定された場合は、ステップS511に進み、計数値iに「i+1」が入力され、ステップS507に戻る。
他方、ステップS510において、「i=n」が成立すると判定された場合は、ステップS512に進む。ステップS512では、パラメータ算出部37が、n個の終点位置に基づいて、手首部15の機構パラメータを計算し、校正処理を終了する。
次に、ロボット1の機構パラメータを計算する方法について説明する。本実施形態によれば、複数の姿勢における機構パラメータの誤差を算出し、誤差が小さくなるように機構パラメータを校正する。
次の3つの誤差が、機構パラメータ誤差として考慮される。第1の誤差は、手首部15の回転軸の原点位置およびリンク長などを含むnp個の機構パラメータPk,0[Pk,0,1,Pk,0,2,,...,Pk,0,np]である。機構パラメータPk,0は、手首部15の機構パラメータに加えて、ロボット1の他の機構パラメータを含んでいてもよい。
第2の誤差は、メカニカルインタフェース座標系Σfにおける代表点の位置PS=[XS,ZS]の誤差である。前述したように、メカニカルインタフェース座標系Σfは、ロボット1の手先に設けられるターゲット5の取付部に固定された座標系である。第2の誤差では、Y軸成分のYSを考慮していない。手先に最も近い関節J6の回転軸の回転方向は、PSのY軸成分YSに応じて変化するので、ΔYs=0としなければ、回転軸の原点を一意に特定できないからである。
第3の誤差は、ベース座標系Σbにおける代表点の位置Pm=[Xm,Ym,Zm]の誤差である。ベース座標系Σbは、ロボット1のベース11に固定された座標系である。
第1の誤差、第2の誤差および第3の誤差を機構パラメータ誤差PID=[ΔPk,0,ΔPS,ΔPm]とする。
理想状態、すなわちPIDのすべての成分がゼロである場合は、記憶されたロボット1のi番目の終点位置およびメカニカルインタフェイス座標系Σfにおける代表点の位置PSを用いて算出されるベース座標系Σbにおける代表点の位置Piと、ロボット1の初期位置およびメカニカルインタフェイス座標系Σfにおける代表点の位置PSを用いて算出されるベース座標系Σbにおける代表点の位置Pmとが完全に一致するはずである。しかしながら、通常は、機構パラメータ誤差PIDに起因して、代表点の位置PiとPmとの間には、次の式(1)で表わされる位置誤差eiが生じる。
Figure 2017077609
幾何学的関係から分かるように、PiはPIDの関数である。したがって、eiもPIDの関数である。
本実施例では、ニュートン・ラプソン法を用いて、ns個の計測位置姿勢におけるベース座標系Σbにおける代表点の位置Piと、初期位置におけるベース座標系Σbにおける代表点の位置Pmとの誤差E=[e1,e2,...,ens]が最小になるようなPIDを求める。この計算では、先ず次の式(2)のようにeiのj番目の同定パラメータPID,Jに対する微分値gi,jを求める。
Figure 2017077609
ここでe'i,jは、PID,jに微小誤差量ΔPID,jを加えたときの、ロボット1のi番目の終点位置でのベース座標系Σbにおける代表点の位置P'iと、初期位置でのベース座標系Σbにおける代表点の位置Pmとの誤差である。
IDがne個のパラメータを含んでいるとすれば、式(2)を用いて求められたgi,jは、行列[G]で表される(式(3)参照)。
Figure 2017077609
この行列[G]を用いることによって、誤差関係は、以下の線形の式(4)で表される。
Figure 2017077609
したがってPIDは、次の式(5)から求めるられる。
Figure 2017077609
ただし、[G]+は[G]の擬似逆行列であり、以下の式(6)から求められる。
Figure 2017077609
以上から、機構パラメータPk,1は、次の式(7)から求められる。
Figure 2017077609
IDとPiとの間の関係には非線形性が存在しているため、式(7)から求められたPk,1は依然として誤差を含んでいる。そこで、ニュートン・ラプソン法に従って、Pk,1をPk,0の代わりに使用して、PIDのすべての成分が十分に小さくなるまで、式(1)から式(7)の計算を繰返し行う。実際には、PIDの各成分が所定の閾値以下になるまで上記計算を繰返す。校正に使用される他の計算方法としては、遺伝的アルゴリズム、ニューラルネットワーク等の非線形問題の最適化法があるが、いずれも周知の方法であるので、本明細書では詳細な説明を省略する。
ロボット1の手首部15の機構パラメータを構成する前述した工程のうち、作業者が実行する必要があるのは、ステップS501およびS502のみであり、ステップS503以降の工程は、自動化可能である。また、校正を実行するために、ロボット1を別の場所へ移動させる必要もない。そのため、作業者にかかる負担を軽減できる。
本実施形態に係る校正装置および校正方法によれば、次のような効果が得られる。
(1)周囲環境によりロボット1の動作範囲が制限される場合であっても、手首部15の機構パラメータを校正できる。
(2)手首部15の機構パラメータの校正が計算により自動的に行われる。したがって、作業者の熟練度にかかわらず、迅速かつ確実に機構パラメータを校正できる。作業者にかかる負担も軽減される。
(3)機構パラメータを校正するために、ロボット1に目印などを予め付与する必要がない。したがって、本実施形態に係る校正装置および構成方法は、任意のタイプのロボットに適用できる。
(4)校正を実行する際に、作業者がロボット1の近くで作業する必要がなくなるので、作業者の安全を確保できる。
(5)非接触の方法で機構パラメータを校正できるので、部品の摩耗に起因する計測精度の低下を防止できる。
(6)手首部15全体の機構パラメータを校正できる。したがって、手首部15を交換したときにロボット1の位置決め精度が低下するのを防止できる。
手首部15の機構パラメータを校正する際に要求されるロボット1の動作領域の大きさについて、本実施形態に係る校正装置と比較例に係る校正装置とを比較する。
動作領域の大きさを表す指標として、メカニカルインタフェイス座標系Σfの原点が水平方向に対して動作する範囲(面積)を使用する。換言すれば、ロボット1の上方から見て、メカニカルインタフェイスΣfの原点が移動する範囲の面積に基づいて、動作領域の大きさを評価する。
比較例に係るロボットシステムにおいては、特許文献5に記載されているように、撮像装置がロボットの手先に固定されており、ターゲットがロボットの周囲に設置されている。例えば、撮像装置は、メカニカルインタフェイス座標系Σfにおいて、(x,y,z)=(250,0,10)の位置に配置されるとともに、ターゲットは、ベース座標系Σbにおいて、(x,y,z)=(1800,0,1300)の位置に設置されている。
さらに、ターゲットと撮像装置とが約400mm離間して正対するとともに、撮像装置の光軸がターゲットの代表点を通るように撮像装置が位置決めされる。そして、撮像装置の光軸が、ベース座標系ΣbのX軸およびY軸の回りにそれぞれ±30度、Z軸の回りに±45度傾けて合計8箇所の計測位置姿勢を設定する。その場合、校正処理を行う際に、手先が水平方向に対して移動する範囲の大きさは、半径が約432mmである円の面積に等しくなる。
他方、本実施形態に係るロボットシステムでは、撮像装置4がロボット1の周囲に設置されており、ターゲット5がロボット1の手首部15に固定されている。ターゲットの代表点がメカニカルインタフェイス座標系Σfにおいて、(x,y,z)=(250,0,10)の位置に配置されるものとする。そして、ターゲット5と撮像装置4とが約400mm離間して正対するとともに、撮像装置の光軸が、ベース座標系ΣbのX軸およびY軸の回りにそれぞれ±30度、Z軸の回りに±45度傾けて合計8箇所の予備位置を設定する。その場合、校正処理を行う際に、手先が水平方向に対して移動する範囲の大きさは、半径が約221mmである円の面積に等しくなる。
このように、本実施形態によれば、同じ条件で機構パラメータの校正を行っても、比較例の場合に比べて動作範囲の大きさが約74%削減される。したがって、本実施形態によれば、作業スペースが制限された環境下でも手首部の機構パラメータを校正できるようになる。
関節軸が全て回転軸である機構を有するロボットを使用する場合について説明したものの、関節軸として直動軸を備えたロボットの場合にも、軸角度を軸位置と読替えれば、同様の説明が当てはまる。
以上、本発明の種々の実施形態について説明したが、当業者であれば、他の実施形態によっても本発明の意図する作用効果を実現できることを認識するであろう。特に、本発明の範囲を逸脱することなく、前述した実施形態の構成要素を削除または置換することができるし、或いは公知の手段をさらに付加することができる。また、本明細書において明示的または暗示的に開示される複数の実施形態の特徴を任意に組合せることによっても本発明を実施できることは当業者に自明である。
1 ロボット
10 ロボットシステム
15 手首部
2 ロボット制御装置
31 軸制御部
32 表示部
33 操作部
34 予備位置生成部
35 ターゲット検出部
36 終点位置記憶部
37 パラメータ算出部
本願の1番目の発明によれば、ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手先に最も近い関節を含めた、手先の姿勢を変更するのに寄与する関節のみの機構モデルのパラメータを校正する校正装置であって、前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置の代表点を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成する予備位置生成部と、前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得するターゲット検出部と、前記複数の予備位置をそれぞれ始点とし、前記ターゲット検出部によって検出される前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶する終点位置記憶部と、前記終点位置記憶部によって記憶された前記終点の位置から算出される代表点の位置と前記初期位置から算出される代表点の位置との差である位置誤差が小さくなるように、前記機構モデルのパラメータを算出するパラメータ算出部と、
を備える、校正装置が提供される。
本願の2番目の発明によれば、1番目の発明に係る校正装置において、前記パラメータ算出部は、非線形関数の最適化法に従って前記パラメータを算出するように構成される。
本願の3番目の発明によれば、1番目または2番目の発明に係る校正装置において、前記ターゲット検出部は、前記ターゲットの長さ情報を含む幾何学的特徴に基づいて、前記距離を算出するように構成される。
本願の4番目の発明によれば、1番目から3番目のいずれかの発明に係る校正装置において、前記ターゲット検出部は、前記ターゲットから発生される光に基づいて、前記ターゲットの位置および前記距離を検出するように構成される。
本願の5番目の発明によれば、1番目から4番目のいずれかの発明に係る校正装置において、前記ターゲット検出部は、前記撮像装置によって取得される2次元画像に基づいて、前記ターゲットの位置および前記距離を検出するように構成される。
本願の6番目の発明によれば、ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手先に最も近い関節を含めた、手先の姿勢を変更するのに寄与する関節のみの機構モデルのパラメータを校正する校正方法であって、前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置の代表点を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成し、前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得し、前記複数の予備位置をそれぞれ始点とし、検出された前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶し、記憶された前記終点の位置から算出される代表点の位置と前記初期位置から算出される代表点の位置との差である位置誤差が小さくなるように、前記機構モデルのパラメータを算出すること、を含む、校正方法が提供される。

Claims (6)

  1. ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手首部を表す機構モデルのパラメータを校正する校正装置であって、
    前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成する予備位置生成部と、
    前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得するターゲット検出部と、
    前記複数の予備位置をそれぞれ始点とし、前記ターゲット検出部によって検出される前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶する終点位置記憶部と、
    前記終点位置記憶部によって記憶された前記終点の位置に基づいて、前記機構モデルのパラメータを算出するパラメータ算出部と、
    を備える、校正装置。
  2. 前記パラメータ算出部は、非線形関数の最適化法に従って前記パラメータを算出するように構成される、請求項1に記載の校正装置。
  3. 前記ターゲット検出部は、前記ターゲットの長さ情報を含む幾何学的特徴に基づいて、前記距離を算出するように構成される、請求項1または2に記載の校正装置。
  4. 前記ターゲット検出部は、前記ターゲットから発生される光に基づいて、前記ターゲットの位置および前記距離を検出するように構成される、請求項1から3のいずれか1項に記載の校正装置。
  5. 前記ターゲット検出部は、前記撮像装置によって取得される2次元画像に基づいて、前記ターゲットの位置および前記距離を検出するように構成される、請求項1から4のいずれか1項に記載の校正装置。
  6. ロボットの手先において、該手先に最も近い関節に対して予め定められる位置に固定されていて、前記ロボットによって位置および姿勢を変更可能なターゲットと、前記ロボットの周囲に設置された撮像装置と、を利用して、前記ロボットの手首部を表す機構モデルのパラメータを校正する校正方法であって、
    前記ターゲットが、前記撮像装置の視野に含まれるような位置に配置されているときの前記ロボットの位置を初期位置とし、前記ターゲットの位置を変更することなく前記ターゲットの姿勢を変化させたときに得られる前記ロボットの複数の位置をそれぞれ複数の予備位置として生成し、
    前記撮像装置によって取得される画像上における前記ターゲットの像に基づいて、前記画像上における前記ターゲットの位置、および前記ターゲットと前記撮像装置との間の距離に関する情報を取得し、
    前記複数の予備位置をそれぞれ始点とし、検出された前記ターゲットの位置が予め定められる位置になり、かつ前記距離が予め定められる距離になるように、前記ロボットを並進移動させたときに、並進移動した後の前記ロボットの位置をそれぞれ終点として記憶し、
    記憶された前記終点の位置に基づいて、前記機構モデルのパラメータを算出すること、
    を含む、校正方法。
JP2015207224A 2015-10-21 2015-10-21 ロボットの手首部の機構パラメータを校正する校正装置および校正方法 Pending JP2017077609A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015207224A JP2017077609A (ja) 2015-10-21 2015-10-21 ロボットの手首部の機構パラメータを校正する校正装置および校正方法
CN201610811513.XA CN106610624A (zh) 2015-10-21 2016-09-08 校正机器人的手腕部的机构参数的校正装置及校正方法
DE102016119605.3A DE102016119605A1 (de) 2015-10-21 2016-10-14 Kalibrierungssystem und Kalibrierungsverfahren zur Kalibrierung der mechanischen Parameter des Handgelenksteils eines Roboters
US15/298,808 US10189161B2 (en) 2015-10-21 2016-10-20 Calibration system and calibration method calibrating mechanical parameters of wrist part of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207224A JP2017077609A (ja) 2015-10-21 2015-10-21 ロボットの手首部の機構パラメータを校正する校正装置および校正方法

Publications (1)

Publication Number Publication Date
JP2017077609A true JP2017077609A (ja) 2017-04-27

Family

ID=58490249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207224A Pending JP2017077609A (ja) 2015-10-21 2015-10-21 ロボットの手首部の機構パラメータを校正する校正装置および校正方法

Country Status (4)

Country Link
US (1) US10189161B2 (ja)
JP (1) JP2017077609A (ja)
CN (1) CN106610624A (ja)
DE (1) DE102016119605A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000923A (ja) * 2017-06-13 2019-01-10 川崎重工業株式会社 多関節ロボットの機構モデルパラメータ推定方法
CN110340881A (zh) * 2018-04-03 2019-10-18 泰科电子(上海)有限公司 机器人工具的标定方法和标定系统
CN110842917A (zh) * 2019-10-22 2020-02-28 广州翔天智能科技有限公司 串并联机械的机械参数的标定方法、电子装置及存储介质
JP7420506B2 (ja) 2018-08-16 2024-01-23 株式会社ミツトヨ ロボットと共に使用される補足計測位置座標決定システム
JP7431216B2 (ja) 2018-08-16 2024-02-14 株式会社ミツトヨ ロボットと共に使用される位置合わせセンサを含む補足計測位置座標決定システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077609A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの手首部の機構パラメータを校正する校正装置および校正方法
TWI614103B (zh) * 2016-10-21 2018-02-11 和碩聯合科技股份有限公司 機械手臂定位方法及應用其的系統
TWI668541B (zh) 2017-09-29 2019-08-11 財團法人工業技術研究院 機器人工具中心點校正系統及其方法
JP7035727B2 (ja) * 2018-03-30 2022-03-15 日本電産株式会社 キャリブレーション精度の評価方法及び評価装置
US11707843B2 (en) 2020-04-03 2023-07-25 Fanuc Corporation Initial reference generation for robot optimization motion planning
CN116019562A (zh) * 2021-03-09 2023-04-28 武汉联影智融医疗科技有限公司 机器人控制系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058185A (ja) * 1991-06-29 1993-01-19 Fanuc Ltd ロボツト機体の作動誤差の自動測定方法
JPH1049218A (ja) * 1996-08-07 1998-02-20 Fanuc Ltd ロボットの位置教示のための移動制御方式
WO2000057129A1 (fr) * 1999-03-19 2000-09-28 Matsushita Electric Works, Ltd. Procede de reconnaissance d'objet tridimensionnel et systeme de collecte de broches a l'aide de ce procede
JP2005125478A (ja) * 2003-09-29 2005-05-19 Yaskawa Electric Corp 複数ロボット間の相対位置計測方法
JP2008012604A (ja) * 2006-07-03 2008-01-24 Fanuc Ltd 計測装置及びキャリブレーション方法
JP2011177845A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp ロボットのキャリブレーション方法及びロボット用キャリブレーション装置
JP2013186088A (ja) * 2012-03-09 2013-09-19 Canon Inc 情報処理装置、情報処理方法
JP2014161950A (ja) * 2013-02-25 2014-09-08 Dainippon Screen Mfg Co Ltd ロボットシステム、ロボット制御方法、ロボット較正方法
JP2015042437A (ja) * 2013-07-22 2015-03-05 キヤノン株式会社 ロボットシステム及びロボットシステムの校正方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2825581A1 (de) 1978-06-10 1979-12-13 Karlsruhe Augsburg Iweka Einrichtung zur reproduzierbaren zuordnung zweier mechanischer elemente
JPS6487182A (en) 1987-09-22 1989-03-31 Toyota Motor Corp Reference-attitude compensator for industrial robot
US6425865B1 (en) * 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
JP2001018182A (ja) 1999-07-05 2001-01-23 Matsushita Electric Ind Co Ltd ロボット機構較正演算方法及びシステム
JP2001105357A (ja) 1999-10-01 2001-04-17 Yaskawa Electric Corp 産業用ロボットにおけるキャリブレーション方法およびワイヤ式リニアスケールのワイヤガイド装置および測定方法
DE102007023585B4 (de) * 2007-05-16 2009-08-20 Esab Cutting Systems Gmbh Einrichtung und Verfahren zum Einmessen von Schwenkaggregaten, insbesondere an Schneidmaschinen
US8543240B2 (en) * 2009-11-13 2013-09-24 Intuitive Surgical Operations, Inc. Master finger tracking device and method of use in a minimally invasive surgical system
US8971572B1 (en) * 2011-08-12 2015-03-03 The Research Foundation For The State University Of New York Hand pointing estimation for human computer interaction
US9785247B1 (en) * 2014-05-14 2017-10-10 Leap Motion, Inc. Systems and methods of tracking moving hands and recognizing gestural interactions
JP2017077609A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの手首部の機構パラメータを校正する校正装置および校正方法
US10318008B2 (en) * 2015-12-15 2019-06-11 Purdue Research Foundation Method and system for hand pose detection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058185A (ja) * 1991-06-29 1993-01-19 Fanuc Ltd ロボツト機体の作動誤差の自動測定方法
JPH1049218A (ja) * 1996-08-07 1998-02-20 Fanuc Ltd ロボットの位置教示のための移動制御方式
WO2000057129A1 (fr) * 1999-03-19 2000-09-28 Matsushita Electric Works, Ltd. Procede de reconnaissance d'objet tridimensionnel et systeme de collecte de broches a l'aide de ce procede
JP2005125478A (ja) * 2003-09-29 2005-05-19 Yaskawa Electric Corp 複数ロボット間の相対位置計測方法
JP2008012604A (ja) * 2006-07-03 2008-01-24 Fanuc Ltd 計測装置及びキャリブレーション方法
JP2011177845A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp ロボットのキャリブレーション方法及びロボット用キャリブレーション装置
JP2013186088A (ja) * 2012-03-09 2013-09-19 Canon Inc 情報処理装置、情報処理方法
JP2014161950A (ja) * 2013-02-25 2014-09-08 Dainippon Screen Mfg Co Ltd ロボットシステム、ロボット制御方法、ロボット較正方法
JP2015042437A (ja) * 2013-07-22 2015-03-05 キヤノン株式会社 ロボットシステム及びロボットシステムの校正方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000923A (ja) * 2017-06-13 2019-01-10 川崎重工業株式会社 多関節ロボットの機構モデルパラメータ推定方法
JP7109161B2 (ja) 2017-06-13 2022-07-29 川崎重工業株式会社 多関節ロボットの機構モデルパラメータ推定方法
CN110340881A (zh) * 2018-04-03 2019-10-18 泰科电子(上海)有限公司 机器人工具的标定方法和标定系统
JP7420506B2 (ja) 2018-08-16 2024-01-23 株式会社ミツトヨ ロボットと共に使用される補足計測位置座標決定システム
JP7431216B2 (ja) 2018-08-16 2024-02-14 株式会社ミツトヨ ロボットと共に使用される位置合わせセンサを含む補足計測位置座標決定システム
CN110842917A (zh) * 2019-10-22 2020-02-28 广州翔天智能科技有限公司 串并联机械的机械参数的标定方法、电子装置及存储介质

Also Published As

Publication number Publication date
US20170113351A1 (en) 2017-04-27
DE102016119605A1 (de) 2017-04-27
US10189161B2 (en) 2019-01-29
CN106610624A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
JP2017077609A (ja) ロボットの手首部の機構パラメータを校正する校正装置および校正方法
US11565427B2 (en) Robot system
US10035268B2 (en) Measurement system used for calibrating mechanical parameters of robot
JP4267005B2 (ja) 計測装置及びキャリブレーション方法
JP5670416B2 (ja) ロボットシステム表示装置
JP4298757B2 (ja) ロボット機構のキャリブレーション装置及び方法
JP6429473B2 (ja) ロボットシステム、ロボットシステムの校正方法、プログラム、およびコンピュータ読み取り可能な記録媒体
JP6235664B2 (ja) ロボットの機構パラメータを校正するために使用される計測装置
KR102084656B1 (ko) 로봇 시스템을 위한 자동 교정 방법
JP6468741B2 (ja) ロボットシステム及びロボットシステムの校正方法
JP6426725B2 (ja) 移動可能な対象物体の場所を追跡するためのシステム及び方法
JP2011031346A (ja) ロボットのツール先端点の位置の計測装置および計測方法
JP5815761B2 (ja) 視覚センサのデータ作成システム及び検出シミュレーションシステム
US20050225278A1 (en) Measuring system
TW201403277A (zh) 機器人系統、機器人、機器人控制裝置、機器人控制方法及機器人控制程式
JP6674655B2 (ja) 相対データ較正装置と方法
JP2010188439A (ja) パラメータ算出方法及びパラメータ算出装置
JP6585391B2 (ja) ロボット
KR20080088165A (ko) 로봇 캘리브레이션 방법
CN109531604B (zh) 进行校准的机器人控制装置、测量系统以及校准方法
JP2019063955A (ja) ロボットシステム、動作制御方法及び動作制御プログラム
KR100644174B1 (ko) 로봇 용접의 보정방법
KR20190083661A (ko) 산업용 로봇의 측정 시스템 및 방법
KR20210034070A (ko) 교정 작업 지원 시스템
WO2023013740A1 (ja) ロボット制御装置、ロボット制御システム、及びロボット制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171121